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Abstract Let �n−1 denote the (n − 1)-dimensional simplex. Let Y be a random
d-dimensional subcomplex of �n−1 obtained by starting with the full (d − 1)-
dimensional skeleton of �n−1 and then adding each d-simplex independently with
probability p = c

n . We compute an explicit constant γd , with γ2 � 2.45, γ3 � 3.5,
and γd = �(log d) as d → ∞, so that for c < γd such a random simplicial com-
plex either collapses to a (d − 1)-dimensional subcomplex or it contains ∂�d+1, the
boundary of a (d + 1)-dimensional simplex. We conjecture this bound to be sharp.
In addition, we show that there exists a constant γd < cd < d + 1 such that for any
c > cd and a fixed field F, asymptotically almost surely Hd(Y ; F) �= 0.

Keywords Random complexes · Simplicial homology · Collapsibility

1 Introduction

Let G(n, p) denote the probability space of graphs on the vertex set [n] = {1, . . . , n}
with independent edge probabilities p. It is well known [2] that if c ≥ 1 then a graph
G ∈ G(n, c

n ) a.a.s. contains a cycle, while for a constantc < 1
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lim
n→∞ Pr

[
G ∈ G

(
n, c

n

) : G acyclic
] = √

1 − c · exp
( c

2 + c2

4

)
. (1)

In this article, we consider the analogous question for d-dimensional random com-
plexes. There are two natural extensions to the notion of an acyclic graph. Namely,
the vanishing of the dth homology, and collapsibility to a (d − 1)-dimensional sub-
complex. These are the two questions we consider here. We provide an upper bound
on the threshold for the vanishing of the dth homology and a lower bound (which we
believe to be tight) for the threshold for collapsibility.

For a simplicial complex Y, let Y (i) denote the i-dimensional skeleton of Y. Let Y (i)
be the set of i-dimensional simplices of Y and let fi (Y ) = |Y (i)|. Let �n−1 denote the
(n −1)-dimensional simplex on the vertex set V = [n]. For d ≥ 2, let Yd(n, p) denote
the probability space of complexes �

(d−1)
n−1 ⊂ Y ⊂ �

(d)
n−1 with probability measure

Pr(Y ) = p fd (Y )(1 − p)(
n

d+1)− fd (Y ).

Let F be an arbitrary fixed field and let Hi (Y ) = Hi (Y ; F) and Hi (Y ) = Hi (Y ; F)

denote the i th homology and cohomology groups of Y with coefficients in F. Let
βi (Y ) = dimF Hi (Y ) = dimF Hi (Y ). Kozlov [4] proved the following

Theorem 1.1 (Kozlov) For any function ω(n) that tends to infinity

lim
n→∞ Pr[Y ∈ Yd(n, p) : Hd(Y ) �= 0] =

{
1 p = ω(n)

n

0 p = 1
ω(n)n .

It is easy to see that if np is bounded away from zero, then the probability that
Y ∈ Yd(n, p) contains the boundary of a (d + 1)-simplex does not tend to zero. Thus,
the second part of the above statement cannot be improved. Concerning the first part
of the statement, as was already observed by Cohen et al. for d = 2 (Theorem 6 in
[3]), a simple Euler characteristic argument shows that if p = c

n , where c > d + 1
then a.a.s. Hd(Y ) �= 0. Our first result is a further improvement on the upper bound
in Theorem 1.1. Let

gd(x) = (d + 1)(x + 1)e−x + x(1 − e−x )d+1

and let cd denote the unique positive solution of the equation gd(x) = d +1. It is easy
to check that gd(d + 1) > d + 1 and so cd < d + 1. A direct calculation yields that
cd = d + 1 − �( d

ed ).

Theorem 1.2 For a fixed c > cd

lim
n→∞ Pr

[
Y ∈ Yd

(
n, c

n

) : Hd(Y ) �= 0
] = 1. (2)

Remark In the 2-dimensional case, Theorem 1.2 implies that if c > c2 � 2.783 then
Y ∈ Y2(n, c

n ) a.a.s. satisfies H2(Y ) �= 0. Simulations indicate that the actual threshold
is somewhat lower (around 2.75).
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We next turn to collapsibility. A (d − 1)-dimensional simplex τ ∈ �n−1(d − 1)

is a free face of a complex Y ⊂ �
(d)
n−1 if it is contained in a unique σ ∈ Y (d). Let

R(Y ) denote the complex obtained by removing all free (d − 1)-faces of Y together
with the d-simplices that contain them. We say that R(Y ) is obtained from Y by a
d-collapse step. Let R0(Y ) = Y and for i ≥ 1 let Ri (Y ) = R(Ri−1(Y )). We say that
Y is d-collapsible if dim R∞(Y ) < d. Cohen et al. [3] proved the following

Theorem 1.3 (Cohen, Costa, Farber and Kappeler) If ω(n) → ∞ then Y ∈
Y2(n, 1

ω(n)n ) is a.a.s. 2-collapsible.

Our second result refines Theorem 1.3 and the lower bound in Theorem 1.1 as
follows. Let

ud(γ, x) = exp(−γ (1 − x)d) − x .

For small positive γ , the only solution of ud(γ, x) = 0 is x = 1. Let γd be the infimum
of the set of all non-negative γ ’s for which the equation ud(γ, x) = 0 has a solution
x < 1. More explicitly, γd = (dx(1 − x)d−1)−1, where x satisfies exp(− 1−x

dx ) = x .
It is not hard to verify that this yields

γd = log d + O(log log d).

