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Collapsible Pushdown Automata and Labeled Recursion Schemes
Equivalence, Safety and Effective Selection

Arnaud Carayol

Olivier Serre

LIGM (Université Paris Est & CNRS), Paris, France LIAFA (Université Paris Diderot — Paris 7 & CNRS), Paris,France

Abstract—Higher-order recursion schemes are rewriting sys-
tems for simply typed terms and they are known to be equi-
expressive with collapsible pushdown automata (CPDA) for
generating trees. We argue that CPDA are an essential model
when working with recursion schemes. First, we give a new
proof of the translation of schemes into CPDA that does not
appeal to game semantics. Second, we show that this translation
permits to revisit the safety constraint and allows CPDA to be
seen as Krivine machines. Finally, we show that CPDA permit
one to prove the effective MSO selection property for schemes,
subsuming all known decidability results for MSO on schemes.

Keywords-Recursion Schemes, Collapsible Pushdown Au-
tomata, Safety Constraint, MSO Effective Selection

I. INTRODUCTION

Higher-order recursion schemes are rewriting systems for
simply typed terms and in recent years they have received
much attention as a method of constructing rich and robust
classes of possibly infinite ranked trees. Remarkably these
trees have decidable monadic second-order (MSO) theories,
subsuming most of the examples of structures for which
MSO is decidable. Since the original proof of Ong [15]
based on traversals (a tool from game semantics), several
alternative proofs (and extensions) were obtained using
different techniques: automata [9], [2], intersection types
[13], the Krivine machine [18].

In this article we focus on the automata approach. In [9],
schemes were shown to be equi-expressive with an exten-
sion of the standard model of pushdown automata, called
collapsible pushdown automata (CPDA). The translation
from schemes into CPDA crucially relied on traversals. The
decidability of MSO was obtained by solving parity games
played on transition graphs of CPDA. In [2] a refinement of
this proof was used to show that the family of trees generated
by schemes is MSO-reflective, i.e. for any scheme S and any
MSO formula ¢(x) with one first-order free variable z, one
can build another scheme that produces the same tree as S
except that now all nodes satisfying ¢(x) are marked.

In this article, we focus on the merits of CPDA for
studying recursion schemes. As CPDA are more naturally
associated with a labeled transition system (LTS) than with
a tree, we introduce a variant of recursion schemes, labeled
recursion schemes, that admit a canonical LTS. In both

cases, the tree generated is simply the unfolding of the LTS.
Although not technically difficult, we think that this notion
and the associated family of LTS can be the subject of further
studies.

Our first main result is a simplified and syntactic proof of
the translation of a scheme into an equivalent CPDA. This
is the first proof of the equi-expressivity result of [9] that
does not use game semantics. A comparison of the obtained
CPDA can be found at the beginning of Section III.

Furthermore this translation also permits one to view a
CPDA as a Krivine machine, hence inheriting the simplified
proof of [18] for decidability of ;-calculus model-checking.

We also show that when translating a safe scheme we
obtain a CPDA that does not need to use the links. This
result, independently obtained by Blum and Broadbent [1],
unifies the work of [10] on safe schemes and sheds a new
light on safety. As a spin-off result, we give a more natural
definition of safety based on Damm’s original work [6].

Finally, the true gain of the apparently more involved
CPDA model is demonstrated by showing that the trees
defined by recursion schemes enjoy the effective MSO
selection property: for any scheme & and any formula
3X ¢o(X) if the tree ¢ generated by S satisfies 3X p(X),
one can build another scheme generating the tree ¢ where a
set of nodes U satisfying ¢(X) is marked. This new result
subsumes all previously known MSO-decidability results on
recursion schemes (while keeping the same complexity, in
particular the one of [13]) and relies on a careful analysis
of the winning strategies in CPDA parity games.

II. PRELIMINARIES
A. Trees and Terms

Let A be a finite alphabet. We denote by A* the set of
finite words over A. A tree ¢ (with directions in A) is a non-
empty prefix-closed subset of A*. Elements of ¢ are called
nodes and ¢ is called the root of t. For any node u € ¢ and
any direction a € A, we refer to ua, when it belongs to ¢,
as the a-child of u. A node with no child is a leaf.

A ranked alphabet A is an alphabet that comes together
with an arity function, ¢ : A — N. The ferms built over
a ranked alphabet A are those trees with directions A
UfeA? where ? ={f1,..-, fop)} if o(f) >0 and 7 =
{f} if o(f) = 0. For a tree ¢ with directions in A to be a



term, we require, for all nodes wu, that the set A, = {d €
A | ud €t} is empty iff u ends with some f € A (hence
o(f) = 0) and if A, is non-empty then it is equal to some

e A. We denote by Terms(A) the set of terms over A.

