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are well described by a leading-order expansion of the axion potential. Heavier states are

susceptible to gravitational collapse. Inclusion of higher-order interactions, present in the

full potential, can give qualitatively different results in the analysis of collapsing heavy

states, as compared to the leading-order expansion. In this work, we find that collapsing

axion stars are stabilized by repulsive interactions present in the full potential, providing

evidence that such objects do not form black holes. In the last moments of collapse, the

binding energy of the axion star grows rapidly, and we provide evidence that a large amount

of its energy is lost through rapid emission of relativistic axions.
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1 Introduction

The axion, a pseudoscalar particle originally associated with a solution of the strong CP

problem in QCD [1–8], has been analyzed in a variety of astrophysical contexts, particularly

in cosmological evolution [9–13] and as a candidate for dark matter [14–19]. Axions can

condense into gravitationally bound objects, either in the early universe through large-

scale overdensities in a coherent axion field (called “miniclusters”), or through gravitational

cooling and collapse (called “axion stars”) [20–22].

The masses of weakly bound axion stars have been computed previously [23, 24], and

they are bounded above by gravitational stability [24–26]. Axion stars which exceed this

maximum mass Mc have a fate which remains an open question. Some authors [27, 28]

suggest that such configurations collapse to a compact, very dense state. Recently, the

author of [29] examined the collapse of a boson star with an attractive self-interaction

which has M > Mc, using a dynamical equation derived from a Gaussian ansatz for its

wavefunction. The author found that, as its potential is unbounded from below, a star of

this kind collapses all the way to its Schwarzschild radius and forms a black hole.

Indeed, the leading axion self-interaction is attractive; axionic or other bosonic objects

with repulsive interactions have been considered by [30, 31]. However, the axion potential

contains additional terms which become increasingly important as the axion density be-

comes large. It is thus plausible to ask whether these higher-order terms, some of which

give rise to repulsive self-interactions, can stabilize the collapsing axion star prior to its

formation of a black hole state. In this note, we will consider the consequences of including

the full self-interacting axion potential in the collapse of heavy, weakly bound axion stars.
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In section 2, we review the nonrelativistic limit of axion field theory in the description

of axion stars; then in section 3, we outline the variational method used to find energet-

ically stable bound states, and the computation of the total collapse time for large mass

solutions. We estimate the binding energy in section 4, in the initial and final states, but

also dynamically in time during collapse. As the binding energy increases, it is known [32]

that the rate of decay for axion stars, through an annihilation process which ejects rel-

ativistic axions, rises quickly. We thus investigate whether collapsing axion stars emit a

large fraction of their energy and decay due to quantum mechanical effects. Finally, we

outline our conclusions in section 5.

2 The non-relativistic expansion for axion stars

Axions are real scalar fields, but in the nonrelativistic limit can be described by a complex

wavefunction ψ, using the expansion [25, 33]

φ =
1√
2m

[
e−im tψ + eim tψ∗

]
, (2.1)

which preserves the Hermiticity of the axion field φ. At low temperatures, the wavefunc-

tion ψ describes collectively a condensed state of N axions, termed an axion star, and is

normalized as
∫
d3r|ψ∗ψ| = N . The Klein-Gordon equation for φ, expanded using eq. (2.1)

in the non-relativistic limit, yields the Lagrangian density

L =
1

2
∂µφ∂

µφ− V (φ)

= iψ∗ψ̇ − iψ̇∗ψ −
[
|∇ψ|2

2m
+W (φ)

]
(2.2)

for ψ, where

V (φ) = m2 f2
[
1− cos

(
φ

f

)]
(2.3)

is the low-energy axion potential, with m and f the mass and decay constant of the axion,

respectively. The gravitational potential

Vgrav(|ψ|2) = −Gm2

∫
ψ∗(x′)ψ(x′)

|x′ − x|
d3x′,

representing the self-gravity of the condensate, can be added by hand [25, 34]. Then the

quantity

H =

∫
d3r

[∑
i

pi q̇i − L

]
=

∫
d3r

[
|∇ψ|2

2m
+W (φ) +

1

2
Vgrav(|ψ|2)

]
(2.4)

is conserved. Here W (φ) describes the quantum self-interactions of the axion field,

W (φ) = m2 f2
[
1− cos

(
φ

f

)]
− m2

2
φ2

= −m2 f2
∞∑
n=2

(−1)n

(2n)!

