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Collapsible Pushdown Automata and Labeled Recursion Schemes

Equivalence, Safety and Effective Selection

Arnaud Carayol
LIGM (Université Paris Est & CNRS), Paris, France

Olivier Serre
LIAFA (Université Paris Diderot – Paris 7 & CNRS), Paris,France

Abstract—Higher-order recursion schemes are rewriting sys-
tems for simply typed terms and they are known to be equi-
expressive with collapsible pushdown automata (CPDA) for
generating trees. We argue that CPDA are an essential model
when working with recursion schemes. First, we give a new
proof of the translation of schemes into CPDA that does not
appeal to game semantics. Second, we show that this translation
permits to revisit the safety constraint and allows CPDA to be
seen as Krivine machines. Finally, we show that CPDA permit
one to prove the effective MSO selection property for schemes,
subsuming all known decidability results for MSO on schemes.

Keywords-Recursion Schemes, Collapsible Pushdown Au-
tomata, Safety Constraint, MSO Effective Selection

I. INTRODUCTION

Higher-order recursion schemes are rewriting systems for
simply typed terms and in recent years they have received
much attention as a method of constructing rich and robust
classes of possibly infinite ranked trees. Remarkably these
trees have decidable monadic second-order (MSO) theories,
subsuming most of the examples of structures for which
MSO is decidable. Since the original proof of Ong [15]
based on traversals (a tool from game semantics), several
alternative proofs (and extensions) were obtained using
different techniques: automata [9], [2], intersection types
[13], the Krivine machine [18].

In this article we focus on the automata approach. In [9],
schemes were shown to be equi-expressive with an exten-
sion of the standard model of pushdown automata, called
collapsible pushdown automata (CPDA). The translation
from schemes into CPDA crucially relied on traversals. The
decidability of MSO was obtained by solving parity games
played on transition graphs of CPDA. In [2] a refinement of
this proof was used to show that the family of trees generated
by schemes is MSO-reflective, i.e. for any scheme S and any
MSO formula ϕpxq with one first-order free variable x, one
can build another scheme that produces the same tree as S

except that now all nodes satisfying ϕpxq are marked.
In this article, we focus on the merits of CPDA for

studying recursion schemes. As CPDA are more naturally
associated with a labeled transition system (LTS) than with
a tree, we introduce a variant of recursion schemes, labeled
recursion schemes, that admit a canonical LTS. In both

cases, the tree generated is simply the unfolding of the LTS.
Although not technically difficult, we think that this notion
and the associated family of LTS can be the subject of further
studies.

Our first main result is a simplified and syntactic proof of
the translation of a scheme into an equivalent CPDA. This
is the first proof of the equi-expressivity result of [9] that
does not use game semantics. A comparison of the obtained
CPDA can be found at the beginning of Section III.

Furthermore this translation also permits one to view a
CPDA as a Krivine machine, hence inheriting the simplified
proof of [18] for decidability of µ-calculus model-checking.

We also show that when translating a safe scheme we
obtain a CPDA that does not need to use the links. This
result, independently obtained by Blum and Broadbent [1],
unifies the work of [10] on safe schemes and sheds a new
light on safety. As a spin-off result, we give a more natural
definition of safety based on Damm’s original work [6].

Finally, the true gain of the apparently more involved
CPDA model is demonstrated by showing that the trees
defined by recursion schemes enjoy the effective MSO
selection property: for any scheme S and any formula
DX ϕpXq if the tree t generated by S satisfies DX ϕpXq,
one can build another scheme generating the tree t where a
set of nodes U satisfying ϕpXq is marked. This new result
subsumes all previously known MSO-decidability results on
recursion schemes (while keeping the same complexity, in
particular the one of [13]) and relies on a careful analysis
of the winning strategies in CPDA parity games.

II. PRELIMINARIES

A. Trees and Terms

Let A be a finite alphabet. We denote by A˚ the set of
finite words over A. A tree t (with directions in A) is a non-
empty prefix-closed subset of A˚. Elements of t are called
nodes and ε is called the root of t. For any node u P t and
any direction a P A, we refer to ua, when it belongs to t,
as the a-child of u. A node with no child is a leaf.

A ranked alphabet A is an alphabet that comes together
with an arity function, ̺ : A Ñ N. The terms built over
a ranked alphabet A are those trees with directions

ÝÑ
A

def

“Ť
fPA

ÝÑ
f where

ÝÑ
f “ tf1, . . . , f̺pfqu if ̺pfq ą 0 and

ÝÑ
f “

tfu if ̺pfq “ 0. For a tree t with directions in
ÝÑ
A to be a



term, we require, for all nodes u, that the set Au “ td P
ÝÑ
A | ud P tu is empty iff u ends with some f P A (hence
̺pfq “ 0) and if Au is non-empty then it is equal to some
ÝÑ
f P

ÝÑ
A . We denote by TermspAq the set of terms over A.

For c P A of arity 0, we denote by c the term tε, cu. For
f P A of arity n ą 0 and for terms t1, . . . , tn, we denote by
fpt1, . . . , tnq the term tεu Y

Ť
iPr1,nstfiu ¨ ti. These notions

are illustrated in Figure 1.
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Figure 1. Two representations of the infinite term f˚
2

tf1c, f1, εu “
fpc, fpc, fp¨ ¨ ¨ qqq over the ranked alphabet tf, cu assuming that ̺pfq “ 2

and ̺pcq “ 0.

B. Labeled Transition Systems

A rooted labeled transition system (LTS for short) is
an edge-labeled directed graph with a distinguished vertex,
called the root. When considering LTS associated with
computational models, it is usual to allow silent transitions.
The symbol for silent transitions is usually ε but here, to
avoid confusion with the empty word, we will instead use e .
We forbid a vertex to be the source of both a silent transition
and of a non-silent transition. When Σ is an alphabet we let
Σe “ Σzteu.

Formally, a rooted labeled transition system with silent
transitions L is a tuple xD, r,Σ, p

a
ÝÑqaPΣ y where D is

a finite or countable set called the domain, r P D is a
distinguished element called the root, Σ is a finite set of
labels that contains a distinguished symbol denoted e and
for all a P Σ,

a
ÝÑ Ď D ˆD is a binary relation on D.

For any a P Σ and any ps, tq P D2 we write s
a

ÝÑ t

to indicate that ps, tq P
a

ÝÑ, and we refer to it as an a-

transition with source s and target t. Moreover, we require
that for all s P D, if s is the source of a e-transition, then s
is not the source of any a-transition with a ‰ e . For a word
w “ a1 ¨ ¨ ¨ an P Σ˚, we define a binary relation w

ÝÑ on D
by letting s

w
ÝÑ t (meaning that ps, tq P

w
ÝÑ) if there exists

a sequence s0, . . . , sn of elements in D such that s0 “ s,
sn “ t, and for all i P r1, ns, si´1

aiÝÑ si. These definitions

are extended to languages over Σ by taking, for all L Ď Σ˚,
the relation L

ÝÑ to be the union of all w
ÝÑ for w P L.

For all words w “ a1 ¨ ¨ ¨an P Σ˚
e

, we denote by
w

ùñ

the relation
LwÝÑ where Lw

def

“ e
˚a1e

˚ ¨ ¨ ¨ e˚ane
˚ is the

set of words over Σ obtained by inserting arbitrarily many
occurrences of e in w.

An LTS is said to be deterministic if for all s, t1 and t2
in D and all a in Σ, if s

a
ÝÑ t1 and s

a
ÝÑ t2 then t1 “ t2.

Caveat 1. From now on, we always assume that the LTS

we consider are deterministic.

We associate a tree to every LTS L, denoted TreepLq,
with directions in Σe , reflecting the possible behaviours of
L starting from the root. For this we let TreepLq

def

“ tw P

Σ˚
e

| Ds P D, r
w

ùñ su. As L is deterministic, TreepLq is

obtained by unfolding the underlying graph of L from its
root and contracting all e-transitions. Figure 2 presents an
LTS with silent transitions together with its associated tree
TreepLq.

As illustrated in Figure 2, the tree TreepLq does not reflect
the diverging behaviours of L (i.e. the ability to perform an
infinite sequence of silent transitions). For instance in the
LTS of Figure 2, the vertex s diverges whereas the vertex t
does not. A more informative tree can be defined in which
diverging behaviours are indicated by a K-child for some
fresh symbol K. This tree, denoted TreeKpLq, is defined by

letting TreeKpLq
def

“ TreepLqYtwK P Σ˚
e

K | @n ě 0, r
we

n

ùñ

sn for some snu.

r

t

u
e
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e
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‚
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Figure 2. An LTS L with silent transitions of root r (on the left), the tree
TreepLq (in the center) and the tree Tree

KpLq (on the right).

C. Types, Applicative Terms

Types are generated by the grammar τ ::“ o | τ Ñ τ .
Every type τ “ o can be uniquely written as τ1 Ñ pτ2 Ñ
¨ ¨ ¨ pτn Ñ oq . . .q where n ě 0 and τ1, . . . , τn are types. The
number n is the arity of the type and is denoted by ̺pτq. To
simplify the notation, we take the convention that the arrow
is associative to the right and we write τ1 Ñ ¨ ¨ ¨ Ñ τn Ñ o

(or pτ1, . . . , τn, oq to save space).
The order measures the nesting of a type: ordpoq “ 0 and

ordpτ1 Ñ τ2q “ maxpordpτ1q ` 1, ordpτ2qq.
Let X be a set of typed symbols. Every symbol f P X

has associated a type τ ; we write f : τ to mean that f has
type τ . The set of applicative terms of type τ generated
from X , denoted Termsτ pXq, is defined by induction over
the following rules. If f : τ is an element of X then f P
Termsτ pXq; if s P Termsτ1Ñτ2pXq and t P Termsτ1pXq
then the applicative term obtained by applying s to t,
denoted s t, belongs to Termsτ2pXq. For every applicative
term t, and every type τ , we write t : τ to mean that t is an
applicative term of type τ . By convention, the application is
considered to be left-associative, thus we write t1t2t3 instead
of pt1t2qt3 .

2



Example 1. Assuming that f : po Ñ oq Ñ o Ñ o, g : o Ñ o

and c : o, we have g c : o, f g : o Ñ o, f g c “ pf gq c : o
and f pf gq c : o.

The set of subterms of t, denoted Subsptq, is inductively
defined by Subspfq “ tfu for f P X and Subspt1 t2q “
Subspt1q Y Subspt2q Y tt1 t2u. The subterms of the term
f pf gq c : o in Example 1 are f pf gq c , f , f g , f pf gq , c
and g. A less permissive notion is that of argument subterms
of t, denoted ASubsptq, which only keep those subterms
that appear as an argument. The set ASubsptq is inductively
defined by letting ASubspt1t2q “ ASubspt1qYASubspt2qY
tt2u and ASubspfq “ ∅ for f P X . In particular if
t “ Ft1 ¨ ¨ ¨ tn, ASubsptq “ Yn

i“1pASubsptiq Y ttiuq. The
argument subterms of f pf gq c : o are f g , c and g. In
particular, for all terms t, one has |ASubsptq| ă |t| (the
size |t| of a term is the length of the word representation of
t).

Remark 1. A ranked alphabet A can be seen as a typed
alphabet by assigning to every symbol f of A the type
o Ñ ¨ ¨ ¨ Ñ o Ñloooooooomoooooooon

̺pfq

o. In particular, every symbol in A has order

0 or 1. The finite terms over A (seen as a ranked alphabet)
are in bijection with the applicative ground terms over A
(seen as a typed alphabet).

D. Labeled Recursion Schemes

Recursion schemes are grammars for simply typed terms,
and they are often used to generate a possibly infinite term.
Traditionally, recursion schemes are not associated with an
LTS. Here we provide an alternative definition based on LTS.

For each type τ , we assume an infinite set Vτ of variables
of type τ , such that Vτ1 and Vτ2 are disjoint whenever τ1 “
τ2, and we write V for the union of those sets Vτ as τ
ranges over types. We use letters x, y, ϕ, ψ, . . . to range over
variables.

A deterministic labeled recursion scheme is a 5-tuple S “
xΣ, N,R, Z,K y where

‚ Σ is a finite set of labels and K is a distinguished
symbol in Σ,

‚ N is a finite set of typed non-terminals; we use upper-
case letters F,G,H, . . . to range over non-terminals,

‚ Z : o P N is a distinguished initial symbol which does
not appear in any right-hand side,

‚ R is a finite set of production rules of the form

F x1 ¨ ¨ ¨ xn
a

ÝÑ e

where a P ΣztKu, F : pτ1, ¨ ¨ ¨ , τn, oq P N , the xis
are distinct variables, each xi is of type τi, and e is a
ground term over pNztZuq Y tx1, . . . , xn u.
In addition, we require that there is at most one
production rule starting with a given non-terminal and
labeled by a given symbol.

Z

f

F

f

H

a

e

F

f

H

a

f2

f1

f

F

f

a

H

H

a

e

e

a

¨ ¨ ¨

¨ ¨ ¨

f1

f2

e

X
a

f

f

f

f

‚a

a

a

K

Figure 3. The LTS and the tree associated with the scheme S of Example 2.

The LTS associated with S has the set of ground terms
over N as domain, the initial symbol Z as root, and, for all
a P Σ, the relation

a
ÝÑ is defined by:

F t1 . . . t̺pF q
a

ÝÑ ert1{x1, . . . , t̺pF q{x̺pF qs

if F x1 ¨ ¨ ¨ xn
a

ÝÑ e is a production rule.
The tree generated by a labeled recursion scheme S,

denoted TreeKpSq, is the tree TreeK of its associated LTS.
To use labeled recursion schemes to generate terms over
ranked alphabet A, it is enough to enforce that for every
non-terminal F P N :

‚ either there is a unique production starting with F

which is labeled by e ,
‚ or there is a unique production starting with F which is

labeled by some symbol c of arity 0 and whose right-
hand side starts with a non-terminal that comes with
no production rule in the scheme,

‚ or there exists a symbol f P A with ̺pfq ą 0 such that
the set of labels of production rules starting with F is
exactly

ÝÑ
f .

Example 2. Consider the order-1 scheme
S “ xΣ, N,R, Z,K y where Σ “ ta, f1, f2,Ku, N

consists of Z,X, a : o, H : po, oq, f : po, o, oq and
F : ppo, o, oq, oq, and R is given below

Z
e

ÝÑ f pH aq pF fq a
a

ÝÑ X

H z
e

ÝÑ H pH zq f x y
f1ÝÑ x

F ϕ
e

ÝÑ ϕa pF ϕq f x y
f2ÝÑ y

The LTS and the tree associated with S are depicted in
Figure 3.

Remark 2. A more standard definition of recursion schemes
[9] comes with a ranked alphabet A of terminal symbols
that can be used in the right hand side of the rewriting rules;
moreover the rules are no longer labeled. Applying rewriting
rules from the initial symbol one derives finite terms over
the set of terminal and non-terminal symbols. Replacing in
such a term t any non-terminal, together with its argument,
by a fresh symbol K : o leads a term tK over A Y tKu.
As the rewriting is confluent, there exists a supremum of all
terms tK where t ranges over terms that can be rewritten
from the initial symbol, and this (possibly infinite) term is
defined as the value term of the scheme.

3



It is easily seen that labeled recursion schemes and
(usual) recursions schemes generate the same terms; the
translations are linear and preserve both order and arity.

E. Examples of Trees Defined by Labeled Recursion
Schemes

We provide some examples of trees defined by labeled
recursion schemes. Given a language L over Σ, we denote
by PrefpLq the tree containing all prefixes of words in L.

Example 3. Using order-2 schemes, it is possible to go
beyond deterministic context-free languages and to define for
instance the tree T1 “ Prefptanbncn | n ě 0uq. Consider
for instance the order-2 scheme S1 given by:

Z
a

ÝÑ F I pKC Iq B x
b

ÝÑ x

F ϕψ
a

ÝÑ F pKBϕq pKC ψq C x
c

ÝÑ x

F ϕψ
b

ÝÑ ϕpψXq I x
e

ÝÑ x

Kϕψ x
e

ÝÑ ϕpψpxqq

with Z,X : o, B,C, I : o Ñ o, F : ppo Ñ oq, po Ñ oq, oq
and K : ppo Ñ oq, po Ñ oq, o, oq.

Intuitively, the non-terminal K plays the role of the
composition of functions of type o Ñ o (i.e. for any terms
F1, F2 : o Ñ o and t : o, KF1 F2t

e

ÝÑ F1pF2 tq).
For any term G : o Ñ o, we define Gn for all n ě
0 by taking G0 “ I and Gn`1 “ KGGn. For any
ground term t, Gn t behaves as G p. . . pGlooomooon

n

pItqq . . .q and

in particular BnX
bn

ùñ X . For all n ě 0, we have:

Z
an

ÝÑ F Bn´1 Cn b
ÝÑ Bn´1pCnXq

bn´1cn

ùñ X.

Example 4. We present a tree TU proposed by Urzyczyn
which exemplify the full expressivity of order-2 schemes (see
Section IV). The tree TU has directions in t p, q, ‹ u. A word
over t p, q u is well bracketed if it has as many opening
brackets as closing brackets and if for every prefix the
number of opening brackets is not smaller than the number
of closing brackets.

The language U is defined as the set of words of the form
w‹n where w is a prefix of a well-bracketed word and n

is equal to |w| ´ |u| ` 1 where u is the longest suffix of w
which is well-bracketed. In other words, n equals 1 if w is
well-bracketed, and otherwise it is equal to the index of the
last unmatched opening bracket plus one.

For instance, the words pqpppqq ‹ ‹ ‹ ‹ and pqpqpq‹ belong
to U . The tree TU is simply PrefpUq. The following scheme
SU generates TU .

Z
e

ÝÑ G pH Xq F ϕxy
p

ÝÑ F pFϕxq y pHyq

Gz
p

ÝÑ F Gz pHzq F ϕxy
q

ÝÑ ϕ pH yq

Gz
‹

ÝÑ X F ϕxy
‹

ÝÑ x

H u
‹

ÝÑ u

with Z,X : o, G,H : o Ñ o and F : po Ñ o, o, oq.

To better explain the inner workings of this scheme, let
us introduce some syntactic sugar. With every integer, we
associate a ground term by letting 0 “ X and, for all n ě 0,
n ` 1 “ H n. With every sequence rn1 . . .nℓs of integers,
we associate a term of type o Ñ o by letting r s “ G

and rn1 . . .nℓ nℓ`1s “ F rn1 . . .nℓsnℓ`1. Finally we write
prn1 . . .nℓs,nq to denote the ground term rn1 . . .nℓsn.

The scheme can be revisited as follows (note that the two
rules labelled by p are now merged):

Z
e

ÝÑ pr s,1q pr s,nq
‹

ÝÑ 0

prn1 . . .nℓs,nq
‹

ÝÑ nℓ n ` 1
‹

ÝÑ n

prn1 . . .nℓs,nq
p

ÝÑ prn1 . . .nℓ ns,n ` 1q

prn1 . . .nℓs,nq
q

ÝÑ prn1 . . .nℓ´1s,n ` 1q

Let w “ w0 . . . w|w|´1 be a prefix of a well-bracketed

word. We have Z
w

ùñ prn1 . . .nℓ s, |w| ` 1q where
rn1 . . . nℓ s is the sequence (in increasing order) of those
indices of unmatched opening brackets in w. In turn,

prn1 . . .nℓ s, |w| ` 1q
‹

ÝÑ nℓ
‹nℓ

ÝÑ 0. Hence, as expected,
the number of ‹ symbols is equal to 1 if w is well-bracketed
(i.e. ℓ “ 0), and otherwise it is equal to the index of the last
unmatched opening bracket plus one.

F. Collapsible Pushdown Automata

Fix a finite stack alphabet Γ and a distinguished bottom-
of-stack symbol K R Γ. An order-1 stack is a sequence
K, a1, . . . , aℓ P KΓ˚ which is denoted [Ka1 . . . aℓ]1. An
order-k stack (or a k-stack), for k ą 1, is a non-empty
sequence s1, . . . , sℓ of order-pk´1q stacks which is writ-
ten [s1 . . . sℓ]k. For convenience, we may sometimes see
an element a P Γ as an order-0 stack, denoted [a]0.
We denote by Stacksk the set of all order-k stacks and
Stacks “

Ť
kě1 Stacksk the set of all higher-order stacks.

The height of the stack s denoted | s | is simply the length
of the sequence. We denote by ordpsq the order of the stack
s.

A substack of an order-1 stack [Ka1 . . . ah]1 is a stack of
the form [Ka1 . . . ah1]1 for some 0 ď h1 ď h. A substack
of an order-k stack [s1 . . . sh]k, for k ą 1 is either a stack
of the form [s1 . . . sh1]k with 0ăh1 ď h or a stack of the
form [s1 . . . sh1 s1]k with 0 ď h1 ď h´ 1 and s1 a substack
of sh1`1. We denote by s Ď s1 the fact that s is a substack
of s1.

In addition to the operations pusha1 and pop1 that re-
spectively pushes and pops a symbol in the topmost order-1
stack, one needs extra operations to deal with the higher-
order stacks: the popk operation removes the topmost order-
k stack, while the pushk duplicates it.

For an order-n stack s “ [s1 . . . sℓ]n and an order-k
stack t with 0 ď k ă n, we define s `̀ t as the order-n
stack obtained by pushing t on top of s:

s `̀ t “

"
[s1 . . . sℓ t]n if k “ n ´ 1,
[s1 . . . psℓ `̀ tq]n otherwise.
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We first define the (partial) operations popi and topi with
i ě 1: topipsq returns the top pi´1q-stack of s, and popipsq
returns s with its top pi ´ 1q-stack removed. Formally, for
an order-n stack [s1 ¨ ¨ ¨ sℓ`1]n with ℓ ě 0

topipsq “

"
sℓ`1 if i “ n

topipsℓ`1q if i ă n

popipsq “

"
[s1 ¨ ¨ ¨ sℓ]n if i “ n and ℓ ě 1

[s1 ¨ ¨ ¨ sℓ popipsℓ`1q] if i ă n

By abuse of notation, we let topordpsq`1psq “ s. Note that
popipsq is defined if and only if the height of topi`1psq is
strictly greater than 1. For example pop2p[[K a b]1]2q is
undefined.

We now introduce the operations pushi with i ě 2 that
duplicates the top pi ´ 1q-stack of a given stack. More
precisely, for an order-n stack s and for 2 ď i ď n, we
let pushipsq “ s `̀ topipsq.

The last operation, pusha1 pushes the symbol a P Γ on
top of the top 1-stack. More precisely, for an order-n stack
s and for a symbol a P Γ, we let pusha1psq “ s `̀ [a]0.

Example 5. Let s be the order-3 stack of height 2 given by
s “ [[[Kbaac]1[Kbb]1[Kbcc]1[Kcba]1]2[[Kbaa]1

[Kbc]1[Kbab]1]2]3. Then top3psq is the 2-stack
[[Kbaa]1[Kbc]1[Kbab]1]2 and pop3psq is the stack
s1 “ [[[Kbaac]1[Kbb]1[Kbcc]1[Kcba]1]2]3. Note
that pop3ppop3psqq is undefined. Then push2ps1q is the stack
[[[Kbaac]1[Kbb]1[Kbcc]1[Kcba]1[Kcba]1]2]3 and
pushc1ps1q “ [[[Kbaac]1[Kbb]1[Kbcc]1[Kcbac]1]2]3.

We now define a richer structure of higher-order stacks
where we allow links. Intuitively, a stack with links is a
higher-order stack in which any symbol may have a link
that points to an internal stack below it. This link may be
used later to collapse part of the stack.

Order-n stacks with links are order-n stacks with a richer
stack alphabet. Indeed, each symbol in the stack can be
either an element a P Γ (i.e. not being the source of a link)
or an element pa, ℓ, hq P Γ ˆ t2, ¨ ¨ ¨ , nu ˆ N (i.e. being
the source of an ℓ-link pointing to the h-th pℓ ´ 1q-stack
inside the topmost ℓ-stack). Formally, order-n stacks with
links over alphabet Γ are defined as order-n stacks 1 over
alphabet Γ Y Γ ˆ t2, ¨ ¨ ¨ , nu ˆ N.

Example 6. The stack s below is an order-3 stack with links
[[[Kbaac]1[Kbb]1[Kbcpc, 2, 2q]1]2[[Kbaa]1[Kbc]1

[Kbpa, 2, 1qpb, 3, 1q]1]2]3.
To improve readability when displaying n-stacks in ex-

amples, we shall explicitly draw the links rather than using
stacks symbols in Γˆt2, ¨ ¨ ¨ , nuˆN. For instance, we shall
rather represent s as follows:

[[[Kbaac]1[Kbb]1[Kbcc]1]2[[Kbaa]1[Kbc]1[Kbab]1]2]3

1Note that we therefore slightly generalise our previous definition as we
implicitly use an infinite stack alphabet, but this does not introduce any
technical change in the definition.

In addition to the previous operations popi, pushi and
pusha1 , we introduce two extra operations: one to create
links, and the other to collapse the stack by following a link.
Link creation is made when pushing a new stack symbol, and
the target of an ℓ-link is always the pℓ´ 1q-stack below the
topmost one. Formally, we define push

a,ℓ
1 psq “ push

pa,ℓ,hq
1

where we let h “ |topℓpsq| ´ 1 and require that h ą 1.
The collapse operation is defined only when the topmost

symbol is the source of an ℓ-link, and results in truncating
the topmost ℓ-stack to only keep the component below the
target of the link. Formally, if top1psq “ pa, ℓ, hq and
s “ s1 `̀ rt1 ¨ ¨ ¨ tksℓ with k ą h we let collapsepsq “
s1 `̀ rt1 ¨ ¨ ¨ thsℓ.

For any n, we let OpnpΓq denote the set of all operations
over order-n stacks with links.

Example 7. Let s “ [[[K a]1]2 [[K]1[K a]1]2]3.
We have

push
b,2
1

psq “ [[[K a]1]2 [[K]1[K a b]1]2]3

collapse ppushb,2
1

psqq “ [[[K a]1]2 [[K]1]2]3

push
c,3
1 ppushb,2

1 psqqloooooooooooomoooooooooooon
θ

“ [[[K a]1]2 [[K]1[K a b c]1]2]3.

Then push2pθq and push3pθq are respectively

[[[K a]1]2 [[K]1[K a b c]1[K a b c]1]2]3 and

[[[K a]1]2 [[K]1[K a b c]1]2 [[K]1[K a b c]1]2]3.

We have collapse ppush2pθqq “ collapse ppush3pθqq “
collapsepθq “ [[[K a]1]2]3.

An order-n (deterministic) collapsible pushdown automa-
ton (n-CPDA) is a 5-tuple A “ xΣ,Γ, Q, δ, q0 y where Σ is
an input alphabet containing a distinguished symbol denoted
e , Γ is a stack alphabet, Q is a finite set of control states,
q0 P Q is the initial state, and δ : Q ˆ pΓ Y tKuq ˆ Σ Ñ
Q ˆ OpnpΓq is a (partial) transition function such that, for
all q P Q and γ P Γ, if δpq, γ, eq is defined then for all
a ‰ e , δpq, γ, aq is undefined, i.e. if some e-transition can
be taken, then no other transition is possible. We require δ
to respect the convention that K cannot be pushed onto or
popped from the stack.

Let A “ xΣ,Γ, Q, δ, q0 y be an n-CPDA. A configu-
ration of an n-CPDA is a pair of the form pq, sq where
q P Q and s is an n-stack with link over Γ; we call
pq0, rr¨ ¨ ¨ rKs1 ¨ ¨ ¨ sn´1snq the initial configuration. It is then
natural to associate with A a deterministic LTS denoted
LA “ xD, r,Σ, p

a
ÝÑqaPΣ y and defined as follows. We let

D be the set of all configurations of A and r be the initial
one. Then for all a P Σ and all pq, sq, pq1, s1q P D we have
pq, sq

a
ÝÑ pq1, s1q if and only if δpq, top1psq, aq “ pq1, opq

and s1 “ oppsq.
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The tree generated by an n-CPDA A, denoted TreeKpAq,
is simply the tree TreeKpLAq of its LTS.