For ¢ € A of arity 0, we denote by ¢ the term {e, c}. For
f € A of arity n > 0 and for terms ¢4, . .., ¢,, we denote by
f(t1, ... tn) the term {e} U J;epy 1 {/fi} - i. These notions
are illustrated in Figure 1.

Figure 1. Two representations of the infinite term fz*{ fic, fi,e} =
fle, f(e, f(--+))) over the ranked alphabet {f, ¢} assuming that o(f) = 2
and p(c) = 0.

B. Labeled Transition Systems

A rooted labeled transition system (LTS for short) is
an edge-labeled directed graph with a distinguished vertex,
called the root. When considering LTS associated with
computational models, it is usual to allow silent transitions.
The symbol for silent transitions is usually £ but here, to
avoid confusion with the empty word, we will instead use e.
We forbid a vertex to be the source of both a silent transition
and of a non-silent transition. When X is an alphabet we let
Y. =X\{e}.

Formally, a rooted labeled transition system with silent
transitions L is a tuple ( D, 7,3, (—%),ex ) where D is
a finite or countable set called the domain, r € D is a
distinguished element called the root, ¥ is a finite set of
labels that contains a distinguished symbol denoted ¢ and
forallae Y, < Dx Disa binary relation on D.

For any a € ¥ and any (s,t) € D? we write s —— t
to indicate that (s,t) e—, and we refer to it as an a-
transition with source s and target t. Moreover, we require
that for all s € D, if s is the source of a e-transition, then s
is not the source of any a-transition with a # €. For a word
w=aj--a, € X%, we define a binary relation > onD
by letting s — ¢ (meaning that (s,t) e—) if there exists
a sequence S, ..., S, of elements in D such that so = s,
sp, = t, and for all i € [1,n], 5,1 —> s;. These definitions
are extended to languages over ¥ by taking, for all L < ¥*,
the relation —=> to be the union of all > for w € L.

For all words w = ay---a, € X%, we denote by N

the relation =*> where L, & e*aje*---e*a,e* is the
set of words over X obtained by inserting arbitrarily many
occurrences of € in w.

An LTS is said to be deterministic if for all s,t; and to
inDand all ¢ in 3, if s = ¢; and s — ¢ then t; = to.

Caveat 1. From now on, we always assume that the LTS
we consider are deterministic.

We associate a tree to every LTS L, denoted Tree(L),
with directions in Y., reflecting the possible behaviours of
L starting from the root. For this we let Tree(£) = {w €
Y% | 3se D, r — s}. As L is deterministic, Tree(£) is
obtained by unfolding the underlying graph of £ from its
root and contracting all e-transitions. Figure 2 presents an
Lts with silent transitions together with its associated tree
Tree(L).

As illustrated in Figure 2, the tree Tree(L£) does not reflect
the diverging behaviours of L (i.e. the ability to perform an
infinite sequence of silent transitions). For instance in the
LTs of Figure 2, the vertex s diverges whereas the vertex ¢
does not. A more informative tree can be defined in which
diverging behaviours are indicated by a L-child for some
fresh symbol L. This tree, denoted Tree™ (L), is defined by

letting Tree (£) & Tree(£) u{wl € X*¥ L | ¥n = 0,r Z2

sy, for some s,,}.

a ~ b a b a b
9 el %(1 L% %(:

Figure 2. An LTS £ with silent transitions of root r (on the left), the tree
Tree(L) (in the center) and the tree Tree® (L) (on the right).

C. Types, Applicative Terms

Types are generated by the grammar 7 = o | 7 — 7.
Every type 7 = o can be uniquely written as 71 — (12 —
-+ (Tp > 0)...) wheren > 0 and 71, ..., 7, are types. The
number n is the arity of the type and is denoted by o(7). To
simplify the notation, we take the convention that the arrow
is associative to the right and we write 77 — - - -
(or (11,...,7n,0) to save space).

The order measures the nesting of a type: ord(o) = 0 and
ord(my — 12) = max(ord(r1) + 1,0rd(72)).

Let X be a set of typed symbols. Every symbol f € X
has associated a type 7; we write f : 7 to mean that f has
type 7. The set of applicative terms of type T generated
from X, denoted Terms, (X), is defined by induction over
the following rules. If f : 7 is an element of X then f €
Terms; (X); if s € Termsr, ., (X) and ¢ € Terms,, (X)
then the applicative term obtained by applying s to ¢,
denoted st, belongs to Terms,, (X ). For every applicative
term ¢, and every type 7, we write ¢ : T to mean that ¢ is an
applicative term of type 7. By convention, the application is
considered to be left-associative, thus we write ¢1tot3 instead
of (tltg)tg .