(
φ

f

)2n

. (2.5)
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Note that the mass term in the first equality of eq. (2.5) is included to account for a

cancellation in the non-relativistic limit between the potential and kinetic terms in L. In

the nonrelativistic limit, the total energy per axion is Etot/N ' m; that is, the binding

energy Etot/N −m in the axion star is small. In that case, we can expand eq. (2.5) using

eq. (2.1) and drop the rapidly oscillating terms containing extra factors of e±imt. The

resulting equation of motion for ψ is the nonlinear Schrödinger equation.

We derive the total energy from eq. (2.4) in the following way. The nth term in eq. (2.5)

contains the factor

φ2n =
2nCn
(2m)n

(ψ∗ ψ)n +O(e±im t) ,

where 2nCn are binomial coefficients. Dropping the rapidly oscillating pieces, we obtain

W (φ) = −m2 f2
∞∑
n=2

2nCn (−1)n

(2n)!

(
ψ∗ ψ

2mf2

)n

= m2 f2

[
1− ψ∗ ψ

2mf2
−
∞∑
n=0

(−1)n

(n!)2

(
ψ∗ ψ

2mf2

)n]

= m2 f2

[
1− ψ∗ ψ

2mf2
− J0

(√
2ψ∗ ψ

mf2

)]
(2.6)

where J0(x) is a Bessel function of the first kind.1 Including also the kinetic and gravita-

tional terms, the total energy functional has the form

E(ψ) =

∫
d3r

[
1

2m
|∇ψ|2 +

1

2
Vgrav |ψ∗ψ|+m2 f2

(
1− J0

(√
2ψ∗ψ

mf2

))
− m

2
ψ∗ψ

]
.

(2.7)

A minimum of the energy correponds to a stable bound state, an axion star. Typically,

one expands the Bessel function in eq. (2.7) to obtain the leading self-interaction term,

which is proportional to (ψ∗ψ)2. This leading self-interaction is attractive, and as we will

explain below, this implies that the potential appears unbounded from below as the axion

star size decreases, R→ 0. There can nonetheless exist local energy minima, corresponding

to metastable states which are dilute and weakly bound. However, there exists a critical

particle number Nc above which no energy minimum exists, local or global. As a result,

it is often assumed that an axion star with M > mNc, being gravitationally unstable,

will collapse all the way to a black hole state. A full description of this process can be

found in [29], who used a Gaussian ansatz for the wavefunction and calculated the time

for collapse to a black hole, which was on the order of an hour.

The full axion self-interaction potential, given by eq. (2.6), contains additional terms

beyond the attractive (ψ∗ψ)2, which depend on increasing powers of the field ψ. Indeed,

these higher-order terms, beginning with a repulsive (ψ∗ψ)3 term, become increasingly

relevant as the system increases in density, and we wish to investigate whether these terms

have the effect of stabilizing the potential against complete collapse. To this end, we will

1The J0 dependence of the axion self-interaction potential was pointed out in [24] and later in [27, 28].
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examine the energy functional, including higher-order interactions, and determine whether

the endpoint of collapse can lie at a radius greater than the Schwarzschild radius of the

axion star. Such a result would be evidence that axion stars stabilize before they collapse

to black holes.

3 Variational method

We will use a variational ansatz for the wavefunction to calculate the energy in eq. (2.7) as

a function of the condensate size, in order to estimate the positions of any energy minima.

Using the result of [24], we know how the macroscopic parameters of a weakly bound axion

star, the radius R and the axion number N , scale with the dimensionful parameters of the

theory; we thus define the dimensionless quantities ρ and n by

R =
1

m

ρ√
δ

N =
f2

m2

n√
δ
, (3.1)

where δ ≡ f2/M2
P and MP = G−1/2 is the Planck mass. For QCD axions, typical values

are m = 10−5 eV and f = 6× 1011 GeV, implying δ = O(10−14) [35].

We will use a single variational parameter, the rescaled radius ρ, at fixed rescaled axion

number n. Then the general form of a variational ansatz will be

ψ(r) = wF
( r
R

)
≡ wF (ξ), (3.2)

where at fixed ξ the function F (ξ) is independent of ρ, n, and δ. Then substituting the

ansatz into the normalization condition of ψ gives the normalization constant as

w =

√
δ nm

C2

f

ρ3/2
, (3.3)

where we introduced the notation

Ck = 4π

∫
dξ ξ2 F (ξ)k. (3.4)

Using (2.7) we obtain for the energy functional

E(ρ)

mN
= δ

(
D2

2C2

1

ρ2
− B4

2C2
2

n

ρ
− n

ρ3
v

)
, (3.5)

where

v = 4π
ρ6

n2 δ2

∫
dξ ξ2

[
1− J0

(√
2n δ

C2 ρ3
F (ξ)

