Collapsed Variational Inference for HDP

Yee W. Teh, David Newman and Max Welling Published on NIPS 2007

> Discussion led by Iulian Pruteanu

Outline

- Introduction
- Hierarchical Bayesian model for LDA
- Collapsed VB inference for HDP = CV-HDP
- Experiments
- Discussion

Introduction

- For Dirichlet-multinomial models (such as LDA or HDP) the inference method of choice is 'typically' collapsed Gibbs sampling but it seems to be necessary to consider alternatives to sampling.
- Teh *et. al.* (NIPS 2006) proposed an improved VB approximation for LDA (CV-LDA) based on the idea of collapsing (integrating out model parameters while assuming other latent variables independent).
- Previous work on collapsed variational Latent Dirichlet Allocation (LDA) did not consider model selection and inference for hyperparameters.
- Advantages of CV-HDP over CV-LDA:
 - the optimal number of variational components is not finite (the number of topics is unlimited);
 - the posterior distribution over hyperparameters of Dirichlet variables is treated exactly.
- The algorithm is fully Bayesian; the only assumptions made are independencies among latent topic variables and hyperparameters.
- CVB algorithm, making use of some approximations, is easy to implement and more accurate than standard VB (by collapsing model variables, the uncertainty upon the model is reduced).

Hierarchical Bayesian model for LDA(1/3)

Hierarchical Bayesian model for LDA(2/3)

- $\boldsymbol{x} = \{x_{id}\}$ observed words
- $z = \{z_{id}\}$ latent variables (topic indices) K number of topics
- $\theta_d = \{\theta_{dk}\}$ mixing proportions
- $\varphi_k = \{\phi_{kw}\}$ topic parameters

 $\theta_i / \pi, \alpha \sim Dir(\alpha \pi)$

 $\varphi_k / \tau, \beta \sim Dir(\beta \tau) \equiv H(base distribution)$ $z_{id} | \theta_d \sim Mult(\theta_d)$ $x_{id} | z_{id}, \phi_{z_{id}} \sim Mult(\phi_{z_{id}})$ $\boldsymbol{\pi} = Stick(\boldsymbol{\gamma})$ $\boldsymbol{\tau} = Dir(\boldsymbol{a}_{\boldsymbol{\tau}})$

- number of documents D

Hierarchical Bayesian model for LDA(3/3)

In the normal Dirichlet process notation, we would equivalently have:

$$G_{0} \sim DP(\gamma, H) \qquad G_{0} = \sum_{k=1}^{\infty} \pi_{k} \delta_{\phi_{k}}$$

$$G_{d} \sim DP(\alpha, G_{0}) \qquad G_{d} = \sum_{k=1}^{\infty} \theta_{dk} \delta_{\phi_{k}}$$

$$H \equiv Dir(\beta \tau) \qquad \pi = Stick(\gamma)$$

$$\theta_{d} \sim Dir(\alpha \pi)$$

$$\varphi_{k} \sim Dir(\beta \tau)$$

$$\tau \sim Dir(\alpha_{\tau})$$

CV inference for HDP (1/3)

In variational Bayesian approximation, we assume a factorized form for the posterior approximating distribution. However it is not a good assumption since changes in model parameters (θ, ϕ) will have a considerable impact on latent variables ($\boldsymbol{\chi}$).

- CVB is equivalent to marginalizing out the model parameters θ, φ before approximating the posterior over the latent variable χ .
- The exact implementation of CVB has a closed form and it seems to be computationally practical.
- The authors use the **Gaussian approximation** (which worked very accurately in the CV-LDA paper, as well).

CV inference for HDP (2/3)

$$p(\boldsymbol{z}, \boldsymbol{x} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\pi}, \boldsymbol{\tau}) = \prod_{d=1}^{D} \frac{\Gamma(\boldsymbol{\alpha})}{\Gamma(\boldsymbol{\alpha} + n_{d..})} \prod_{k=1}^{K} \frac{\Gamma(\boldsymbol{\alpha} \pi_{k} + n_{nd.})}{\Gamma(\boldsymbol{\alpha} \pi_{k})} \cdot \prod_{k=1}^{K} \frac{\Gamma(\boldsymbol{\beta})}{\Gamma(\boldsymbol{\beta} + n_{.k.})} \prod_{w=1}^{W} \frac{\Gamma(\boldsymbol{\beta} \tau_{w} + n_{.kw})}{\Gamma(\boldsymbol{\beta} \tau_{w})}$$

$$n_{dkw} = \#\{i : x_{id} = w, z_{id} = k\}$$

K = index such that $z_{id} \leq K$

$$p(\mathbf{z}, \mathbf{x}, \boldsymbol{\eta}, \boldsymbol{\xi}, \mathbf{s}, \mathbf{t} | \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\pi}, \boldsymbol{\tau}) = \prod_{d=1}^{D} \frac{\eta_d^{\alpha-1} (1-\eta_d)^{n_d \dots -1} \prod_{k=1}^{K} {n_{dk} \choose s_{dk}} (\alpha \pi_k)^{s_{dk}}}{\Gamma(n_d \dots)} \prod_{k=1}^{K} \frac{\xi_k^{\beta-1} (1-\xi_k)^{n \cdot k \dots -1} \prod_{w=1}^{W} {n_{w} \choose t_{kw}} (\beta \tau_w)^{t_{kw}}}{\Gamma(n_{\cdot k} \dots)}$$