— T, — 0



Example 1. Assuming that f : (0 > 0) >0—>0,g:0—0
and ¢ : o, we have gc: 0, fg:0—o0, fgc=(fg)c:o
and f(fg)c:o.

The set of subterms of ¢, denoted Subs(t), is inductively
defined by Subs(f) = {f} for f € X and Subs(t; t2) =
Subs(t1) U Subs(tz) U {t1t2}. The subterms of the term
f(fg)c:oin Example L are f(fg)c, f. fg. f(fg).c
and g. A less permissive notion is that of argument subterms
of ¢, denoted ASubs(t), which only keep those subterms
that appear as an argument. The set ASubs(t) is inductively
defined by letting ASubs(¢1t2) = ASubs(t1) U ASubs(te) U
{t2} and ASubs(f) = @ for f € X. In particular if
t = Fty---t,, ASubs(t) = U ;(ASubs(t;) U {t;}). The
argument subterms of f (fg)c : o are fg,c and g. In
particular, for all terms ¢, one has |ASubs(t)| < |¢| (the
size |t| of a term is the length of the word representation of

t).

Remark 1. A ranked alphabet A can be seen as a typed
alphabet by assigning to every symbol f of A the type
0 — - -+ — 0 — o. In particular, every symbol in A has order
0 or l.g(ﬁze finite terms over A (seen as a ranked alphabet)
are in bijection with the applicative ground terms over A
(seen as a typed alphabet).

D. Labeled Recursion Schemes

Recursion schemes are grammars for simply typed terms,
and they are often used to generate a possibly infinite term.
Traditionally, recursion schemes are not associated with an
LTs. Here we provide an alternative definition based on LTS.

For each type 7, we assume an infinite set V. of variables
of type 7, such that V;, and V., are disjoint whenever 7; =
79, and we write V for the union of those sets V. as 7
ranges over types. We use letters x, y, ¢, 1, . .. to range over
variables.

A deterministic labeled recursion scheme is a 5-tuple S =
(E,N,R,Z, L) where

e X is a finite set of labels and | is a distinguished

symbol in 3,

« N is a finite set of typed non-terminals; we use upper-

case letters F, G, H, ... to range over non-terminals,

e Z :0€ N is a distinguished initial symbol which does

not appear in any right-hand side,

o R is a finite set of production rules of the form

a
Fzy- -z, — ¢

where a € X\{L}, F': (11, ,7n,0) € N, the x;s
are distinct variables, each z; is of type 7;, and e is a
ground term over (N\{Z}) u{x1,...,2n }.

In addition, we require that there is at most one
production rule starting with a given non-terminal and
labeled by a given symbol.

7
z N S
el lf e z I‘T i 7 % x L/\f
f: i

7 / 0’ e &
PN H | rz/\f
H F | H
|1 h @ e | e N
a f a @

Figure 3. The LTS and the tree associated with the scheme S of Example 2.

The LTS associated with S has the set of ground terms
over N as domain, the initial symbol Z as root, and, for all
a € ¥, the relation — is defined by:

Ftl .. 'tg(F) B e[tl/xl, cee 7tg(F)/$g(F)]
if Fay -z, — eisa production rule.

The tree generated by a labeled recursion scheme S,
denoted Tree™ (8S), is the tree Tree™ of its associated LTS.
To use labeled recursion schemes to generate terms over
ranked alphabet A, it is enough to enforce that for every
non-terminal F' € N:

« either there is a unique production starting with F'
which is labeled by e,

« or there is a unique production starting with F’ which is
labeled by some symbol c of arity 0 and whose right-
hand side starts with a non-terminal that comes with
no production rule in the scheme,

« or there exists a symbol f € A with g(f) > 0 such that
the set of labels of production rules starting with F' is
exactly 7

Example 2.  Consider the order-1 scheme
S = (X,N,R,Z,L) where ¥ = {a,f1,f2,1l}, N
consists of Z,X,a : o, H : (0,0), f : (0,0,0) and
F: ((0,0,0),0), and R is given below

zZ % FMHa)(Ff) a 2 X

Hz % H(Hz) fzxy LT
Fo 5 pa(Fy) Foy L5y

The LTS and the tree associated with S are depicted in
Figure 3.