)
− n δ

2C2 ρ3
F (ξ)2

]
(3.6)

=
∞∑
k=0

(
− 1

2C2

)k+2(n δ
ρ3

)k C2 k+4

[(k + 2)!]2
, (3.7)
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and where we defined the functions

D2 = 4π

∫
dξ ξ2 F ′(ξ)2, (3.8)

B4 = 32π2
∫
dξ ξ F (ξ)2

∫ ξ

0
dη η2 F (η)2. (3.9)

Note that just like Ck, also B4 and D2 are independent of the physical parameters n, ρ,

and δ. The leading-order approximation of (3.5) is obtained when we take the small δ

limit, at which

v0 = v|δ=0 =
C4

16C2
2
. (3.10)

The minimization of (3.5) with respect to ρ locates the radii of metastable minima

and maxima of the binding energy. The condition for the existence of metastable states

constrains the reduced particle number n to a finite constant. Restricting ourselves to

leading-order of δ, which is δ = O(10−14) in QCD (for f = 6×1011 GeV and m = 10−5 eV),

we obtain

nc =

√
8

3

C2D2√
B4C4

. (3.11)

For n < nc, there exists a metastable minimum of the energy at a reduced radius

ρmin =
C2D2

B4 n

[
1−

√
1− 3

8

B4C4

C2
2D2

2
n2

]
(3.12)

which, at n = nc, has a value of

ρ∗ ≡ ρmin

∣∣∣
n=nc

=

√
3C4

8B4
. (3.13)

3.1 Gaussian ansatz

Following [26, 29], we use a Gaussian ansatz to approximate the axion star wavefunction:

ψ(r) =

√
N

π3/4σ3/2
e−r

2/2σ2
, (3.14)

which corresponds to eq. (3.2) with w =
√
N/(π3/4σ3/2) and F (ξ) = e−ξ

2/2. Note that when

we talk about the “size” of such a condensate (whose wavefunction extends to r →∞), we

refer to the conventional R99, inside which .99 of the mass is contained. For the Gaussian

ansatz, this occurs not at σ, but at a value closer to 3σ. Note also that we define ρ below

using eq. (3.1) with R = σ, not R = R99.

The energy functional, given by eq. (3.5), depends on the coefficients

D2 =
3π3/2

2
, B4 =

√
2π5, Ck = 2

√
2π3

k3
, (3.15)
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Figure 1. The position ρGM of the global minimum of the energy in eq. (3.16), as a function of the

reduced particle number n. The global minimum always lies at a radius ρGM > ρeq, the position at

which the kinetic energy ∼ 1/ρ2 becomes dominant, which is depicted by the horizontal black line.

computed using the Gaussian function in eq. (3.14). Written out explicitly, we have

E(ρ)

mN
=

3

4

δ

ρ2
− 1√

2π

n δ

ρ
+

∫ ∞
0

4πx2

n δ

[
1− J0

(√
2n δ

π3/2ρ3
e−x

2/2ρ2

)
− n δ

2π3/2 ρ3
e−x

2/ρ2

]
dx

(3.16)

= δ

[
3

4

1

ρ2
− 1√

2π

n

ρ
− 1

2 δ

∞∑
k=0

(−1)k

[(k + 2)!]2 (k + 2)3/2

(
n δ

2π3/2ρ3

)k+1
]
, (3.17)

where in the second equality we have expanded J0 and integrated term by term. Though no

closed form exists for the integral in eq. (3.16), we show in the appendix that it is finite as

ρ→ 0, and that the kinetic energy term (which is proportional to 1/ρ2) dominates in this

region. Consequently, the total energy is bounded from below in this formalism, and always

has a global minimum.2 In figure 1, we show the position ρGM of this global minimum of

the energy functional in eq. (3.16) as a function of n. The global minimum always lies at

a very small radius: ρGM = O(10−7–10−6) depicted in the plot correspond to RGM ∼ 5–

50 cm. Given that the Schwarzschild radius RS = 2M/M2
P, the ratio R/RS = ρ/(2n δ).

Thus

ρS = 2n δ

so at n = nc, ρS = 10−13 � 10−7 < ρGM, and this possible endpoint of collapse is not a

black hole.