III. FROM RECURSION SCHEMES TO COLLAPSIBLE

PUSHDOWN AUTOMATA

In this section, we present a translation of schemes into
CPDA. This translation generalizes at all orders the order-
2 translation of [A4]. The translation from [9] assumes a
normal form for the schemes but up to these normalisa-
tions, the CPDA obtained is the same as the one in [9].
Our contributions are to work direclty on schemes without
normalisation and more importantly to prove the correctness
of the translations without using game semantics as an
intermediary tool as in [9]. Note that the converse translation
from [9] (from CPDA into scheme) does not use game
semantics and is therefore not presented here.

We construct, for any labeled recursion scheme S, a col-
lapsible pushdown automaton A of the same order defining
the same tree as S – i.e. TreeKpSq “ TreeKpAq. To
simplify the presentation, we assume that S does not contain
any silent productions rule (i.e. production rule labeled by
e). If S were to contain silent transitions, we would treat
the symbol e as any other symbol2 in Σ. For the rest of this
section, we fix a labeled recursion scheme xΣ, N,R, Z,K y
of order n ě 1 without silent transitions.

The automaton A has a distinguished state, denoted q‹,
and with the configurations of the form pq‹, sq we will
associate a ground term over N denoted by rr s ss. Other
configurations correspond to internal steps of the simulation
and are only the source of silent transitions. To show that
the two LTS define the same trees, we will establish that,
for any reachable configuration of the form pq‹, sq and for
any a P Σ, the following holds:

‚ if pq‹, sq
ae

˚

ÝÑ
A

pq‹, s
1q then rr s ss

a
ÝÑ
S

rr s1 ss;

‚ if rr s ss
a

ÝÑ
S

t then pq‹, sq
ae

˚

ÝÑ
A

pq‹, s
1q and rr s1 ss “ t.

Hence, the main ingredient of the construction is the
partial mapping rr ¨ ss associating with any order-n stack a
ground term over N . The main difficulty is to guarantee
that any rewriting rule of S applicable to the encoded term
rr s ss can be simulated by applying a sequence of stack
operations to s. In Section III-A, we present the mapping
rr ¨ ss together with its basic properties; in Section III-B, we
give the definition of A and prove the desired properties.

To simplify the presentation we assume, without loss of
generality, that all productions starting with a non-terminal
A have the same left-hand side (i.e. they use the same
variables in the same order) and that two productions starting
with different non-terminals do not share any variables.

2Formally, one labels all silent production rules of S by a fresh symbol
e to obtain a labeled scheme S 1 without silent transitions. The construction
presented in this section produces an automaton A1 such that TreeKpS 1q “
Tree

KpA1q. The automaton A obtained by replacing all e-labeled rules of
A by e is such that TreeKpSq “ Tree

KpAq.

Hence a variable x P V appears in a unique left-hand side
Ax1 . . . , x̺pAq and we denote by rkpxq the index of x in
the sequence x1 ¨ ¨ ¨x̺pAq (i.e. x “ xrkpxq).

Throughout the whole section, we will illustrate defini-
tions and constructions using as a running example the order-
2 scheme SU generating the tree TU of Example 4.

A. Stacks Representing Terms.

The stack alphabet Γ consists of the initial symbol and of
the right-hand sides of the rules in R and their argument sub-
terms, i.e. Γ

def

“ tZ u Y
Ť

F x1¨¨¨x̺pxq
a

ÝÑ e
t e u YASubspeq.

For the scheme SU , one gets Γ “ tx, y, z, u, ϕu Y
t Z , G pH Xq , H X , X , F pF ϕxq y pHyq , F ϕx , Hy ,
F Gz pHzq , G , Hz , ϕ pHyqu.

Notation 1. For ϕ P V Y N , a ϕ-stack designates a stack
whose top symbol starts with ϕ. By extension a stack s is
said to be an N -stack (resp. a V -stack) if it is a ϕ-stack for
some ϕ P N (resp. ϕ P V ).

In order to represent a term in TermspNq, a stack over
Γ must be well-formed, i.e. it must satisfy some syntactic
conditions.

Definition 1 (Well-formed stack). A non-empty stack of
order-n over Γ is well-formed if every non-empty substack
r of s satisfies the following two conditions:

‚ if top1prq is not equal to Z nor to K then pop1prq is
an A-stack for some A P N and top1prq belongs to an
A-production rule,

‚ if top1prq is of type τ of order k ą 0 then top1prq is
the source of an pn´ k` 1q-link and collapseprq is a
ϕ-stack for some variable ϕ P V of type τ .

We denote by WStacks the set of all well-formed stacks.

Example 8. For the scheme SU , the following order-2 stacks
are well-formed.

Z

G pH Xq

F Gz pH zq

F pF ϕxq y pH yq

ϕ pH yq

s1

loooooooooomoooooooooon
Z

G pH Xq

F Gz pH zq

F pF ϕxq y pH yq

ϕ pH yq

Z

G pH Xq

F Gz pH zq

F ϕx

loooooooooooooooooooomoooooooooooooooooooon
s2

Z

G pH Xq

F Gz pH zq

F pF ϕxq y pH yq

ϕ pH yq

Z

G pH Xq

F Gz pH zq

F ϕx

F pF ϕxq y pH yq

y

loooooooooooooooooooooooomoooooooooooooooooooooooon
s3

Notation 2. We write s :: t for s P WStacks and t P Γ to
mean that if t belongs to the r.h.s. of a production starting
with A P N then s is an A-stack. In particular, if s P
WStacks then pop1psq :: top1psq. We denote by CStacks

the set of such s :: t, and define the size of an element
s :: t as the pair p|s|, |t|q where |s| denotes the number of
stack symbols in s and |t| the length of the term t. When
comparing sizes, we use the standard lexicographic (total)
order over N ˆ N.

In Definition 4, we will associate, with any well-formed
stack s, a ground term over N that we refer to as the
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value of s. To define this value, we first associate, with any
element s :: t in CStacks, a value denoted rr s :: t ss. This
value is a term over N of the same type as t. Intuitively,
it is obtained by replacing the variables appearing in the
term t by values encoded in the stack s, and one should
therefore understand rr s :: t ss as the value of the term t in
the context (or environment) of s. See Remark 3 below for
natural connections with Krivine machine.

Definition 2. For all ϕ P V Y N , all k P r1, ̺pϕqs and
all ϕ-stack s P WStacks, we define an element of CStacks,
denoted Argkpsq, representing the k-th argument of the term
represented by s. More precisely if the top symbol of s is
ϕ t1 ¨ ¨ ¨ tℓ, we take:

"
Argkpsq “ pop1psq :: tk if k ď ℓ,
Argkpsq “ Argk´ℓpcollapsepsqq otherwise.

Definition 3. For all s :: t P CStacks, we define the value
of t in the context of s:
$
&
%

rr s :: t1t2 ss “ rr s :: t1 ssrr s :: t2 ss if t1, t2 P Γ

rr s :: A ss “ A if A P N
rr s :: x ss “ rr Argrkpxqpsq ss if x P V

Let us provide some intuitions regarding the definition of
rr s :: t ss. Unsurprisingly rr s :: t ss is defined by structural
induction on t, and the cases for the application and the
non-terminal symbols are straightforward. It remains to
consider the case where t is a variable x appearing in
rkpxq-th position in the left-hand side Ax1 ¨ ¨ ¨x̺pAq. As
s :: t P CStacks, top1psq is of the form At1 . . . tℓ for
some ℓ ď ̺pAq. Note that ℓ is not necessarily equal to ̺pAq
meaning that some arguments of A might be missing. There
are now two cases — that correspond to the two cases in the
definition of Argkpsq — depending on whether x references
to one of the ti’s (i.e. rkpxq ď ℓ) or one of the missing
arguments (i.e. rkpxq ą ℓ):

‚ If rkpxq ď ℓ then the term associated with x in s is
equal to the term associated with trkpxq in pop1psq, i.e.
rr s :: x ss “ rr pop1psq :: trkpxq ss.

‚ If rkpxq ą ℓ then the term rr s :: x ss is obtained by
following the link attached to top1psq. Recall that, as s
is a well-formed stack and top1psq is not of ground type
(as ℓ ă ̺pAq), there exists a link attached to top1psq.
Moreover, collapsepsq, the stack obtained by following
the link, has a top-symbol of the form ϕ t11 . . . t

1
m for

some ϕ P V and m ě 0. Intuitively, t1i corresponds
to the pℓ ` iq-th argument of A. If rkpxq belongs to
rℓ ` 1, ℓ ` ms then the term rr s :: x ss is defined to
be the term rr pop1pcollapsepsqq :: t1

rkpxq´ℓ
ss. If rkpxq

is greater than ℓ `m then the link attached to the top
symbol of collapsepsq is followed and the process is
reiterated. As the size of the stack strictly decreases at
each step this process terminates.

Now, if s is a well-formed ϕ-stack, its value is obtained
by applying the value of ϕ in the context of pop1psq to the

value of all its ̺pϕq arguments. This leads to the following
formal definition.

Definition 4. The term associated with a well-formed ϕ-
stack s P Stacks with ϕ P N Y V is

rr s ss
def

“ rr pop1psq :: ϕ ssrr Arg1psq ss ¨ ¨ ¨ rr Arg̺pϕqpsq ss.

Equiv., if top1psq : o then: rr s ss “ rr pop1psq :: top1psq ss.
If top1psq : τ1 Ñ . . . Ñ τℓ Ñ o then:
rr s ss “ rr pop1psq :: top1psq ss rr Arg1pcollapsepsqq ss ¨ ¨ ¨
rr Argℓpcollapsepsqq ss.

Example 9. Let us consider the well-formed stacks s2 and
s3 presented in Example 8. In the representation below the
association between variables and their "values" are made
explicit by the red arrows.

Z

G pH Xq

F Gz pH zq

F pF ϕxq y pH yq

ϕ pH yq

Z

G pH Xq

F Gz pH zq

F ϕx

s2

looooooooooooooooooooooooomooooooooooooooooooooooooon
Z

G pH Xq

F Gz pH zq

F pF ϕxq y pH yq

ϕ pH yq

Z

G pH Xq

F Gz pH zq

F ϕx

F pF ϕxq y pH yq

y

looooooooooooooooooooooooooomooooooooooooooooooooooooooon
s3

rr s1 ss “ rr s2 ss “ F G pH Xq pHpHpHpHXqqqq
rr s3 ss “ HpHpHpHpHXqqq

The following lemma states the basic properties of the
encoding rr ¨ ss and Argkp ¨ q.

Lemma 1. We have the following properties:

1) For all ϕ-stacks s P WStacks with ϕ P V Y N of
type τ1 Ñ . . . Ñ τ̺pϕq Ñ o and for all k P r1, ̺pϕqs,
Argkpsq is equal to some r :: t P CStacks with t of
type τk .

2) For all s :: t P CStacks with t : τ P Γ, rr s :: t ss is a
term in Termsτ pNq.

3) For all s P WStacks, rr s ss belongs to TermsopNq.

We conclude with two fundamental properties of Argkp¨q
that will allow us to simulate the rewriting of the scheme
using stack operations and finite memory.

The first property is that the arguments represented
by a well-formed stack are not modified when perform-
ing a pushk operation. More precisely, for all ϕ-stacks
s P WStacks with ϕ P N Y V , rr Argℓppushkpsqq ss “
rr Argℓpsq ss for all ℓ P r1, ̺pϕqs and all k P r2,ms. This
follows (by letting r “ topkpsq) from the following slightly
more general result.

Lemma 2. Let k P r2,ms and let s “ s1 `̀ topkpsq P
WStacks. For all non-empty ϕ-stacks r Ď topkpsq,
rr Argℓps

1 `̀ rq ss “ rr Argℓps `̀ rq ss for all ℓ P r1, ̺pϕqs.

The next property will later be used to prove that any
rewriting step can be simulated by a finite number of
transitions in the automaton.
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Lemma 3. Let s be a ϕ-stack in WStacks for some ϕ :

τ1 Ñ . . . Ñ τ̺pϕq Ñ o in V YN and let ℓ P r1, ̺pϕqs with τℓ
of order k ą 0. If Argℓpsq is equal to r :: t P CStacks with t
starting with ψ P NYV then popn´k`1psq “ popn´k`1prq,
| topn´k`1psq | ą | topn´k`1prq |.

B. Simulating the LTS of S on Stacks

As an intermediate step, we define an LTS M over well-
formed stacks and we prove that it generates the same tree
as S (i.e. TreeKpMq “ TreeKpSq). From M, a CPDA
generating TreeKpMq is then defined at the end of this
section.

We let M “ xWStacks, r. . . r KZ s . . .sn,Σ, p
a

ÝÑ
M

qaPΣ y

and define the transitions as follows

‚ s
a

ÝÑ
M

pusht1psq if s is an A-stack with A P N and

Ax1 ¨ ¨ ¨x̺pAq
a

ÝÑ t P R,

‚ s
e

ÝÑ
M

pusht1prq if s is a ϕ-stack with ϕ : o P V

and Argrkpϕqppop1psqq “ r :: t,

‚ s
e

ÝÑ
M

push
t,n´k`1
1 prq if s is a ϕ-stack with ϕ : τ P V

of order k ą 0 and Argrkpϕqppop1ppushn´k`1psqqq “
r :: t.

Example 10. In the figure below, we illustrate the definition
of M on the scheme SU .

Z
e

Z

G pH Xq p
Z

G pH Xq

FGzpHzq

p
Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

q
Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

ϕ pH yq

e

Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

ϕ pH yq

Z

G pH Xq

FGzpHzq

F ϕx

‹
Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

ϕ pH yq

Z

G pH Xq

FGzpHzq

F ϕx

x

e

Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

ϕ pH yq

Z

G pH Xq

FGzpHzq

x

e

Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

ϕ pH yq

Z

G pH Xq

z

e

Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

ϕ pH yq

Z

H X
‹

Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

ϕ pH yq

Z

H X

u

e

Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

ϕ pH yq

Z

X

The first line of the definition of ÝÑ
M

corresponds to

the case of an N -stack. To simulate the application of a
production rule Ax1 ¨ ¨ ¨xn

a
ÝÑ e on the term encoded by

an A-stack s, we simply push the right-hand side e of the
production on top of s. The correctness of this rule directly
follows from the definition of rr ¨ ss. Doing so, a term starting
with a variable may be pushed on top of the stack, e.g. when

applying the production rule F ϕxy
q

ÝÑ ϕ pH yq. Indeed,
we need to retrieve the value of the head variable in order
to simulate the next transition of S: the second and third
lines of the definition are normalisation rules that aim at
replacing the variable at the head of the top of the stack (for
instance, in the 5th stack of Example 10 the variable ϕ) by
its definition (hence not changing the value of the associated
term). By iterative application, we eventually end up with

an N -stack encoding the same term and we can apply again
the first rule.

Proposition 1. TreeKpSq “ TreeKpMq.

Sketch: One easily concludes after establishing the
following soundness result about the definition of ÝÑ

M
.

‚ Let s be an N -stack in WStacks and a P Σ.
For any t P TermspNq, if rr s ss

a
ÝÑ t then Ds1 P

WStacks, s
a

ÝÑ
M

s1 and rr s1 ss “ t.

If Ds1 P WStacks, s
a

ÝÑ
M

s1 then rr s ss
a

ÝÑ rr s1 ss.

‚ Let s P WStacks be a ϕ-stack for ϕ P V and let
s1 P WStacks be a ψ-stack for ψ P V YN .
If s

e

ÝÑ
M

s1 then rr s ss “ rr s1 ss, ordpϕq ď ordpψq and

| topn´ordpϕq`1psq | ą | topn´ordpϕq`1ps1q |.
‚ For all s P WStacks there exists a unique N -stack

s1 P WStacks such that s
e

˚

ÝÑ
M

s1.

From M we now define an n-CPDA A “ xΣ,Γ, Q, δ, q0 y
generating the same tree as M. The set of states Q

is equal to t q0, q1, . . . , q̺pSq, q˚ u where ̺pSq denotes
the maximal arity appearing in S. Intuitively the initial
state q0 is only used to go from pq0, r. . . r K s1 . . .snq to
pq˚, r. . . r KZ s1 . . .snq; the state q˚ is used to mark N -
stacks; for k P r1, ̺pSqs, the state qk is used to the compute
Argkp¨ ¨ ¨ q. The transitions are given below.

‚ δpq0,K, eq “ pq˚, push
Z
1 q,

‚ If t starts with F P N and F x1 ¨ ¨ ¨x̺pF q
a

ÝÑ e P R:

– δpq˚, t, aq “ pq˚, push
e
1q if e starts with a symbol

in N ,
– δpq˚, t, aq “ pqrkpxq, idq if e is a variable x : o

(here id is the identity function),
– δpq˚, t, aq “ pqrkpxq, push

e
1; pushn´k`1; pop1q if

e starts with a variable x of order k ą 0.

‚ If t is a term of the form ϕ t1 ¨ ¨ ¨ tℓ for some ϕ P V YN :

– δpqk, t, eq “ pqrkptkq, pop1; push
tk
1 q if k ď ℓ and

tk : o,
– δpqk, t, eq “ pqrkptkq, pop1; push

tk,n´h`1
1 q if k ď

ℓ and tk has order h ą 0,
– δpqk, t, eq “ pqk´ℓ, collapseq if k ą ℓ.

where, for all t P Γ, qrkptq designates the state qrkpxq if
t starts with a variable x and q˚ otherwise, and op1; op2
means applying op1 followed by op2. An equivalent CPDA
using only one operation per transition may be obtained by
adding intermediary states.

Theorem 1. For every labeled recursion scheme S of order-
n, there is an n-CPDA A that generates the same tree.
Moreover, the number of states in A is linear in the maximal
arity appearing in S, and its alphabet is of size linear in
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the one of S3.

Remark 3. In [18], the authors use Krivine machines [14]
as an abstract model to represent the sequence of rewrit-
ing of a scheme4. A Krivine machine computes the weak
head normal form of a λY -term, using explicit substitu-
tions (called here environments). Environments are functions
assigning closures to variables, and closures themselves
are pairs consisting of a term and an environment. This
mutually recursive definition is schematically represented
by the grammar C :“ pt, ρq and ρ :“ ∅ | ρrx Ñ Cs
where t is an term of the λY -calculus with free-variable
and ∅ designates the empty environment. The λY -term tC
represented by a closure C “ pt, ρq is inductively defined as
t in which every occurrence of a free variable x is replaced
by the term tρpxq.

A pair s :: t (cf. Notation 2) can be seen as a closure5

pt, ρq where ρpxq is defined for all variables x occurring
in t by ρpxq “ Argrkpxqpsq. With this view in mind and up
to the translation of schemes into equivalent λY -terms, the
LTS M faithfully simulates the Krivine machine presented
in [18]. Note that the correspondence is facilitated by the
use of labeled schemes.

This remark also allows us to inherit the simplifications
of [18] for the decidability of CPDA parity games.

IV. SAFE HIGHER-ORDER RECURSION SCHEMES

In this section, we consider a syntactic subfamily of
recursion schemes called the safe recursion schemes. The
safety constraint was introduced in [10] but was already
implicit in the work of Damm [6] (see also [7, p. 44] for
a detailed presentation). This restriction constrains the way
variables are used to form argument subterms of the rules’
right-hand sides.

Definition 5 ([10]). A recursion scheme is safe if no
right-hand side contains an argument-subterm of order k
containing a variable of order strictly less than k.

For instance, the scheme in Example 3 is safe. On the
other hand, the scheme SU of Example 4 is not because

the production F ϕxy
p

ÝÑ F pFϕxqypHyq contains in its
right-hand side the argument subterm Fϕx : o Ñ o of order-
1 which contains the variable x : o of order-0. Urzyczyn
conjectured that (a slight variation of) the tree TU generated
by SU , though generated by a order-2 scheme, could not be
generated by any safe scheme. This conjecture was recently
proved by Parys [16].

Remark 4. In [10], [11], the notion of safety is only defined
for homogeneous schemes. A type is said to be homogeneous

3The size of a scheme is defined as the sum of the sizes of the left and
right hand sides of the rewriting rules. In particular it is larger than the
sum of the sizes of all argument subterms of right hand sides of the rules.

4The authors work with the equivalent formalism of the λY -calculus.
5to represent applicative terms over N instead of λY -terms.

if it is either ground or equal to τ1 Ñ ¨ ¨ ¨ Ñ τn Ñ o where
the τi’s are homogeneous and ordpτ1q ě ¨ ¨ ¨ ě ordpτnq. By
extension, a scheme is homogeneous if all its non-terminal
symbols have homogeneous types. For instance po Ñ oq Ñ
o Ñ o is an homogeneous type whereas o Ñ po Ñ oq Ñ
o is not. We will see in Proposition 2 that dropping the
homogeneity constraint in the definition of safety does not
change the family of generated trees.

A. Safety and the Translation from Schemes to CPDA

In [10], [11], the motivation for considering the safety
constraint was that safe schemes can be translated into a
subfamily of the collapsible automata, namely higher-order
pushdown automata. An order-k pushdown automaton is
an order-k CPDA that does not use the collapse operation
(hence, links are useless).

Theorem 2 below shows that the translation of recursion
schemes into collapsible automata presented in Section III,
when applied to a safe scheme, yields an automaton in
which links are not really needed. Obviously the automaton
performs the collapse operations but whenever it is applied
to an order-k link its target is the pk´1q-stack below the top
pk ´ 1q-stack. Hence any collapse operation can safely be
replaced by a popk operation. In doing so, we re-obtain the
translation of safe (homogeneous) schemes into higher-order
pushdown automata presented in [11].

Definition 6. A CPDA is link-free if for every configura-
tion pp, sq reachable from the initial configuration and for
every transition δpp, top1psq, aq “ pq, collapseq, we have
collapsepsq “ popℓpsq where ℓ is the order of the link
attached to top1psq.

Theorem 2. The translation of Section III applied to a safe
recursion scheme yields a link-free collapsible automaton.

Sketch: We present the ingredients of the proof only at
order-2. For the general case, the ideas are similar but lead
to more technicalities.

Let us first introduce some notations. Let pq, s “
rs1 . . . sms2q be a configuration of A reachable from the
initial configuration. For i P r1,ms and j P r1, |si|s, we
denote by rpi, jq, tpi, jq and opi, jq respectively the j-th
symbol of stack si, the target (if defined) in r1, i ´ 1s of
its link and the order (if defined) of this link. By definition
of A, tpi, jq and opi, jq are defined iff rpi, jq is a term of
order k ą 0 and in this case opi, jq is equal to 2 ´ k ` 1

Moreover for i P r2,ms, we let ℓi be the smallest index
at which si´1 and si have a different symbol (or |si| ` 1 if
no such index exists).

The stack s satisfies the following properties:

1) for all i P r1, |s1|s, tp1, iq is undefined;
2) for all i P r2,ms, ℓi ď |si´1| and for all i P r2,m´1s,

ℓi ď |si|;
3) for all i P r2,ms and 1 ď j ă ℓi, tpi, jq “ tpi´ 1, jq;
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4) for all i P r2,ms with ℓi ď |si|, rpi, ℓiq does not
contain a variable of order 0 and is an argument
subterm of rpi ´ 1, ℓiq and if rpi, ℓiq is of order 1
then tpi, ℓiq “ i´ 1;

5) for all i P r2,ms with j P rℓi ` 1, |si|s, tpi, jq is
undefined;

6) if m ě 2 then ℓm “ |sm| ` 1 iff top1psq “ ϕt1 . . . th,
q “ qk for some k P r1, hs such that ordptkq “ 1.

These properties are proved by induction on the length of
the shortest path in the LTS from the initial configuration to
pq, sq and by inspection of the transitions of A.

Inspecting the transitions of A, a collapse operation can
only be performed if q “ qk and top1psq “ ϕ t1 . . . th with
k ą h and ϕ : pτ1, . . . , τm, oq. Thanks to Definition 1,
ϕ t1 . . . th is of order-1. Property 5 implies that ℓm is
either equal to |sm| or to |sm| ` 1. Property 6 implies
ℓm ‰ |sm|`1 as otherwise we would have k ď h. Thus, we
have ℓm “ |sm| and by Property 4, collapsepsq “ pop2psq.

We get the following corollary extending (by dropping the
homogeneity assumption) a previous result from [11].

Corollary 1. Order-k safe schemes and order-k pushdown
automata generate the same trees.

B. Damm’s View of Safety

The safety constraint may seem unnatural and purely ad-
hoc. Inspired by the constraint of derived types of Damm,
we introduce a more natural constraint, Damm-safety, which
leads the same family of trees [6].

Damm-safety syntactically restricts the use of partial
application: in any argument subterm of a right-hand side
if one argument of some order-k is provided then all
arguments of order-k must also be provided. For instance
if ϕ : po Ñ oq Ñ po Ñ oq Ñ o Ñ o Ñ o, f : o Ñ o and
c : o, the terms ϕ, ϕf f and ϕf f c c can appear as argument
subterms in a Damm-safe scheme but ϕf and ϕf f c are
forbidden.

Definition 7 ([6]). A recursion scheme is Damm-safe if it
is homogeneous and all argument-subterms appearing in a
right hand-side are of the form ϕ t1 ¨ ¨ ¨ tk with ϕ : τ1 Ñ
¨ ¨ ¨ Ñ τn Ñ o and either k “ 0, k “ n or ordpτkq ą
ordpτk`1q.

As in Damm-safe scheme all argument subterms of an
argument subterm of order-k appearing in a right-hand side
have at least order-k, it is easy to see that Damm-safety
implies the safety constraint. However, the safety constraint,
even when restricted to homogeneous schemes, is less re-
strictive than Damm-safety. Consider for instance a variable
x : o and non-terminals G : o Ñ o Ñ o and C : o, then Gx
cannot appear as an argument-subterm in a safe scheme but
GC can. As GC does not satisfy Damm-safety constraint,
safety is syntactically more permissive than Damm-safety.

However unsurprisingly, any safe scheme can be transformed
into an equivalent Damm-safe scheme of the same order.
The transformation consists in converting the safe scheme
into a higher-order pushdown automaton (Corollary 1) and
then converting this automaton back to a scheme using the
translation of [11]. In fact, this translation of higher-order
pushdown automata into safe schemes produces Damm-safe
schemes.

Proposition 2. Damm-safe schemes are safe and for every
safe scheme, there exists a Damm-safe scheme of the same
order generating the same tree.

V. EFFECTIVE SELECTION

Let ϕpX1, ¨ ¨ ¨ , Xℓq be a monadic second order (MSO)
formula with ℓ second-order free variables, and let
t be a term over a ranked alphabet Σ. The MSO
selection problem is to decide whether the formula
DX1 . . . DXℓ ϕpX1, ¨ ¨ ¨ , Xℓq holds in t, and in this case to
give a term tϕ over the ranked alphabet Ξ “ Σ ˆ t0, 1uℓ

(we take ̺pa, pb1, . . . , bℓqq “ ̺paqq such that the following
holds:

1) t “ πptϕq where π is the alphabetical morphism from
ÝÑ
Ξ to

ÝÑ
Σ defined by πppa, bqq “ a for a P Σ with

̺paq “ 0 and πppa, bqiq “ ai for a P Σ with ̺paq ą 0

and i P r1, ̺paqs. Intuitively, tϕ is obtained by marking
every node in t by a vector of ℓ booleans. Indeed
for all non-leaf node u, there exists a unique element
pc, bq P Ξ such that for all x P

ÝÝÑ
pc, bq, ux is in tϕ. The

tuple b P t0, 1uℓ is the label of the node u of t. The
label of a non-leaf node u of t is denoted bu

2) The formula ϕpX1 Ð U1, . . . , Xℓ Ð Uℓq holds in t

where @1 ď i ď ℓ, Ui “ tu P t | bupiq “ 1u.