Remark 2. A more standard definition of recursion schemes
[9] comes with a ranked alphabet A of terminal symbols
that can be used in the right hand side of the rewriting rules;
moreover the rules are no longer labeled. Applying rewriting
rules from the initial symbol one derives finite terms over
the set of terminal and non-terminal symbols. Replacing in
such a term t any non-terminal, together with its argument,
by a fresh symbol | : o leads a term t* over A U {L}.
As the rewriting is confluent, there exists a supremum of all
terms t+ where t ranges over terms that can be rewritten
from the initial symbol, and this (possibly infinite) term is
defined as the value term of the scheme.



It is easily seen that labeled recursion schemes and
(usual) recursions schemes generate the same terms; the
translations are linear and preserve both order and arity.

E. Examples of Trees Defined by Labeled Recursion
Schemes

We provide some examples of trees defined by labeled
recursion schemes. Given a language L over X, we denote
by Pref(L) the tree containing all prefixes of words in L.

Example 3. Using order-2 schemes, it is possible to go
beyond deterministic context-free languages and to define for
instance the tree T = Pref({a™b"c" | n = 0}). Consider
for instance the order-2 scheme Sy given by:

Z 2, FI(KCI) Bz — =z
Feyp % F(KBg)(KCyp) Cz
Foy 5 o X) Iz %

Kooz — o))

with Z, X : 0, B,C,I :0— o, F:
and K : ((0 — 0), (0 — 0),0,0).
Intuitively, the non-terminal K plays the role of the
composition of functions of type o — o (i.e. for any terms
Fi,Fy : 0 > oand t : o, KFy Foat -5 Fy(Fyt)).
For any term G : o — o, we define G™ for all n >
0 by taking G° = I and G"*' = KGG™ For any
ground term t, G”t behaves as G( (G(It))...) and
—

—_—

((0 = 0),(0 = 0),0)

n

. . b"
in particular B" X = X. For all n = 0, we have:
bnfl n

z pprion 2 prtion x) =5 X

Example 4. We present a tree Ty proposed by Urzyczyn
which exemplify the full expressivity of order-2 schemes (see
Section IV). The tree Ty has directions in { (, ), }. A word
over {(,)} is well bracketed if it has as many opening
brackets as closing brackets and if for every prefix the
number of opening brackets is not smaller than the number
of closing brackets.

The language U is defined as the set of words of the form
w*" where w is a prefix of a well-bracketed word and n
is equal to |w| — |u| + 1 where u is the longest suffix of w
which is well-bracketed. In other words, n equals 1 if w is
well-bracketed, and otherwise it is equal to the index of the
last unmatched opening bracket plus one.

For instance, the words ()((()) » * * x and ()()()» belong
to U. The tree Ty is simply Pref(U). The following scheme
Sy generates Ty.

zZ 5 GHX) Foxy
G: -4 FGz(Hz) Fozy 2, v (Hy)
Gz 5 X Fozy — =z

Hu — u

with Z,X :0, G,H :0— oand F : (0 — 0,0,0).

To better explain the inner workings of this scheme, let
us introduce some syntactic sugar. With every integer, we
associate a ground term by letting 0 = X and, for alln > 0,
n+ 1 = Hn. With every sequence [n1 ...1ny] of integers,
we associate a term of type o — o by letting [ = G
and [0y ...nyny 1] = Fny...n¢ngq. Finally we write
([n1...n4],n) t0 denote the ground term [ny ...n ] n

The scheme can be revisited as follows (note that the two
rules labelled by ( are now merged):

< (L1 ([ln) >0
([ ..ny],n) =5 ny n+l—"sn
<m1 mLm—i»q (nln+1)
([n1...ngd,n) = ([n1...00-1],n+1)

Let w = wo...w)y|—1 be a prefix of a well-bracketed
word. We have Z —> ([ny...ng],|w|+1) where
[n1...n¢] is the sequence (in increasing order) of those

indices of unmatched opemng brackets in w. In turn,

([ny...n], |w|+1) > ng * 0. Hence, as expected,
the number of x symbols is equal to 1 if w is well-bracketed
(i.e. £ = 0), and otherwise it is equal to the index of the last
unmatched opening bracket plus one.

F. Collapsible Pushdown Automata

Fix a finite stack alphabet I' and a distinguished botrom-
of-stack symbol 1 ¢ T'. An order-1 stack is a sequence
1l,a1,...,ap € LT'* which is denoted [Laj...ar]lq1. An
order-k stack (or a k-stack), for k > 1, is a non-empty
sequence si,...,s¢ of order-(k—1) stacks which is writ-
ten [s1...s¢],. For convenience, we may sometimes see
an element a € I' as an order-0 stack, denoted [a]y.
We denote by Stacksj the set of all order-%£ stacks and
Stacks = | ;> Stacksy the set of all higher-order stacks.
The height of the stack s denoted | s| is simply the length
of the sequence. We denote by ord(s) the order of the stack
s.