For �
(d−1)
n−1 ⊂ Y ⊂ �

(d)
n−1 let s(Y ) denote the number of (d + 1)-simplices in �n−1

whose boundary is contained in Y . If c > 0 is fixed and p = c
n then a straightforward

application of the method of moments (see, e.g., Theorem 8.3.1 in [2]) shows that
s(Y ) is asymptotically Poisson with parameter

λ = lim
n→∞ E[s] = lim

n→∞

(
n

d + 2

) ( c

n

)d+2 = cd+2

(d + 2)! .

The next result asserts that if c < γd and p = c
n then s(Y ) > 0 is a.a.s. the only

obstruction for d-collapsibility. Let Fn,d denote the family of all �(d−1)
n−1 ⊂ Y ⊂ �

(d)
n−1

such that s(Y ) = 0.

Theorem 1.4 Let c < γd be fixed. Then in the probability space Yd(n, c
n )

lim
n→∞ Pr[Y is d-collapsible|Y ∈ Fn,d ] = 1. (3)

Remark We have calculated γ2 � 2.455, and computer simulations suggest that this
is indeed the actual threshold for collapsibility for random complexes in Fn,2. Also,
γ3 � 3.089, γ4 � 3.508, and γ100 � 7.555.

Clearly, if Y is d-collapsible then Y is homotopy equivalent to a (d−1)-dimensional
complex, and in particular Hd(Y ) = 0. Hence, for a fixed c < γd and p = c

n the
following hold:

lim
n→∞ Pr[Hd(Y ) = 0|Y ∈ Fn,d ] = 1
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and

lim
n→∞ Pr[Hd(Y ) = 0] = lim

n→∞ Pr[Fn,d ] = exp(−λ) = exp
( − cd+2

(d+2)!
)
.

The article is organized as follows. In Sect. 2, we prove Theorem 1.2. In Sect. 3, we
analyze a random d-tree process that underlies our proof that for c < γd , a random
Y ∈ Yd(n, c

n )∩Fn,d is a.a.s. d-collapsible. Another main ingredient of the proof is an
upper bound on the number of minimal non d-collapsible complexes given in Sect. 4.
In Sect. 5, we combine these results to derive Theorem 1.4. We conclude in Sect. 6
with some comments and open problems.

2 The Upper Bound

Let Y ∈ Yd(n, p). Then βi (Y ) = 0 for 0 < i < d − 1 and fi (Y ) = ( n
i+1

)
for

0 ≤ i ≤ d − 1. The Euler–Poincaré relation

∑

i≥0

(−1)i fi (Y ) =
∑

i≥0

(−1)iβi (Y )

therefore implies

βd(Y ) = fd(Y ) −
(

n − 1

d

)
+ βd−1(Y ). (4)

The inequality βd(Y ) ≥ fd(Y ) − (n−1
d

)
already implies that if c > d + 1 then a.a.s.

βd(Y ) �= 0. As mentioned above, this was observed in the 2-dimensional case by
Cohen et al. [3]. The idea of the proof of Theorem 1.2 is to improve this estimate by
providing a non-trivial lower bound on E[βd−1]. For τ ∈ �n−1(d − 1) let

degY (τ ) = |{σ ∈ Y (d) : τ ⊂ σ }|

and let

Aτ = {Y ∈ Yd(n, p) : degY (τ ) = 0}.

For σ ∈ Y (d) let Lσ be the subcomplex of σ (d−1) given by

Lσ = σ (d−2) ∪ {τ ∈ σ (d−1) : degY (τ ) > 1}.

Let Pn,d denote the family of all pairs (σ, L), such that σ ∈ �n−1(d) and σ (d−2) ⊂
L ⊂ σ (d−1). For (σ, L) ∈ Pn,d let

Bσ,L = {Y ∈ Yd(n, p) : σ ∈ Y, Lσ = L}.

The space of i-cocycles of a complex K is as usual denoted by Zi (K ). The space of
relative i-cocycles of a pair K ′ ⊂ K is denoted by Zi (K , K ′) and will be identified
with the subspace of i-cocycles of K that vanish on K ′. Let zi (K ) = dim Zi (K ) and
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zi (K , K ′) = dim Zi (K , K ′). For a (d − 1)-simplex τ = [v0, . . . , vd−1], let 1τ be
the indicator (d − 1)-cochain of τ (i.e., 1τ (η) = sgn(π) if η = [vπ(0), . . . , vπ(d−1)]
and is zero otherwise). If τ ∈ �n−1(d − 1) then Zd−1(τ ) is the 1-dimensional space
spanned by 1τ . If (σ, L) ∈ Pn,d and fd−1(L) = j , then zd−1(σ, L) = d − j . Indeed,
suppose σ = [v0, . . . , vd ] and for 0 ≤ i ≤ d let τi = [v0, . . . , v̂i , . . . , vd ]. If
L(d − 1) = {τi }d

i=d− j+1 then {1τ0 − 1τi }d− j
i=1 forms a basis of Zd−1(σ, L).

Claim 2.1 For any Y ∈ Yd(n, p)

Zd−1(Y ) ⊃
⊕

{τ∈�n−1(d−1):Y∈Aτ }
Zd−1(τ ) ⊕

⊕

{(σ,L)∈Pn,d :Y∈Bσ,L }
Zd−1(σ, L).

Proof The containment is clear. To show that the right-hand side is a direct sum, note
that nontrivial cocycles in different summands must have disjoint supports and are
therefore linearly independent. ��

Let

a(Y ) = |{τ ∈ �n−1(d − 1) : degY (τ ) = 0}|

and for 0 ≤ j ≤ d let

α j (Y ) = |{(σ, L) ∈ Pn,d : Y ∈ Bσ,L , fd−1(L) = j}|.