The normalized energy per particle coming from the self-interaction is shown to be a

constant −1/2 in the small ρ limit, so we can estimate the value of ρ � 1 at which the

2It is possible that this conclusion would be modified by post-Newtonian corrections to the gravitational

interaction.
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kinetic and self-interaction energies are of the same order; we find comparable magnitudes

3

4

δ

ρ2
∼ 1

2

at a radius of ρeq ∼ 10−7, corresonding to roughly Req ∼ 5 cm. ρeq is shown as a hori-

zontal black line in figure 1. This radius Req is of the same order as the axion reduced

Compton wavelength, λc = ~/mc ∼ 2 cm. It should be noted that on length scales of

O(λc), neglecting higher powers of e±imt in the expansion of eq. (2.1) would fail, as special

relativistic corrections to the kinetic energy could be large. Nonetheless, weakly bound

stars have radii much larger than this, and as we describe below, even collapsing stars are

well described by the non-relativistic approximation until the last moments of collapse. We

have estimated the leading correction to the kinetic energy, which is ∼ p4, and in the range

of ρ considered here, its expectation value is down by a factor proportional to δ/ρ2 � 1

compared to the leading-order term. We will thus postpone any further consideration of

these relativistic corrections to the energy, which will be addressed in a future publication.

In this work we analyze the low-energy axion potential in eq. (2.3), sometimes called the

instanton potential. But it is well-known (see e.g. [35, 36]) that an improved approximation

is the chiral potential

V (φ) = m2
π f

2
π

[
1−

√
1− 4mumd

(mu +md)2
sin2

(
φ

2 f

)]
,

where mπ and fπ are the mass and decay constant of the QCD pion. This expression takes

into account the non-perturbative effects of up and down quark masses mu and md. We

find that substituting eq. (2.3) with this chiral potential does not qualitatively change the

conclusions of this work: the global minimum of the energy in figure 1 shifts down by at

most a few percent, still significantly larger than the corresponding black hole state. We

put off any further discussion of the chiral potential to a future publication.

We also consider the effect of including a finite but increasing number of terms in the

series of eq. (3.17). Because it has no closed form resummation, what is typically done is to

truncate the series at some maximum k = K. We denote the truncated energy by EK(ρ),

so that limK→∞EK(ρ) = E(ρ). We also define a dimensionless truncated energy

eK(ρ) ≡ EK(ρ)

mN δ
=

3

4

1

ρ2
− 1√

2π

n

ρ
− 1

2 δ

K∑
k=0

(−1)k

[(k + 2)!]2 (k + 2)3/2

(
n δ

2π3/2ρ3

)k+1

. (3.18)

The minima of eK(ρ) should, at sufficiently large K, approximate well the stable bound

states of the full energy function.

The existence of a global minimum of the full energy functional in eq. (3.17) has

important consequences. In particular, we have pointed out above that this minimum lies

at a radius many orders of magnitude larger than the Schwarzschild radius of the axion

star, providing evidence that such objects do not collapse to black holes. Further, we

note that the terms contained in the series of eq. (3.18) alternate between attractive and

repulsive interactions, even and odd k respectively. But as a result, a truncated energy

– 7 –
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ρ
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(ρ
)

Figure 2. The truncated energy e0(ρ) near the position of the dilute minimum ρ∗ for different

choices of particle number: N = .85Nc, N = .9Nc, N = .95Nc, and N = Nc. Note that the local

minimum at ρ∗, represented in the plot, disappears at N = Nc. Including additional terms in eK(ρ)

for K > 0 makes a negligible difference in this range of ρ.

eK(ρ) in eq. (3.18) for any even K has no global minimum, and thus such a truncation

removes the possiblity of approximating the stable radius of the full energy functional. We

thus submit that when considering dense configurations of axions or collapse of axion stars,

it is important to truncate the series on a repulsive term to preserve the global minimum.

The leading-order interaction term is contained in e0(ρ), and has been considered in

great detail previously [24–26, 29]. It has been pointed out that there exists a maximum

particle number N = Nc above which no stable energy minimum exists. This critical value

corresponds to a radius of R99 ∼ 500 km for QCD axions [24], and is approximated to the

correct order of magnitude by the Gaussian ansatz, which gives a radius R99 ∼ 200 km.

In our notation, this critical particle number occurs at nc = 2π
√

3 and at a radius ρ∗ =√
3/32π, for the Gaussian ansatz. We will use these as benchmark parameter values as

we analyze the consequences of additional interaction terms in the axion potential. The

energy functional in the vicinity of this minimum is shown in figure 2. It is also worth

noting that the inclusion of additional terms in the self-interaction potential introduces

negligible differences in this range of ρ = O(1); the leading expansion is an extremely

good approximation in this region. But as noted above, any eK(ρ) for even K (e.g. e0(ρ))

is unbounded from below and will not be applicable in approximating the global energy

minimum of the full potential, which is at ρ� 1.