The form of the variational posterior:

$$q(\mathbf{z}, \boldsymbol{\eta}, \boldsymbol{\xi}, \mathbf{s}, \mathbf{t}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\tau}, \boldsymbol{\pi}) = q(\boldsymbol{\alpha})q(\boldsymbol{\beta})q(\boldsymbol{\gamma})q(\boldsymbol{\tau})q(\boldsymbol{\pi})q(\boldsymbol{\eta}, \boldsymbol{\xi}, \mathbf{s}, \mathbf{t}|\mathbf{z}) \prod_{d=1}^{D} \prod_{i=1}^{n_{d}..} q(z_{id})$$

CV inference for HDP (3/3)

Variational updates of the hyperparameters:

$$q(\alpha) \propto \alpha^{a_{\alpha} + \mathbb{E}[s..]-1} e^{-\alpha(b_{\alpha} - \sum_{d} \mathbb{E}[\log \eta_{d}])} \qquad q(\tilde{\pi}_{k}) \propto \tilde{\pi}_{k}^{\mathbb{E}[s.k]} (1 - \tilde{\pi}_{k})^{\mathbb{E}[\gamma] + \mathbb{E}[s.>k]-1}$$

$$q(\beta) \propto \beta^{a_{\beta} + \mathbb{E}[t..]-1} e^{-\beta(b_{\beta} - \sum_{k} \mathbb{E}[\log \xi_{k}])} \qquad q(\tau) \propto \prod_{w=1}^{W} \tau_{w}^{a_{\tau}} + \mathbb{E}[t.w]-1}$$

$$q(\gamma) \propto \gamma^{a_{\gamma} + K - 1} e^{-\gamma(b_{\gamma} - \sum_{k=1}^{K} \mathbb{E}[\log(1 - \tilde{\pi}_{k})]}$$

Variational updates of auxiliary variables:

$$q(\eta_d | \mathbf{z}) \propto \eta_d^{\mathbb{E}[\alpha] - 1} (1 - \eta_d)^{n_d \dots - 1} \qquad q(s_{dk} = m | \mathbf{z}) \propto \begin{bmatrix} n_{dk} \\ m \end{bmatrix} (\mathbb{G}[\alpha \pi_k])^m$$
$$q(\xi_k | \mathbf{z}) \propto \xi_k^{\mathbb{E}[\beta] - 1} (1 - \xi_k)^{n_{\cdot k} \dots - 1} \qquad q(t_{kw} = m | \mathbf{z}) \propto \begin{bmatrix} n_{\cdot kw} \\ m \end{bmatrix} (\mathbb{G}[\beta \tau_w])^m$$

$$q(z_{id} = k) \propto \mathbb{G} \Big[\mathbb{G} [\alpha \pi_k] + n_{dk}^{\neg id} \Big] \mathbb{G} \Big[\mathbb{G} [\beta \tau_{x_{id}}] + n_{kx_{id}}^{\neg id} \Big] \mathbb{G} \Big[\mathbb{E} [\beta] + n_{k}^{\neg id} \Big]^{-1} \\ \approx \propto \Big(\mathbb{G} [\alpha \pi_k] + \mathbb{E} [n_{dk}^{\neg id}] \Big) \Big(\mathbb{G} [\beta \tau_{x_{id}}] + \mathbb{E} [n_{kx_{id}}^{\neg id}] \Big) \Big(\mathbb{E} [\beta] + \mathbb{E} [n_{k}^{\neg id}] \Big)^{-1} \\ \exp \left(-\frac{\mathbb{V} [n_{dk}^{\neg id}]}{2(\mathbb{G} [\alpha \pi_k] + \mathbb{E} [n_{dk}^{\neg id}])^2} - \frac{\mathbb{V} [n_{kx_{id}}^{\neg id}]}{2(\mathbb{G} [\beta \tau_{x_{id}}] + \mathbb{E} [n_{kx_{id}}^{\neg id}])^2} + \frac{\mathbb{V} [n_{k}^{\neg id}]}{2(\mathbb{E} [\beta] + \mathbb{E} [n_{k}^{\neg id}])^2} \right) \Big]$$

Conclusions

• CV-HDP presents an improvement over CV-LDA by taking the infinite topic limit in the generative model and truncating the variational posterior and by inferring posterior distributions over the higher level variables.