Note that α j (Y ) is the number of d-faces of Y that contain exactly d+1− j (d−1)-faces
of degree 1. By Claim 2.1

zd−1(Y ) ≥ u(Y )
def= a(Y ) +

d∑

j=0

α j (Y )(d − j). (5)

As βd−1(Y ) = dim Hd−1(Y ) = zd−1(Y ) − (n−1
d−1

)
, it follows from (4) and (5) that

βd(Y ) ≥ v(Y )
def= fd(Y ) + u(Y ) −

(
n

d

)
. (6)

Theorem 1.2 will thus follow from

Theorem 2.2 Let c > cd and let p = c
n . Then

lim
n→∞ Pr[Y ∈ Yd(n, p) : v(Y ) ≤ 0] = 0.

Proof First note that

E[ fd ] =
(

n

d + 1

)
p = c

(d + 1)!nd − O(nd−1),
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E[a] =
(

n

d

)
(1 − p)n−d = e−c

d! nd − O(nd−1),

and for 0 ≤ j ≤ d

E[α j ] =
(

n

d + 1

)(
d + 1

j

)
p(1 − p)(n−d−1)(d+1− j)(1 − (1 − p)n−d−1) j

= ndc

(d + 1)!
(

d + 1

j

)
e−c(d+1− j)(1 − e−c) j − O(nd−1).

Therefore,

E[u] = E[a] +
d∑

j=0

E[α j ](d − j)

= nde−c

d! + ndc

(d + 1)!
d∑

j=0

(
d + 1

j

)
e−c(d+1− j)(1 − e−c) j (d − j) − O(nd−1)

= nd

(d + 1)! ((1 + c)(d + 1)e−c − c(1 − (1 − e−c)d+1)) − O(nd−1).

It follows that

E[v] = E[ fd ] + E[u] −
(

n

d

)

= nd

(d + 1)! (c + (1 + c)(d + 1)e−c−c
(

1−(1 − e−c)d+1
)
−(d + 1))−O(nd−1)

= nd

(d + 1)! (gd(c) − d − 1) − O(nd−1).

Since c > cd it follows that for sufficiently large n

E[v] ≥ εnd , (7)

where ε > 0 depends only on c and d. To show that v is a.a.s. positive, we use the
following consequence of Azuma’s inequality due to McDiarmid [6].

Theorem 2.3 Suppose f : {0, 1}m → R satisfies | f (x) − f (x ′)| ≤ T if x and x ′
differ in at most one coordinate. Let ξ1, . . . , ξm be independent 0, 1 valued random
variables and let F = f (ξ1, . . . , ξm). Then for all λ > 0
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Pr[F ≤ E[F] − λ] ≤ exp
( − 2λ2

T 2m

)
. (8)

Let m = ( n
d+1

)
and let σ1, . . . , σm be an arbitrary ordering of the d-simplices of

�n−1. Identify Y ∈ Yd(n, p) with its indicator vector (ξ1, . . . , ξm), where ξi (Y ) = 1 if
σi ∈ Y and ξi (Y ) = 0 otherwise. Note that if Y and Y ′ differ in at most one d-simplex
then |a(Y ) − a(Y ′)| ≤ d + 1 and |α j (Y ) − α j (Y ′)| ≤ d + 1 for all 0 ≤ j ≤ d. It
follows that |v(Y ) − v(Y ′)| ≤ T = 2d3. Applying McDiarmid’s inequality (8) with
F = v and λ = E[v] it follows that

Pr[v ≤ 0] ≤ exp
( − 2E[v]2

(2d3)2m

) ≤ exp
( − C2nd−1)

for some C2 = C2(c, d) > 0.

Remark The approach used in the proof of Theorem 1.2 can be extended as follows.
For a fixed �, let Zd−1

(�) (Y ) ⊂ Zd−1(Y ) denote the subspace spanned by (d − 1)-

cocycles φ ∈ Zd−1(Y ) such that |supp(φ)| ≤ �. Let

θd,�(x) = lim
n→∞

E[dim Zd−1
(�) (Y )]

(n
d

) ,

where the expectation is taken in the probability space Yd(n, x
n ). For example, it was

shown in the proof of Theorem 1.2 that θd,1(x) = e−x and

θd,2(x) = (1 + x)e−x − x

d + 1

(
1 − (

1 − e−x)d+1
)

.

Let x = cd,� denote the unique positive root of the equation

x + (d + 1)θd,�(x) = d + 1.

The following fact is implicit in the proof of Theorem 1.2.

Proposition 2.4 For any fixed c > cd,�

lim
n→∞ Pr

[
Y ∈ Yd

(
n,

c

n

)
: Hd(Y ) �= 0

]
= 1. (9)

Let c̃d = lim�→∞ cd,�. It seems likely that c̃d
n is the exact threshold for the vanishing

of Hd(Y ). This is indeed true in the graphical case d = 1.

Proposition 2.5

c̃1 = 1.

Proof For a subtree K = (VK , EK ) on the vertex set VK ⊂ [n] let AK denote all
graphs G ∈ G(n, p) that contain K as an induced subgraph and contain no edges in the
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cut (VK , VK ). The space of 0-cocycles Z0(K ) is 1-dimensional and is spanned by the
indicator function of VK . As in Claim 2.1, it is clear that for G ∈ G(n, p) and a fixed �

Z0(G) ⊃
⊕

{K :|VK |≤� and G∈AK }
Z0(K ).

Hence, for p = x
n

E[dim Z0
(�)(G)] =

∑
{Pr[AK ] : K is a tree on ≤ � vertices}

=
�∑

k=1

(
n

k

)
kk−2

( x

n

)k−1 (
1 − x

n

)k(n−k)+(k−1
2 )

∼ n
�∑

k=1

kk−2

k! xk−1e−xk = n

x

�∑

k=1

kk−2

k! (xe−x )k .