A substack of an order-1 stack [ Laj...ap]  is a stack of
the form [Lai...ap 11 for some 0 < b’ < h. A substack
of an order-k stack [sy...sp], for k > 1 is either a stack
of the form [sy...s, 1, with O<h’ < h or a stack of the
form [s1...5 81, with 0 < h' < h—1 and s’ a substack
of sp/+1. We denote by s = s’ the fact that s is a substack
of .

In addition to the operations pushj and pop; that re-
spectively pushes and pops a symbol in the topmost order-1
stack, one needs extra operations to deal with the higher-
order stacks: the pop,, operation removes the topmost order-

_(> F (Foz)y (Hy) k stack, while the push,, duplicates it.

For an order-n stack s = [s7...s¢], and an order-k
stack ¢ with 0 < k£ < n, we deﬁne s+t as the order-n
stack obtained by pushing ¢ on top of s:

st — [s1...80t]n, ifk=n-—1,
T Is1e--(seHt)1g otherwise.



We first define the (partial) operations pop, and top, with
i = 1: top,(s) returns the top (i —1)-stack of s, and pop,(s)
returns s with its top (¢ — 1)-stack removed. Formally, for
an order-n stack [sy---Sp+11, With £ =0

_ Sp+1 ifi=n
top;(s) = top,(ses1)  ifi<n
[s1--8¢]ln ifit=nand />1
popi(s) =

[s1--sepop;(se+1)] ifi<m

By abuse of notation, we let top,,,.4(5)+1(s) = s. Note that
pop;(s) is defined if and only if the height of top; (s) is
strictly greater than 1. For example pop,([[Labli]s) is
undefined.

We now introduce the operations push; with ¢ > 2 that
duplicates the top (¢ — 1)-stack of a given stack. More
precisely, for an order-n stack s and for 2 < i < n, we
let push;(s) = s+ top,(s).

The last operation, push{ pushes the symbol a € T on
top of the top 1-stack. More precisely, for an order-n stack
s and for a symbol a € T, we let pushi(s) = s+ [alg.

Example S. Let s be the order-3 stack of height 2 given by
s= [[[Lbaac]1[Lbb]1[Lbcclq[Lebali]al [Lbaalq

[Lbel1[Lbabl11213. Then tops(s) is the 2-stack
[[Llbaali[Llbcl [ Lbabl112 and pops(s) is the stack
s’ = [[[Llbaac]i[Lbb]i[Lbcc]li[Llecbali]2]13. Note
that pops(pops(s)) is undefined. Then pushy(s') is the stack
[[[Lbaac]1[Lbb]lq[Lbcclq[Lebali[lebalila]ls and
push{(s’) = [ [ [Llbaacly [Lbb]q[Llbcely [Lebaclila]s.

We now define a richer structure of higher-order stacks
where we allow links. Intuitively, a stack with links is a
higher-order stack in which any symbol may have a link
that points to an internal stack below it. This link may be
used later to collapse part of the stack.

Order-n stacks with links are order-n stacks with a richer
stack alphabet. Indeed, each symbol in the stack can be
either an element a € I' (i.e. not being the source of a link)
or an element (a,¢,h) € T x {2,--- ,n} x N (i.e. being
the source of an ¢-link pointing to the h-th (¢ — 1)-stack
inside the topmost (-stack). Formally, order-n stacks with
links over alphabet I' are defined as order-n stacks ' over
alphabet T U T x {2,--- ;n} x N.

Example 6. The stack s below is an order-3 stack with links
[[[Llbaac]y[Lbbl1[Lbc(e,2,2)11]21 [Lbaaly [Lbelq
[J-b(a’727 1)(b737 1)]1]2]3'

To improve readability when displaying n-stacks in ex-
amples, we shall explicitly draw the links rather than using
stacks symbols in T x {2,--- ,n} x N. For instance, we shall
rather represent s as follows:

[[[Lbaac]y [Lbb]T [Lboe] (1ot [Lbaa]mb] 11213

Note that we therefore slightly generalise our previous definition as we
implicitly use an infinite stack alphabet, but this does not introduce any
technical change in the definition.

In addition to the previous operations pop;, push,; and
push{, we introduce two extra operations: one to create
links, and the other to collapse the stack by following a link.
Link creation is made when pushing a new stack symbol, and
the target of an ¢-link is always the (¢ — 1)-stack below the
topmost one. Formally, we define push{(s) = pushga’é’h)
where we let h = |top,(s)| — 1 and require that h > 1.