We turn now to e1(ρ), including the leading repulsive interaction which originates from

a (ψ∗ψ)3 term in the potential:

e1(ρ) =
3

4

1

ρ2
− 1√

2π

n

ρ
− 1

32π
√

2π

n

ρ3
+

δ

864π3
√

3

n2

ρ6
. (3.19)

In this case, the energy is bounded from below and has a minimum at a very small radius

– 8 –
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K=1

K=3

K=5

K=7

5.× 10-6 0.00001 0.000015 0.00002
-0.4

-0.2

0.0

0.2

0.4

ρ

δ
e K

(ρ
)

N=.9Nc

Figure 3. The energy eK(ρ) multiplied by the small parameter δ for N = .9Nc at increasing odd

orders in K: K = 1, K = 3, K = 5, and K = 7. The existence of a dense global energy minimum

is preserved at each order, but shifts to smaller radii as K increases. The repulsive kinetic term

∼ 1/ρ2 dominates the total energy at ρ = ρeq ∼ 10−7.

ρ = ρD (in contrast to the result using only e0). At these small values of ρ, the energy

is well approximated by the self-interaction terms only (gravity and kinetic energy are

negligible); thus we can use the analytic expression

ρD ≈
√

2

π

(
n δ

37/2

)1/3

to approximate the position of the global minimum. At n = nc, ρD ≈ 7 × 10−6, corre-

sponding to R99 ∼ 7 meters. Comparing with the global minimum of the full energy in

figure 1, we find a difference of only about a factor of 3–4 near this value of n ∼ nc, a

reasonable order of magnitude agreement. This justifies our truncation of the energy at

the leading repulsive term, i.e. e1(ρ), in this analysis. The difference between ρD and ρGM

does become large if n increases far above nc.

We find that the existence of a dense global energy minimum is preserved at any

odd K in the approximation of eq. (3.18), and at increasing order, shifts to smaller radii

(see figure 3). Nonetheless, the kinetic energy term dominates the full potential below

ρeq ∼ 10−7, and the global minimum of the full energy is at ρGM > ρeq, for any n.

The collapse of dark matter halos consisting of condensed scalar particles was examined

by [37], using a time-dependent formalism that originated in [38], and utilized by [26, 39].

The application of this method to an axion star, at leading-order in the self-interaction po-

tential, was recently performed by [29]. This collapse process is described by the dynamical

equation

Etot = α
M

2
Ṙ(t)2 − E(R)

– 9 –
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Figure 4. Collapse time for an axion star as a function of n/nc, for different choices of starting

radius ρ0: ρ0 = .1ρ∗, ρ0 = .5ρ∗, ρ0 = .8ρ∗, ρ0 = ρ∗. At N < Nc, condensates can still collapse if

the starting radius ρ0 < ρ∗.

where α = 3/4 for the Gaussian ansatz, E(R) is given by eq. (2.7) and Etot is a constant.

R(t) is the size of the condensate, which varies with time during collapse. For a condensate

with size R0 at t = 0, the time required to reach some other size R(t) is given by

t =

√
αM

2

∫ R0

R(t)

dR√
E(R0)− E(R)

=
MP

2

mf2

√
α

2

∫ ρ0

ρ(t)

dρ√
e(ρ0)− e(ρ)

, (3.20)

where in the second equality we have rescaled the dimensionful quantities.

In the analysis of [29], E(R) was approximated by the leading-order expression E0(R),

and the collapse from R0 = R∗ to R → 0 was shown to last for a time which was on the

order of an hour. We wish to investigate the effect of additional self-interactions in the

axion potential on the collapse process. Including the first non-leading interaction piece, i.e.

using e1(ρ), we have found that a global energy minimum exists at ρD; thus, we integrate

eq. (3.20) not from ρ = 0 but rather from ρ = ρD.

If the axion star begins its collapse at ρ0 = ρ∗, then of course at n = nc the collapse time

is formally infinite, because the potential is flat at ρ∗. We consider values of n which are

slightly larger than nc and see how the collapse time changes. We also investigate the change

in collapse time as the starting size ρ0 deviates from ρ∗. This latter case could be of interest,

say, if axion star collapse can be catalyzed by collisions with other astrophysical sources. In

that case, even condensates with N < Nc can collapse, provided some catalyzing interaction

which reduces its initial radius to R0 < R∗. These considerations are represented together

in figure 4.

– 10 –



J
H
E
P
1
2
(
2
0
1
6
)
0
6
6

n=2nc

n=3nc

n=4nc

0 2 4 6 8

10-5

10-4

0.001

0.010

0.100

1

t [min]

ρ
(t
)

Figure 5. The dimensionless radius of a collapsing axion star using the approximate energy E1(ρ)

as a function of time, for three choices of particle number N : N = 2Nc, N = 3Nc, and N = 4Nc.