Let S(z) = ∑∞
k=1

kk−2

k! zk be the exponential generating function for the number of
trees. Then

lim
�→∞ θ1,�(x) = lim

�,n→∞
E[dim Z0

(�)(G)]
n

= S(xe−x )

x
.

Therefore, c̃1 = lim�→∞ c1,� is the solution of the equation

x + 2S(xe−x )
x = 2. (10)

Let R(z) = ∑∞
k=1

kk−1

k! zk be the exponential generating function for the number of
rooted trees. It is classically known [7] that R(z) = z exp(R(z)), and that S(z) =
R(z) − 1

2 R(z)2. It follows that R(e−1) = 1 and S(e−1) = 1
2 . Hence, c̃1 = 1 is the

unique solution of (10). ��

3 The Random d-Tree Process

A simplicial complex T on the vertex set V with |V | = � ≥ d is a d-tree if there exists
an ordering V = {v1, . . . , v�} such that lk(T [v1, . . . , vi ], vi ) is a (d −1)-dimensional
simplex for all d + 1 ≤ i ≤ �. Let GT denote the graph with vertex set T (d − 1),
whose edges are the pairs {τ1, τ2} such that τ1 ∪ τ2 ∈ T (d). Let distT (τ1, τ2) denote
the distance between τ1 and τ2 in the graph GT .

A rooted d-tree is a pair (T, τ ), where T is a d-tree and τ is some (d − 1)-face of
T . Let τ be a fixed (d − 1)-simplex. Given k ≥ 0 and γ > 0, we describe a random
process that gives rise to a probability space Td(k, λ) of all d-trees T rooted at τ such
that distT (τ, τ ′) ≤ k for all τ ′ ∈ T . The definition of Td(k, λ) proceeds by induction
on k. Td(0, γ ) is the (d −1)-simplex τ . Let k ≥ 0. A d-tree in Td(k+1, γ ) is generated
as follows: First generate a T ∈ Td(k, λ) and let U denote all τ ′ ∈ T (d − 1) such that
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distT (τ, τ ′) = k. Then, independently for each τ ′ ∈ U , pick J = Jτ ′ new vertices
z1, . . . , z J , where J is Poisson distributed with parameter γ , and add the d-simplices
z1τ

′, . . . , z J τ ′ to T .
We next define the operation of pruning of a rooted d-tree (T, τ ). Let {τ1, . . . , τ�}

be the set of all free (d −1)-faces of T that are distinct from τ , and let σi be the unique
d-simplex of T that contains τi . The d-tree T ′ obtained from T by removing the
simplices τ1, σ1, . . . , τ�, σ� is called the pruning of T . Clearly, any T ∈ Td(k + 1, γ )

collapses to its root τ after at most k + 1 pruning steps. Denote by Cd(k + 1, γ ) the
event that T ∈ Td(k + 1, γ ) collapses to τ after at most k pruning steps, and let
ρd(k, γ ) = Pr[Cd(k + 1, γ )]. Clearly, ρd(0, γ ) is the probability that T ∈ Td(1, γ )

consists only of τ , hence
ρd(0, γ ) = e−γ . (11)

Let σ1, . . . , σ j denote the d-simplices of T ∈ Td(k + 1, γ ) that contain τ and for each
1 ≤ i ≤ j let ηi1, . . . , ηid be the (d −1)-faces of σi that are different from τ . Let Ti� ∈
Td(k, λ) denote the subtree of T that grows out of ηi�. Clearly, T collapses to τ after
at most k pruning steps iff for each 1 ≤ i ≤ j , at least one of the d-trees Ti� collapses
to its root ηi� in at most k − 1 steps. We therefore obtain the following recursion:

ρd(k, γ ) =
∞∑

j=0

Pr[J = j](1 − (1 − ρd(k − 1, γ ))d) j

=
∞∑

j=0

γ j

j ! e−γ (1 − (1 − ρd(k − 1, γ ))d) j (12)

= exp(−γ (1 − ρd(k − 1, γ ))d).

Equations (11) and (12) imply that the sequence {ρd(k, γ )}k is non-decreasing and
converges to ρd(γ ) ∈ (0, 1], where ρd(γ ) is the smallest positive solution of the
equation

ud(γ, x) = exp(−γ (1 − x)d) − x = 0. (13)

If γ ≥ 0 is small, then ρd(γ ) = 1. Let γd denote the infimum of the set of
nonnegative γ ’s for which ρd(γ ) < 1. The pair (γ, x) = (γd , ρd(γd)) satisfies
both ud(γd , ρd(γd)) = 0 and ∂ud

∂x (γd , ρd(γd)) = 0. A straightforward computation
shows that γd = (dx(1 − x)d−1)−1, where x = ρd(γd) is the unique solution of
exp(− 1−x

dx ) = x .

4 The Number of Non-d-Collapsible Complexes

When we discuss d-collapsibility, we only care about the inclusion relation between
d-faces and (d − 1)-faces. Therefore, in this section we can and will simplify matters
and consider only the complex that is induced from our (random) choice of d-faces.
Namely, for every i ≤ d, a given i-dimensional face belongs to the complex iff it is
contained in some of the chosen d-faces.
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A complex is a core if every (d − 1)-dimensional face belongs to at least two
simplices, so that not even a single collapse step is possible.

A core complex is called a minimal core complex if none of its proper subcomplexes
is a core.

The main goal of this section is to show that with almost certainty there are just
two types of minimal core subcomplexes that a sparse random complex can have. It
can either be the boundary of a (d + 1)-simplex, ∂�d+1, or it must be very large.
Obviously this implies that there are no small non-collapsible subcomplexes which
do not contain the boundary of a (d + 1)-simplex.