The collapse operation is defined only when the topmost
symbol is the source of an ¢-link, and results in truncating
the topmost ¢-stack to only keep the component below the
target of the link. Formally, if top,(s) = (a,¢,h) and
s = 8 H[t1---tr]e with & > h we let collapse(s) =
s+ [tl cee th]g.

For any n, we let Op,, (I") denote the set of all operations
over order-n stacks with links.

Example 7. Let s = [[[Lalil2 [[L]11[Lalil2]s.

We have

N
[[[Lalile [[L]10Lablql2]s
[[[Lalila [1L1112]3

pushy®(s) =
collapse (push?®(s)) =

. TN
push$®(pushl?(s)) = [[0Lalyla [1L110 Label lals.

[4

Then pushy(0) and pushs(0) are respectively

[[[Llalila [[L)ilLabeli[Labeli]a]s and

N N
[([Lalilz (L]0 Labelila [[L1ilLabel ]a]s.

We have collapse (pushy(0)) = collapse (pushs(0)) =
collapse(0) = [[[Lal1]2]s.

An order-n (deterministic) collapsible pushdown automa-
ton (n-CPDA) is a 5-tuple A = (3, T, Q, d, qo ) where % is
an input alphabet containing a distinguished symbol denoted
e, I is a stack alphabet, () is a finite set of control states,
qo € @ is the initial state, and 0 : @ x (T U {l}) x ¥ —
Q@ x Op,,(T") is a (partial) transition function such that, for
all ¢ € Q and v € T, if d(q,~, e) is defined then for all
a # e, 6(q,7,a) is undefined, i.e. if some e-transition can
be taken, then no other transition is possible. We require ¢§
to respect the convention that | cannot be pushed onto or
popped from the stack.

Let A = (X,T,Q,d,q0) be an n-CPDA. A configu-
ration of an n-CPDA is a pair of the form (q,s) where
q € @ and s is an n-stack with link over I'; we call
(qo, [[- - - [L]1 - ]n—1]n) the inifial configuration. It is then
natural to associate with .4 a deterministic LTS denoted
L4 ={D,r%, (~%)4esx ) and defined as follows. We let
D be the set of all configurations of 4 and r be the initial
one. Then for all « € ¥ and all (g, s), (¢/,s’) € D we have
(q,5) — (¢',') if and only if (g, top,(s),a) = (¢, 0p)
and s’ = op(s).



The tree generated by an n-CPDA A, denoted Tree™ (A),
is simply the tree Tree™(£4) of its LTS.

III. FROM RECURSION SCHEMES TO COLLAPSIBLE
PUSHDOWN AUTOMATA

In this section, we present a translation of schemes into
CPDA. This translation generalizes at all orders the order-
2 translation of [A4]. The translation from [9] assumes a
normal form for the schemes but up to these normalisa-
tions, the CPDA obtained is the same as the one in [9].
Our contributions are to work direclty on schemes without
normalisation and more importantly to prove the correctness
of the translations without using game semantics as an
intermediary tool as in [9]. Note that the converse translation
from [9] (from CPDA into scheme) does not use game
semantics and is therefore not presented here.

We construct, for any labeled recursion scheme S, a col-
lapsible pushdown automaton A of the same order defining
the same tree as S — ie. Tree'(S) = Tree:(A). To
simplify the presentation, we assume that S does not contain
any silent productions rule (i.e. production rule labeled by
e). If S were to contain silent transitions, we would treat
the symbol € as any other symbol? in 3. For the rest of this
section, we fix a labeled recursion scheme (¥, N, R, Z, 1)
of order n > 1 without silent transitions.

The automaton A has a distinguished state, denoted ¢,
and with the configurations of the form (g.,s) we will
associate a ground term over N denoted by [[s]]. Other
configurations correspond to internal steps of the simulation
and are only the source of silent transitions. To show that
the two LTS define the same trees, we will establish that,
for any reachable configuration of the form (g, s) and for
any a € 3, the following holds:

i % (g, ' 5 8T
o if (gu, ) n (g, s") then [[j]] 5 s s
o if [s] %» t then (gy, s) %» (qu,s') and [ s'] = t.

Hence, the main ingredient of the construction is the
partial mapping [ - ]| associating with any order-n stack a
ground term over N. The main difficulty is to guarantee
that any rewriting rule of S applicable to the encoded term
[s]] can be simulated by applying a sequence of stack
operations to s. In Section III-A, we present the mapping
[ -] together with its basic properties; in Section III-B, we
give the definition of .4 and prove the desired properties.