We can also track the radius of the axion star as a function of time, throughout the

collapse process; see figure 5. For a large portion of the total collapse time, the radius

changes little, as the star rolls slowly down a shallow potential, but later collapses fast to

the dense minimum of radius ρD.

3.2 Cosine ansatz

The Gaussian ansatz is believed to be a reasonable approximation to the axion star wave-

function. However, in order to verify that our results are not an artifact of the wavefunction

one chooses, we present a second ansatz for the variational analysis:

ψ(r) =

√
4πN

(2π2 − 15)R3
cos2

( π r
2R

)
(r < R).

A comparison of the two ansätze we use is shown in figure 6 for the same total size.3 The

energy functional, rescaled and truncated as above, depends on the coefficients

D2 =
π(2π2 − 3)

12
, B4 = 8π

(
3π

80
− 115

768π
− 33341

18432π3

)
,

C2 =
π

2
− 15

4π
, C4 =

35(24π2 − 205)

2304π
, C6 =

77(600π2 − 5369)

153600π
.

(3.21)

3Note that while the cos2 wavefunction goes to 0 at some r and thus has a definite edge, the Gaussian

function (as we pointed out previously) does not.
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Figure 6. A comparison of the wavefunctions for the Gaussian ansatz (blue, dashed) and the cosine

ansatz (black, solid), normalized to the same total size.

This implies that, for the cosine ansatz,

e1(ρ) =
π2(2π2 − 3)

6(2π2 − 15)

1

ρ2
− (3456π4 − 13800π2 − 166705)

1440(2π2 − 15)2
n

ρ

− 35π(24π2 − 205)

2304(2π2 − 15)2
n

ρ3
+

77π2(600π2 − 5369)

691200(2π2 − 15)3
δ n2

ρ6
. (3.22)

As before, we minimize the approximated energy e1(ρ) with respect to ρ, and find both

a dilute and a dense minimum. The dilute minimum disappears above a critical particle

number, corresponding to nc ≈ 12.6, where the radius is ρ∗ ≈ .44 (around 200 km). The

dense minimum is at approximately ρD ≈ 7.4× 10−6n1/3, within a factor of 2 of the result

from the Gaussian case, ρD ≈ 4.5× 10−6n1/3.

4 Decay of collapsing solutions

In a previous work [32], some of us found that axion stars can decay through repeated

occurrences of the a process which ejects relativistic axions from the star. Such a process

is not forbidden by any symmetry because axions, being Hermitian fields, do not have a

conserved number, and because bound axions, along with the axion star itself, are not

in momentum eigenstates. To describe this interaction, the spectrum of bound states

describing the axion star was extended by a collection of scattering states, labeled by

momentum p. The leading contribution to this process was an interaction of the form

AN → AN−3 + ap, where AN denotes an axion star with N axions and ap denotes a

relativistic axion with momentum p. Without the addition of these scattering states,

the matrix element for this and many other interactions are identically zero. Our analysis
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assumed a small binding energy in the axion star. A contrarian point of view was expressed

in [42].

We found in [32] that the lifetime of an axion star through emission of relativistic

axions depends on a reduced binding energy parameter ∆ ≡
√

1− (Etot/N m)2. The

leading-order expansion in ∆ � 1 is equivalent to the infrared limit of the theory, where

only the marginal φ4 term appears in the interaction potential [24]. For weakly bound stars,

the leading process AN → AN−3 + ap has a rate which, as a function of ∆, is dominated

by an exponential factor,

Γ =
f2

2
√

8πm

[
32πr

3∆
exp

(
−
√

8r

∆

)]2
(4.1)

with r = .603156. Axion stars with masses near the maximum have very small binding

energies, corresponding to ∆ = O(10−7), and are thus very stable in this sense. More

generally, we found that if a star has ∆ . .05–.06, then it is stable on timescales as long

as the age of the universe, because the lifetime

τ =
3yM

1024πr3
∆2

m
exp

(
2
√

8r

∆

)
, (4.2)

is a monotonically decreasing function of ∆ in the relevant range. The constant in eq. (4.2)

has the value yM = 25.46.