Theorem 4.1 For every c > 0 there exists a constant δ = δ(c) > 0 such that a.a.s.
every minimal core subcomplex K of Y ∈ Yd(n, c

n ) with fd(K ) ≤ δnd , must contain
the boundary of a (d + 1)-simplex.

Henceforth, we use the convention that faces refer to arbitrary dimensions, but
unless otherwise specified, the word simplex is reserved to mean a d-face.

Our proof uses the first moment method. In the main step of the proof, we obtain an
upper bound on Cd(n, m), the number of all minimal core d-dimensional complexes
on vertex set [n] = {1, 2, . . . , n}, which contain m simplices.

Two simplices are considered adjacent if their intersection is a (d − 1)-face. If

A
·∪ B is a splitting of a minimal core complex, then there is a simplex in A and one

in B that are adjacent, otherwise the corresponding subcomplexes are cores as well.
Therefore, K can be constructed by successively adding a simplex that is adjacent
to an already existing simplex. This consideration easily yields an upper bound of
nd+m on Cd(n, m). The point is that if m = δnd for δ > 0 small enough, we get an
exponentially smaller (in m) upper bound and this is crucial for our analysis.

Lemma 1 Let m = δnd and δ > 0 small enough. Then

Cd(n, m) ≤
(

nd−1

(d2m)
d−1

d

)
ndnm(2d+1d3δ

1
d4 )m . (14)

Proof Let b =
(

d(d+1)δ
2

) 1
d

. A (d −2)-face is considered heavy or light depending on

whether it is covered by at least bn (d − 1)-faces or less. The sets of heavy and light
(d − 2)-faces are denoted by Hd−2 and Ld−2, respectively. We claim that |Hd−2| ≤
bd−1nd−1. To see this note that each simplex contains exactly d +1 (d −1)-faces, but
the complex is a core, so that each (d −1)-face is covered at least twice. Consequently,
our complex has at most m(d+1)

2 (d − 1)-faces. Likewise, each (d − 1)-face contains
d (d − 2)-faces. Each heavy (d − 2)-face is covered at least bn times and the claim
follows by the following calculation:

|Hd−2| ≤ d(d + 1)m

2bn
= d(d + 1)δnd

2bn
= d(d + 1)δnd−1

2b
= bd−1nd−1.

We extend the heavy/light dichotomy to lower dimensions as well. For each 0 ≤
i ≤ d−3, an i-face is considered heavy if it covered by at least b·n heavy (i +1)-faces.
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Otherwise it is light. The sets of heavy/light i-faces are denoted by Hi /Li , respectively.
By counting inclusion relations between heavy faces of consecutive dimensions it is
easily seen that |Hi | ≤ (i+2)|Hi+1|

bn which yields

|Hi | ≤ (d − 1)!
(i + 1)! bi+1ni+1.

The set of i-dimensional heavy (respectively, light) faces contained in a given face
σ is denoted by Hσ

i be (respectively, Lσ
i ).

The bulk of the proof considers a sequence of complexes C1, . . . , Cm = C , where
the complex Ci is obtained from Ci−1 by adding a single simplex. A (d − 1)-face σ

of Ci can be saturated or unsaturated. This depends on whether or not every simplex
in Cm that contains σ already belongs to Ci . Prior to defining the complexes Ci , we

specify the set of heavy (d − 2)-faces in one of at most
( ( n

d−1)
bd−1nd−1

)
possible ways.

Note that this choice uniquely determines the sets of heavy faces for every dimension
0 ≤ i ≤ d − 3. We start off with the complex C1, which has exactly one simplex.
Clearly, there are

( n
d+1

)
possible choices for C1. We move from Ci−1 to Ci by adding

a single simplex ti , which covers a chosen unsaturated (d − 1)-face σi−1 of Ci−1. Our
choices are subject to the condition that every heavy (d − 2)-face in Cm is one of the
heavy (d − 2)-faces chosen prior to the process. In other words, we must never make
choices that create any additional heavy faces in addition to those derived from our
preliminary choice. Our goal is to bound the number of choices for this process.

The crux of the argument is a rule for selecting the chosen face. Associated with
every face is a vector counting the number of its heavy vertices, its heavy edges, its
heavy 2-faces, etc. The chosen face is always lexicographically minimal w.r.t. this
vector, breaking ties arbitrarily. A (d −1)-face all of whose subfaces are light is called
primary.

In each step j we expand a (d − 1)-face σ to a simplex σ ∪ y. Such a step is called
a saving step if either:

1. The vertex y is heavy.
2. There exists a light (d −2)-subface τ ⊂ σ such that τ ∪ y is contained in a simplex

in C j−1.
3. There exists a light subface τ ⊂ σ such that the face τ ∪ y is heavy.

Note that the number of choices of y in the first case is ≤ |H0| ≤ (d − 1)! · b · n.
In the second case, the number of choices for y is at most dbn. In the third case, there
are d − 2 possibilities for the dimension of the light face and for each such dimension
i there are at most

( d
i+1

)
bn choices for y. In all cases, the number of choices for y is

at most ≤ ddbn. A step that is not saving is considered wasteful. For wasteful steps,
we bound the number of choices for y by n.

The idea of the proof is that every such a process which produces a minimal core
complex must include many saving steps. More specifically, we want to show:

Claim 4.2 For every d3 wasteful steps, at least one saving step is carried out.

Proof The proof of this claim consists of two steps. We show that there is no
sequence of d(d−1) consecutive wasteful steps, without the creation of an unsaturated
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primary face. Also, the creation of d + 1 primary faces necessarily involves a saving
step.

If u is a vertex in a (d − 1)-face σ , let rσ
i (u) be the number of heavy i-faces in σ

that contain u. Also, V σ
i denotes the set of vertices v in σ that are included only in

light i-subfaces of σ .