Intuitively, the second point states that this marking exhibits
a valuation of the Xi for which ϕ holds in t. We refer to tϕ
as a selector for ϕ in t.

Let R be a class of generators of terms. We say that R has
the effective MSO selection property if there is an algorithm
that transforms any pair pR,ϕpX1, . . . , Xℓqq with R P R

into some Rϕ P R (if exists) such that the term generated
by Rϕ is a selector for ϕ in the term generated by R.

Theorem 3. Labeled recursion schemes as well as CPDA
have the effective MSO selection property.

The proof of Theorem 3 is highly non-trivial and requires
a precise analysis of winning strategies in parity games
played over terms generated by CPDA (the key argument
is that winning strategies can be embedded into the CPDA
generating the term). We do not believe that a proof of the
statement for labeled recursion schemes can be obtained
without using an automaton model, and we think that it
shows the usefulness of CPDA in the study of logical
properties of schemes.
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Remark 5. A similar statement for safe schemes can be
deduced from [8], [3], [5]. However the machinery for
general schemes is much more involved.

In [2] a much weaker notion, MSO-reflectivity, was con-
sidered. A class of generators of terms is MSO-reflective if
it has the effective MSO selection property for those formula
ϕpXq of the form ϕpXq ” x P X ô ψpxq where ψpxq is
an MSO formula with a single first-order free variable (note
that in this case, there is a unique valuation of X that makes
ϕpXq holds). The main result of [2] follows from Theorem
3.

Corollary 2. Labeled recursion schemes as well as CPDA
have the effective MSO-reflectivity property.

Remark 6. A variant of selection [17] ask for exis-
tence of a formula ψpX1, . . .Xℓq that is a selector for
ϕpX1, . . .Xℓq in t in the following sense. Either nei-
ther of the formulas DX1 . . . DXℓ ϕpX1, ¨ ¨ ¨ , Xℓq and
DX1 . . . DXℓ ψpX1, ¨ ¨ ¨ , Xℓq holds in t or ψ defines a unique
tuple pU1, ¨ ¨ ¨ , Uℓq and this tuple also satisfies ϕ. In [4] it
is shown that a selector does not always exist in general,
and the counter-example is for a tree generated by a (safe)
recursion scheme.

A degenerated version of selection is model-checking.
Theorem 1 together with a careful analysis of the complexity
of parity games on CPDA lead the same complexity as in
[13].

Corollary 3. The µ-calculus model-checking of trees gener-
ated by recursion schemes is polynomial under the assump-
tion that the arity of types and the formula are bounded
above by a constant.
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APPENDIX

A. Proofs Omitted in Section II

1) Labeled Recursion Schemes vs (Classical) Recursion Schemes: .

We recall the notion of recursion schemes as it is usually considered in the literature (see e.g. [9]).

For each type τ , we assume an infinite set Vτ of variables of type τ , such that Vτ1 and Vτ2 are disjoint whenever τ1 “ τ2,
and we write V for the union of those sets Vτ as τ ranges over types. We use letters x, y, ϕ, ψ, χ, ξ, . . . to range over
variables.

A (deterministic) recursion scheme is a 5-tuple S “ xA,N,R, Z,K y where

‚ A is a ranked alphabet of terminals and K is a distinguished terminal symbol of arity 0 (and hence of ground type)
that does not appear in any production rule,

‚ N is a finite set of typed non-terminals; we use upper-case letters F,G,H, . . . to range over non-terminals,
‚ Z P N is a distinguished initial symbol of type o which does not appear in any right-hand side of a production rule,
‚ R is a finite set of production rules, one for each non-terminal F : pτ1, ¨ ¨ ¨ , τn, oq, of the form

F x1 ¨ ¨ ¨ xn Ñ e

where the xi are distinct variables with xi : τi for i P r1, ns and e is a ground term in TermsppAztKuq Y pNztZuq Y
tx1, . . . , xn uq. Note that the expressions on either side of the arrow are terms of ground type.

As for labelled schemes, the order of a recursion scheme is defined to be the highest order of (the types of) its non-
terminals.

A recursion scheme S induces a rewriting relation, denoted ÑS , over TermspAYNq. Informally, ÑS replaces any ground
subterm F t1 . . . t̺pF q starting with a non-terminal F by the right-hand side of the production rule F x1 ¨ ¨ ¨ xn Ñ e in
which the occurrences of the "formal parameter" xi are replaced by the actual parameter ti for i P r1, ̺pF qs.

The term M rt{xs obtained by replacing a variable x : τ by a term t : τ over A Y N in a term M over A Y N Y V is
defined6 by induction on M by taking ϕrt{xs “ ϕ for ϕ ‰ x P AYN Y V , xrt{xs “ t and pt1 t2qrt{xs “ t1rt{xs t2rt{xs.

The rewriting system ÑS is defined by induction using the following rules:

‚ (Substitution) Ft1 ¨ ¨ ¨ tn ÑS ert1{x1, ¨ ¨ ¨ , tn{xns where Fx1 ¨ ¨ ¨xn Ñ e is a production rule of S.
‚ (Context) If t ÑS t

1 then pstq ÑS pst1q and ptsq ÑS pt1sq.

Example 11. Let S be the order-2 recursion scheme with non-terminals tZ : o, H : po, oq, F : ppo, o, oq, oqu, variables
tz : o, ϕ : po, o, oqu, terminals A “ tf, au of arity 2 and 0 respectively, and the following rewrite rules:

Z Ñ fpH aqpF fq
H z Ñ H pH zq
F ϕ Ñ ϕa pF ϕq

The figure below depicts the first rewriting steps of ÑS starting from the initial symbol Z .

6Note that t does not contain any variables and hence we do not need to worry about capture of variables.

12



Z

f

F

f

H

a

f

f

F

f

a

H

a

f

F

f

H

H

a

f

f

f

F

f

a

a

H

a

f

f

F

f

a

H

H

a

f

F

f

H

H

H

a

As illustrated above, the relation ÑS is confluent, i.e. for all ground terms t,t1 and t2, if t Ñ˚
S
t1 and t Ñ˚

S
t2 (here Ñ˚

S

denotes the transitive closure of ÑS), then there exists t1 such that t1 Ñ˚
S
t1 and t2 Ñ˚

S
t1. The proof of this statement is

similar to proof of the confluence of the lambda-calculus.

Informally the value tree of (or the tree generated by) a recursion scheme S, denoted rrS ss, is a (possibly infinite) term,
constructed from the terminals in A, that is obtained as the "limit" of the set of all terms that can obtained by iterative
rewriting from the initial symbol Z .

The terminal symbol K : o is used to formally restrict terms over A Y N to their terminal symbols. We define a map
p¨qK : TermspA Y Nq ÝÑ TermspAq that takes an applicative term and replaces each non-terminal, together with its
arguments, by K : o. We define p¨qK inductively as follows, where a ranges over A-symbols, and F over non-terminals
in N :

aK “ a

FK “ K

pstqK “

#
K if sK “ K

psKtKq otherwise.

Clearly if t P TermspA YNq is of ground type then tK P TermspAq is of ground type as well.

Terms built over A can be partially ordered by the approximation ordering ď defined for all terms t and t1 over A by
t ď t1 if tX p

ÝÑ
A ztKuq˚ Ď t1. In other terms, t1 is obtained from t by substituting some occurrences of K by arbitrary terms

over A.

The set of terms over A together with ď form a directed complete partial order. Meaning that any directed subset D of
TermspAq (i.e. D is not empty and for all x, y P D, there exists z P D such that x ď z and y ď z) admits a supremum,
denoted supD.

Clearly if s ÑS t then sK ď tK. The confluence of ÑS implies that the set t tK | Z Ñ˚
S
t u is directed. Hence the value

tree of (or the tree generated by) S can be defined as its supremum.

rrS ss “ supt tK | Z Ñ˚
S t u.

Example 12. The value tree of the recursion scheme S of Example 11 is:
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The following theorem relates both notions of schemes.

Theorem 4. The recursion schemes and the labeled recursion schemes generate the same terms. Moreover the translations
are linear and preserves order and arity.

Proof: Let S “ xA,N,R, Z,K y be a recursion scheme. We define a labeled recursion scheme S 1 “ x
ÝÑ
A,N 1,R1, Z,K y

generating the term rrS ss. For each terminal symbol f P A, we introduce a non-terminal symbol, denoted f :

o Ñ ¨ ¨ ¨ Ñ o Ñloooooooomoooooooon
̺pfq

o. The set N 1 of non-terminal symbols of S 1 is N Y tf | f P Au Y tXu where X is assumed to be

a fresh non-terminal. With a term t over A Y N , we associate the term t over N 1 obtained by replacing every occurrence
of a terminal symbol f by its nonterminal counterpart f . The production rules R1 of S 1 are:

tF x1 ¨ ¨ ¨ xn
e

ÝÑ e | F x1 ¨ ¨ ¨ xn ÝÑ e P Ru

Y tf x1 ¨ ¨ ¨ x̺pfq
fiÝÑ xi | f P A with ̺pfq ą 0 and i P r1, ̺pfqsu

Y tc
c

ÝÑ X | c P A with ̺pcq “ 0u

Conversely, let A be ranked alphabet and let S “ x
ÝÑ
A,N,R, Z,K y be a labeled recursion scheme generating a ranked

tree. We define a recursion scheme S 1 “ xA,N,R1, Z,K y generating the same term as S. The set of production rules of
S 1 are defined as follows:

‚ If F x1 ¨ ¨ ¨ xn
e

ÝÑ e belongs to R (in this case it is the only rule starting with F ) then F x1 ¨ ¨ ¨ xn Ñ e belongs
to R1.

‚ If, for some c of arity 0, F x1 ¨ ¨ ¨ xn
c

ÝÑ e belongs to R (in this case it is the only rule starting with F and e starts
with a non-terminal that has no rule in R) then F x1 ¨ ¨ ¨ xn Ñ c belongs to R1.

‚ If, for some f P A of arity ̺pfq ą 0, F x1 ¨ ¨ ¨ xn
fi

ÝÑ ei belongs to R for all 1 ď i ď ̺pfq, then F x1 ¨ ¨ ¨ xn Ñ
f e1 ¨ ¨ ¨ e̺pfq belongs to R1.

2) Extra Examples of Labeled Recursion Schemes: .

Due to space limitation we could only give two examples of labelled recursion schemes in the main body of the paper.
We present here some extra example to illustrate the mechanism of labelled recursion schemes as well as their expressive
power.

Example 13. Let T0 be the tree corresponding to the deterministic context-free language Prefptanbn | n ě 0uq. As it is the
case for all prefix-closed deterministic context-free languages (see [A2], [A3] or Theorem 1 at order 1) , T0 is generated
by an order-1 scheme S0.

Z
a

ÝÑ HX H x
a

ÝÑ H pB zq

B x
b

ÝÑ x H x
b

ÝÑ x

with Z,X : o and H,B : o Ñ o.

The tree generated by S0 is given below:

14



Z H X

X

H pBXq

BX

X

H pB pBXqq

B pBXq

BX

X

¨ ¨ ¨
a a

b

a

b

b

b

b

b

a

Example 14. Following the same ideas as for S1 (see Example 3), the order-2 scheme Sexp given below defines the tree
Texp “ Prefptancb2

n

| n ě 0uq.

Z
e

ÝÑ F B F ϕ
a

ÝÑ F pDϕq Dϕx
e

ÝÑ ϕ pϕxq

B x
b

ÝÑ x F ϕ
c

ÝÑ ϕX

with Z,X : o, B : o Ñ o, D : po Ñ o, o, oq and F : po Ñ o, oq. If we denote by DnB the term of type o Ñ o defined

by D0B “ B and Dn`1B “ D pDn Bq for n ě 0, we have Z
an

ùñ F DnB. As D intuively doubles its argument, DnB

behaves as B2n for n ě 0. In particular, DnBX reduces by b2
n

to X .
For all n ě 0, we have:

Z
an

ùñ F DnB
c

ÝÑ DnBX
b2

n

ùñ X.

Example 15. At order k ` 1 ě 1, we can define the tree Texpk
“ Prefptan c bexpkpnq | n ě 0uq where we

let exp0pnq “ n and expk`1pnq “ 2expkpnq for k ě 0. We illustrate the idea by giving an order-3 scheme

generating Texp
2
“ Prefptan c b2

2
n

| n ě 0uq.

Z
e

ÝÑ F D1 F ψ
a

ÝÑ F pD2 ψq

D2 ψ ϕx
e

ÝÑ pψpψ ϕqqx B x
b

ÝÑ x

F ϕ
c

ÝÑ ϕBX D1 ψ x
e

ÝÑ ψ pψ xq

with Z,X : o, B : o Ñ o, F : ppo Ñ o, o, oq, oq, D1 : po Ñ o, o, oq and D2 : ppo Ñ o, o, oq, o Ñ o, o, oq. If we
denote by Dn

2 D1 the term of type po Ñ o, o, oq defined by D0
2D1 “ D1 and Dn`1

2 D1 “ D2D
n
2 D1 for n ě 0, we have

Z
an

ùñ F Dn
2 D1. As D2 intuitively double its argument with each application, Dn

2 D1 behaves as D2n

1 and hence D2n

1 B

behaves as B22
n

.

We have @n ě 0: Z
an

ùñ F Dn
2 D1

c
ÝÑ Dn

2 D1BX
b2

2
n

ùñ X.

15



B. Proofs Omitted in Section III

1) Justification of Definition 4: .

We start with a fact that justifies the second part of Definition-4

Definition 4. The term associated with a well-formed ϕ-stack s P Stacks with ϕ P N Y V is

rr s ss
def

“ rr pop1psq :: ϕ ssrr Arg1psq ss ¨ ¨ ¨ rr Arg̺pϕqpsq ss.

Equiv., if top1psq : o then: rr s ss “ rr pop1psq :: top1psq ss.
If top1psq : τ1 Ñ . . . Ñ τℓ Ñ o then:
rr s ss “ rr pop1psq :: top1psq ss rr Arg1pcollapsepsqq ss ¨ ¨ ¨
rr Argℓpcollapsepsqq ss.

Fact 1. Let s be a well-formed ϕ-stack. If top1psq : o then:

rr s ss “ rr pop1psq :: top1psq ss.

If top1psq : τ1 Ñ . . . Ñ τℓ Ñ o then:

rr s ss “ rr pop1psq :: top1psq ss rr Arg1pcollapsepsqq ss ¨ ¨ ¨ rr Argℓpcollapsepsqq ss.

Proof: The first case (top1psq : o) is immediate. Assume that top1psq is equal to ϕ t1 ¨ ¨ ¨ tn with ϕ P N Y V of type
τ1 Ñ . . . Ñ τ̺pϕq Ñ o and for all i P r1, ns, ti P Γ of type τi. Note that ℓ “ ̺pϕq ´ n. We have:

rr s ss
def

“ rr pop1psq :: ϕ ssrr Arg1psq ss ¨ ¨ ¨ rr Argnpsq ssloooooooooooooooooooooooooomoooooooooooooooooooooooooon
rr pop

1
psq::ϕ t1¨¨¨tn ss

rr Argn`1psq ss ¨ ¨ ¨ rr Arg̺pϕqpsq ss

“ rr pop1psq :: top1psq ss rr Arg1pcollapsepsqq ss ¨ ¨ ¨ rr Arg̺pϕq´n“ℓpcollapsepsqq ss

2) Proof of Lemma 1: .

Lemma 1. We have the following properties:

1) For all ϕ-stacks s P WStacks with ϕ P V Y N of type τ1 Ñ . . . Ñ τ̺pϕq Ñ o and for all k P r1, ̺pϕqs, Argkpsq is
equal to some r :: t P CStacks with t of type τk.

2) For all s :: t P CStacks with t : τ P Γ, rr s :: t ss is a term in Termsτ pNq.
3) For all s P WStacks, rr s ss belongs to TermspNq.

Proof: We start proving the first point and then use it to obtain the second one. Combining them, we finally prove the
last point.
(1) We proceed by induction on the size of s P WStacks. The base case considers the stack r¨ ¨ ¨ rKZs1 ¨ ¨ ¨ sn. As ̺pZq “ 0,
there is nothing to prove.

Fix some stack s and assume that the property holds for all stacks smaller than s P WStacks. Let ϕ t1 ¨ ¨ ¨ tℓ : τ be the
top symbol of s with ϕ P N Y V , ℓ P r1, ̺pϕqs and ti P Γ for all i P r1, ℓs. If ϕ is of type τ1 Ñ . . . Ñ τ̺pϕq Ñ o then for
all i P r1, ℓs, ti is of type τi and τ is the type τℓ`1 Ñ . . . Ñ τ̺pϕq Ñ o.

If k ď ℓ, Argkpsq
def

“ pop1psq :: tk and there is nothing to prove. If ̺pϕq ě k ą ℓ, Argkpsq
def

“ Argk´ℓpcollapsepsqq.
To conclude by induction, the only thing we have to prove that Argk´ℓpcollapsepsqq is well defined. As ordpτq ą 0, we
have by definition of WStacks that collapsepsq is well-defined and that its top symbol starts with a symbol ψ of type τ .
As |collapsepsq| ă |s| and as ̺pψq “ ̺pϕq ´ ℓ ě k ´ ℓ ě 1, we have by induction hypothesis that Argk´ℓpcollapsepsqq is
well-defined and is equal to some r :: t P CStacks with t P Γ of type τk´ℓ`ℓ “ τk .

(2) We proceed by induction on the size of s :: t. The base case deals with r ¨ ¨ ¨ r K s1 ¨ ¨ ¨ sn :: Z . As rr r sn :: Z ss
def

“ Z , the
property holds.

Assume that the property holds for all elements of CStacks smaller than some s :: t P CStacks with t : τ . Let us show
that rr s :: t ss is of type τ . The case where t P N is trivial. The one where t “ t1t2 is immediate by induction as both
rr s :: t2 ss and rr s :: t1 ss have a size smaller than rr s :: t ss. The last case is when t is a variable x P V . Assume that the
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variable x appears in an A-production for some A : τ “ τ1 Ñ . . . Ñ τ̺pAq Ñ o in N . In particular the variable x is of type
τrkpxq. We have rr s :: x ss

def

“ rr Argrkpxqpsq ss. By definition of CStacks, s is an A-stack and using point p1q, Argrkpxqpsq is
equal to r :: t1 with r P Stacks and t1 : τrkpxq P Γ. Thus rr s :: x ss “ rr r :: t1 ss for some r smaller than s and using the
induction hypothesis, one concludes that rr s :: x ss is a term in Termsτrkpxq

pNq.

(3) Let s P WStacks whose top-symbol starts with ϕ : τ “ τ1 Ñ . . . Ñ τ̺pϕq Ñ o. Clearly pop1psq :: ϕ belongs to CStacks

and by point p2q, rr pop1psq :: ϕ ss is of type τ . Points p1q and p2q implies that, for all k P r1, ̺pϕqs, rr Argkpsq ss is of type
τk. Hence, from Definition 4 it directly follows that rr s ss is of type o.

3) Proof of Lemma 2: .

Lemma 2. Let k P r2,ms and let s “ s1 `̀ topkpsq P WStacks. For all non-empty ϕ-stacks r Ď topkpsq, rr Argℓps
1 `̀ rq ss “

rr Argℓps `̀ rq ss for all ℓ P r1, ̺pϕqs.

Proof: We show, by induction on the size of r, that s `̀ r and s1 `̀ r are well-formed and rr Argℓps
1 `̀ rq ss “

rr Argℓps `̀ rq ss for all ℓ P r1, ̺pϕqs where ϕ P N Y V denotes the head symbol of top1prq.
The base case (which considers r¨ ¨ ¨ rKZs1 ¨ ¨ ¨ sk) is immediate. Assume that the property holds for all substack of topkpsq

smaller than some ϕ-stack r Ď topkpsq. We will show that it holds for r.
The key observation is that: top2ps `̀ rq “ top2ps1 `̀ rq and either collapseps `̀ rq “ collapseps `̀ rq if the link

attached to topmost symbol of r is order greater than k or collapseps `̀ rq “ s `̀ collapseprq and collapseps1 `̀ rq “
s1 `̀ collapseprq otherwise.

As s1 `̀ r is a substack of s (which is well-formed), s1 `̀ r is well-formed as well. To prove that s `̀ r is well-formed,
we need to show that any non-empty substack of s `̀ r satisfies the two properties expressed in Definition 1. The case of
a proper substack immediately follows the induction hypothesis. We can deduce that s `̀ r satisfies these two properties
from the above observations. Indeed the first property only depends on the top most order-1 stack (and top2ps `̀ rq “
top2ps1 `̀ rq) and the second property follows from the fact that top1ps `̀ rq “ top1ps1 `̀ rq and top1pcollapseps `̀ rqq “
top1pcollapseps1 `̀ rqq.

Assume that the top symbol of r is equal to ϕ t1 ¨ ¨ ¨ tn. Let ℓ P r1, ̺pϕqs and let us show that rr Argℓps `̀ rq ss “
rr Argℓps

1 `̀ rq ss.
‹ If ℓ ď n then rr Argℓps `̀ rq ss “ rr s `̀ pop1prq :: tℓ ss and rr Argℓps `̀ rq ss “ rr s1 `̀ pop1prq :: tℓ ss. By induction
hypothesis, we have that rr s `̀ r1 :: t ss “ rr s1 `̀ r1 :: t ss for any proper substack r1 of r, in particular for r1 “ pop1prq.
‹ If ℓ ą n then rr Argℓps `̀ rq ss “ rr Argℓ´npcollapseps `̀ rqq ss and rr Argℓps `̀ rq ss “ rr Argℓ´npcollapseps `̀ rqq ss.
From the above observation, we either have collapseps `̀ rq “ collapseps1 `̀ rq and the equality trivially holds or
collapseps `̀ rq “ s `̀ collapseprq and collapseps1 `̀ rq “ s1 `̀ collapseprq in which case the equality follows by
induction hypothesis as | collapseprq | ă | r |.

4) Proof of Lemma 3: .

Lemma 3. Let s be a ϕ-stack in WStacks for some ϕ : τ1 Ñ . . . Ñ τ̺pϕq Ñ o in V YN and let ℓ P r1, ̺pϕqs with τℓ of
order k ą 0. If Argℓpsq is equal to r :: t P CStacks with t starting with ψ P N Y V then popn´k`1psq “ popn´k`1prq,
| topn´k`1psq | ą | topn´k`1prq |.

Proof: We proceed by induction of the size of s. The base case which considers the stack r ¨ ¨ ¨ r KZ s1 ¨ ¨ ¨ sn is immediate
as ̺pZq “ 0.

Assume that the property holds for all stacks in WStacks smaller than some stack s P WStacks. Let ϕ t1 . . . tm be the
top symbol of s with ϕ : τ1 Ñ . . . Ñ τ̺pϕq Ñ o in V Y N and m P r0, ̺pϕqs. Let ℓ P r1, ̺pϕqs and let k be the order of
τℓ. Assume that Argℓpsq “ r :: t.

If ℓ ď m, Argℓpsq “ pop1s :: tℓ. In particular r is equal to pop1psq and the property holds because popn´k`1prq “
popn´k`1ppop1psqq “ popn´k`1psq as n´ k ` 1 ě 2 (indeed k ă n by definition of n).

If ℓ ą m, Argℓpsq “ Argℓ´mpcollapsepsqq. By induction hypothesis, popn´k`1pcollapsepsqq “ popn´k`1prq. To
conclude it is enough to show that popn´k`1pcollapsepsqq “ popn´k`1psq. Let k1 be the order of top1psq. As top1psq “
ϕ t1 ¨ ¨ ¨ tm is of type τm ` 1 Ñ . . . Ñ τ̺pϕq Ñ o, we have k1 ą k. By definition of well-formed stacks, the order of the
link attached to top symbol is equal to n ´ k1 ` 1. In particular, popn´k`1pcollapsepsqq “ popn´k`1psq.
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5) Proof of Proposition 1: .

Proposition 1. TreeKpSq “ TreeKpMq.

Proof: The proof relies on two lemmas.
The first lemma states the soundness of the first line of the definition of ÝÑ

M
.

Lemma 4. Let s be an N -stack in WStacks and a P Σ.$
&
%

Dt P TermspNq, rr s ss
a

ÝÑ t ñ Ds1 P WStacks, s
a

ÝÑ
M

s1 and rr s1 ss “ t

Ds1 P WStacks, s
a

ÝÑ
M

s1 ñ rr s ss
a

ÝÑ rr s1 ss

Proof: Let s P WStacks be an A-stack for some A P N and let a P Σ. By definition of rr s ss, rr s ss is equal to
A rr Arg1psq ss ¨ ¨ ¨ rr Arg̺pAqpsq ss.

Assume that rr s ss
a

ÝÑ t for some t P TermspNq. By definition of a
ÝÑ, there exists a production Ax1 ¨ ¨ ¨x̺pAq

a
ÝÑ t1

in R such that t is equal to t1rx1{rr Arg1psq ss, . . . , x̺pAq{rr Arg̺pAqpsq sss. By definition of
a

ÝÑ
M

, we have s
a

ÝÑ
M

pusht
1

1 psq

hence we only need to note that rr pusht
1

1 psq ss is equal to t1rx1{rr Arg1psq ss, . . . , x̺pAq{rr Arg̺pAqpsq sss. Indeed, as t1 is of

ground type, rr pusht
1

1 psq ss is equal to rr s :: t1 ss which is by definition equal to t1rx1{rr Arg1psq ss, . . . , x̺pAq{rr Arg̺pAqpsq sss.

Now, assume that s
a

ÝÑ
M

s1 for some s1 P WStacks. By definition of
a

ÝÑ
M

, there exists a production Ax1 ¨ ¨ ¨x̺pAq
a

ÝÑ

t1 P R such that s1 “ pusht
1

1 psq. As s is an A-stack, we have rr s ss “ A rr Arg1psq ss . . . rr Arg̺pAqpsq ss. Furthermore rr s1 ss is

equal to t1rx1{Arg1psq, . . . , x̺pAq{Arg̺pAqpsqs. Hence by definition of
a

ÝÑ, rr s ss
a

ÝÑ rr s1 ss.

The second lemma states the soundness of the second and third lines of the definition of M. Moreover, it permits to
conclude that there are no infinite path labeled by e in M.

Lemma 5. We have the following properties:

1) Let s P WStacks be a ϕ-stack for ϕ P V and let s1 P WStacks be a ψ-stack for ψ P V Y N . If s
e

ÝÑ
M

s1 then

rr s ss “ rr s1 ss, ordpϕq ď ordpψq and | topn´ordpϕq`1psq | ą | topn´ordpϕq`1ps1q |.

2) For all s P WStacks there exists a unique N -stack s1 P WStacks such that s e
˚

ÝÑ
M

s1.

Proof:
(1) Let ϕ be a variable in V and let s be a ϕ-stack in WStacks.We distinguish two cases depending on the order of the ϕ.
‹ Assume that ϕ is of ground type and that Argrkpϕqppop1psqq is some r :: t P CStacks.

We have by definition of M that s
e

ÝÑ
M

s1 “ pusht1prq. To show that rr s ss is equal to rr s1 ss, we simply unfold the

definitions.
rr s ss

def

“ rr pop1psq :: ϕ ss
def

“ rr Argrkpϕqppop1psqq ss
def

“ rr r :: t ss
Def 4

“ rr pusht1prq ss
def

“ rr s1 ss

Assume that s1 “ pusht1prq is a ψ-stack for some ψ P NYV . We have ordpψq ě ordpϕq “ 0. As | Argkppop1psqq | ď | s |´2,
we have that | topn`1psq “ s | ą | topn`1ps1q “ s1 |.
‹ Assume that ϕ is of type τ “ τ1 Ñ . . . Ñ τ̺pϕq Ñ o of order k ą 0. Assume that Argrkpϕqppop1ppushn´k`1psqqq
is equal to r :: t P CStacks. First recall that, from Lemma 1, we have that t : τ . We have by definition that s ÝÑ

M
s1 “

push
t,n´k`1
1 prq. Let us show that rr s ss “ rr s1 ss.