The dense energy minimum ρD has a large binding energy, corresponding (in the

Gaussian case) to ∆ = .56. A näıve application of eq. (4.2) at this large value of ∆ gives

τ = 10−9 sec; however it is not known whether this estimate is reliable, since the analysis

of [32] applies only in the weak binding limit. Further, eq. (4.2) takes into account only the

attractive φ4 interaction, but this is a valid approximation throughout most of the decay

process. Nonetheless, if valid, such a short lifetime would imply that these dense states, as

the endpoint of collapse, would decay very quickly. However, our calculational method is

not applicable to strongly bound systems, so we cannot make a definite statement about

it. We hope to investigate the decay of strongly bound states in greater detail in the

future. Recent investigations of collapse using a classical collapse analysis have concluded

that collapsing axion stars lose a significant fraction of their mass through emission of

relativistic axions [45, 46]. Number-changing interactions of a similar type have also been

suggested as a mechanism for limiting the core densities of dark matter halos [47].

In the weak binding region, where eq. (4.2) holds, we know that ∆ is a one-to-one

function of ρ, and thus also of the collapse time t as defined in eq. (3.20). We find that

the binding energy obtains ∆ ∼ .05 at ρ ∼ 10−4 (compared with ρD ∼ 10−5). As a

function of time, the binding energy only changes appreciably in the last fraction of a

second of the collapse, but rises quickly to a strongly bound final state (see figure 7).

In these last moments, the decay rate in eq. (4.1) becomes astronomically large; Γ ∼ 1

emitted axion/sec at ∆ ∼ .0223, and rises to Γ ∼ 1050 emitted axions/sec at ∆ ∼ .1. We

therefore are led to the conclusion that axion stars, as they collapse, emit many highly
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Figure 7. The reduced binding energy ∆ of a collapsing axion star using the approximate energy

E1(ρ) as a function of time, for three choices of particle number N : N=2Nc, N=3Nc, and N=4Nc.

energetic free axions.4 Such an explosion, referred to as a Bosenova, has been observed

experimentally by condensed matter physicists using cold atoms [44]. While this work was

under review, a different group performing a numerical simulation also suggested that a

large fraction of axion star energy is expelled during the collapse process through relativistic

axion emission [45].

We emphasize again that the analysis of the decay process in [32] applies only at weak

binding, when ∆ � 1. This condition holds for the dilute state as well as throughout a

large portion of the collapse process, but it is possible that some new dynamics take hold

at truly strong binding ∆ = O(1), as for the dense global minimum of the energy where

∆ ∼ .56. We are led to the conclusion that relativistic axion emission becomes important

during collapse, but it is possible that a stable, strongly bound remnant remains.

5 Conclusions

The contribution of the axion self-interaction potential to the total energy in the variational

method can be computed to arbitrary order using an expansion in powers of the axion field.

This expansion is equivalent to an expansion in the small parameter δ = f2/M2
P � 1.

Because of the smallness of this parameter (δ ∼ 10−14 for QCD axions), the potential

is typically truncated at leading-order, including only the attractive (ψ∗ψ)2 term. This

truncation works extraordinarily well at large radii, and the dilute radius R∗ found by

multiple authors previously [24, 25] is preserved. In the regime of larger δ (e.g. axions

with f ∼ .1MP), some of these conclusions could be changed. While this work was being

reviewed, an analysis performed in the classical limit [46] suggested that axion theories

4If dark matter consists of axion stars, then this decay process could deplete the total amount of dark

matter in galaxy clusters. This effect is considered in a different context in [43].
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with large δ indeed allow collapse to black holes in some regions of parameter space. We

are working out the mass spectrum of axion stars in such theories, which will be the topic

of future work.

Going beyond the leading-order approximation, without truncation we have found

that a global minimum of the full energy exists, which is not present in the leading-order

expansion; we calculated its position, and it corresponds to a radius RGM many orders of

magnitude larger than the corresponding Schwarzschild radius. We approximate this global

minimum using a next-to-leading-order expansion, using the truncated energy of eq. (3.19),

which has a global minimum at a radius RD � R∗. For m = 10−5 eV QCD axions and

using the Gaussian ansatz, the dilute radius R∗ ∼ 200 km, while RD ∼ 7 meters. RD is a

good order of magnitude estimate of RGM.

Previous analyses of collapsing boson stars with an attractive self-interaction have

concluded (correctly) that, with nothing to stabilize the potential as R→ 0, the endpoint

of collapse is a black hole state. For the axion potential, we have found higher-order

self-interactions, some of which are repulsive, stabilize axion stars as they collapse and

there exist energetically stable configurations at very small radii. These configurations

correspond to dense axion star states which are nonetheless not black holes, and resemble

closely the type of the dense states found by the authors of [27] using a different method.

Dense configurations of this kind can exceed the maximum mass normally allowed for

weakly bound axion stars, which is roughly Mc ∼ 1019 kg for m = 10−5 eV axions [24].