Proposition 4.3 Let σ and σ ′ be two consecutively chosen faces, where σ is non-
primary and the extension step on σ is wasteful. Then σ ′ precedes σ in the order of
faces and |V σ ′

i | ≥ |V σ
i | + 1, where i is the smallest dimension for which |Hσ

i | > 0.

Proof Since the extension step on σ is wasteful (and, in particular, not a saving step
of type (iii)) and since all j-subfaces of σ are light for j < i , every j-face in σ ∪ y is
light. Moreover, every i-subface of σ ∪ y that contains y is light as well.

We claim that σ ′ = σ \ {u} ∪ {y}, where the vertex u of σ maximizes rσ
i (v) (since

|Hσ
i | > 0, there are vertices v in σ for which rσ

i (v) > 0).

Notice that σ has
(d−1

i

) − rσ
i (u) more light i-subfaces than does τ u := σ \ u.

Namely, |Lτ u

i | = |Lσ
i | − (d−1

i

) + rσ
i (u).

Combining the fact that every i-subface of σ ∪ y that contains y is light we see that

in τ u
y := τ u ∪ y, |Lτ u

y
i | = |Lτ u

i | + (d−1
i

) = |Lσ
i | + rσ

i (u). But since rσ
i (u) > 0, τ u

y
precedes σ . In this case, τ u

y must be a new face that does not belong to the previous
complex, or else it would have been preferred over σ . Being a new face, it is necessarily
unsaturated. Since u maximizes rσ

i (u) over all vertices in σ , it follows that τ u
y precedes

all other faces created in the expansion. Furthermore, no other face precedes σ or else
it would be chosen rather than σ . Thus σ ′ = τ

y
u , as claimed. Notice that y ∈ V σ ′

i and

also V σ
i ⊆ V σ ′

i (note that every i-dimensional subfaces of σ ′ that is not contained in

σ is light since it contains y). Thus, |V σ ′
i | ≥ |V σ

i | + 1. ��
Consider a chosen non-primary face σ and let i be the smallest dimension for which

|Hσ
i | > 0. The previous claim implies that after at most d consecutive wasteful steps

the chosen face, θ precedes σ and |V θ
i | = d. Then |H θ

j | = 0 for all j ≤ i (in particular

|H θ
i | = 0). By repeating this argument d − 1 times we conclude that following every

series of d(d − 1) consecutive wasteful steps, a primary face must be chosen: after at
most d consecutive wasteful steps the chosen face can have no heavy vertices. At the
end of the next d consecutive wasteful steps, the chosen face has no heavy vertices or
heavy edges. Repeating this argument (d − 1) times necessarily leads us to a chosen
primary face.

Proposition 4.4 Only saving steps can decrease the number of unsaturated primary
faces.

Proof Let σ = a1, a2 . . . , ad be a primary face and let y be the vertex that expands
it. Denote the (d − 1)-face {a1, a2 . . . , ai−1, ai+1, . . . , ad} ∪ {y} by σ i . Since this is
not a saving step of type (i), y is light. It is also not of type (iii) and so |Hσ i

k | = 0 for
every i = 1, . . . , d and k = 1, . . . , d − 2, so that faces σ i are primary. However this
is not a type (ii) saving step, so all the (d − 1)-faces σ i must be new. Thus the number
of unsaturated primary faces has increased by at least d − 1.

The proof of Claim 4.2 is now complete, since at each step at most d + 1 faces get
covered.
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We can turn now to bound the number of minimal core m-simplex complexes Cm .
As mentioned, we first specify the heavy (d − 2)-faces of Cm by specifying a set of
bd−1nd−1 out of the total of

( n
d−1

)
(d − 2)-faces. Then we select the first simplex C1

and mark all its (d − 1)-faces as unsaturated. In order to choose the ith step we first
decide whether it is a saving or wasteful step, and if it is a saving step, what type it
has. There is a total of d + 1 possible kinds of extensions of the current (d − 1)-face:
A saving step of type (i), (ii), or one of the d − 2 choices of type (iii) (according to
dimension), or a wasteful step. In a saving step, the expanding vertex can be chosen in
at most ddbn ways. The number of possible extension clearly never exceeds n and it is
this trivial upper bound that we use for wasteful steps. Finally, we update the labels on
the (d−1)-faces of a new simplex. We need to decide which of the unsaturated (d−1)-
faces that are already covered by at least two simplices change their status to saturated.
There are at most 2d+1 possibilities of such an update. As we saw, at least m

d3 of the
steps in such process are saving steps. Consequently, we get the following upper bound
on Cd(n, m), the number of minimal core n-vertex d-dimensional complexes with m
simplices (in reading the expression below, note that the terms therein correspond in
a one-to-one manner to the ingredients that were just listed).

( ( n
d−1

)

bd−1nd−1

)
nd+1(d + 1)m−1nm−1(ddb)

m
d3 (2d+1)m

≤
(

nd−1

(d2δ)
d−1

d nd−1

)
ndnm((d + 1)2d+1d

1
d2 b

1
d3 )m

≤
(

nd−1

(d2m)
d−1

d

)
ndnm(2d+1d2(d2δ)