Using Fact 1, we have that:

rr s1 ss “ rr pop1ps1q :: top1ps1q sslooooooooooooomooooooooooooon
“ rr pop1psq::ϕ ss p1q

rr Arg1pcollapseps1qq ssloooooooooooomoooooooooooon
“ rr Arg

1
psq ss p2q

. . . rr Arg̺pϕqpcollapseps1qq ssloooooooooooooomoooooooooooooon
“ rr Arg̺pϕqpsq ss p2q

“ rr pop1psq :: ϕ ssrr Arg1psq ss ¨ ¨ ¨ rr Arg̺pϕqpsq ss “ rr s ss.

The equalities denoted p1q and p2q are proven below:

rr pop1ps1q :: top1ps1q ss
def

“ rr r :: t ss “ rr Argrkpϕqppop1ppushn´k`1psqqq ss
Lemma 2

“ rr Argrkpϕqppop1psqq ss “ rr pop1psq :: ϕ ss (1)
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and for all i P r1, ̺pϕqs,

rr Argipcollapseps
1qq ss “ rr Argipcollapseppush

t,n´k`1
1 prqqq ss

“ rr Argippopn´k`1prqq ss
Lemma 3

“ rr Argippopn´k`1ppop1ppushn´k`1psqqqq ss

“ rr Argipsq ss.

(2)

As both ϕ and t have type τ , and as t is of the form ψ t1 ¨ ¨ ¨ tℓ for some ℓ ě 0, it directly follows that ordpϕq ď ordpψq.
The fact that | topn´ordpϕq`1psq | ą | topn´ordpϕq`1ps1q | directly follows from Lemma 3.

(2) Assume by contradiction that there exists an infinite sequence psiqiě0 of stacks in WStacks such that for all i ě 0,
si

e

ÝÑ
M

si`1. For all i ě 0, we denote by ti the top-symbol of si and ϕi the head symbol of ti. According to (1), the order

of the ϕi increases and hence is ultimately constant. Let j and k be such that, for all i ě j, ordpϕiq is equal to k. Using
(1), the size of the topn´k`1psiq is strictly decreasing starting from j which leads the contradiction.

By definition of M, only well-formed N -stacks can be the source of non-silent transitions. Let s be a well-formed N -

stack. If rr s ss
a

ÝÑ
S

t for a P Σ then the N -stack s1 such that s
ae

˚

ÝÑ
M

s1 is such that rr s1 ss “ t. Conversely if s
ae

˚

ÝÑ
M

s1 for some

N -stack s1 then rr s ss
a

ÝÑ
S

rr s1 ss.

6) Proof of Theorem 1: .

Theorem 1. For every labeled recursion scheme S of order-n, there is an n-CPDA A that generates the same tree. Moreover,
the number of states in A is linear in the maximal arity appearing in S, and its alphabet is of size linear in the one of S.

Proof (sktech): Let s be a well-formed stack. We denote by xx s yy the configuration of A defined by xx s yy “ pq˚, sq
if s is an N -stack and xx s yy “ pqrkpxq, sq if s is a V -stack whose topmost symbol starts with a variable x.

Clearly for any well-formed N -stack s, s a
ÝÑ
M

s1 if and only if xx s yy
a

ÝÑ
A

xx s1 yy.

For any V -stack s, if s e

ÝÑ
M

s1 then xx s yy
e

˚

ÝÑ
A

xx s1 yy as intuitively ÝÑ
A

combines the definition of both ÝÑ
M

and Argkp ¨ q.

Conversely for all V -stack, if s
e

ÝÑ
M

s1 and xx s yy
e

ÝÑ
A

xx s2 yy then xx s2 yy
e

˚

ÝÑ
A

xx s1 yy.
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C. Proofs Omitted in Section IV

1) Proof of Remark ??: .

Remark ??. The second constraint in the definition of Damm-safety can be reformulated as : all argument subterms of an
argument subterm of order-k appearing in a right-hand side, have at least order-k.

Proof: Let us first show that the condition of Definition 7 implies the condition stated in Remark ??. Let t : ϕ t1 ¨ ¨ ¨ tℓ be
an argument subterm of a right hand side of a Damm-safe scheme with ϕ : τ1 Ñ ¨ ¨ ¨ Ñ τn Ñ o. It is enough to show that the
ti’s have at least of order ordptq. If ℓ “ 0 or ℓ “ n (i.e. ordptq “ 0q, the condition trivially holds. Assume that 0 ă ℓ ă n.
As the scheme is homogeneous, the order of t is maxiPrℓ`1,ns ordpτiq ` 1 “ ordpτℓ`1q ` 1. Due to the Damm-safety
condition, ordpτℓq ě ordpτℓ`1q ` 1 “ t. Using homogeneity, it implies that ordptiq “ ordpτiq ě ordpτℓq ě ordptq.

Let us now show that the condition stated in Remark ?? implies the condition of Definition 7.
Let t : ϕ t1 ¨ ¨ ¨ tk be an argument subterm of a right hand side of a Damm-safe scheme with ϕ : τ1 Ñ ¨ ¨ ¨ Ñ τn Ñ o and

0 ă k ă n. Using homogeneity, we have ordptq “ ordpτk`1q`1. Toward a contradiction, assume that ordpτkq “ ordpτk`1q.
This would imply that the argument subterm t of order ordpτk`1q ` 1 “ ordpτkq ` 1 contains the argument subterm tk of
strictly smaller order ordpτkq.

2) Proof of Proposition 2: .

Proposition 2. Damm-safe schemes are safe and for every safe labeled scheme, there exists a Damm-safe labeled scheme
of the same order generating the same tree.

Proof: Let S be a Damm-safe scheme, let us show that S is safe. Assume by contradiction that it is not and let t be
an argument subterm of minimal size appearing in a right-hand side and violating the safety condition (i.e. t contains a
variable of order less than ordptq). The term t can be written ϕ t1 ¨ ¨ ¨ tℓ with ϕ : τ1 Ñ ¨ ¨ ¨ Ñ τn Ñ o and 0 ă ℓ ă n. As
S is Damm-safe, all the ti’s have at least order ordptq (cf. Remark ??) and one of them ti0 contains a variable of order
strictly smaller than ordptq. This contradicts the minimality of t.

Let S be a safe scheme. By Corollary 1, we can construct a higher-order pushdown automaton A of the same order
generating the same tree. It is easy to very that the translation of [10] of higher-order pushdown automata into safe schemes
in fact produces Damm-safe schemes. Therefore applying it to the automaton A yields a Damm-safe scheme generating the
same tree as S and of the same order.

3) Proof of Theorem 2: .

The following proof substantiate the proof sketch given in Section IV only at order 2. We start with the proof at order-2
to get intuition of the objects. Then we sketch the key invariants for the proof in the general case.

Theorem 2 (order-2). The translation of Section III when applied to a safe order-2 recursion scheme yields a link-free
CPDA

Proof: Let S be an order-2 safe scheme and let A be the CPDA constructed from S in Section III-B.
To show that A is link-free, we first show that, in any reachable configuration7 pq, s “ rs1 . . . sms2q, we can define the

target of the links of s using only the symbols appearing in the stack. Then, this stronger result allows us to conclude.
For this, we need to introduce some notations. For i P r1,ms and j P r1, |si|s, we denote by rpi, jq, tpi, jq and opi, jq

respectively the j-th symbol of stack si, the target (if defined) in r1, i´ 1s of its link and the order (if defined) of this link.
By definition of A, tpi, jq and opi, jq are defined iff rpi, jq is a term of order k ą 0 and in this case opi, jq is equal to
2 ´ k ` 1

Moreover for i P r2,ms, we let ℓi be the smallest index at which si´1 and si have a different symbol (or |si| ` 1 if no
such index exists).

The stack s satisfies the following properties:
1) for all i P r1, |s1|s, tp1, iq is undefined;
2) for all i P r2,ms, ℓi ď |si´1| and for all i P r2,m´ 1s, ℓi ď |si|;
3) for all i P r2,ms and 1 ď j ă ℓi, tpi, jq “ tpi ´ 1, jq;
4) for all i P r2,ms with ℓi ď |si|, rpi, ℓiq does not contain a variable of order 0 and is an argument subterm of rpi´1, ℓiq

and if rpi, ℓiq is of order 1 then tpi, ℓiq “ i´ 1;

7i.e. reachable from the initial configuration
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5) for all i P r2,ms with j P rℓi ` 1, |si|s, tpi, jq is undefined;
6) if m ě 2 then ℓm “ |sm| ` 1 iff top1psq “ ϕt1 . . . th, q “ qk for some k P r1, hs such that ordptkq “ 1.

These properties are proved by induction on the length of the shortest path in the LTS from the initial configuration to
pq, sq and by inspection of the transitions of A. These properties trivial hold for the initial configuration. Assume that they
are verified by a configuration pq, sq, let us show that they hold for any configuration pp, rq such that pq, sq

a
ÝÑ
P

pp, rq.

We distinguish several cases depending on the transition of A applied to go from pq, sq to pp, s1q. Let t be top1psq and
let ℓ1

i, t
1pi, jq, o1pi, jq, r1pi, jq be the notions corresponding to s1.

‹ If t starts with F P N and if F x1 ¨ ¨ ¨x̺pF q
a

ÝÑ e P R.

‚ The transition is δpq˚, t, aq “ pq˚, push
e
1

q. Then e starts with a non-terminal and p “ q “ q˚ and s1 “ pushe1psq.
If m “ 1, there is nothing to prove. Otherwise, as q “ q˚, by Property 6, ℓm ď |sm| hence, ℓm “ ℓ1

m. Therefore,
all properties for s1 are inherited from s. In particular Property 5 is still satisfied as we did not attached a link to the
order-0 term we just pushed on top of s.

‚ The transition is δpq˚, t, aq “ pqrkpxq, idq. Then s1 “ s and all properties are inherited from s.
‚ The transition is δpq˚, t, aq “ pqrkpxq, push

e
1
; push2; pop1q. Then e starts with a variable x of order 1, p “ q˚,

q “ qrkpxq and s1 “ pop1ppush2ppushe1psqqq. The most interesting case is that of Property 6. As ℓ1
m`1 “ |sm`1| ` 1,

we need to show that top1ps1q “ ϕt1 . . . th, q “ qk for some k P r1, hs such that ordptkq “ 1. The only non-immediate
part is that k ď h. It holds as otherwise it would imply that top1ps1q is an argument subterm of order-2 (as it misses
at least one argument of order-1) which leads a contradiction as the scheme we consider has order-2 (hence all its
argument subterms have order ď 1).

‹ If t is a term of the form ϕ t1 ¨ ¨ ¨ th for some ϕ P V YN .

‚ The transition is δpqk, t, eq “ pqrkptkq, pop1; push
tk
1

q. Then k ď h, tk : o, p “ qk, q “ qrkptkq and s1 “
pushtk1 ppop1psqq. If m “ 1, there is nothing to prove. Otherwise, as tk : o, by Property 6, ℓm ď |sm|. If ℓm ă |sm|
then all properties are trivially inherited from s. The interesting case is ℓm “ |sm|. In this case, ℓ1

m “ |s1
m|: indeed,

Property 4 guaranties that rpm, ℓmq is an argument subterm of rpm´ 1, ℓmq, hence tk is as well an argument subterm
of rpm ´ 1, ℓmq (as it is an argument subterm of rpm, ℓmq) hence differs from rpm ´ 1, ℓmq. It remains to show that
Property 4 holds (the others are inherited). As r1pm, ℓ1

mq “ tk has order 0, the only thing to prove is that tk does not
contains a variable of order-0. But, as tk is an argument subterm of t and because t does not contain any variable of
order 0 (by induction hypothesis) the same holds for tk.

‚ The transition is δpqk, t, eq “ pqrkptkq, pop1; push
tk,2
1

q. Then k ď h and tk has order 1, p “ qk, q “ qrkptkq

and s1 “ push
tk,n´h`1
1 ppop1psqq. First remark that the previous transition was necessarily pqk, push

t
1; push2; pop1q

(coming from state q˚) or pqk, collapseq (coming from some state qh with h ą k). In the first subcase, sm was a
prefix of sm´1 hence s1

m and s1
m´1 differs in their last symbol, meaning that ℓ1

m “ |s1
m|; the only thing to prove is

Property 4 holds (the others are inherited) and in particular that tk does not contain a variable of order 0: but this is a
consequence of the safety constraint because tk is an argument subterm of a right-hand-side and as it has order-1 the
safety constraint imposes that it does not contain a variable of order 0.
For the second subcase (the previous transition was a collapse), we remark that ℓm ď |sm| (see next case below). Hence
we can conclude as in case above when tk : o.

‚ The transition is δpqk, t, eq “ pqk´h, collapseq. Then k ą h, p “ qk, q “ qk´h and s1 “ collapsepsq. All properties
except Property 6 are inherited. For Property 6, we use the the second part of Property 2 to crucially guaranty that the
stack s1 is such that ℓ1

n1 ď |s1
n1 | (here n1 refers to the stack height in s1).

We are now ready to conclude that A is link-free. Inspecting the transitions of A, a collapse operation can only be
performed if q “ qk and top1psq “ ϕ t1 . . . th with k ą h and ϕ : pτ1, . . . , τm, oq. Thanks to Definition 1, ϕ t1 . . . th is of
order-1. Property 5 implies that ℓm is either equal to |sm| or to |sm| ` 1. Property 6 implies ℓm ‰ |sm| ` 1 as otherwise
we would have k ď h. Thus, we have ℓm “ |sm| and by Property 4, collapsepsq “ pop2psq.

To extend the previous proof at any order n, we first need to introduce notations to designate positions in an order-n
stack.

Let s “ rs1, . . . smsn be an order-n stack. For h P r0, ns, we inductively define an h-position in s as the index of an
order-h stack inside s. An h-position in s is a tuple i P Nn´h such that:

‚ if h “ n there is only one position : the empty tuple ε;
‚ if h “ n´ 1 then i P r1,ms;
‚ if h ă n´ 1 then i “ ij for some i P r1,ms and j an h-position in si.
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The set of h-positions in s is denoted Poshpsq. For two positions i and j, we write i ď j if i is smaller than j for the
lexicographic order. We denote by maxhpsq the maximum element of Poshpsq.

For any h P r0, n´ 1s and any i P Poshpsq, we inductively define the order-h stack occurring at postion i, denoted spiq,
by:

‚ if h “ n there is only one h-position : the empty tuple ε and we let spεq “ s;
‚ if h “ n´ 1 then spiq “ si;
‚ if h ă n´ 1 then as i “ ij with i P r1,ms and j is an h-position in si, we take spiq “ sipjq.

Notation 3. For a symbol appearing in the stack x, Rpxq, T pxq and Opxq respectively designate the symbol (in Γ), the
target of the link (if defined) and the order of the link (if defined) appearing in x.

By construction of A, T pspiqq and Opspiqq are defined iff Rpspiqq is a term of order k ą 0 and in this case OpSpiqq is
equal to n´ k ` 1.

For all h P r0, n´ 1s and all i “ pi1, . . . , i|i|q P Poshpsq, we define predpiq P Poshpsq and suppiq P Posh`1psq if h ă n

by predpiq “ pi1, . . . , i|i| ´ 1q if i|i| ą 1 and predpiq is undefined otherwise and suppiq “ pi1, . . . , i|i|´1q.
For all h P r0, n´ 1s, the position i “ pi1, . . . , i|i|q P Poshpsq is initial if i|i| “ 1. In other terms, i is initial if and only

if predpiq is undefined.
For all h P r1, n´ 1s, we define a partial mapping ℓhs with domain in Poshpsq associating to an h-position i a 0-position

in spi). The value of ℓhs piq (when it is defined) is the smallest 0-position j in spiq such that rpiq differs from Rpă piqq.
Remark that ℓhs piq is undefined for a non-initial i if and only if spiq is a substack of sppredpiqq.

Theorem 2 (arbitrary order). The translation of Section III when applied to a safe order-n recursion scheme yields a
link-free CPDA

Proof: We define by induction on the order h the notion of safe stack. All order-1 stacks are safe stacks. An oder-ph`1q
stack s “ rs1 . . . smsh`1 is safe if:

1) for all i P r1,ms, si is a safe order-h stack.
2) for all i P r2,ms, ℓhs piq is defined and is such that ℓhs piq belongs to Pos0psi´1q and Rpsipℓ

h
s piqqq is an argument

subterm of Rpsi´1pℓhs piqqq which does not contain any variable of order ă n´ h` 1. If Rpsipℓ
h
s piqqq is of order ą 0

then T psipℓ
h
s piqqq “ i´ 1. For all j ě ℓhs piq in Pos0psiq, Rpsipjqq is not of order n´ h` 1.

We slightly relax the notion of safe stack by defining w-safe stack for w P r2, h ` 1s. An oder-ph ` 1q stack s “
rs1 . . . smsh`1 is w-safe if:

1) for all i P r1,m´ 1s, si is a safe order-h stack, sm is safe if w “ h` 1 and sm is w-safe otherwise;
2) for all i P r2,m1s where m1 “ m if w ă h ` 1 and m1 “ m ´ 1 otherwise, ℓhs piq is defined and is such that ℓhs piq

belongs to Pos0psi´1q and Rpsipℓ
h
s piqq is an argument subterm of Rpsi´1pℓhs piqqq which does not contain any variable

of order ă n ´ h ` 1. If Rpsipℓ
h
s piqqq is of order ą 0 then T psipℓ

h
s piqqq “ i ´ 1. For all j ě ℓhs piq in Pos0psiq,

Rpsipjqq is not of order n ´ h` 1.

By an induction similar to the order-2 case, we can prove that for all reachable configuration pq, sq, s is w-safe iff top1psq
starts with ϕ : pτ1, . . . , τ̺pϕq, oq, q “ qi with ordpτiq “ n´ w ` 1; otherwise s is safe.

We are now ready to conclude that A is link-free. Inspecting the transitions of A, a collapse operation can only be
performed if q “ qk and top1psq “ ϕ t1 . . . th with k ą h and ϕ : pτ1, . . . , τm, oq. Let us write w “ n ´ ordpτkq ` 1.
By the above property s is w-safe. Let w1 “ n ´ ordptop1psqq ` 1. We have w1 ă w and the link is of order w1. Let
s1 be the topmost order-w1 stack of s. By definition of w-safety it is safe. The last part of Property 2 implies that ℓw

1

s1 is
maxw1ps1q hence Property 2 implies that the link of the top-most symbol of s1 point to the previous order-pw1 ´ 1q stack.
Hence collapsepsq “ popw1 psq.
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D. Collapsible Pushdown Games: Complexity and Winning Strategies

This section is devoted to the study of parity games played on LTS of CPDA. For simplicity of presentation we omit the
input alphabet and introduce the concept of Collapsible pushdown processes (CPDP). The main focus is on complexity of
deciding the winner and in establishing the existence of strategies realised by CPDA transducer synchronised with the one
defining the game. This latter result is the key ingredient to prove the effective selection property.

Comparison with previous proofs from [9] and [2].

The lines behind the proof of the main result of this section (Theorem 5) slightly differ from the one of a
similar statement (where complexity was not studied precisely, neither strategies) from [9]. Indeed, in [9] the
induction step removes the outmost links at the same time as in reduces the order. As a consequence, the
definition of collapse rank was different, and the transformation from a usual CPDA to a rank-aware one is
different. Separating both steps (removing the link and decreasing the order) seemed necessary with respect to
designing strategies realised by CPDA, which is crucially used later for effective selection. Note that a similar
proof technique (but without any consideration on strategies and precise complexity) was considered in [2].
Hence the main added value here are: precise (and improved) analysis of the complexity (which requires several
optimisations) and existence of winning strategies realised by CPDA synchronised with the one defining the
game.

1) Collapsible Pushdown Processes: .

First we introduce, for any stack symbol γ an operation on stacks that does top1 rewriting: this operation, denoted rew
γ
1 ,

takes the top1 element and replace it by γ without modifying the link. Formally:

rew
γ
1 [s1 ¨ ¨ ¨ sl`1]loooooomoooooon

s

“

#
[s1 ¨ ¨ ¨ sl rew

γ
1 sl`1] if ords ą 1

[s1 ¨ ¨ ¨ sl γ
pj,kq] if ords “ 1 and sl`1 “ αpj,kq

We also let id for the identity operation (i.e. idpsq “ s for all stack s).
We now introduce the notion of collapsible pushdown processes which differs from CPDA from the fact that they have

no input alphabet (and can be non-deterministic).
An order-n collapsible pushdown process (n-CPDP) is a 4-tuple A “ xΓ, Q,∆, q0 y where Γ is the stack alphabet, Q is

the finite set of control states, q0 P Q is the initial state, and ∆ : Q ˆ Γ Ñ 2QˆOpnpΓqˆOpnpΓq is the transition function
and satisfies the following constraint. For any q, γ P QˆΓ, for any pq1, op1, op2q P ∆pq, γq one has that op1 P trewα

1 | α P
Γu Y tidu and op2 R trewα

1 | α P Γu: hence a transition will always act on the stack by doing (possibly) rewriting the top
symbol and then (possibly) doing another kind of operation on the stack. In the following we will use notation pq1, op1; op2q
instead of pq1, op1, op2q (to stress that one performs op1 followed by op2).

Configurations of an n-CPDP are pairs of the form pq, sq where q P Q and s is an n-stack over Γ; we call pq0,Knq the
initial configuration, where Kn “ r. . . r K s1 . . .sn.

An n-CPDP A “ xΓ, Q,∆, q0 y naturally defines a transition graph GraphpAq :“ pV,E Ď V ˆV q whose vertices V are
the configurations of A and whose edge relation E is given by: ppq, sq, pq1, s1qq P E iff Dpq1, op1; op2q P ∆pq, top1psqq such
that s1 “ op2pop1psqq. Such a graph is called an n-CPDP graph.

2) n-CPDP Parity Games: .

Let G “ pV,E Ď V ˆ V q be a graph. Let VE Z VA be a partition of V between two players, Éloïse and Abelard. A
arena is such a tuple G “ pG, VE, VAq. A colouring function Ω is a mapping Ω : V ÝÑ C Ă N where C is a finite set of
colours. An infinite two-player parity game on an arena G is a pair G “ pG,Ωq.

Éloïse and Abelard play in G by moving a pebble between vertices. A play from some initial vertex v0 proceeds as
follows: the player owning v0 moves the pebble to a vertex v1 such that pv0, v1q P E. Then the player owning v1 chooses
a successor v2 and so on. If at some point one of the players cannot move, she/he loses the play. Otherwise, the play is an
infinite word v0v1v2 ¨ ¨ ¨ P V ω and is won by Éloïse just in case lim infpΩpviqqiě0 is even. A partial play is just a prefix of
a play.

A strategy for Éloïse is a function assigning, to every partial play ending in some vertex v P VE, a vertex v1 such that
pv, v1q P E. Éloïse respects a strategy Φ during a play Λ “ v0v1v2 ¨ ¨ ¨ if vi`1 “ Φpv0 ¨ ¨ ¨ viq, for all i ě 0 such that vi P VE.
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A strategy Φ for Éloïse is winning from a position v P V if she wins every play that starts from v and respects Φ. Finally,
a vertex v P V is winning for Éloïse if she has a winning strategy from v. Symmetrically, one defines the corresponding
notions for Abelard. It follows from Martin’s determinacy Theorem [A5] that, from every position, either Éloïse or Abelard
has a winning strategy.

Now let A “ xΓ, Q,∆, q0 y be an order-n CPDP and let GraphpAq “ pV,Eq be its transition graph. Let QE ZQA be a
partition of Q and let Ω : Q ÝÑ C Ă N be a colouring function (over states). Altogether they define a partition VE ZVA of
V whereby a vertex belongs to VE iff its control state belongs to QE, and a colouring function Ω : V ÝÑ C where a vertex
is assigned the colour of its control state. The structure G “ pGraphpAq, VE, VAq defines an arena and the pair G “ pG,Ωq
defines a parity game (that we call a n-CPDP parity game).

Given an n-CPDP parity game, we will consider the following two algorithmic questions:

1) Decide whether pq0,Knq is winning for Éloïse.
2) If pq0,Knq is winning for Éloïse, provide a description of a winning strategy for Éloïse from pq0,Knq.

To answer the second question we will consider strategies realised by n-CPDA transducers.

3) CPDA strategies: .

Let A “ xΓ, Q,∆, q0 y be an order-n CPDP, let GraphpAq “ pV,Eq be its transition graph, let G “ pGraphpAq, VE, VAq
be an arena associated with A and let G “ pG,Ωq be a corresponding n-CPDP parity game.

We aim at defining a notion of n-CPDA transducers that provide a description for strategies in G, that is describe a
function from partial plays in G into V .

Consider a partial play Λ “ v0v1 ¨ ¨ ¨ vℓ in G where v0 “ pq0,Knq. An alternative description of Λ is by the sequence
pq1, rew1; op1q ¨ ¨ ¨ pqℓ, rewℓ; opℓq P pQ ˆ OpnpΓq ˆ OpnpΓqq˚ such that vi “ pqi, siq for all 1 ď i ď ℓ and si “
opiprewipsi´1qq (with the convention that s0 “ Kn). We may in the following use implicitly this representation of Λ when
needed. Similarly, one can represent a strategy as a (partial) function Φ : pQˆOpnpΓqˆOpnpΓqq˚ Ñ QˆOpnpΓqˆOpnpΓq,
the meaning being that in a partial play Λ ending in some vertex pq, sq if ΦpΛq “ pq1, rew; opq then the player moves to
pq1, opprewpsqqq.

An n-CPDA transducer realising a strategy in G is a tuple S “ xΣ, S, δ, τ, s0 y where Σ is a stack alphabet, S is a finite
set of states, s0 P S is the initial state,

δ : S ˆ Σ ˆ pQ ˆOpnpΓq ˆOpnpΓqq Ñ S ˆOpnpΣq ˆOpnpΣq

is a deterministic transition function and

τ : S ˆ Σ Ñ QˆOpnpΓq ˆOpnpΓq

is a deterministic choice function (note that we do not require τ to be total). For both δ and τ we do the same requirement
as for the transition function for CPDP, namely that the first stack operation should be a top-rewriting (or the identity) and
that the second one should not be a top-rewriting.

A configuration of T is a pair ps, σq where s is a state and σ is an n-stack over Σ; the initial configuration of T is
ps0,Knq. With a configuration ps, σq is associated, when defined, a (unique) move in G given by τps, top1pσqq A partial
play Λ “ pq1, rew1, op1q ¨ ¨ ¨ pqℓ, rewℓ, opℓq in G induces a (unique, when defined) run of T which is the sequence such that

ps0, σ0qps1, σ1q ¨ ¨ ¨ psℓ, σℓq

where ps0, σ0q “ ps0,Knq is the initial configuration of T and for all 0 ď i ď ℓ ´ 1 one has
δpsi, top1pσiq, pqi`1, rewi`1; opi`1qq “ psi`1, rew

1
i`1; op

1
i`1q with σi`1 “ op1

i`1prew1
i`1pσiqq. In other words, the control

state and the stack of T are updated accordingly to δ.
We say that T is synchronised with A iff for all ps, a, pq, rew; opqq P S ˆ Σ ˆ pQ ˆ OpnpΓq ˆ OpnpΓqq such that

δps, a, pq, rew; opqq “ ps1, rew1; op1q is defined one has that op and op1 are of the same kind, i.e. either they are both a popk
(for some k) or both a pushk (for some k) or both a push

_,e
1 (the symbol pushed being possibly different but the order

of the link being the same) or both collapse or both id . In particular, if one defines the shape of a stack s as the stack
obtained by replacing all symbols appearing in s by a fresh symbol 7 (but keeping the links) one has the following.