To simplify the presentation we assume, without loss of
generality, that all productions starting with a non-terminal
A have the same left-hand side (i.e. they use the same
variables in the same order) and that two productions starting
with different non-terminals do not share any variables.

2Formally, one labels all silent production rules of S by a fresh symbol
e to obtain a labeled scheme S’ without silent transitions. The construction
presented in this section produces an automaton A’ such that Tree! (S’) =
TreeL(.A’ ). The automaton A obtained by replacing all e-labeled rules of
A by e is such that Treet (S) = Tree™ (A).

Hence a variable x € V' appears in a unique left-hand side
Awxy...,1,4) and we denote by rk(z) the index of z in
the sequence o1 -+ - T,(4) (i.6. T = Tyi(a))-

Throughout the whole section, we will illustrate defini-
tions and constructions using as a running example the order-
2 scheme Sy generating the tree Ty of Example 4.

A. Stacks Representing Terms.

The stack alphabet I' consists of the initial symbol and of
the right-hand sides of the rules in R and their argument sub-
terms, ie. I = {Z} U Ura e, - te}uASubs(e).

For the scheme Sy, one getg(xf = {x,y,2z,u,p} U
{Z,G(HX),HX,X,F(Fyx)y(Hy), Fpz, Hy,
FGz(Hz),G, Hz, ¢ (Hy)}.

Notation 1. For ¢ € V U N, a p-stack designates a stack
whose top symbol starts with ¢. By extension a stack s is
said to be an N-stack (resp. a V -stack) if it is a p-stack for
some @ € N (resp. pe V).

In order to represent a term in Terms(N), a stack over
I' must be well-formed, i.e. it must satisfy some syntactic
conditions.

Definition 1 (Well-formed stack). A non-empty stack of
order-n over I' is well-formed if every non-empty substack
r of s satisfies the following two conditions:

o if top,(r) is not equal to Z nor to L then pop,(r) is
an A-stack for some A € N and top,(r) belongs to an
A-production rule,

o if top,(r) is of type T of order k > O then top,(r) is
the source of an (n — k + 1)-link and collapse(r) is a
p-stack for some variable ¢ € V of type T.

We denote by WStacks the set of all well-formed stacks.

Example 8. For the scheme Sy, the following order-2 stacks
are well-formed.

Y

w(Hy) v (Hy) v (Hy) ' (Fox)y(Hy)
F(Fox)y(Hy)| |F(Fox)y(Hy) Fox F(Fox)y(Hy) Fox
FGz(Hz) FGz(Hz) FGz(Hz) FGz(Hz) FGz(Hz)
G(HX) G(H X) G(HX) G(HX) G(HX)
Z Z Z Z Z
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Notation 2. We write s :: t for s € WStacks and t € I to
mean that if t belongs to the rh.s. of a production starting
with A € N then s is an A-stack. In particular, if s €
WStacks then pop,(s) :: top,(s). We denote by CStacks
the set of such s :: t, and define the size of an element
s i t as the pair (|s|,|t|) where |s| denotes the number of
stack symbols in s and |t| the length of the term t. When
comparing sizes, we use the standard lexicographic (total)
order over N x N.

In Definition 4, we will associate, with any well-formed
stack s, a ground term over NN that we refer to as the



value of s. To define this value, we first associate, with any
element s :: ¢ in CStacks, a value denoted [[ s :: ¢]|. This
value is a term over N of the same type as t. Intuitively,
it is obtained by replacing the variables appearing in the
term ¢ by values encoded in the stack s, and one should
therefore understand [ s :: ¢ ]| as the value of the term ¢ in
the context (or environment) of s. See Remark 3 below for
natural connections with Krivine machine.

Definition 2. For all ¢ € V U N, all k € [1,0(p)] and
all p-stack s € WStacks, we define an element of CStacks,
denoted Arg,,(s), representing the k-th argument of the term
represented by s. More precisely if the top symbol of s is
pty---ty, we take:

{ Argy(s)
Argi(s) =
Definition 3. For all s :: t € CStacks, we define the value
of t in the context of s:

ifk </,

otherwise.

pop(s) b
Arg;_o(collapse(s))

[s:tite] = [s=tilllls:t2] ifti,to el
[s::A] = A ifAe N
[[S - ‘T]] = [[Argrk(m)(s)]] l.f(EE |4