1
d4 )m

≤
(

nd−1

(d2m)
d−1

d

)
ndnm(2d+1d3δ

1
d4 )m . ��

Proof of Theorem 4.1 We show the assertion with δ = δ(c) = (2d+2d3c)−d4
. Indeed,

consider a complex drawn from Yd(n, p). Let Xm = Xm(n, p) count the number of
minimal core subcomplexes with m simplices and which are not copies of ∂�d+1.
Our argument splits according to whether m is small or large, the dividing line being
m = m1 = (d3 log n)d . The theorem speaks only about the range m ≤ m2 = δ(c)nd .
By Lemma 1,

m2∑

m=m1

EXm ≤
m2∑

m=m1

Cd(n, m)pm ≤
m2∑

m=m1

(nd−1)(d
2m)

d−1
d nd(

2d+1d3δ
1

d4 c
)m

≤ nd
m2∑

m=m1

(
nd−1)(d2m)

d−1
d

2−m ≤ nd
m2∑

m=m1

(
nd−12− m

1
d

d2
)(d2m)

d−1
d

≤ nd
m2∑

m=m1

( 1
n

)(d2m)
d−1

d = o(1).
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It follows that with almost certainty no cores with m simplices occur, where m2 ≥
m ≥ m1. We next consider the range d + 3 ≤ m ≤ m1. Note that a minimal core
complex with m ≥ d + 3 simplices has at most d+3

d+4 m vertices. Let �(u) denote the
number of simplices that contain the vertex u. Clearly, if �(u) > 0 then �(u) ≥ d +1
(consider a simplex σ that contains u. Every face of the form σ \ w with u �= w ∈ σ

is covered by a simplex other than σ ). It is not hard to verify that if some simplex σ

contains two distinct vertices with �(u) = �(w) = d + 1 then the complex contains
∂�d+1 contrary to the minimality assumption. Let t be the number of vertices u with
�(u) = d + 1. No simplex contains two such vertices, so that t ≤ m

d+1 . Counting
vertices in the complex according to the value of � we get

(d + 1)t + (d + 2)(v − t) ≤ (d + 1)m,

where v is the total number of vertices. The conclusion follows.
The expected number of minimal core subcomplexes of Yd(n, p) that contain d +

3 ≤ m ≤ m1 simplices satisfies

m1∑

m=d+3

EXm ≤
m1∑

m=d+3

(
n

d+3
d+4 m

)[(d + 3

d + 4
m

)d+1
p
]m ≤

m1∑

m=d+3

n
d+3
d+4 m

[
md+1 p

]m

≤
m1∑

m=d+3

(
cd+4 log2d(d+1)(d+4) n

n

) m
d+4 = o(1).

Consequently, a.a.s. Yd(n, p) contains no minimal core subcomplexes of m simplices
with d + 3 ≤ m ≤ (2d+2d3c)−d4

nd . ��

5 The Threshold for d-Collapsibility

For a complex Y ⊂ �
(d)
n−1 and a fixed τ ∈ �n−1(d − 1), define a sequence of

complexes {Si (Y )}i≥0 as follows. S0(Y ) = τ and for i ≥ 1 let Si (Y ) be the union
of Si−1(Y ) and the complex generated by all the d-simplices of Y that contain some
η ∈ Si−1(Y )(d − 1). Let Td denote the family of all d-trees. Consider the events
Ak, D ⊂ Yd(n, p) given by

Ak = {Sk(Y ) ∈ Td}

and

D = {degY (η) ≤ log n for all η ∈ �n−1(d − 1)}.

Claim 5.1 Let k and c > 0 be fixed and p = c
n . Then

Pr[Ak+1 ∩ D] = 1 − o(1).
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Proof Fix η ∈ �n−1(d −1). The random variable degY (η) has a binomial distribution
B(n − d, c

n ), hence by the large deviations estimate

Pr[degY (η) > log n] < n−�(log log n).

Therefore, Pr[D] = 1 − o(1). If Y ∈ D then f0(Sk+1(Y )) = O(logk+1 n) and
fd−1(Sk(Y )) = O(logk n). Note that Sk+1(Y ) is a d-tree iff in its generation process,
we never add a simplex of the form ηv such that both η ∈ �n−1(d − 1) and v ∈
�n−1(0) already exist in the complex. Since the number of such pairs is at most
f0(Sk+1(Y )) fd−1(Sk(Y )) it follows that

Pr[Ak+1 ∩ D] ≥
(

1 − c

n

) f0(Sk+1(Y )) fd−1(Sk (Y ))

≥
(

1 − c

n

)O(log2k+1 n) = 1 − o(1). ��

For Y ⊂ �
(d)
n−1 let r(Y ) = fd(R∞(Y )) be the number of d-simplices remaining in

Y after performing all possible d-collapsing steps. For τ ∈ �n−1(d − 1) let �(τ) =
{σ ∈ �n−1(d) : σ ⊃ τ }.
Claim 5.2 Let 0 < c < γd be fixed and p = c

n . Then for any fixed τ ∈ �n−1(d):

Pr[R∞(Y ) ∩ �(τ) �= ∅] = o(1). (15)

Proof Let δ > 0. Since c < γd

lim
k→∞ ρd(k, c) = ρd(c) = 1.

Choose a fixed k such that

ρd(k, c) > 1 − δ

3
.

Claim 5.1 implies that if n is sufficiently large then

Pr[Ak+1 ∩ D] ≥ 1 − δ

3
.

Next note that if Y ∈ Ak+1 then Sk+1 = Sk+1(Y ) can be generated by the following
inductively defined random process: S0 = τ . Let 0 ≤ i ≤ k. First generate T = Si

and let U denote all τ ′ ∈ T (d − 1) such that distT (τ, τ ′) = i . Then, according to
(say) the lexicographic order on U , for each τ ′ ∈ U pick J new vertices z1, . . . , z J

according to the binomial distribution B(n −n′, c
n ), where n′ is the number of vertices

that appeared up to that point, and add the d-simplices z1τ
′, . . . , z J τ ′ to T . Note that

the process described above is identical to the d-tree process of Sect. 3, except for the
use of the binomial distribution B(n −n′, c

n ) instead of the Poisson distribution Po(c).
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Now if Y ∈ Ak+1 ∩ D then n′ = O(logk+1 n) at all stages of this process. It follows
that if n is sufficiently large then the total variation distance between the distributions
Sk+1(Y ) and Td(k +1, c) is less then δ