Proposition 3. Assume that T is synchronised with A. Then, for any partial play Λ in G ending in a configuration with
stack s, the run of T on Λ, when exists, ends in a configuration with stack σ such that s and σ have the same shape.

The strategy realised by T is the (partial) function ϕS defined by letting ϕSpΛq “ τpps, top1pσqqq where ps, σq is the
last configuration of the run of T on Λ.
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We say that Éloïse respects ϕS during a partial play Λ “ pq1, rew1; op1q ¨ ¨ ¨ pqℓ, rewℓ; opℓq in G iff for all
0 ď i ď ℓ ´ 1 if the last configuration in pq1, rew1; op1q ¨ ¨ ¨ pqi, rewi; opiq belongs to VE then pqi`1, rewi`1; opi`1q “
ϕSppq1, rew1; op1q ¨ ¨ ¨ pqi, rewi; opiqq

We say that ϕS is well-defined iff for any partial play Λ “ pq1, rew1; op1q ¨ ¨ ¨ pqℓ, rewℓ; opℓq where Éloïse respects ϕS if
the last vertex pqℓ, sℓq in Λ belongs to VE then ϕSpΛq P ∆pq, top1psℓqq, i.e. the move given by ϕS is a valid one.

4) Main Result: .

Theorem 5. Let A “ xΓ, Q, δ, q0 y be an n-CPDA and let G be an n-CPDA parity game defined from A. Then one has
the following results.

1) Deciding whether pq0,Knq is winning for Éloïse is an n-EXPTIME complete problem.
2) If pq0,Knq is winning for Éloïse then one can effectively construct an n-CPDA transducer T synchronised with A

realising a well-defined winning strategy for Éloïse in G from pq0,Knq.

The proof is by induction on the order and each induction step is itself divided into two steps: the first one removes the
outermost links while the second one lowers the order.

Before going to the proof, we give in Section D5 a normalisation result (Theorem 6). Then Section D6 explains how
to removes the outermost links and Section D7 shows how to reduce the order. Finally Section D8 combines the previous
constructions and provides the proof of Theorem 5 together with a precise complexity analysis.

5) Rank-aware CPDP: .

Fix, for the whole subsection, an n-CPDP A “ xΓ, Q,∆, q0y, a partition QE Z QA of Q and a colouring function
Ω : Q Ñ C Ă N. Denote by G its transition graph, by G the arena induced by G and the partition QE ZQA and by G the
parity game pG,Ωq.

Let s be an order-n stack. We first associate with s “ s1, ¨ ¨ ¨ , sℓ a well-bracketed word of depth n, rs P pΣ Y t[,]uq˚:

rs :“

#
[ rs1 ¨ ¨ ¨ rsℓ] if n ě 1

s if n “ 0 (i.e. s P Σ)

In order to reflect the link structure, we define a partial function targetpsq : t1, ¨ ¨ ¨ , |rs|u Ñ t1, ¨ ¨ ¨ , |rs|u that assigns to
every position in t1, ¨ ¨ ¨ , |rs|u the index of the end of the stack targeted by the corresponding link (if exists; indeed this is
undefined for K,[ and ]). Thus with s is associated the pair x rs, targetpsq y; and with a set S of stacks is associated the
set rS “ tx rs, targetpsq y | s P Su.

Example 16. Consider the stack s “ [[[Kα]] [[K][K a β γ]]]. Then rs “ [[[Kα]] [[K][Kαβ γ]]] and
targetp5q “ 4, targetp14q “ 13, targetp15q “ 11 and targetp16q “ 7.

A finite path in G is a non-empty sequence of configurations v0v1 ¨ ¨ ¨ vm such that for all 0 ď i ď m ´ 1, there is an
edge in G from vi to vi`1. An infinite path is an infinite sequence of configurations v0v1 ¨ ¨ ¨ such that for all i ě 0, there
is an edge in G from vi to vi`1. Note that we do not require v0 to be the initial configuration.

We now define a generalisation of n-stacks called indexed n-stacks. Recall that a stack s is equivalently described as a
pair x rs, targetpsq y (recall that rs is a well-bracketed word description of s and that targetpsq gives the link structure). An
indexed n-stack is described by a triple x rs, targetpsq, indpsq y where rs “ rs1 ¨ ¨ ¨ rs|rs| and targetpsq are as previously and
where indpsq : t1, . . . , |rs|u Ñ N is a partial function that is defined in any position j ă |rs| ´ n such that rsj R t[,]u.
The previous conditions on the domain of indpsq ensure that any symbol in s which is not the topmost one has a value by
indpsq that we refer to as its index. An indexed configuration is a pair formed by a control state and an indexed stack.

The erasure of an indexed n-stack x rs, targetpsq, indpsq y is the n-stack x rs, targetpsq y. We extend the notion of erasure
to indexed configuration in the obvious way.

With any path Λ “ v0v1 ¨ ¨ ¨ , with vi “ ppi, siq for all i ě 0, we inductively associate a sequence of indexed configurations
Λ1 “ v1

0v
1
1 ¨ ¨ ¨ such that the following holds.

‚ The erasure of Λ1 equals Λ (the erasure of a sequence of indexed configurations being defined as the sequence of the
respective erasures).

‚ For any indexed configuration v1
m “ pqm, s

1
mq the following holds. Denote by s1

m “ x Ăs1
m, targetps

1
mq, indps1

mq y, let
Ăs1
m “ x1 ¨ ¨ ¨xh, and let j be in the domain of indps1

mq such that xj`1 “ ]. Then let j1 ą j be the largest integer such
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s1
0 “[[[K0α0

]][[K]]] colour : 3

push
β,1
1ÝÑ s1

1 “[[[K0α0
]][[K1β]]] colour : 0

rewα
1
;push

2ÝÑ s1
2 “[[[K0α0

]][[K1α2
][K1α]]] colour : 1

pop1ÝÑ s1
3 “[[[K0α0

]][[K1α2
][K]]] colour : 5

push
α,1
1ÝÑ s1

4 “[[[K0α0
]][[K1α2

][K4α]]] colour : 3

push
β,2
1ÝÑ s1

5 “[[[K0α0]][[K1α2][K4α5β]]] colour : 2

push3ÝÑ s1
6 “[[[K0α0]][[K1α2][K4α5β6]][[K1α2][K4α5β]]] colour : 4

push
γ,3
1ÝÑ s1

7 “[[[K0α0]][[K1α2][K4α5β6]][[K1α2][K4α5β7γ]]] colour : 6

push
2ÝÑ s1

8 “[[[K0α0]][[K1α2][K4α5β6]][[K1α2][K4α5β7γ8][K4α5β7γ]]] colour : 5

pop1ÝÑ s1
9 “[[[K0α0]][[K1α2][K4α5β6]][[K1α2][K4α5β7γ8][K4α5β]]] colour : 6

collapse
ÝÑ s1

10 “[[[K0α0]][[K1α2][K4α5β6]][[K1α]]] colour : 4

pop
3ÝÑ s1

11 “[[[K0α0]][[K1α2][K4α5β]]] colour : 3

push
γ,1
1ÝÑ s1

12 “[[[K0α0]][[K1α2][K4α5β12γ]]] colour : 2

Figure 4. Example of a sequence of indexed stacks

that xk “ ] for all j ` 1 ď k ď j1 and let i be the unique integer such that xi ¨ ¨ ¨xj1 is well-bracketed. Then, for any
i ă k ă j1, if indps1

mqpkq is defined, one has indps1
mqpkq ď indps1

mqpjq, and this inequality is strict if indps1
mqpjq ‰ 0.

Intuitively, position j is the topmost symbol of some pj1 ´ jq-stack, and any symbol in this stack has an index smaller
than the topmost symbol.

The intended meaning of the index of some symbol in the stack is the following. The index is equal to the largest integer
i such that since vi{v1

i the symbol no longer appears as a top1-element. If one uses the stack to store (and maintain) some
information, the index is the moment from which this information was no longer updated. Hence when some symbol appears
again as the top1-element, one has to update the information by taking into account all that happened since vi{v1

i (included).
The intuitive idea behind the forthcoming definition of Λ1 is rather simple. The indices are always preserved, so one

only cares on new positions in the stack. On doing a pushk the indices of the copied stack are inherited from the original
copy. Then when new indices are needed (because a position is no longer the top1 one, it get index m ` 1 if the current
configuration is vm`1).

Before going to the formal definition, we start with an example.

Example 17. In figure 4, we give an example (at order 3) that illustrates the previous intuitive idea as well as the formal
description below (ignore the information on colours for this example). We only describe the indexed stacked (omitting the
control states), and indicate the stack operation (but omit the id operation). Indices are written as superscripts.

Now, we formally give the construction (the previously mentioned properties easily follow from the definition). The initial
configuration v1

0 “ pp0, s
1
0q, is obtained by letting indps1

0q be the constant (partial) function equal to 0. Assume now that
v1
1 ¨ ¨ ¨ v1

m has been constructed, let v1
m “ ppm, s

1
mq with s1

m “ x rsm, targetpsmq, indps1
mq y and let vm`1 “ ppm`1, sm`1q

with sm`1 “ x rsm`1, targetpsm`1q y. We let v1
m`1 “ ppm`1, s

1
m`1q with s1

m`1 “ x rsm`1, targetpsm`1q, indps1
m`1q y

where indps1
m`1q is defined thanks to a case distinction.

‚ A top-rewriting operation followed by a push
γ,k
1 operation is applied in configuration vm. Then all previous indices are

inherited and the former top1-element gets index m`1. Formally, indps1
m`1qpjq “ indps1

mqpjq whenever j ă |rsm|´n

and indps1
m`1qp|rsm| ´ nq “ m` 1.

26



‚ A top-rewriting operation followed by a pushk operation is applied: sm`1 “ pushkpsmq. First, all existing indices
are preserved, i.e. indps1

m`1qpjq “ indps1
mqpjq whenever j belongs to the domain of indps1

mq. Then one writes rsm
as [ ¨ ¨ ¨[t]]n´k`1 with t being well-bracketed; hence, rsm`1 “ [ ¨ ¨ ¨[t][t]]n´k`1. Then we let indps1

m`1qp|Ăs1
m| ´

pn ´ k ` 1q ` jq “ indps1
mqp|Ăs1

m| ´ pn ´ k ` 1q ´ p|t| ` 2q ` jq for all j ě 1 such that the second member of the
equality is defined: the indices are simply copied from the former top pk ´ 1q-stack. Finally, the former top1-element
gets index m` 1: indps1

m`1qp|rsm| ´ n` k ´ 3q “ m` 1.
‚ A top-rewriting operation followed by a either a popk operation or a collapse or id is applied in configuration vm in
Λ. Then all indices are inherited from the previous indexed stack. Formally, indps1

m`1qpjq “ indps1
mqpjq whenever j

belongs to the domain of indps1
m`1q.

The following proposition is crucial for the rest of the proof. In particular, it means that if we stored some information
on the stack, the index gives the "expiry date" of the stored information, that is the step in the computation starting from
which the information has no longer been updated.

Proposition 4. Let Λ “ v0v1 ¨ ¨ ¨ be a path and Λ1 “ v1
0v

1
1 ¨ ¨ ¨ be as above. Let m ě 0, let s1

m “ x rsm, targetpsmq, indps1
mq y

be the indexed stack in v1
m. Let j be such that i “ indps1

mqpjq is defined. If i ą 0, then pi´1q is the largest integer such that
the j-th letter of rsm is a copy of top1psi´1q. If i “ 0, there is not i1 such that the j-th letter of rsm is a copy of top1psi1 q.

Proof: Immediate by induction on m and from the definition of Λ1 from Λ.
Our main goal is to enrich the stack alphabet in order to compute the link-rank. Assume that in configuration vm the

top1-element has a link (that is possibly a copy of a link) that was created in configuration vj : then the link-rank in vm is
defined as the smallest colour since the creation of the link, i.e. mintΩpvjq, ¨ ¨ ¨Ωpvmqu. In order to maintain this information,
we need to define two other concepts: the collapse-rank (for updating after performing a collapse) and the pop-rank for k
(for updating after performing a popk).

We first introduce the notion of ancestor. Fix a finite path Λ “ v0v1 ¨ ¨ ¨ vm, let vm “ pq, sq be some configuration in Λ

and let x be a symbol in s. Then the ancestor of x is the configuration vi where i is the index of x in v1
m (the indexed

version of vm).
We now introduce the notion of collapse-rank. Fix a finite path Λ “ v0v1 ¨ ¨ ¨ vm and assume that the top1-element of vm

has a pk ` 1q-link for some k. Then the collapse-ancestor in vm is the ancestor of the top1-element of the pointed k-stack
and the collapse-rank in vm is the smallest colour visited since the collapse-ancestor (included).

Example 18. Consider the sequence of indexed stacks given in Figure 4 (the colours of the corresponding configurations
are indicated on the right part of the figure).

In v1
8 the collapse-ancestor is 6 and the collapse-rank is therefore 4. In v1

9 the collapse-ancestor is 2 and the collapse-rank
is therefore 1.

Next, we give a notion of pop-rank. Fix a partial play Λ “ v0v1 ¨ ¨ ¨ vm and a configuration vm “ pq, sq in Λ. Then, for
any 1 ď k ď n, the pop-ancestor for k, when defined, is the ancestor of the top1-element of popkpsq and the pop-rank for
k, when defined, is the smallest colour visited since the pop-ancestor for k (included). In particular, the pop-rank for n is
the smallest colour visited since the stack has height at least the height of s.

Example 19. Again, consider the sequence of indexed stacks given in Figure 4.
In configuration v1

9 the pop-ancestor (resp. pop-rank) for 3 is 6 (resp. 4), the pop-ancestor (resp. pop-rank) for 2 is 8

(resp. 5) and the pop-ancestor (resp. pop-rank) for 1 is 5 (resp. 2).
In configuration v1

12 the pop-ancestor (resp. pop-rank) for 3 is 0 (resp. 0), the pop-ancestor (resp. pop-rank) for 2 is 2

(resp. 1) and the pop-ancestor (resp. pop-rank) for 1 is 12 (resp. 2).

Consider a finite path Λ “ v0v1 ¨ ¨ ¨ vm in G ending in a configuration vm “ pq, sq such that top1psq has an n-link (if the
link is a k-link for some k ă n the following concepts are not relevant). The link-ancestor of vm is the configuration vj
where the original copy of the n-link in top1psq was created8, or v0 if the link was present in the stack of the configuration
v0. The link-rank of vm is the minimum colour of a state occurring in Λ since its link-ancestor vj (inclusive) i.e. it is
mintΩpvjq, ¨ ¨ ¨Ωpvmqu.

Example 20. Consider the sequence of indexed stacks given in Figure 4. The link-ancestor of configuration v1
8 is configuration

v1
7 and its link-rank is 5. The link-ancestor of configuration v1

11 is configuration v1
5 and its link-rank is 2.

8Formally, one could index links as well: whenever performing, in configuration vj , a push
γ,e
1

, one attaches to the newly created link the index j ` 1.
Later, if the link is copied (by doing a pushk operation) then the index is copied as well.
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Definition 8. An n-CPDP A “ xΓ, Q,∆, q0 y equipped with a colouring function is rank-aware from a configuration v0 if
there exist a function LinkRk : Q ˆ Γ Ñ N such that for any finite path Λ “ v0v1 ¨ ¨ ¨ vℓ, the link-rank (if defined) of the
configuration vℓ “ pq, sq is equal to LinkRkpq, top1psqq. In other words, the link rank can be retrieved from the control
state together with the top1-element of the stack.

Remark 7. In the current setting, if the ancestor of the pointed stack (resp the ancestor of the the top1-element of popkpsq
/ the link-ancestor) is v0, then the collapse-rank (resp the pop-rank / the link-rank) is simply the smallest colour seen since
the beginning of the play. Hence, it does not make much sense but it permits the construction to remain uniform.

The next theorem shows that we can restrict our attention to CPDP games where the underlying CPDP is rank-aware.

Theorem 6. For any n-CPDP A “ xΓ, Q,∆, q0y and any associated parity game G, one can construct an n-CPDP Ark

and an associated parity game Grk such that the following holds.

‚ There exists a mapping ν from the configurations of A to that of Ark such that:

– for any configuration v0 of A, Ark is rank-aware from νpv0q;
– Éloïse has a winning strategy in G from some configuration v0 iff she has a winning strategy in Grk from νpv0q;

‚ If there is an n-CPDA transducer Srk synchronised with Ark realising a well-defined winning strategy for Éloïse in
Grk from νpq0,Knq, then one can effectively construct an n-CPDA transducer S synchronised with A realising a
well-defined winning strategy for Éloïse in G from the initial configuration pq0,Knq.

The proof of Theorem 6 is a non-trivial generalisation of [A4, Lemma 6.3] (which concerns 2-CPDP) to the general
setting of n-CPDP and starting from an arbitrary configuration. The rest if the subsection is devoted to this proof.

Fix an n-CPDP A “ xΓ, Q,∆, q0 y, a partition QE Z QA of Q and a colouring function Ω : Q Ñ C Ă N. Denote
by G the induced parity game. We define a rank-aware (to be proven) n-CPDP Ark “ xΓrk, Qrk,∆rk, q0,rk y such that
Qrk “ Qˆ C and

Γrk “ Γ ˆ pC Y töuq ˆ pC Y tö, :uq ˆ pCt1,...,nu Y töuq

We define a map ν that associates with any configuration of A a configuration of Ark. Let pq, sq be a configuration in
A. Then νpq, sq “ ppq,Ωpqqq, s1q where s1 is obtained by:

‚ Replacing every internal symbol γ (i.e. that is not the top1-element) by pγ,ö,ö,öq if it has an n-link and by pγ,ö, :,öq
otherwise.

‚ Replacing the top1-element γ by pγ,Ωpqq,Ωpqq,Ωpqqq if it has an n-link and otherwise by pγ,Ωpqq, :,Ωpqqq.

We equip Ark with a colouring function Ωrk by letting Ωrkpq, θq “ Ωpqq. Our construction will satisfy the following
invariant. Let Λ be a finite path (in GraphpArkq) starting in some configuration νpq, sq ending in some configuration
ppq, θq, sq then the following holds. First, θ is the minimal colour visited from the beginning of the path. Second, if
top1psq “ pα,mc,ml, τq then

‚ mc is the collapse-rank;
‚ ml is the link-rank if it makes sense (i.e. there is an n-link in the current top1-symbol) or is : otherwise;
‚ τ is the pop-rank: τpiq is the pop-rank for i for every 1 ď i ď n.

Let us now explain how ν is defined. Let pq, sq be some configuration in A. Then νpq, sq “ ppq,Ωpqq, s1q where s1 is
obtained by:

‚ Replacing every internal symbol γ (i.e. that is not the top1-element) by pγ,ö,ö,öq if it has an n-link and by pγ,ö, :,öq
otherwise.

‚ Replacing the top1-element γ by pγ,Ωpqq,Ωpqq,Ωpqqq if it has an n-link and otherwise by pγ,Ωpqq, :,Ωpqqq.

Trivially, at the beginning of the path the invariant holds.
The transition function of Ark mimics that of A and updates the ranks as explained below. First, let us explain the

meaning of symbols ö. Such symbols will never been created using a push
_,k
1 or a rewö

1 action: hence they can only be
duplicated (using pushk) from symbols originally in the stack. The meaning of a symbol ö is that the corresponding object
(collapse-rank, link-rank or pop-rank) has not yet been settled. However, when a ö symbol appears in the top1-element the
various ranks can be easily retireved as they necessarily equal the smallest colour visited so far (as noted in Remark 7): this
is why we made the computation of the minimal colour visited so far in the control state of Ark.

In order to make the construction more readable, we do not formally describe ∆rk but rather explain how Ark behaves.
It should be clear that ∆rk can be formally described to fit this informal description (and that some extra control states
are actually needed as we allow to do several stack operation per transition); technical issues about this construction are
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discussed in Remark 8. Note that the description below also contains the inductive proof of its validity, namely that mc,
ml and τ are as stated above. To avoid case distinction on whether the link-rank is defined or not, we take the following
convention that minp:, iq “ : for every i P N.

The intuitive idea is the following. One stores in the stack information on the various ranks, and after performing a popk
or a collapse, one needs to update the information stored in the new top1-element. Indeed this information has no longer
been updated since the ancestor configuration (this was the last time it was on top of the stack). To update it, one uses either
the collapse-rank / pop-rank in the previous configuration, which is exactly what is needed for this update.

Assume Ark is in configuration vℓ “ ppq, θq, sq with top1psq “ pα,mc,ml, τq and let v0v1 ¨ ¨ ¨ vℓ be the beginning of the
path of GraphpArkq where we denote vi “ ppqi, θiq, siq (hence qℓ “ q and sℓ “ s). For any pq1, rew

γ
1 ; opq P ∆pq, αq (note

that the case where no rew1 is performed corresponds to the case where γ “ α) the following behaviours are those allowed
in ppq, θq, sq.

1) Assume op “ popk for some 1 ď k ď n, let popkpsq “ s1 and let top1ps1q “ pα1,m1
c,m

1
l, τ

1q. Then Ark can go to
the configuration ppq1, θ1q, s2q where θ1 “ minpθ,Ωpq1qq and s2 is obtained from s1 by replacing top1ps1q by

a) pα1, θ1, θ1, pθ1, . . . , θ1qq if m1
c “ö, m1

l “ö and τ 1 “ pö, . . . ,öq.
b) pα1, θ1, :, pθ1, . . . , θ1qq if m1

c “ö, m1
l “ : and τ 1 “ pö, . . . ,öq.

c) pα1,minpm1
c, τpkq,Ωpq1qq,minpm1

l, τpkq,Ωpq1qq, τ2q, with

τ2piq “

#
minpτ 1piq, τpkq,Ωpq1qq if i ď k

minpτpiq,Ωpq1qq if i ą k

Cases paq and pbq correspond to the case where one reach (possibly a copy) of a symbol that was in the stack from the
very beginning and that never appeared as a top1-element: then the value of the collapse-rank, link-rank (if defined
this is case paq otherwise it is case pbq) and pop-ranks are all equal to θ1.
We now explain case pcq. Let vx be the ancestor of top1ppopkpsqq. Then x ą 0 as otherwise we would be in case paq
or pbq. By Proposition 4, it follows that top1ppopkpsqq “ top1psx´1q, and by induction hypothesis, at step px ´ 1q,
m1

c, m1
l and τ 1 had the expected meaning. Let y be the index of the top1-element of the pointed stack in s1: y is also

the top1-element of the pointed stack in sx´1, and moreover y ă x. The collapse-rank in vℓ`1 is

mintΩpqyq, . . . ,Ωpqx´1q,Ωpqxq, . . . ,Ωpqnq,Ωpq1qu

“mintmintΩpqyq, . . . ,Ωpqx´1qu,mintΩpqxq, . . . ,Ωpqnqu,Ωpq1qu

“mintm1
c, τpkq,Ωpq1qu

Similarly, when defined, the link-ancestor of s1 is the same as the one in sx´1: hence the pop-rank in vℓ`1 is
mintm1

l, τpkq,Ωpq1qu.
For any i ď k, top1ppopips

1qq “ top1psx´1q and therefore the pop-rank for i in vℓ`1 is obtained by updating τ 1piq to
take care of the minimum colour seen since vx – which (as for the collapse-rank) is mintτpkq,Ωpq1qu: therefore the
pop-rank for i in vℓ`1 equals mintτ 1piq, τpkq,Ωpq1qu.
For any i ą k, popips

1q “ popipsq and thus top1ppopips
1qq “ top1ppopipsqq. Therefore the pop-rank for i in vℓ`1

is obtained by updating the one in vℓ to take care of the new visited colour Ωpq1q: hence the pop-rank for i in vℓ`1

equals mintτpiq,Ωpq1qu.
2) Assume op “ collapse, let collapsepsq “ s1 and let top1ps1q “ pα1,m1

c,m
1
l, τ

1q. Then Ark can go to the configuration
ppq1, θ1q, s2q where θ1 “ minpθ,Ωpq1qq and s2 is obtained from s1 by replacing top1ps1q by

a) pα1, θ1, θ1, pθ1, . . . , θ1qq if m1
c “ö, m1

l “ö and τ 1 “ pö, . . . ,öq.
b) pα1, θ1, :, pθ1, . . . , θ1qq if m1

c “ö, m1
l “ : and τ 1 “ pö, . . . ,öq.

c) pα1,minpm1
c,mc,Ωpq1qq,minpm1

l,mc,Ωpq1qq, τ2q with

τ2piq “

#
minpτ 1piq,mc,Ωpq1qq if i ď k

minpτpiq,Ωpq1qq if i ą k

The proof follows the same line as for the previous case (popk).
Cases paq and pbq correspond to the case where one reach (possibly a copy) of a symbol that was in the stack from the
very beginning and that never appeared as a top1-element: then the value of the collapse-rank, link-rank (if defined
this is case paq otherwise it is case pbq) and pop-ranks are all equal to θ1.
We now explain case pcq. Let vx be the collapse-ancestor of vℓ. Then x ą 0 as otherwise we would be in case paq or
pbq. By induction hypothesis, m1

c and τ 1 give the collapse-rank / link-rank / pop-ranks in vx´1. Moreover the ancestor
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of the top1-element of the target of the top link in s1 is the same as the one in vx´1. Therefore the collapse-rank is
obtained by taking the minimum of the collapse-rank in vx´1 with mintΩpqxq, . . .Ωpqnq,Ωpq1qu “ mintmc,Ωpq1qu.
Similarly (if defined) the link-ancestor in s1 being the same as the one in vx´1, the link-rank is obtained by taking
the minimum of the one in vx´1 with mintΩpqxq, . . .Ωpqnq,Ωpq1qu “ mintmc,Ωpq1qu.
Let i ď k. The ancestor of top1ppopips

1qq is the same as the ancestor of top1ppopipsx´1qq. Therefore the pop-rank for
i in vℓ`1 is obtained by taking the minimum of the one in vx´1 with mintΩpqxq, . . .Ωpqnq,Ωpq1qu “ mintmc,Ωpq1qu.
Let i ą k. Then the ancestor of top1ppopips

1qq is the same as the ancestor of top1ppopipsnqq: indeed the collapse
only modified the topk stack. Therefore the pop-rank for i in vℓ`1 is obtained by taking the minimum of the one in
vℓ with the new visited colour Ωpq1q.

3) Assume op “ pushj for some 2 ď j ď n, let pushjprew
pγ,mc,ml,τq
1 psqq “ s1 and let top1ps1q “ pγ,mc,ml, τq (note

that ö does not appear in top1ps1q). Then, Ark can go to the configuration ppq1, θ1q, s2q where θ1 “ minpθ,Ωpq1qq and
s2 is obtained from s1 when replacing top1ps1q by pγ,minpmc,Ωpq1qq,minpml,Ωpq1qq, τ 1q with

τ 1piq “

#
minpτpiq,Ωpq1qq if i ‰ j

Ωpq1q if i “ j

Indeed, the collapse-ancestor in the new configuration is the same as the one in s. As by induction hypothesis mc is
the collapse-rank in vℓ, the collapse-rank in vℓ`1 is obtained by updating mc to take care of the new visited colour,
namely by taking mintmc,Ωpq1qu. Similarly, if defined, the link-ancestors in vℓ and vℓ`1 are identical and then the
link-rank in vℓ`1 is mintmc,Ωpq1qu.
For any i ‰ j, the ancestor of top1ppopipsq

1q and the ancestor of top1ppopips
1qq are the same. Again using the

induction hypothesis one directly gets that the pop-rank for i in vℓ`1 equals mintτpiq,Ωpq1qu.
The index of the ancestor of top1ppopjps1qq is by definition ℓ`1. Hence as the only colour visited since vℓ`1 is Ωpq1q
it equals the pop-rank for j.