We have examined the collapse dynamically in time, and find that masses M just

above Mc collapse from R = R∗ in a time on the order of hours, or tens of minutes. The

radius changes slowly at first, then drops rapidly as the slope of the potential becomes

increasingly steep. Stars which begin collapse at a radius R0 < R∗ were also considered,

a case which is interesting if, for example, axion star collapse is catalyzed by collisions of

two lighter axion stars. This could occur even if these stars do not become gravitationally

bound to each other. This topic will be pursued in a future work.

If stable, then heavy axion star states could be detectable via gravitational lensing

experiments. Such states have large binding energies, and thus non-relativistic and non-

perturbative corrections may become important in that regime. During collapse, however,

when binding energies increase but are still sufficiently small, previous calculations [32]

suggest that the rate of emission of relativistic axions from an axion star will rise very

rapidly. The rate of decay through the leading number-changing interaction AN → AN−3+

ap rises to Γ & 1050 emitted axions/sec in the final moments of collapse, leading to rapid

emission of axions in what is often called a Bosenova [44]. It is not clear in our analysis

precisely what fraction of the energy of the star would be expelled through this process, or

whether a stable dense state could remain. It would be interesting to investigate the energy

spectrum of these collapses in detail, to determine if there are detectable consequences of

such an explosion.
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A Total energy as ρ → 0

In this section we outline the proof that the contribution of the self-interaction potential

to the total energy is finite in the ρ → 0 limit, and consequently that the kinetic energy

∼ 1/ρ2 is dominant. The self-interaction term, coming from eq. (3.16) for the Gaussian

ansatz is of the form

VSI
mN

=

∫ ∞
0

4πx2

n δ

[
1− J0

(√
2n δ

π3/2ρ3
e−x

2/2ρ2

)
− n δ

2π3/2 ρ3
e−x

2/ρ2

]
dx

=
4π

n δ

∫ z

0
ρ3
√

2 ln
z

u

[
1− J0(u)− u2

4

]
du

u

=
4π

n δ
I (A.1)

where in the second step we defined u = z exp(−x2/2ρ2) with z =
√

2nδ/π3/2ρ3. We are

interested in the case of ρ→ 0, corresponding to z →∞.

We proceed with the estimation of the integral I in the limit ρ → 0 in the following

way. Break up the integral into two parts: (1) I1, integrated over the interval 0 < u < ν,

where 1 � ν < z, and (2) I2, integrated over the remaining ν < u < z. Consider first I1:

at u� 1/z, the integrand is dominated by the expression

ρ3
√

ln
1

u

[
1− J0(u)− u2

4

]
1

u
≈ ρ3

√
ln

1

u

[
−u

4

64

]
1

u

= −ρ
3

64
u3
√

ln
1

u

which goes quickly to 0 as u → 0. At larger values u � 1/z, on the other hand, I1 is

dominated by the term∫ ν

0
ρ3
√

2 ln z

[
1− J0(u)− u2

4

]
du

u
∼ ρ3

√
ln z,

and consequently,

I1 ∼ ρ3
√

1

ρ
. (A.2)

For I2, we consider large u, since 1� ν < u. Then the bracket in eq. (A.1) dominated

by the quadratic term u2/4, since J0(u)→ 0. Thus,

I2 ≈ −
√

2ρ3
∫ z

ν

√
ln
z

u

u

4
du.
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Making the change of variables t = ln(z/u), we can write it in the form

I2 ≈ −
√

2

4
ρ3z2

∫ ln(z/ν)

0

√
te−2tdt

= −
√

2

32
ρ3z2

[√
2πErf

(√
2 ln

z

ν

)
− 4

√
ln
z

ν

(ν
z

)2]

= −n δ
8π

[
Erf

(√
2 ln

z

ν

)
− 4 ν2√

2π

√
ln z

ν

z2

]
. (A.3)

In the limit z → ∞, the first term in the brackets → 1, while the second term vanishes.

Thus,

I2 ≈ −
n δ

8π
. (A.4)

Finally, since I1, given by eq. (A.2), vanishes as ρ → 0, the self-interaction energy

approaches a constant in the limit ρ→ 0:

VSI
mN

≈ 4π

n δ
I2 ≈ −

1

2
. (A.5)

Because this result is finite, we are led to conclude that the kinetic energy, which diverges

as 1/ρ2, provides the dominant contribution to the energy at ρ → 0. The gravitational

interaction, which diverges as −1/ρ, is also negligible in this region. Thus the axion star

energy is always bounded from below. Though we have here only proved this for the

Gaussian ansatz, this conclusion is significantly more general, and will be investigated in

detail in a future work.
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