3 . Denote by C′
d(k +1, c) the event that Sk+1(Y )

is in Ak+1 and collapses to τ in at most k pruning steps. The crucial observation now
is that if Y ∈ C′

d(k + 1, c) then R∞(Y ) ∩ �(τ) = ∅. It follows that

Pr[R∞(Y ) ∩ �(τ) �= ∅]
≤ (1 − Pr[Ak+1 ∩ D]) + Pr[Y �∈ C′

d(k + 1, c)]
≤ (1 − Pr[Ak+1 ∩ D]) + dT V (Sk+1(Y ), Td(k + 1, c))

+ (1 − Pr[Cd(k + 1, c)])
≤ δ

3 + δ
3 + δ

3 = δ. ��

Let

G(Y ) = {τ ∈ �n−1(d − 1) : R∞(Y ) ∩ �(τ) �= ∅}

and let g(Y ) = |G(Y )|. For a family G ⊂ �n−1(d − 1) let w(G) denote the set of all
d-simplices σ ∈ �n−1(d) all of whose (d − 1)-faces are contained in G. Using Claim
5.2 we establish the following

Theorem 5.3 Let δ > 0 and 0 < c < γd be fixed and let p = c
n . Then

Pr[ fd(R∞(Y )) > δnd ] = o(1).

Proof Let 0 < ε = ε(d, c, δ) < 1 be a constant whose value will be fixed later.
Clearly,

Pr[ fd(R∞(Y )) > δnd ]
≤ Pr[g(Y ) > εδnd ] + Pr[g(Y ) ≤ εδnd and fd(R∞(Y )) > δnd ].

To bound the first summand, note that E[g] = o(nd) by Claim 5.2. Hence, by Markov’s
inequality

Pr[g(Y ) > εδnd ] ≤ (εδnd)−1 E[g] = o(1).

Next note that

Pr[g(Y ) ≤ εδnd and fd(R∞(Y )) > δnd ]
≤

∑

{G⊂�n−1(d−1):|G|=εδnd }
Pr[|w(G) ∩ Y (d)| > δnd ].

Fix a G ⊂ �n−1(d − 1) such that |G| = εδnd . By the Kruskal-Katona theorem there
exists a C1 = C1(d, δ) such that

N = |w(G)| ≤ C1ε
d+1

d nd+1.
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Applying the large deviation estimate for the binomial distribution B(N , c
n ) and writ-

ing C2 = ecC1
δ

we obtain

Pr[|w(G) ∩ Y (d)| > δnd ] ≤
(

C2ε
d+1

d

)δnd

.

On the other hand,

( (n
d

)

εδnd

)
≤

( e

εδ

)εδnd

.

Choosing ε such that

( e

εδ

)ε

C2ε
d+1

d < e−1

it follows that

Pr[g(Y ) ≤ εδnd and fd(R∞(Y )) > δnd ] ≤ exp(−δnd).

Proof of Theorem 1.4 Let c < γd and p = c
n . By Theorem 4.1 there exists a δ >

0 such that a.a.s. any non-d-collapsible subcomplex K of Y ∈ Yd(n, c
n ) such that

fd(K ) ≤ δnd contains the boundary of a (d + 1)-simplex. It follows that

Pr[Y non-d-collapsible|Y ∈ Fn,d ] = Pr[ fd(R∞(Y )) > 0|Y ∈ Fn,d ]
≤ Pr[ fd(R∞(Y ))>δnd ] · Pr[Y ∈Fn,d ]−1+Pr[0 < fd(R∞(Y )) ≤ δnd |Y ∈Fn,d ].

The first summand is o(1) by Theorem 5.3, and the second summand is o(1) by
Theorem 4.1. ��

6 Concluding Remarks

Let us remark that one may show a random process statement slightly stronger than
Theorem 4.1 (see [5], where a similar result is shown for the k-core of random
graphs). More specifically, let us define the d-dimensional random process Yd =
{Yd(n, M)}(

n
d+1)

M=0 as the Markov chain whose stages are simplicial complexes, which
starts with the full (d − 1)-dimensional skeleton of �n−1 and no d-simplices, and in
each stage Yd(n, M + 1) is obtained from Yd(n, M) by adding to it one d-simplex
chosen uniformly at random from all the d-simplices which do not belong to Yd(n, M).
The core of a complex Y is the maximal core subcomplex of Y . Then the following
holds.

Theorem 6.1 There exists a constant α = α(d) > 0 such that for almost every

d-dimensional random process Yd = {Yd(n, M)}(
n

d+1)
M=0 there exists a stage M̂ =
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M̂(Yd) such that the core of Yd(n, M̂) is of the size O(1) and consists of bound-
aries of (d + 1)-simplices, while the core of Yd(n, M̂ + 1) contains at least αnd

d-simplices.

Many questions remain open. The most obvious ones are

• What is the threshold for d-collapsibility of random simplicial complexes in Fn,d?
We conjecture that it is indeed p = γd/n.

• Find the exact threshold for the nonvanishing of Hd(Y ). The first two authors [1]
have recently improved the upper bound given in Theorem 1.2 and they conjecture
that their new bound is in fact sharp. This in particular would imply that the
threshold does not depend on the underlying field.

• Although this question is implicitly included in the above two questions, it is
of substantial interest in its own right: Can you show that the two thresholds
(for d-collapsibility and for the vanishing of the top homology) are distinct? We
conjecture that the two thresholds are, in fact, quite different. In particular, although
d-collapsibility is a sufficient condition for the vanishing of Hd , there is only a
vanishingly small probability that a random simplicial complex with trivial top
homology is d-collapsible.
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