4) Assume op “ push
β,k
1 with 1 ď k ď n, and β P pΓztKuq. Then Ark can go to pq1, θ1q, where θ1 “ minpθ,Ω1pq1qq,

and apply successively rew
pγ,mc,ml,τq
1 and push

pβ,m1
c,m

1
l,τ

1q,k
1 where m1

c “ minpτpkq,Ωpq1qq, m1
l “ Ωpq1q if k “ n

and m1
l “ : otherwise, and τ 1piq “ minpτpiq,Ωpq1qq for every i ě 2 and τp1q “ Ωpq1q.

Indeed, the pointed stack in s1 is topkppopkpsqq and therefore the collapse-rank in vℓ`1 is the minimum of the pop-rank
for k in s and of the new visited colour Ωpq1q, that is mintτpkq,Ωpq1qu.
If k “ n, the link-ancestor of vℓ`1 is vℓ`1 itself and hence the link-rank is the colour of the current configuration,
namely Ωpq1q.
For any i ě 2, as popipsq “ popips

1q one also has top1ppopips
1qq “ top1ppopipsqq and therefore the pop-rank for i

in vℓ`1 equals the minimum of the one in vℓ with the new visited colour Ωpq1q, that is mintτpiq,Ωpq1qu. Finally as
the ancestor of pop1ps1q is vℓ`1 then the pop-rank for 1 is the current colour, namely Ωpq1q.

From the previous description (and the included inductive proof) we conclude that, for any configuration v0 of A, Ark is
rank-aware from νpv0q.

Remark 8. One must object that Ark does not fit the definition of n-CPDP. Indeed, in a single transition it can do a
top-rewriting followed by another stack operation and followed again by a top-rewriting (which itself depends on the new
top1-element). One could add intermediate states and simply decompose such a transition into two transitions, but this
would be problematic later when defining an n-CPDA transducer realising a winning strategy.

Hopefully, one can define a variant A1
rk of Ark that has the same properties as Ark and additionally fits the definition

of n-CPDP. The idea is simply to postpone the final top-rewriting to the next transition. Indeed, it suffices to add a new
component on the control state where one encodes the top-rewriting that should be performed next: this top-rewriting is then
performed in the next transition (note that this fits the definition as performing two top-rewriting is the same as only doing
the last one). However, there is still an issue as the top-rewriting was actually depending on the top1-symbol (one updates
the various ranks) hence, one cannot save the next top-rewriting in the control state without first observing the symbol to
be rewritten. But this is not a problem, as it suffices to remember which kind of update should be done (one concerning a
popk or one concerning a collapse) and to store in the control state the various objects needed for this update (for this
one can simply store the former top1-element).

One also need to slightly modify the LinkRk function so that it return the link-rank of the top1-symbol after it is rewritten.
This can easily be done as the domain of LinkRk is Qrk ˆ Γrk.

Note that A1
rk and Ark use the same stack alphabet, but that the state space of Ark uses an extra component of size

linear in the one of the stack alphabet.
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In conclusion building a rank-aware (valid) n-CPDP from a non-aware one increases (by a multiplicative factor) the
stack alphabet by Cn`3 and the state set by OpCn`3q.

For now on, we uses Ark to mean A1
rk.

We are now ready to conclude the proof of Theorem 6. First recall that we defined Ωrk by letting Ωrkpq, θq “ Ωpqq. Then,
we define a partition Qrk,E Z Qrk,A of Qrk by letting the states in Qrk,E to be those states with their first component in
QE, and those states in Qrk,A to be those states with their first component in QA. Let Grk be the corresponding arena and
let Grk be the corresponding n-CPDP parity game.

Consider the projection ζ defined from configurations of Ark into configurations of A by only keeping the first component
of the control state, and by only keeping the Γ part of symbols appearing in the stack. Note that, on the domain of ν´1,
ζ and ν´1 coincide. Also note that ζ preserve the shape of stacks9, i.e. for any configuration vrk, the stack in vrk has the
same shape as the stack in νpvrkq.

We extend ζ as a function from (possibly partial) plays in Grk into (possibly partial) plays in G by letting ζpv1
0v

1
1 ¨ ¨ ¨ q “

ζpv1
0qζpv1

1q ¨ ¨ ¨ . It is obvious that for any play Λ1 in Grk starting from νpv0q, its image ζpΛ1q is a play in G starting from
v0; moreover these two plays induces the same sequence of colours and at any round the player that controls the current
configuration is the same in both plays. Conversely, from the definition of Ark it is also clear that there is, for any play Λ

in G starting from v0, a unique play Λ1 in Grk starting from νpv0q such that ζpΛ1q “ Λ.
In particular, ζ can be used to construct a strategy in G from a strategy in Grk. Indeed, let Φrk be a strategy for Éloïse

from νpv0q in Grk. We define a strategy Φ in G from νpv0q. This strategy maintains as a memory a partial play Λrk in Grk

such that, if Éloïse respects Φ, in G starting from v0 after having played Λ one has ζpΛrkq “ Λ and moreover Λrk is a play
in Grk starting from νpv0q where Éloïse respects Φrk. Initially, we let Λrk “ νpv0q. Assume that we have been playing Λ

and that Éloïse has to play next. Then she considers vrk “ ΦrkpΛrkq and she plays to v where v is the unique configuration
such that ζpΛrk ¨ vrkq “ Λ ¨ v. Finally one updates Λrk to be Λrk ¨ vrk. If it is Abelard that has to play next and if he moves
to some v, then Éloïse updates Λrk to be Λrk ¨ vrk where vrk is the unique configuration such that Λrk ¨ vrk is a valid play
and such that ζpvrkq “ v. A symmetrical construction can be done to build a strategy of Abelard in G from one in Grk.

Now, assume that νpv0q is winning for Éloïse (resp. Abelard) and call Φrk an associated winning strategy. Let Φ be the
strategy in G obtained as explained above. Then Φ is winning for Éloïse (resp. Abelard) in G from v0 (this follows directly
from the fact that Φrk is winning and that we have the property that ζpΛrkq “ Λ for any partial play Λ in G consistent with
Φ). Hence this proves that Éloïse has a winning strategy in G from v0 iff she has a winning strategy in Grk from νpv0q.

Finally, from the previous construction of a strategy Φ from a strategy Φrk we prove that if there is an n-CPDA transducer
Srk synchronised with Ark realising a well-defined winning strategy Φrk for Éloïse in Grk from νpq0,Knq, then one can
effectively construct an n-CPDA transducer S synchronised with A realising a well-defined winning strategy Φ for Éloïse
in G from the initial configuration pq0,Knq. Indeed, in our previous construction of Φ, we maintained a partial play Λrk

in Grk and used the value of ΦrkpΛrkq to define ΦpΛq. But if Φrk is realised by an n-CPDA transducer Srk, it suffices
to remember the configuration of this transducer after playing Λrk (as this suffices to compute ϕrkpΛrkqq. Hence, the only
things that need to be modified from Srk to obtain S is that one needs to "embed" the transition function of Ark into it, so
that S can read/output elements in Q ˆ OpnpΓq ˆ OpnpΓq instead of Qrk ˆ OpnpΓrkq ˆ OpnpΓrkq. This can easily (but
writing the formal construction would be quite heavy) be achieved by noting that the shape of stacks is preserved by ζ:
hence if Srk is synchronised with Ark then S is synchronised with A (as Ark and A are "synchronised", and Srk and S

are "synchronised" as well).
If we summarise, the overall blowup in the transformation from G to Grk given by Theorem 6 is as follows.

Proposition 5. Let A and Ark be as in Theorem 6. Let t0, ¨ ¨ ¨ , du be the set of colours. Then the set of states of Ark has
size Op|Q|pd ` 1qn`3q and the stack alphabet of Ark has size Op|Γ|pd ` 1q2n`5q.

Moreover the set of colours used in G and Grk are the same.

Proof: By construction together with Remark 8.

6) Removing the n-links: .

In this subsection, we show how one can remove the outmost links.

Theorem 7. For any rank-aware n-CPDP Ark “ xΓrk, Qrk,∆rk, q0,rky and any associated parity game Grk, one can
construct an n-CPDP Alf and an associated parity game Glf such that the following holds.

‚ Alf does not create n-links.

9Recall that the shape of a stack is the stack obtained by replacing all symbols appearing in s by a fresh symbol 7 (but keeping the links).
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‚ There exists a mapping ν from the configurations of Ark to that of Alf such that:

– Éloïse has a winning strategy in Grk from some configuration v0 iff she has a winning strategy in Glf from νpv0q;

‚ If there is an n-CPDA transducer Slf synchronised with Alf realising a well-defined winning strategy for Éloïse in
Glf from νpq0,rk,Knq, then one can effectively construct an n-CPDA transducer Srk synchronised with Ark realising
a well-defined winning strategy for Éloïse in Grk from the initial configuration pq0,rk,Knq.

The whole section is devoted to the proof of Theorem 7 and we thus fix from now on, a rank-aware n-CPDP Ark “
xΓrk, Qrk,∆rk, q0,rk y (together with a function LinkRk), a partition Qrk,E ZQrk,A of Qrk, a colouring function Ω : Qrk Ñ
C Ă N and we let C “ t0, . . . , du. Denote by Grk the transition graph of Ark, by Grk the arena induced by Grk and the
partition Qrk,E ZQrk,A, and by Grk the parity game pGrk,Ωq.

Consider the following informal description of a new game Glf (here lf intend to mean link-free) defined from Grk. The
new game mimics Grk except that whenever a player wants to perform a push

γ,n
1 operation, this is replaced by the following

"negotiation" between the players:

‚ First, Éloïse has to provide a vector
ÝÑ
R “ pR0, ¨ ¨ ¨Rdq P p2Qrkqd`1 whose intended meaning is the following: she

claims that she has a strategy such that if the newly created n-link (or a copy of it) is eventually used by doing a
collapse then it leads to a state in Ri where i is the smallest colour visited since the original copy of the link was
created.

‚ Then, Abelard has two options. He can agree with Éloïse’s claim, pick a state q in some Ri and perform a popn action
whilst going to state q (through an intermediate dummy vertex coloured by i): this is the case where Abelard wants to
simulate a collapse involving the n-link. Alternatively Abelard can decide to push the symbol pγ,

ÝÑ
R q (and a dummy

1-link is attached).

Later in some configuration pq, sq with a top1-element of the form pγ,
ÝÑ
R q if the player controlling q wants to simulate

a transition pq1, op; collapseq that collapses the stack, then this move is replaced by one that goes to a sink configuration
that is winning for Éloïse iff q1 P Ri where i “ LinkRkpq, γq is the link rank and hence corresponds to the smallest colour
visited since the original copy of symbol pγ,

ÝÑ
R q was pushed onto the stack (recall that Ark is rank-aware). The intuitive

idea is that, when simulating a collapse (involving an order-n link), Éloïse wins iff her initial claim on the possible states
reachable by following the link was correct. Otherwise she loses.

We now define Alf and the associated game Glf . We start with an informal description of Alf and then formally describe
its structure.

The n-CPDP Alf simulates Ark as follows. Assume that the play is in some configuration pq, sq and that the player
that controls it wants to simulate a transition pq1, rewα

1 ; opq P ∆rkpq, top1psqq. In case op is neither of the form push
β,n
1

nor of the form collapse with top1psq having an n-link then the same transition pq1, rewα
1 ; opq is available in Ark and is

performed. The interesting case is when op “ push
β,n
1 , and it is simulated by Alf as follows.

‚ The control state of Alf is updated to be qβ and one performs rewα
1 .

‚ From qβ , Éloïse has to move to a new control state q? and can push any symbol of the form pα,
ÝÑ
R q where

ÝÑ
R “

pR0, ¨ ¨ ¨Rdq P p2Qqd`1. A dummy 1-link is attached (and will never be used for a collapse).
‚ From q?, Abelard has to play and choose between one of the following two options:

– either go to state q and perform no action on the stack,
– or pick a state p in some Ri, go to an intermediate new state pi (of colour i) without changing the stack and from

this new configuration go to state p and perform a popn action.

The intended meaning of such a decomposition of the push
β,n
1 operation is the following: when choosing the sets in

ÝÑ
R ,

Éloïse is claiming that she has a strategy such that if the n-link created by pushing β is eventually used for collapsing the
stack then the control state after collapsing will belong to Ri where i is meant to be the smallest colour from the creation
of the link to the collapse of the stack (equivalently it will be the link rank — as computed in Ark — the just before
collapsing). Note that the Ri are arbitrary sets because Éloïse has not a full control on the play (and in general cannot force
Ri to be a singleton). Then Abelard is offered to simulate the collapse (here state pi is only used for going through a state
of colour i). If he does not want to simulate a collapse then one stores

ÝÑ
R for possibly checking its truth later in the play.

Assume that later, in configuration pp1, s1q one of the two players wants to simulate a transition pp2, rew
β
1 ; collapseq

involving an n-link. By construction, top1ps1q is necessarily of the form pγ,
ÝÑ
R q. Then the simulation is done by going to a

sink configuration that is winning for Éloïse iff p2 P RLinkRkpp1 ,γq, i.e. Éloïse wins iff her former claim on
ÝÑ
R was correct.

Formally we set Alf “ xΓlf , Qlf ,∆lf , q0,lf y with

‚ Γlf “ Γrk Y Γrk ˆ p2Qrkqd`1

‚ Qlf “ Qrk Y tqγ | q P Qrk, γ P Γrku Y tq? | q P Qrku Y tqi | q P Qrk, 0 ď i ď du Y ttt, ffu
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‚ ∆lf is defined as follows, where q, q1 range over Qrk, α, β, γ range over Γrk and
ÝÑ
R “ pR0, . . . , Rdq ranges over

p2Qrkqd`1.

– If pq1, rewα
1 ; opq P ∆rkpq, γq and if op is neither of the form push

β,n
1 nor collapse, then pq1, rewα

1 ; opq P ∆lfpq, γq

and pq1, rew
pα,

ÝÑ
R q

1 ; opq P ∆lfpq, pγ,
ÝÑ
R qq.

– If pq1, rewα
1 ; push

β,n
1 q P ∆rkpq, γq, then pqβ , rewα

1 ; idq P ∆lfpq, γq and pqβ , rew
pα,

ÝÑ
R q

1 ; idq P ∆lfpq, pγ,
ÝÑ
R qq.

– For all qβ P Qlf , ∆pqβ , γq “ ∆pqβ , pγ,
ÝÑ
R qq “ tpq?, push

pβ,
ÝÑ
S q,1

1 q |
ÝÑ
S P p2Qrkqd`1qu.

– For all q? P Qlf , ∆pq?, pγ,
ÝÑ
R qq “ tpq, idqu Y tppi, idq | 0 ď i ď d and p P Riu.

– For all qi P Qlf , ∆pqi, pγ,
ÝÑ
R qq “ tpq, popnqu.

– If pq1, rewα
1 ; collapseq P ∆rkpq, γq, then pq1, rewα

1 ; collapseq P ∆lfpq, γq.
– If pq1, rewα

1 ; collapseq P ∆rkpq, γq, then ptt, idq P ∆lfpq, pγ,
ÝÑ
R qq if q1 P RLinkRkpq,γq and pff, idq P ∆lfpq, pγ,

ÝÑ
R qq

if q1 R RLinkRkpq,γq.
– ∆lfptt, pγ,

ÝÑ
R qq “ tptt, idqu and ∆lfpff, pγ,

ÝÑ
R qq “ tpff, idqu.

We let Glf be the transition graph of Alf . Now, in order to define a game graph Glf out of Glf we let Qlf,E “ Qrk,EYtqγ |
q P Qrk, γ P Γrku. Finally to define a corresponding n-CPDP parity game Glf we extend Ω by letting, @q P Qrk and γ P Γrk,
Ωpqγq “ Ωpq?q “ d (as one cannot loop forever in such states, it means that they have no influence on the parity condition),
Ωpqiq “ i for every 0 ď i ď d, Ωpttq “ 0 and Ωpffq “ 1 (hence a play that visits tt is winning for Éloïse and a play that
visits ff is winning for Abelard, as these states are sinks).

Note that Alf never create an n-link.

Consider some configuration v0 “ pp0, s0q in Grk. We explain now how to define an "equivalent" configuration νpv0q
in Glf (here equivalent is in the sense of Theorem 8). The transformation consists in replacing any occurrence of a stack
letter (call it γ) with an n-link in s0 by another letter of the form pγ,

ÝÑ
R q and replace the n-link by a 1-link. The vector

ÝÑ
R is defined as follows. Let s1 be the stack obtained by popping every element and stack above γ, and let R “ tq |
Éloïse wins in Grk from pq, collapseps1qqu. Then one sets

ÝÑ
R “ pR, ¨ ¨ ¨ , Rq.

Example 21. Assume we are playing a two-colour parity game and let

s0 “ [[[ a]] [[][ a b c]] [[][ a b c d]]],

R1 “ tr | pr,[[[a]]]q is winning for Éloïse in Grku

R2 “ tr | pr,[[[ a]] [[][ a b c]]]q is winning for Éloïse in Grku

Then
νps0q “ [[[ a]] [[][ a b pc, pR1, R1qq]] [[][ a b pc, pR1, R1qq pd, pR2, R2qq]]].

The rest of this section is devoted to the proof of the following result.

Theorem 8. Éloïse wins in Grk from some configuration v0 if and only if she wins in Glf from νpv0q.

Assume that the configuration v0 “ pp0, s0q is winning for Éloïse in Grk, and let Φrk be a winning strategy for her.
Using Φrk, we define a strategy Φlf for Éloïse in Glf from νpv0q. The strategy Φlf maintains as a memory a partial play
Λrk in Grk, that is an element in V ˚

rk (where Vrk denotes the set of vertices of Grk). At the beginning Λrk is initialised to
be pp0, s0q. The play Λrk will satisfy the following invariant: assume that the play ends in a configuration pp, sq, then the
last configuration in Λrk has control state p and its top1-element is either top1psq or ptop1psq,

ÝÑ
R q for some

ÝÑ
R (and in this

case there is an n-link from the top1-symbol of s).
We first describe Φlf , and then we explain how Λrk is updated.

Choice of the move. Assume that the play is in some vertex pp, sq with p P Qlf,Eztqγ | q P Qrk, γ P Γrku. The move given
by Φlf depends on ΦrkpΛrkq “ pq, rewα

1 ; opq (we shall later argue that Φlf is well defined while proving that it is winning).

‚ If op is neither of the form push
β,n
1 nor collapse then Éloïse plays pq, rewα

1 ; opq if top1psq “ γ and she plays

pq, rew
pα,

ÝÑ
R q

1 ; opq if top1psq “ pγ,
ÝÑ
R q.

‚ If op “ collapse and top1psq “ γ P Γrk then Éloïse plays pq, rewα
1 ; collapseq.

‚ If op “ collapse and top1psq “ pγ,
ÝÑ
R q then Éloïse plays ptt, idq. We shall later see that this move is always valid.
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‚ If op “ push
β,n
1 then Éloïse plays plays pqβ , rewα

1 ; idq if top1psq “ γ and she plays pqβ , rew
pα,

ÝÑ
R q

1 ; idq if top1psq “
pγ,

ÝÑ
R q.

In this last case, or in the case where p P QA and Abelard plays some pqβ , rewα
1 ; idq (resp. some pqβ , rew

pα,
ÝÑ
R q

1 ; idq),

we also have to explain how Éloïse behaves from pqβ , rewα
1 psqq (resp. pqβ , rew

pα,
ÝÑ
R q

1 psqq.

Éloïse has to play pq?, push
pβ,

ÝÑ
S q,1

1 q where
ÝÑ
S P p2Qrkqd`1 describes which states can be reached if the n-link created

by pushing β (or a copy of it) is used for collapsing the stack, depending on the smallest visited colour in the meantime. In
order to define

ÝÑ
S , she considers the set of all possible continuations of Λrk ¨ pq, pushβ,n1 pσqq (where pp, σq denotes the last

vertex of Λrk) where she respects her strategy Φrk. For each such play, she checks whether some configuration of the form
pr, popnpσqq is eventually reached by collapsing (possibly a copy of the) n-link created by push

β,n
1 . If such an r exists, she

considers the smallest colour i visited from the moment where the link was created to the moment collapse is performed
(i.e. the link rank just before collapsing). For every i P t0, . . . du, the set Si is defined to be the set of states r P Q such
that the preceding case happens. Formally,

Si “ tr | D Λrk ¨ v0 ¨ ¨ ¨ vk ¨ vk`1 ¨ ¨ ¨ play in Grk where Éloïse respects Φrk and s.t.

v0 “ pq, pushβ,n1 pσqq, vk`1 “ pr, popnpσqq is obtained by applying collapse from vk,

v0 is the link ancestor of vk and i is the link rank in vku

Finally, we set
ÝÑ
S “ pS0, . . . , Sdq and Éloïse plays pq?, push

pβ,
ÝÑ
S q,1

1 q.

Update of Λrk. The memory Λrk is updated after each visit to a configuration with a control state in Qrk Y ttt, ffu. We
have several cases depending on the transition.

‚ If the last transition is of the form pq, rewα
1 ; opq or pq, rew

pα,
ÝÑ
R q

1 ; opq with op being neither of the form push
β,n
1 nor

collapse, then we extend Λrk by applying transition pq, rewα
1 ; opq, i.e. if pp, σq denotes the last configuration in Λrk,

then the updated memory is Λrk ¨ pq, opprewα
1 pσqqq.

‚ If the last transition is of the form ptt, idq or pff, idq, the play is in a sink configuration. Therefore we do not update
Λrk as the play will loop forever.

‚ If the last transitions form a sequence of the form pqβ , rewα
1 ; idq ¨ pq?, push

pβ,
ÝÑ
S q,1

1 q ¨ pq, idq or of the form

pqβ , rew
pα,

ÝÑ
R q

1 ; idq ¨ pq?, push
pβ,

ÝÑ
S q,1

1 q ¨ pq, idq, then the updated memory is Λrk ¨ pq, pushβ,n1 pσqq, where pp, σq denotes
the last configuration in Λrk.

‚ If the last transitions form a sequence of the form pqβ , rewα
1 ; idq ¨ pq?, push

pβ,
ÝÑ
S q,1

1 q ¨ pri, idq ¨ pr, popnq or of the form

pqβ , rew
pα,

ÝÑ
R q

1 ; idq ¨pq?, push
pβ,

ÝÑ
S q,1

1 q ¨pri, idq ¨pr, popnq, then we extend Λrk by a sequence of actions (consistent with
Φrk) that starts by performing transition pq, pushβ,n1 q and ends up by collapsing (possibly a copy of) the link created
at this first step and goes to state p while visiting i as a minimal colour in the meantime. By definition of

ÝÑ
S such a

sequence always exists. More formally, if pp, σq denotes the last configuration in Λrk, then the updated memory is a
play in Grk, Λrk ¨ v0 ¨ ¨ ¨ vk ¨ vk`1, where Éloïse respects Φrk and such that v0 “ pq, pushβ,n1 pσqq, vk`1 “ pr, popnpσqq
is obtained by applying collapse from vk, v0 is the link ancestor of vk and i is the link rank in vk .

Therefore, with any partial play Λlf in Glf in which Éloïse respects her strategy Φlf , is associated a partial play Λrk in
Grk. An immediate induction shows that Λrk is a play where Éloïse respects Φrk. The same arguments works for any infinite
play Λlf that does not contain a state in ttt, ffu, and the corresponding play Λrk is therefore infinite, starts from νpp0, s0q
and Éloïse respects Φrk in that play. Therefore it is a winning play.

Moreover, if Λlf is an infinite play that does not contain a state in ttt, ffu, it easily follows from the definitions of Φlf and
Λrk that the smallest infinitely visited colour in Λlf is the same as the one in Λrk. Hence, any infinite play in Glf starting
from νpp0, s0q where Éloïse respects Φlf and that does not contain a state in ttt, ffu is won by Éloïse.

Now, consider a play that contains a state in ttt, ffu (hence loops on it forever). Reaching a configuration with state
in ttt, ffu is necessarily by simulating a collapse from some configuration with a top1-element of the form pα,

ÝÑ
R q. We

should distinguish between those elements pα,
ÝÑ
R q that are "created" before (i.e. by the ν function) or during the play (by

Éloïse). For the second ones, one may note that whenever Éloïse wants to simulate a collapse, she can safely goes to state tt
(meaning Φlf is well defined): indeed, if this was not the case, it would contradict the way

ÝÑ
S was defined when simulating

the original creation of the link. For the same reason, Abelard can never reach state ff provided Éloïse respects her strategy
Φlf . Now consider an element pα,

ÝÑ
R q created by ν and assume that one player wants to simulate a collapse from some
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configuration with such a top1-element. Call Λlf the partial play just before and call Λrk the associated play in Grk. Then
in Λrk, Éloïse respects her winning strategy Φrk. If she has to play next in Λrk, strategy Φrk indicates to play collapse; if
it is Abelard’s turn to move he can play collapse. In both case, the configuration that is reached after collapsing is winning
for Éloïse (it is a configuration visited in a winning play). Hence, by definition of ν, its control state belongs to R where
ÝÑ
R “ pR, ¨ ¨ ¨ , Rq, and therefore from the current vertex in Glf there are no transition to ff and there is at least one to tt.
Therefore plays where Éloïse respects Φlf and that contain a state in ttt, ffu necessarily contains state tt hence are won by
Éloïse.

Altogether, it proves that Φlf is a winning strategy for Éloïse in Glf from νpv0q.

Let us now prove the converse implication Assume that the configuration νpp0, s0q is winning for Éloïse in Glf , and let
Φlf be a winning strategy for her. Using Φlf , we define a strategy Φrk for Éloïse in Grk from pp0, s0q. First, recall how
νpp0, s0q is defined: every symbol α in s with an n-link is replaced by a pair pα, pR, . . . , Rqq where R is the set of states
r such that Éloïse wins from pr, s1q where s1 is the stack obtained by first removing every symbol (and stacks) above α
and then performing a collapse. We can therefore assume that we have a collection of winning strategies, one per each
such configurations pr, s1q – call such a strategy Φ

r,s1

rk . Then, during a play where Éloïse respects Φrk, if one eventually
visits such a configuration pr, s1q, the strategy Φrk will mimic the winning strategy Φ

r,s1

rk from that point and therefore the
resulting play will be winning for Éloïse. Then in the rest of this description we mostly focus on the case of plays where
this phenomenon is not happening.

The strategy Φrk maintains as a memory a partial play Λlf in Glf , that is an element in V ˚
lf (where Vlf denotes the set of

vertices of Glf ). At the beginning Λlf is initialised to the configuration νpp0, s0q. After having played Λrk, the play Λlf will
satisfy the following invariant. Assume that the play Λlf ends in a configuration pp, sq then the following holds.

‚ If top1psq “ α, the last configuration of Λrk has control state p and its top1-element is α and it has a k-link for some
k ă n.

‚ If top1psq “ pα,
ÝÑ
R q, the last configuration of Λrk has control state p and its top1-element is α and it has an n-link.

Moreover, if Éloïse keeps respecting Φrk in the rest of the play, if (possibly a copy of) this link is eventually used in
a collapse, then the state that will be reached just after doing the collapse will belong to Ri where i will be the link
rank just before collapsing.

We first describe Φrk and we then explain how Λlf is updated. Recall that we switch to a known winning strategy in case
we do a collapse from (possibly a copy of) an n-link that was already in s0.

Choice of the move. Assume that the play is in some vertex pp, sq with p P Qrk,E. The move given by Φrk depends on
ΦlfpΛlfq “ pq, rew; opq (we shall later argue that Φlf is well defined while proving that it is winning).

‚ If q P Qrk then Éloïse plays pq, rewα
1 ; opq where α is such that either rew “ rewα

1 or rew “ rew
pα,

ÝÑ
R q

1 . Note that in
this case, op is neither a collapse involving an n-link nor of the form push

β,n
1 .

‚ If q “ rβ then Éloïse plays to pr, rewα
1 ; push

β,n
1 q where α is such that either rew “ rewα

1 or rew “ rew
pα,

ÝÑ
R q

1 .
‚ If q “ tt then Éloïse plays pr, collapseq for some arbitrary r P Ri where we let i “ LinkRkpp, top1psqq and pα,

ÝÑ
R q

denotes the top1-element of the last vertex of Λlf . Note that in this case, the collapse involves an n-link.

Update of Λlf . The memory Λlf is updated after each move (played by any of the two players). We have several cases
depending on the last transition.

‚ If the last transition is of the form pq, rewα
1 ; opq and op is neither a collapse involving an n-link nor of the form

push
β,n
1 , then Λlf is extended by mimicking the same transition, i.e. if pp, σq denotes the last configuration in Λlf , then

the updated memory is Λlf ¨ pq, opprewα
1 pσqq if top1pσq “ γ for some γ P Γrk, and is Λlf ¨ pq, opprew

pα,
ÝÑ
R q

1 pσqq if
top1pσq “ pγ,

ÝÑ
R q for some pγ,

ÝÑ
R q P Γlf .

‚ If the last transition is of the form pq, rewα
1 ; push

β,n
1 q then, we let pp, σq denotes the last configuration in Λlf .

If top1pσq “ γ for some γ P Γrk then the updated memory Λlf ¨ pqβ , rewα
1 pσqq ¨ pq?, push

pβ,
ÝÑ
R q,1

1 prewα
1 pσqqq ¨

pq, push
pβ,

ÝÑ
R q,1

1 prewα
1 pσqqq where ΦlfpΛlf ¨ pqβ , rewα

1 pσqqq “ pq?, push
pβ,

ÝÑ
R q,1

1 prewα
1 pσqqq.

If top1pσq “ pγ,
ÝÑ
S q for some pγ,

ÝÑ
S q P Γlf then the updated memory Λlf ¨ pqβ , rew

pα,
ÝÑ
S q

1 pσqq ¨

pq?, push
pβ,

ÝÑ
R q,1

1 prew
pα,

ÝÑ
S q

1 pσqqq ¨ pq, push
pβ,

ÝÑ
R q,1

1 prew
pα,

ÝÑ
S q

1 pσqqq where ΦlfpΛlf ¨ pqβ , rew
pα,

ÝÑ
S q

1 pσqqq “

pq?, push
pβ,

ÝÑ
R q,1

1 prew
pα,

ÝÑ
S q

1 pσqqq.
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‚ If the last transition is of the form pr, collapseq and the collapse follows to an n-link, then we have two cases. Either
the collapse was following (possibly a copy of) an n-link that was already in s0 in case we claim (and prove later)
that one ends up in a winning configuration and then switch to a corresponding winning strategy as already explained.
Either one follows an n-link that was created during the play, in which case we let Λlf “ v0 ¨ ¨ ¨ vm and denote by vi the
link ancestor of vm 10. Then the updated memory is obtained by backtracking inside Λlf until reaching the configuration
where the (simulation of the) collapsed n-link was created (this configuration is vi, the link ancestor) and then extend
it by a choice of Abelard consistent with the collapse. That is the updated memory is v0 ¨ ¨ ¨ vi ¨ prℓ, σq ¨ pr, popnpσqq
where vi “ pp?, σq and ℓ denotes the link rank in the configuration Λrk was just before doing the collapse.

Therefore, with any partial play Λrk in Grk in which Éloïse respects her strategy Φrk, is associated a partial play Λlf in
Glf . Note that if we end up in a configuration that is known to be winning, Λlf is no longer extended. This also implies
that when collapsing an n-link that was already in s0 one necessarily ends up in a winning configuration. Indeed assume
the contrary and let Λlf be the constructed play before collapsing: then either Éloïse has to play and therefore moves to tt
(and therefore the configuration in Λrk after collapsing is winning by definition of ν, leading a contradiction) of Abelard
could move to ff (leading a contradiction with Φlf being winning). Therefore from now on we restrict our attention to the
case where the n-links (and their copies) in s0 are never used to do a collapse.

An easy induction shows that Éloïse respects Φlf in Λlf . The same arguments works for an infinite play Λrk, and the
corresponding play Λlf is therefore infinite (one simply considers the limit of the Λlf in the usual way 11), starts from
νpp0, s0q, never visits a state in ttt, ffu and Éloïse respects Φlf in that play. Therefore it is a winning play.

Now, in order to conclude that any play Λrk in Grk in which Éloïse respects strategy Φrk is winning for her, one needs
to relate the sequence of colours in Λrk with the one in Λlf . For this, we introduce a notion of factorisation of a partial play
Λrk “ v0v1 ¨ ¨ ¨ vm in Grk (we should later note that it directly extends to infinite plays). A factor is a nonempty sequence
of vertices of the following kind:

(1) it is a sequence vh ¨ ¨ ¨ vk such that the stack operation from vh´1 to vh is of the form rewα
1 ; push

n,β
1 , the stack

operation from vk´1 to vk is a collapse involving an n-link, and vh is the link ancestor of vk.
(2) or it is a single vertex;

Then the factorisation of Λrk denoted FactpΛrkq is a sequence of factors inductively defined as follows (we underline
factors to make them explicit): FactpΛrkq “ v0 ¨ ¨ ¨ vk, Factpvn`1 ¨ ¨ ¨ vnq if there exists some k such that v0 ¨ ¨ ¨ vk is as in
(1) above, and FactpΛrkq “ v0, Factpv1 ¨ ¨ ¨ vnq otherwise.

In the following, we refer to the colour of a factor as the minimal colour of its elements.
Note that the previous definition is also valid for infinite plays. Now we easily get the following proposition (the result

is obtained by reasoning on partial play using a simple induction combined with a case analysis. Then it directly extends to
infinite plays).

Proposition 6. Let Λrk be some infinite play in Grk starting from pp0, s0q where Éloïse respects Φrk and assume that
there is no collapse that follows (possibly a copy of) an n-link already in s0. Let Λlf be the associated infinite play in Glf

constructed from Φrk. Let Λrk,0,Λrk,1, ¨ ¨ ¨ be the factorisation of Λrk and, for every i ě 0, let ci be the colour of Λrk,i.
Then the sequence pciqiě0 and the sequence of colours visited in Λlf have the same lim inf .

The previous proposition directly implies that Φrk is a winning strategy for Éloïse from pp0, s0q in Grk.
In order to complete the proof of Theorem 7 it remains to establish the following proposition.

Proposition 7. If there is an n-CPDA transducer Slf synchronised with Alf realising a well-defined winning strategy for
Éloïse in Glf from νpq0,rk,Knq, then one can effectively construct an n-CPDA transducer Srk synchronised with Ark realising
a well-defined winning strategy for Éloïse in Grk from the initial configuration pq0,rk,Knq.

Proof: The result follows from a carefully analysis of how we defined Φrk from Φlf in the proof of Theorem 8. As we
now only focus on the initial configuration pq0,rk,Knq we will not have to deal with the special case of doing a collapse

following (possibly a copy of) an n-link originally in the initial configuration. Also note that νpq0,rk,Knq “ pq0,rk,Knq.

10Here we implicitly extends the notion of link ancestor as follows. In Glf instead of creating n-link one pushes symbol of the form pβ,
ÝÑ
R q: hence

whenever doing a push
pβ,

ÝÑ
R q,1

1
one attaches to the vector

ÝÑ
R the index of the current configuration. Then if the top1 element of vn is some pβ,

ÝÑ
R q

then the link ancestor of vm is defined to be vi where i is the indexed attached with
ÝÑ
R . Note in particular that the control state in the link ancestor is

necessarily of the form p?.
11 Let punqně0 be a sequence of finite words. For any n ě 0 let un “ u0

n ¨ ¨ ¨ ukn
n . Then the limit of the sequence punqně0 is the (possibly infinite)

word α “ α0α1 ¨ ¨ ¨ such that α is maximal for the prefix ordering and for all 0 ď i ă |α| there is some Ni such that ui
n “ αi for all n ě Ni.

In our setting, the play Λlf associated with an infinite play Λrk is defined as the limit of the sequence of partial plays pΛn
lf

qně0 where Λn
lf

is the partial
play associated with Λrk truncated to its n ` 1 first vertices. From the definitions of the Λn

lf
it is easily verified that the limit Λlf is infinite.
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Recall that Φrk uses as a memory a partial play Λlf in Glf and considers the value of ΦlfpΛlfq to determine the next move
to play. Now assume that Φlf is realised by an n-CPDA transducer Slf synchronised with Alf . Hence, instead of storing Λlf

it suffices to store the configuration Slf is in after reading Λlf .
One can also notice that the stack srk in the last configuration of some partial play Λrk and the stack slf in the last

configuration of the associated Λlf have the same shapes provided one replaces in slf every 1-link from a symbol in
Γrk ˆ p2Qrkqd`1 by an n-link. Recall that these 1-links are never used to perform a collapse: hence replacing those 1-links
by n-links does not change the issue of the game, and if one does a similar transformation on Slf it still realises a winning
strategy, and it is synchronised with the transformed version of Λlf .

Now, it follows from the way one defined Φrk (both the choice of the move and the memory update) that one can design
an n-CPDA transducer Srk synchronised with Ark realising a well-defined winning strategy for Éloïse in Grk from the
initial configuration pq0,rk,Knq. In all cases but one Srk simulates Slf . The only problematic case is when the move to play
is some pr, collapseq involving an n-link. Indeed, one needs to backtrack in Λlf (namely retrieve the configuration of Slf

after the link ancestor) and extend it by doing prℓ, idq (where ℓ is the link rank) and then pr, popnq; one needs to retrieve
the configuration of Slf right after this. If one performs a collapse in Srk, one directly retrieves the stack content, but the
control state of Slf is still missing. However, one can modify Slf so that after the simulation of the creation of an n-link,
i.e. after a symbol of the form pγ,

ÝÑ
R q in pushed, it stores in its top1-element the control state it will be in after doing the

transitions prℓ, idqpr, popnq, for each 0 ď ℓ ď d and each r P Rℓ (this can easily be computed). As this information is then
propagated when copying the symbol/link, it is available in the top1-element before doing a collapse involving an n-link,
hence Srk can also correctly retrieve the control state of Slf .

From this (somehow informal) description of Srk the reader should be convinced that Srk correctly simulates Slf on
Λlf , hence realises a winning strategy in Grk. The fact that Srk is synchronised with Ark follows from the fact that it is
synchronised with the variant of Slf that itself is synchronised with the variant of Λlf which is synchronised with Λrk.

Opitmisation. The set Qlf has size Op|Qrk|p|Γrk| `dqq, which is not very satisfactory for complexity reasons. Actually, one
would prefer a variant of the construction where |Γrk| does not appear in the blowup concerning states. This factor actually
comes from states tqγ | q P Qrk, γ P Γrku, and one can easily get read of them by doing the following modification of
Alf . When simulating a push

β,n
1 , instead of going to qβ , one stores β (thanks to a rew1 operation) in the top1 element

of the stack (hence the stack alphabet gets augmented by a linear factor in |Γrk|) and goes to a special state q!. State q! is
controlled by Éloïse and the transition function is the same as from qβ where β is the symbol stored on the top1-element
of the stack.

It is straightforward that this modification does not change the validity of the previous statements.
If we summarise, the overall blowup in the transformation from Grk to Glf given by Theorem 7 is as follows.

Proposition 8. Let Ark and Alf be as in Theorem 7. Then the set of states of Alf has size Op|Qrk|dq and the stack alphabet
of Alf has size Op|Γrk|2 ¨ 2|Qrk|pd`1qq.

Finally the set of colours used in Grk and Glf are the same.

Proof: By construction together with the optimisation below.

7) Reducing the Order: .

In the previous section we have constructed from a game played on a rank-aware n-CPDP another game played on an
n-CPDP that does not create n-links. The winning regions (resp. winning strategies realised by n-CPDA transducer) in the
original game can then be recover from the winning regions (resp. winning strategies realised by n-CPDA transducer) in
the latter game.

In this section, we prove a result in a similar flavour. Namely, starting from a game played on an n-CPDP that does
not create n-links, we construct a game played on an pn ´ 1q-CPDP, and we show that the winning regions(resp. winning
strategies realised by n-CPDA transducer) in the original game can be recover from the winning regions (resp. winning
strategies realised by pn´ 1q-CPDA transducer) in the latter game.

We situate the techniques developed here in a general and abstract framework of (order-1) pushdown automata whose
stack alphabet is a possibly infinite set: abstract pushdown automata. We start by introducing this concept and show how
n-CPDP that does not create n-links fit into it. Then, we introduce the notion of conditional games. Finally, we show how
such games can be solved by reduction to a pn ´ 1q-CPDP parity game, and from the proof we also get the expect result
on the existence of strategies realised by CPDA transducers.

We situate the techniques developed here in a general and abstract framework of (order-1) pushdown automata whose
stack alphabet is a possibly infinite set.
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An abstract pushdown automaton is a tuple A “ xA,Q,∆, q0y where A is a (possibly infinite) set called an abstract
pushdown alphabet and containing a bottom-of-stack symbol denoted K P A, Q is a finite set of states, q0 P Q is an initial
state and

∆ : QˆA Ñ 2QˆAď2

is the transition relation (here Aď2 “ tεu YA Y A ¨ A are the words over A of length at most 2). We additionally require
that for all a ‰ K, ∆pq, aq does not contain any element of the form pq, aKq nor pq,Kaq, and that ∆pq,Kq does not contain
any element of the form pq1, εq nor pq1, aq nor pq, abq with a ‰ K or b “ K, i.e. the bottom-of-stack symbol can only occur
at the bottom of the stack, and is never popped nor rewritten.

An abstract pushdown content is a word in St “ KpAztKuq˚. A configuration of A is a pair pq, uq with q P Q and
u P St.

Remark 9. In general an abstract pushdown automaton is not finitely describable, as the domain of ∆ is infinite and no
further assumption is made on ∆.

Example 22. An order-1 pushdown process is an abstract pushdown automaton whose stack alphabet is finite.

A abstract pushdown automaton A induces a possibly infinite graph, called an abstract pushdown graph, denoted G “
pV,Eq, whose vertices are the configurations of A and edges are defined by the transition relation ∆, i.e., from a vertex
pq, u ¨ aq one has an edge to pq1, u ¨ u1q whenever pq1, u1q P ∆pq, aq.

Example 23. Order-n CPDP that does not create n-links (i.e. never use stack operation of the form push
γ,n
1 ) are special

cases of abstract pushdown automata. Indeed, let n ą 1 and consider such an order-n CPDP A “ xΓ, Q,∆, q0y. Let A be
the set of all order-pn´ 1q stacks over Γ, and for every p P Q and a P A with γ “ top1paq, we define ∆1pp, aq by

‚ pq, εq P ∆1pp, aq iff pq, popnq P ∆pq, γq;
‚ pq, a1 ¨ a1q P ∆1pp, aq with a1 “ rewα

1 paq iff pq, rewα
1 ; pushnq P ∆pq, γq;

‚ pq, a1q P ∆1pp, aq with a1 “ opprewα
1 paqq iff pq, rewα

1 ; opq P ∆pq, γq and op R tpopn, pushnu.

It follows that A and the abstract pushdown automaton xA,Q,∆1, q0y have isomorphic transition graphs.

Consider now a partition QE Y QA of Q between Éloïse and Abelard. It induces a natural partition VE Y VA of V by
setting VE “ QE ˆ St and VA “ QA ˆ St. The resulting game graph Gabs “ pVE, VA, Eq is called an abstract pushdown
game graph. Let Ω be a colouring function from Q to a finite set of colours C Ă N. This function is easily extended to a
function from V to C by setting Ωppq, σqq “ Ωpqq. Finally, an abstract pushdown parity game is a parity game played on
such an abstract pushdown game graph where the colouring function is defined as above.

For every subset R Ď Q we define the conditional game induced by R over Gabs, denoted GabspRq, as the game played
over Gabs where a play Λ is winning for Éloïse iff one of the following happens:

‚ In Λ no configuration with an empty stack (i.e. of the form pq,Kq) is visited, and Λ satisfies the parity condition.
‚ In Λ a configuration with an empty stack is visited and the control state in the first such configuration belongs to R.

More formally, the set of winning plays WpRq in GabspRq is defined as follows (Wpar stands for the parity condition on
Gabs):

WpRq “ rWparzV ˚pQˆ tKuqV ωs Y V ˚pR ˆ tKuqV ω

For any state q, any stack letter a ‰ K, and any subset R Ď Q it follows from Martin’s Determinacy theorem [A5] that
either Éloïse or Abelard has a winning strategy from pq,Kaq in GabspRq. We denote by Rpq, aq the set of subsets R for
which Éloïse wins in GabspRq from pq,Kaq:

Rpq, aq “ tR Ď Q | pq,Kaq is winning for Éloïse in GabspRqu

We now build a new game whose winning region embeds all the information needed to determine the sets Rpq, aq.
Moreover in the underlying game graph the vertices no longer encode stacks.

For an infinite play Λ “ v0v1 ¨ ¨ ¨ in Gabs, let StepsΛ be the set of indices of positions where no configuration of strictly
smaller stack height is visited later in the play. More formally, StepsΛ “ ti P N | @j ě i shpvjq ě shpviqu, where
shppq,Ka1 ¨ ¨ ¨ anqq “ n`1. Note that StepsΛ is always infinite and hence induces a decomposition of the play Λ into finite
pieces.

In the decomposition induced by StepsΛ, a factor vi ¨ ¨ ¨ vj is called a bump if shpvjq “ shpviq, called a Stair otherwise
(that is, if shpvjq “ shpviq ` 1 and j “ i` 1).

For any play Λ with StepsΛ “ tn0 ă n1 ă ¨ ¨ ¨ u, we can define the sequence pmcolΛi qiě0 P NN by letting mcolΛi “
mintΩpvkq | ni ď k ď ni`1u. This sequence fully characterises the parity condition.
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Proposition 9. For a play Λ, Λ P Wpar iff lim infppmcolΛi qiě0q is even.

In the sequel, we build a new parity game rG over a new game graph rG “ prV , rEq. This new game simulates the abstract
pushdown graph, in the sense that the sequence of visited colours during a correct simulation of some play Λ in Gabs is
exactly the sequence pmcolΛi qiě0. Moreover, a play in which a player does not correctly simulate the abstract pushdown game
is losing for that player. We will show how the winning region in rG allows us to compute the sets ta P A | R P Rpq, aqu.

Before providing a description of the game graph rG, let us consider the following informal description of this simulation
game. We aim at simulating a play in the abstract pushdown game from the initial configuration pq0,Kq. In rG we keep track
of only the control state and the top stack symbol of the simulated configuration.

The interesting case is when the simulated play is in configuration with control state p and top stack symbol a, and the
player owning p wants to perform transition pq, a1bq, i.e. go to state q, rewrite a into a1 and push b on top of it. For every
strategy of Éloïse, there is a certain set of possible (finite) prolongation of the play (consistent with her strategy) that will
end with popping b (or actually a symbol into which b was rewritten in the meantime) from the stack. We require Éloïse to
declare a vector

ÝÑ
S “ pS0, . . . , Sdq of p`1q subsets of Q, where Si is the set of all states the game can be in after popping

(possibly a rewriting of) b along those plays where in addition the smallest visited colour while (possibly a rewriting of) b
was on the stack is i.

Abelard has two choices. He can continue the game by pushing b onto the stack and updating the state (we call this a
pursue move). Otherwise, he can pick a set Si and a state s P Si, and continue the simulation from that state s (we call this
a jump move). If he does a pursue move, then he remembers the vector

ÝÑ
S claimed by Éloïse; if later on, a transition of the

form ps, εq P Qˆ tεu is simulated, the play goes into a sink state (either tt or ff ) that is winning for Éloïse if and only if
the resulting state is in Sθ where θ is the smallest colour seen in the current level (this information will be encoded in the
control state, reset after each pursue move and updated after each jump move). If Abelard does a jump move to a state s in
Si, the currently stored value for θ is updated to minpθ, i,Ωpsqq, which is the smallest colour seen since the current stack
level was reached.

There are extra edges to simulate transition of the form pq, a1q P Qˆ A where the top stack element and the value of θ
are updated.

(q, a′,
−→

R,min(θ,Ω(q)))

tt ff(p, a,
−→

R, θ)

(p, a′,
−→

R, θ, q, b)

(p, a′,
−→

R, θ, q, b,
−→

S )

(q, b,
−→

S ,Ω(q)) (s, a′,
−→

R,min(θ, i,Ω(s)), i) (s, a′,
−→

R,min(θ, i,Ω(s)))

If ∃ (r, ε) ∈ ∆(p, a) s.t. r ∈ Rθ If ∃ (r, ε) ∈ ∆(p, a) s.t. r /∈ R

∀ (q, a′) ∈ ∆(p, a)

∀ (q, a′b) ∈ ∆(p, a)

∀
−→
S ∈ (2Q)d+1

∀ s ∈ Si

Figure 5. Local structure of rG.

Let us now precisely describe the game graph rG. We refer the reader to Figure 5.
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‚ The main vertices of rG are those of the form pp, a,
ÝÑ
R, θq, where p P Q, a P A,

ÝÑ
R “ pR0, . . . , Rdq P p2Qqd`1 and

θ P t0, . . . , du. A vertex pp, a,
ÝÑ
R, θq is reached when simulating a partial play Λ in Gabs such that:

– The last vertex in Λ is pp, uaq for some u P A˚.
– Éloïse claims that she has a strategy to continue Λ in such a way that if a (or a rewriting of it) is eventually

popped, the control state reached after popping belongs to Ri, where i is the smallest colour visited since the stack
height was at least |ua|.

– The colour θ is the smallest one since the current stack level was reached from a lower stack level.

A vertex pp, a,
ÝÑ
R, θq is controlled by Éloïse if and only if p P QE.

‚ The vertices tt and ff are here to ensure that the vectors
ÝÑ
R encoded in the main vertices are correct. Both are sink

vertices and are controlled by Abelard. Vertex tt gets colour 0 and vertex ff gets colour 1. As these vertices are sinks,
a play reaching tt is won by Éloïse whereas a play reaching ff is won by Abelard.
There is a transition from some vertex pp, a,

ÝÑ
R, θq to tt, if and only if there exists a transition rule pr, εq P ∆pp, aq,

such that r P Rθ (this means that
ÝÑ
R is correct with respect to this transition rule). Dually, there is a transition from a

vertex pp, a,
ÝÑ
R, θq to ff if and only if there exists a transition rule pr, εq P ∆pp, aq such that r R Rθ (this means that

ÝÑ
R is not correct with respect to this transition rule).

‚ To simulate a transition rule pq, a1q P ∆pp, aq, the player that controls pp, a,
ÝÑ
R, θq moves to pq, a1,

ÝÑ
R,minpθ,Ωpqqqq.

Note that the last component has to be updated as the smallest colour seen since the current stack level was reached
is now minpθ,Ωpqqq.

‚ To simulate a transition rule pq, a1bq P ∆pp, aq, the player that controls pp, a,
ÝÑ
R, θq moves to pp, a1,

ÝÑ
R, θ, q, bq. This

vertex is controlled by Éloïse who has to give a vector
ÝÑ
S “ pS0, . . . , Sdq P p2Qqd`1 that describes the control states

that can be reached if b (or a symbol that rewrites it later) is eventually popped. To describe this vector, she goes to
the corresponding vertex pp, a1,

ÝÑ
R, θ, q, b,

ÝÑ
S q.

Any vertex pp, a1,
ÝÑ
R, θ, q, b,

ÝÑ
S q is controlled by Abelard who chooses either to simulate a bump or a stair. In the first

case, he additionally has to pick the minimal colour of the bump. To simulate a bump with minimal colour i, he goes
to a vertex ps, a1,

ÝÑ
R,minpθ, i,Ωpsqqq, for some s P Si, through an intermediate vertex ps, a1,

ÝÑ
R,minpθ, i,Ωpsqq, iq

coloured by i.
To simulate a stair, Abelard goes to the vertex pq, b,

ÝÑ
S ,Ωpqqq.

The last component of the vertex (that stores the smallest colour seen since the currently simulated stack level was
reached) has to be updated in all those cases. After simulating a bump of minimal colour i, the minimal colour is
minpθ, i,Ωpsqq. After simulating a stair, this colour has to be initialised (since a new stack level is simulated). Its value,
is therefore Ωpqq, which is the unique colour since the (new) stack level was reached.

The vertices of the form pp, a,
ÝÑ
R, θq get colours Ωppq. Intermediate vertices of the form pp, a1,

ÝÑ
R, θ, q, bq or

pp, a1,
ÝÑ
R, θ, q, b,

ÝÑ
S q get colours d.

The following theorem relates the winning region in rG with Gabs and the conditional games induced over Gabs.

Theorem 9. The following holds.

1) A configuration ppin,Kq is winning for Éloïse in Gabs if and only if ppin,K, p∅, . . . ,∅q,Ωppinqq is winning for Éloïse
in rG.

2) For every q P Q, a P A and R Ď Q, R P Rpq, aq if and only if pq, a, pR, . . . , Rq,Ωpqqq is winning for Éloïse in rG.

The rest of the section is devoted to the proof of Theorem 9. We mainly focus on the proof of the first item, the proof
of the second one being a subpart of it. We start by introducing some useful concept and then prove both implications.

To help readability, we will use upper-case letters, e.g. Λ or Φ, to denote objects (plays, strategies. . . ) in Gabs, and
lower-case letters, e.g. λ or ϕ, to denote objects in rG.

Recall that for an infinite play Λ “ v0v1 ¨ ¨ ¨ in Gabs StepsΛ denote the set of indices of positions where no configuration
of strictly smaller stack height is visited later in the play. More formally, StepsΛ “ ti P N | @j ě i shpvjq ě shpviqu,
where shppq,Ka1 ¨ ¨ ¨ anqq “ n` 1. Note that StepsΛ is always infinite and hence induces a factorisation of the play Λ into
finite pieces. Recall that for any play Λ with StepsΛ “ tn0 ă n1 ă ¨ ¨ ¨ u, we define the sequence pmcolΛi qiě0 P N

N by
letting mcolΛi “ mintΩpvkq | ni ď k ď ni`1u.

Indeed, for any play Λ with StepsΛ “ tn0 ă n1 ă ¨ ¨ ¨ u, one can define the sequence pΛiqiě0 by letting Λi “ vni
¨ ¨ ¨ vni`1

.
Note that each of the Λi is either a bump or a stair. In the later we designate pΛiqiě0 as the rounds factorisation of Λ.

For any play λ in rG, a round is a factor between two visits through vertices of the form pp, a,
ÝÑ
R, θq. We have the following

possible forms for a round.
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‚ The round is of the form pp, a,
ÝÑ
R, θqpq, a1,

ÝÑ
R, θq and corresponds therefore to the simulation of a transition pq, a1q. We

designate it as a trivial bump.
‚ The round is of the form pp, a,

ÝÑ
R, θqpp, a1,

ÝÑ
R, θ, q, bqpp, a1,

ÝÑ
R, θ, q, b,

ÝÑ
S q

ps, a1,
ÝÑ
R,minpθ, i,Ωpsqq, iqps, a1,

ÝÑ
R,minpθ, i,Ωpsqqq and corresponds therefore to the simulation of a transition pq, a1bq

pushing b followed by a sequence of moves that ends by popping b (or a rewriting of it). Moreover i is the smallest
colour encountered while b (or other top stack symbol obtained by successively rewriting it) was on the stack. We
designate it as a (non-trivial) bump.

‚ The round is of the form pp, a,
ÝÑ
R, θqpp, a1,

ÝÑ
R, θ, q, bqpp, a1,

ÝÑ
R, θ, q, b,

ÝÑ
S q

pq, b,
ÝÑ
S ,Ωpqqq and corresponds therefore to the simulation of a transition pq, a1bq pushing a symbol b leading to a new

stack level which the play will never go below. We designate it as a stair.

We define the colour of a round as the smallest colour of the vertices in the round.
For any play λ “ v0v1v2 ¨ ¨ ¨ in rG, we consider the subset of indices corresponding to vertices of the form pp, a,

ÝÑ
R, θq.

More precisely:

Roundsλ “ tn | vn “ pp, a,
ÝÑ
R, θq, p P Q, a P A,

ÝÑ
R P p2Qqd`1, 0 ď θ ď du

The set Roundsλ induces a natural factorisation of λ into rounds. Indeed, let Roundsλ “ tn0 ă n1 ă n2 ă ¨ ¨ ¨ u, then
for all 0 ď i ă |Roundsλ| we let λi “ vni

¨ ¨ ¨ vni`1
. We call the sequence pλiqiě0 the round factorisation of λ. For every

i ě 0, λi is a round and the first vertex in λi`1 equals the last one in λi. Moreover, λ “ λ1 dλ2 dλ3 d¨ ¨ ¨ , where λi dλi`1

denotes the concatenation of λi with λi`1 without its first vertex.
In order to prove both implications of Theorem 9, we build from a winning strategy for Éloïse in one game a winning

strategy for her in the other game. The main argument to prove that the new strategy is winning is to prove a correspondence
between the factorisations of plays in both games.

Direct implication.

Assume that the configuration ppin,Kq is winning for Éloïse in Gabs, and let Φ be a corresponding winning strategy for
her.

Using Φ, we define a strategy ϕ for Éloïse in rG from ppin,K, p∅, . . . ,∅q,Ωppinqq. The strategy ϕ maintains as a memory
a partial play Λ in Gabs, that is an element in V ˚

abs (where Vabs denotes the set of vertices of Gabs). At the beginning Λ is
initialised to the vertex ppin,Kq. We first describe ϕ, and then we explain how Λ is updated. Both the strategy ϕ and the
update of Λ, are described for a round.
Choice of the move. Assume that the play is in some vertex pp, a,

ÝÑ
R, θq for p P QE. The move given by ϕ depends on

ΦpΛq:

‚ If ΦpΛq “ pr, εq, then Éloïse goes to tt (Proposition 10 will prove that this move is always possible).
‚ If ΦpΛq “ pq, a1q, then Éloïse goes to pq, a1b,

ÝÑ
R,minpθ,Ωpqqqq.

‚ If ΦpΛq “ pq, a1bq, then Éloïse goes to pp, a1,
ÝÑ
R, θ, q, bq.

In this last case, or in the case where p P QA and Abelard goes to pp, a1,
ÝÑ
R, θ, q, bq, we also have to explain how Éloïse

behaves from pp, a1,
ÝÑ
R, θ, q, bq. She has to provide a vector

ÝÑ
S P p2Qqd`1 that describes which states can be reached if b

(or its successors by top rewriting) is eventually popped, depending on the smallest visited colour in the meantime. In order
to define

ÝÑ
S , Éloïse considers the set of all possible continuations of Λ ¨ pq, ua1bq (where pp, uaq denotes the last vertex of

Λ) where she respects her strategy Φ. For each such play, she checks whether some configuration of the form ps, ua1q is
visited after Λ ¨ pq, ua1bq, that is if the stack level of b is eventually left. If it is the case, she considers the first configuration
ps, ua1q appearing after Λ ¨ pq, ua1bq and the smallest colour i since b and (possibly) its successors by top-rewriting were on
the stack. For every i P t0, . . . du, Si, is exactly the set of states s P Q such that the preceding case happens. More formally,

Si “ ts | D Λ ¨ pq, ua1bqv0 ¨ ¨ ¨ vkps, ua1q ¨ ¨ ¨ play in Gabs where Éloïse respects Φ and

s.t. |vj | ą |ua|, @j “ 0, . . . , k and minptΩpvjq | j “ 0, . . . , ku Y tΩpqquq “ iu

Finally, we let
ÝÑ
S “ pS0, . . . , Sdq and Éloïse moves to pp, a1,

ÝÑ
R, θ, q, b,

ÝÑ
S q.

Update of Λ. The memory Λ is updated after each visit to a vertex of the form pp, a,
ÝÑ
R, θq. We have three cases depending

on the kind of the last round:

‚ The round is a trivial bump and therefore a pq, a1q transition was simulated. Let pp, uaq be the last vertex in Λ, then
the updated memory is Λ ¨ pq, ua1q.
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‚ The round is a bump, and therefore a bump of colour i (where i is the colour of the round) starting with some transition
pq, a1bq and ending in a state s P Si was simulated. Let pp, uaq be the last vertex in Λ. Then the memory becomes Λ

extended by pq, ua1bq followed by a sequence of moves, where Éloïse respects Φ, that ends by popping b and reach
ps, ua1q while having i as smallest colour. By definition of Si such a sequence of moves always exists.

‚ The round is a stair and therefore we have simulated a pq, a1bq transition. If pp, uaq denotes the last vertex in Λ, then
the updated memory is Λ ¨ pq, ua1bq.

Therefore, with any partial play λ in rG in which Éloïse respects her strategy ϕ, is associated a partial play Λ in Gabs.
An immediate induction shows that Éloïse respects Φ in Λ. The same arguments works for an infinite play λ, and the
corresponding play Λ is therefore infinite, starts from ppin,Kq and Éloïse respects Φ in that play. Therefore it is a winning
play.

The following proposition is a direct consequence of how ϕ was defined.

Proposition 10. Let λ be a partial play in rG that starts from ppin,K, p∅, . . . ,∅q,Ωppinqq, ends in a vertex of the form
pp, a,

ÝÑ
R, θq, and where Éloïse respects ϕ. Let Λ be the play associated with λ built by the strategy ϕ. Then the following

holds:

1) Λ ends in a vertex of the form pp, uaq for some u P A˚.
2) θ is the smallest visited colour in Λ since a (or a symbol that was later rewritten as a) has been pushed.
3) Assume that Λ is extended, that Éloïse keeps respecting Φ and that the next move after pp, uaq is to some vertex pr, uq.

Then r P Rθ.

Proposition 10 implies that the strategy ϕ is well defined when it provides a move to tt. Moreover, one can deduce that,
if Éloïse respects ϕ, ff is never reached.

For plays that never reach the sink state tt, using the definitions of rG and ϕ, we easily deduce the following proposition.

Proposition 11. Let λ be a play in rG that starts from ppin,K, p∅, . . . ,∅q,Ωppinqq, and where Éloïse respects ϕ. Assume
that λ never visit tt, let Λ be the associated play built by the strategy ϕ, and let pΛiqiě0 be its rounds factorisation. Let
pλiqiě0 be the rounds factorisation of λ. Then, for every i ě 1 the following hold:

1) λi is a bump if and only if Λi is a bump
2) λi has colour mcolΛi .

Now consider a play λ in rG starting from ppin,K, p∅, . . . ,∅q, Ωppinqq where Éloïse respects ϕ. Either the λ loops
in tt (hence is won by Éloïse). Or, thanks to Proposition 11 the sequence of visited colours in λ is pmcolΛi qiě0 for the
corresponding play Λ in Gabs. Hence, using Proposition 9 we conclude that λ is winning if and only if Λ is winning; as Λ

is winning for Éloïse, it follows that λ is also winning for her.

Converse implication.

First note that in order to prove the converse implication one could follow the direct implication and consider the point of
view of Abelard. Nevertheless the proof we give here starts from a winning strategy for Éloïse in rG and deduces a strategy
for her in Gabs: this induces a more involved proof but has the advantage to lead to an effective construction of a winning
strategy for Éloïse in Gabs if one has an effective strategy for her in rG.

Assume now that Éloïse has a winning strategy ϕ in rG from ppin,K, p∅, . . . ,∅q,Ωppinqq. Using ϕ, we build a strategy
Φ for Éloïse in Gabs for plays starting from ppin,Kq.

The strategy Φ maintains as a memory a partial play λ in rG, that is an element in rV ˚. At the beginning λ is initialised
to ppin,K, p∅, . . . ,∅q,Ωppinqq

For any play Λ where Éloïse respects Φ the following will hold.

‚ λ is a play in rG that starts from ppin,K, p∅, . . . ,∅q,Ωppinqq and where Éloïse respects her winning strategy ϕ.
‚ The last vertex of λ is some pp, a,

ÝÑ
R, θq if and only if the current configuration in Λ is of the form pp, uaq.

‚ If Éloïse keeps respecting Φ, and if a (or a symbol that rewrite it later) is eventually popped the configuration reached
will be of the form pr, uq for some r P Ri, where i is the smallest visited colour since a (or some symbol that was
later rewritten as a) was on the stack.

Note that initially the previous invariants trivially hold.
In order to describe Φ, we assume that we are in some configuration pp, uaq and that the last vertex of λ is some

pp, a,
ÝÑ
R, θq. We first describe how Éloïse plays if p P QE, and then we explain how Ď is updated.

Choice of the move. Assume that p P QE. Then the move given by Φ depends on ϕpλq.
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‚ If ϕpλq “ pq, a1,
ÝÑ
R,minpθ,Ωpqqqq, Éloïse plays transition pq, a1q.

‚ If ϕpλq “ pp, a1,
ÝÑ
R, θ, q, bq, then Éloïse applies plays transition pq, a1bq.

‚ If ϕpλq “ tt, Éloïse plays transition pr, εq for some state r P Rθ . Lemma 6 will prove that such an r always exists.
Update of λ. The memory λ is updated after each move (played by any of the two players). We have several cases depending
on the last transition.

‚ If the last move was from pp, uaq to pq, ua1q then the updated memory is λ ¨ pq, a1,
ÝÑ
R,minpθ,Ωpqqqq.

‚ If the last move was from pp, uaq to pq, ua1bq, let pp, a1,
ÝÑ
R, θ, q, b,

ÝÑ
S q “ ϕpλ¨pp, a1,

ÝÑ
R, θ, q, bqq. Intuitively,

ÝÑ
S describes

which states Éloïse can force a play to reach if b is eventually popped. Then the updated memory is λ¨pp, a1,
ÝÑ
R, θ, q, bq¨

pp, a1,
ÝÑ
R, θ, q, b,

ÝÑ
S q ¨ pq, b,

ÝÑ
S ,Ωpqqq.

‚ If the last move was from pp, uaq to pr, uq the update of λ is as follows. One backtrack in λ until one finds
a configuration of the form pp1, a1,

ÝÑ
R1, θ1, p2, a2,

ÝÑ
R q that is not immediately followed by a vertex of the form

ps, a2,
ÝÑ
R, θ2, iq. This configuration is therefore in the stair that simulates the pushing of a2 onto the stack (here

if a2 ‰ a then a2 was later rewritten as a). Call λ1 the prefix of λ ending in this configuration. The updated
memory is λ1 ¨ pr, a1,

ÝÑ
R1,minpθ1, θ,Ωprqq, θq ¨ pr, a1,

ÝÑ
R1,minpθ1, θ,Ωprqqq. Formally, write λ “ λ1 d λ2 d ¨ ¨ ¨ d λk

where pλiq1ďiďk is the round factorisation of λ. Let h ď k be the largest integer such that λh is a
stair and let λh “ pp1, a1,

ÝÑ
R1, θ1qpp1, a1,

ÝÑ
R1, θ1, p2, a2qpp1, a1,

ÝÑ
R1, θ1, p2, a2,

ÝÑ
R qpp2, a2,

ÝÑ
R,Ωpp2q. Define λ1

h “

pp1, a1,
ÝÑ
R1, θ1qpp1, a1,

ÝÑ
R1, θ1, p2, a2qpp1, a1,

ÝÑ
R1, θ1, p2, a2,

ÝÑ
R qpr, a1,

ÝÑ
R1,minpθ1, θ,Ωprqq, θq ¨ pr, a1,

ÝÑ
R1,minpθ1, θ,Ωprqqq.

Then the updated memory is λ1 d λ2 d ¨ ¨ ¨ d λh´1 d λ1
h.

The following lemma gives the meaning of the information stored in Ď.

Lemma 6. Let Λ be a partial play in Gabs, where Éloïse respects Φ, that starts from ppin,Kq and that ends in a configuration
pp, uaq. We have the following facts:

1) The last vertex of λ is pp, a,
ÝÑ
R, θq with

ÝÑ
R P p2Qqd`1 and 0 ď θ ď d.

2) λ is a partial play in rG that starts from ppin,K, p∅, . . . ,∅q,Ωppinqq, that ends with pp, a,
ÝÑ
R, θq and where Éloïse

respects ϕ.
3) θ is the smallest colour visited since a (or some symbol that was later rewritten as a) was pushed.
4) If Λ is extended by some move that pops a, the configuration pr, uq that is reached is such that r P Rθ.

Proof: The proof goes by induction on Λ. We first show that the last point is a consequence of the second and third
points. Assume that the next move after pp, uaq is to play a transition pr, εq P ∆pp, aq. The second point implies that
pp, a,

ÝÑ
R, θq is winning for Éloïse in rG. If p P QE, by definition of Φ, there is some edge from that vertex to tt, which

means that r P Rθ and allows us to conclude. If p P QA, note that there is no edge from pp, a,
ÝÑ
R, θq (winning position for

Éloïse) to the losing vertex ff . Hence we conclude the same way.
Let us now prove the other points. For this, assume that the result is proved for some play Λ, and let Λ1 be an extension

of Λ. We have two cases, depending on how Λ1 extends Λ:
‚ Λ1 is obtained by applying a transition of the form pq, a1q or pq, a1bq. The result is trivial in that case.
‚ Λ1 is obtained by applying a transition of the form pr, εq. Let pp, uaq be the last configuration in Λ, and let

ÝÑ
R be the

last vector component in the last vertex of λ when in configuration pp, uaq. By the induction hypothesis, it follows that
Λ1 “ Λ ¨ pr, uq with r P Rθ. Considering how λ is updated, and using the fourth point, we easily deduce that the new
memory λ is as desired.

Actually, we easily deduce a more precise result.

Lemma 7. Let Λ be a partial play in Gabs starting from ppin,Kq and where Éloïse respects Φ and let pΛiqiě0 be its rounds
factorisation. Let pλiqi“0,...,k be the rounds factorisation of λ. Then the following holds:

‚ λi is a bump if and only if Λi is a bump.
‚ λi has colour mcolΛi .

Both lemmas 6 and 7 are for partial plays. A version for infinite plays would allow us to conclude. Let Λ be an infinite
play in Gabs. We define an infinite version of λ by considering the limit of the pλiqqiě0 where λi is the memory after the
i first moves in Λ. See Footnote 11 on page 36 for a similar construction. It is easily seen that such a limit always exists,
is infinite and corresponds to a play won by Éloïse in rG. Moreover the results of Lemma 7 apply.

Let Λ be a play in Gabs with initial vertex ppin,Kq, and where Éloïse respects Φ, and let λ be the associated infinite play
in rG. Therefore λ is won by Éloïse. Using Lemma 7 and Proposition 9, we conclude, as in the direct implication that Λ is
winning.
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Main Result.

Theorem 10. For any n-CPDP Alf “ xΓlf , Qlf ,∆lf , q0,lfy that does not create n-links and any associated parity game Glf ,
one can construct an pn ´ 1q-CPDP rA “ xrΓ, rQ, r∆, rq0y and an associated parity game rG such that the following holds.

‚ pq0,lf ,Knq is winning for Éloïse in Glf if and only if p rq0,Kn´1q is winning for Éloïse in rG .
‚ If there is an pn ´ 1q-CPDA transducer rS synchronised with rA realising a well-defined winning strategy for Éloïse

in rG from p rq0,Kn´1q, then one can effectively construct an n-CPDA transducer Slf synchronised with Alf realising a
well-defined winning strategy for Éloïse in Glf from the initial configuration pq0,lf ,Knq.

Proof:
Following Example 23, Alf can be seen as an abstract pushdown automaton. In particular, we can apply the construction

of Section D7. We claim that the resulting game rG is associated with an pn ´ 1q-CPDP.
Indeed, one simply needs to consider how the graph rG is defined and make the following observations concerning the

local structure given in Figure 5 when G is played on the transition graph of an n-CPDP that does not create links.

1) For every vertex of the form pp, a,
ÝÑ
R, θq, pp, a,

ÝÑ
R, θ, q, bq, pp, a,

ÝÑ
R, θ, q, b,

ÝÑ
S q or ps, a, ~R, θ1, iq, a and b are pn´ 1q-

stack.
2) For every vertex of the form pp, a,

ÝÑ
R, θ, q, bq or pp, a,

ÝÑ
R, θ, q, b,

ÝÑ
S q, one has a “ b.

This implies that any vertex in rG can be seen as a pair formed by a state in a finite set and an pn ´ 1q-stack. Then one
concludes the proof by checking that the edge relation is the one of an pn ´ 1q-CPDP (for the transition to vertices tt and
ff one introduces vertices ptt, aq and pff, aq for any pn´ 1q-stack a).

Therefore, the first point follows by Theorem 9.
We now turn to the last point and therefore assume that there is an pn ´ 1q-CPDA transducer rS synchronised with rA

realising a well-defined winning strategy ϕ for Éloïse in rG from p rq0,Kn´1q. We argue that the strategy Φ constructed in
the proof of Theorem 9 can be realised, when Gabs is obtained from an n-CPDP Alf that does not create n-links, by an
n-CPDA transducer Slf synchronised with Alf .

For this, let us first have a closer look at Φ. The key ingredient in Φ is the play λ in rG, and the value of Φ uniquely
depends on ϕpλq. In particular, if ϕ is realised by an pn ´ 1q-CPDA transducer rS , it suffices to know the configuration of
rS after reading λ in order to define Φ. We claim that it can be computed by an n-CPDA transducer Slf (synchronised with
Alf ); the hard part being to establish that such a device can update correctly its memory.

Let λ “ v0v1 ¨ ¨ ¨ vℓ and let rλ “ pp0, s0qpp1, s1q ¨ ¨ ¨ ppℓ, sℓq be the run of S associated with λ, i.e. after having played
v0 ¨ ¨ ¨ vk, S is in configuration ppk, skq. Denote by Lastprλq the last configuration of rλ, i.e. ppℓ, sℓq. To define Φ, Lastprλq
suffices but of course, in order to update Lastprλq, we need to recall some more configurations from rλ. In the case where
the last transition applies an order-k stack operation with k ă n (i.e. it is neither popn nor pushn), then the update is
simple, as it consists in simulating one step of S. If the last stack operation is pushn then the update of λ consists in
adding three vertices and the corresponding update of rλ is simple (as the only operation on the pn´ 1q-stack is to rewrite
the top1-element). If the last stack operation is popn one needs to backtrack in λ (hence in rλ): the backtrack is to some
vk with k maximal such that vk is of the form pp1, a1,

ÝÑ
R1, θ1, p2, a2,

ÝÑ
R q and vk`1 “ pp2, a2,

ÝÑ
R,Ωpp2qq. Once vk has been

found, the update is fairly simple for both λ and rλ (one simply extends the remaining prefix of λ by two extra vertices
whose stack content is unchanged compared with the one in vk).

Define the following set of indices where λ “ v0v1 ¨ ¨ ¨ vℓ

Extpλq “ th | vh is of the form pp1, a1,
ÝÑ
R1, θ1, p2, a2,

ÝÑ
R q and vh`1 “ pp2, a2,

ÝÑ
R,Ωpp2qqu Y tℓu

Note that after a partial play Λ the cardinality of Extpλq is equal to the height of the stack in the last configuration of Λ.
For any partial play Λ in Glf define the following n-stack (note that it does not contain any n-link)

MempΛq “ [s1
k1
s1
k2

¨ ¨ ¨ s1
kh
]

where we let

‚ Extpλq “ tk1 ă ¨ ¨ ¨ khu, λ being the memory associated with Λ as in the proof of Theorem 9
‚ s1

j is the pn ´ 1q-stack obtained from sj (recall that ppj , sjq denotes the j-th configuration of rλ) by appending pj to
its top1-symbol (i.e. we work on an enriched stack alphabet).

Note that Lastprλq is essentially top1pMempΛqq as the only difference is that now the control state is stored in the
stack. Moreover MempΛq can easily be updated by an n-CPDA transducer: for the case of a transition involving an order-k
stack operation with k ă n one simulates S on top1pMempΛqq; for the case of a transition involving a pushn one first
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simulates S on top1pMempΛqq (as one may do a rew1 before pushn) and then makes a pushn to duplicate the topmost
pn ´ 1q-stack in MempΛq; finally, for the case of a popn, one simply needs to do a popn in MempΛq to backtrack and
then update the control state. This is how we define Slf

12.
The fact that Slf is synchronised with Alf comes from the definition of how Slf behaves when the transition in Alf

involves a popn or a pushn, and for the other cases it follows from the initial assumption of S being synchronised with
rA.

If we summarise, the overall blowup in the transformation from Glf to rG given by Theorem 10 is as follows.

Proposition 12. Let Alf and rA be as in Theorem 10. Then the set of states of rA has size Op22pd`1q|Qlf |q and the stack
alphabet of rA has size Op|Γlf |q.

Finally the set of colours used in Glf and rG are the same.

Proof: By construction.

8) Proof of Theorem 5: .

The proof of Theorem 5 consists in combining theorems 6, 7 and 10. Indeed, starting from an n-CPDP, by pn ´ 1q
successive applications of this three results, we obtain a 1-CPDP parity game. If we apply to this latter (pushdown) game
the construction of Section D7 we end up with a game on a finite graph. Solving this game and following the chain of
equivalences provided by theorems 6, 7 and 10 concludes the proof.

Concerning complexity, one step of successive application of the construction in theorems 6, 7 and 10 results in an
pn´ 1q-CPDP with stack alphabet of size Op|Γ|2 ¨ 2|Q|pd`1qn`5

q and state set of size Op2|Q|pd`1qn`5

q (complexity follows
from propositions 5, 8 and 12.

If one let expk be the function defined by exp0pxq “ x for all x and expk`1pxq “ 2expkpxq, we conclude that the
1-CPDP obtained after pn ´ 1q successive applications of the three reductions has a stack alphabet of size Op|Γ|2pn´1q ¨
expn´1p|Q|pd ` 1qn`5qq and state set of size Opexpn´1p|Q|pd ` 1qn`5qq. Finally the finite game we obtain is a parity
game with pd ` 1q colours on a graph with Op|Γ|4pn´1qexpnp|Q|pd ` 1qn`6qq vertices. This latter game can be solve in
Opr|Γ|4pn´1qexpnp|Q|pd` 1qn`6qsdq

In particular the overall complexity of deciding the winner in an n-CPDP parity game is:

‚ n-times exponential in the number of states of the CPDP;
‚ pn` 1q-times exponential in the number of colours;
‚ polynomial in the stack alphabet of the CPDP.

Hardness already holds when one considers reachability condition (i.e. does the play visit a configuration with a final
control state?) for games generated by higher-order pushdown automata (i.e. CPDP that never use collapse). A self content
proof of this result was established by Thierry Cachat and Igor Walukiewicz, but was unfortunately not published [A1].

12Technically speaking, if we impose that a transition of Slf does a rew
1

(or id) followed by another stack operation, we may not be able to do the
update of the stack after doing a popn. However, we can use the same trick as the one used to define Ark (see Remark 8).
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E. Proofs Omitted in Section V

1) Proof of Theorem 3: .

Theorem 3. Labeled recursion schemes as well as CPDA have the effective MSO selection property.

Proof: Let ϕpX1, ¨ ¨ ¨ , Xℓq be a monadic second order formula with ℓ second-order free variables, and let S “
xΣ, N,R, Z,K y be a labelled recursion scheme.

Relying on Theorem 1, we consider a CPDA A such that TreeKpSq “ TreeKpAq.
Let tϕ be a term over the ranked alphabet Σ ˆ t0, 1uℓ. We say that tϕ is a marking of a term t over the ranked alphabet

Σ iff t is obtained from tϕ by forgetting the t0, 1uℓ component. Formally, if we let π denotes the natural projection from
Σ ˆ t0, 1uℓ into Σ, we require that t “ tπpuϕq | uϕ P tϕu and that for all uϕ, vϕ P tϕ, πpuϕq “ πpvϕq ñ uϕ “ vϕ (i.e. π
is injective on tϕ).

Let tϕ be a marking of a tree t. Then we define for any 1 ď i ď ℓ the set Ui “ tπpuϕq |
uϕ ends by some pau, bu,1, . . . , bu,ℓq with bu,i “ 1u of nodes in t which are the image by π of a node whose i-th component
is 1.

Thanks to the well-known equivalence between logic and tree automata, there is a nondeterministic parity tree automaton
Bϕ working on Σ ˆ t0, 1uℓ trees such that a tree tϕ is accepted by Bϕ iff tϕ is the marking of a tree t such that ϕpX1 Ð
U1, . . . Xℓ Ð Uℓq holds in t.

Recall that acceptance of a tree by a nondeterministic parity tree automaton can be seen as existence of a winning strategy
in a parity game that is (informally) played as follows. The two players, Éloïse and Abelard move down the tree a pebble
to which is attached a state of the automaton; the play starts at the root (with initial state attached to the pebble); at each
round Éloïse provides a valid transition (w.r.t the current state and the current node label) of the automaton and Abelard
moves the pebble to some son and update the state attached to the pebble according to the transition chosen by Éloïse. In
case the pebble reach a leaf, the play ends and Éloïse wins iff the state is final (we have final states in the tree automaton
to handle finite branches); otherwise the play is infinite and Éloïse wins iff the smallest infinitely visited priority is even.

For some tϕ, the previous acceptance game is easily seen to be a collapsible pushdown games. The underlying arena
is essentially a synchronised product of the transition graph of a collapsible pushdown process with the finite graph
corresponding to Bϕ. Now consider a variant of this game where instead of checking whether a given tϕ is accepted
by Bϕ the players wants to check, for a given tree t, whether there exists some tϕ such that tϕ is accepted by Bϕ and tϕ is
a marking of t. The game is essentially the same, except that now Éloïse is also giving the marking of the current vertex
(i.e. π´1). Again, this leads to a collapsible pushdown game and one directly checks that Éloïse wins from the root iff there
is a marking of t that is accepted by Bϕ. Call G this game and call A1 the underlying CPDP.

Apply Theorem 5 to G. Then either Éloïse has no winning strategy from the initial configuration (call it
pq0, r. . . r K s1 . . .snq) and we are done (there is no selector). Otherwise one can effectively construct an n-CPDA transducer
T synchronised with A1 realising a well-defined winning strategy for Éloïse in G from pq0, r. . . r K s1 . . .snq. As A1 and
T are synchronised, we can consider their synchronised product, call it A2. Hence in A2 the configurations contain extra
informations (coming from T ); in particular, for any configuration, if the control state from the A1 component is controlled
by Éloïse, then the control state from the T component provides the next move Éloïse should play: in particular, it provides a
transition of the tree automaton, together with information regarding the marking. Transform A2 by removing every transition
that is not consistent with the strategy described by T : then the tree generated by this new CPDA is isomorphic to some tϕ
(that is a marking of t) together with an accepting run of Bϕ on it. Now if we forget the component from Bϕ we obtain a
CPDA Aϕ that generates a marking tϕ of t.

Finally, as we can transform Aϕ back to a labeled recursion scheme, we get Sϕ as expected.
The proof for CPDA follows the same line, except that one directly work on CPDP games.

2) Proof of Corollary 3: .

Corollary 3. The µ-calculus model-checking of trees generated by recursion schemes is polynomial under the assumption
that the arity of types and the formula are bounded above by a constant.

Proof: The µ-calculus model-checking of trees generated by recursion schemes reduces to solving CPDP parity games.
If the arity of types and the formula are bounded above by a constant, the number of states in the CPDP generating the
arena as well as the number of colours in the game are bounded as well (see Theorem 1). Then, thanks to the complexity
analysis (see section D8) of Theorem 5, we easily conclude.
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