Let us provide some intuitions regarding the definition of
[s:: t]. Unsurprisingly [[s :: t]] is defined by structural
induction on ¢, and the cases for the application and the
non-terminal symbols are straightforward. It remains to
consider the case where ¢ is a variable x appearing in
rk(x)-th position in the left-hand side Axy---x,4). As
s i t € CStacks, top;(s) is of the form Aty ...¢, for
some ¢ < p(A). Note that £ is not necessarily equal to p(A)
meaning that some arguments of A might be missing. There
are now two cases — that correspond to the two cases in the
definition of Arg, (s) — depending on whether x references
to one of the ¢;’s (i.e. rk(z) < ¢) or one of the missing
arguments (i.e. rk(z) > ¢):

o If rk(z) < ¢ then the term associated with z in s is
equal to the term associated with ¢, (;) in pop; (s), i.e.
[s:x] =[popi(s) :: trxa -

o If rk(x) > ¢ then the term [[s :: x ]| is obtained by
following the link attached to top, (s). Recall that, as s
is a well-formed stack and top;, (s) is not of ground type
(as £ < p(A)), there exists a link attached to top(s).
Moreover, collapse(s), the stack obtained by following
the link, has a top-symbol of the form ¢t} ...t for
some ¢ € V and m > 0. Intuitively, ¢, corresponds
to the (¢ + 7)-th argument of A. If rk(x) belongs to
[ + 1,¢ + m] then the term [[s :: «]] is defined to
be the term [[ pop, (collapse(s)) = t)y ), ]| If rk(z)
is greater than ¢ + m then the link attached to the top
symbol of collapse(s) is followed and the process is
reiterated. As the size of the stack strictly decreases at
each step this process terminates.

Now, if s is a well-formed -stack, its value is obtained

by applying the value of ¢ in the context of pop,(s) to the

value of all its o(p) arguments. This leads to the following
formal definition.

Definition 4. The term associated with a well-formed ¢-
stack s € Stacks with pe N UV is

[s1 = Tpopi(s) = @Il Arg, ()] [Arg () ()T

Equiv., if top,(s) : o then: [ s]| = [ pop;(s) :: top;(s) ]
If top,(s) : 1 — ... — 7¢ — o then:
[s1 = Lpopi(s) :: topy(s) I [ Are, (collapse(s)) ] ---
[ Arg,(collapse(s)) .

Example 9. Let us consider the well-formed stacks so and
s3 presented in Example 8. In the representation below the
association between variables and their "values" are made
explicit by the red arrows.
¢ (Hy o (Hy. F(F v»r)@)
F(Fpx)y (Hy) Eog
Ez(g_i(l Z) F{zﬁ] z)
G (H¥X) G (HK) G (HX)
z z z z

F(Fyx)y(Hy) Fox
FGz(Hz)
G (HX)
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[s1]=1s:1=FG(HX)HHHHX))))
[ss]l = H(H(H(H(H X)))

The following lemma states the basic properties of the
encoding [[ - ]| and Arg,(-).

Lemma 1. We have the following properties:

1) For all p-stacks s € WStacks with ¢ € V U N of
type T\ — ... — Ty,) — 0 and for all k € [1, 0(p)],
Arg(s) is equal to some r :: t € CStacks with t of
type .

2) Forall s::te CStacks witht:7€T, [[sut]isa
term in Terms, (N).

3) For all s € WStacks, [[ s] belongs to Terms,(N).

We conclude with two fundamental properties of Arg, ()
that will allow us to simulate the rewriting of the scheme
using stack operations and finite memory.

The first property is that the arguments represented
by a well-formed stack are not modified when perform-
ing a push, operation. More precisely, for all ¢-stacks
s € WStacks with ¢ € N UV, [Arg,(push;(s))] =
[Arg,(s)] for all £ € [1,0(p)] and all k € [2,m]. This
follows (by letting r = top,.(s)) from the following slightly
more general result.

Lemma 2. Let k € [2,m] and let s = s + top,(s) €
WStacks. For all non-empty p-stacks v = top.(s),

[Arg,(s" +7)]| = [Arg,(s+ )] for all £ [1, 0(¥)].

The next property will later be used to prove that any
rewriting step can be simulated by a finitfe number of
transitions in the automaton.



Lemma 3. Let s be a p-stack in WStacks for some ¢ :
TL = ... = Ty = 0in VUN andlet L € [1, o()] with 7
of order k > 0. If Arg,(s) is equal to r :: t € CStacks with t
starting with 1) € N UV then pop,,_j,11(8) = pop, 41 (),
| top—k41(8) | > | top,_pya(7) |-

B. Simulating the LTS of S on Stacks

As an intermediate step, we define an LTS M over well-
formed stacks and we prove that it generates the same tree
as S (i.e. Treet(M) = Tree(S)). From M, a CPDA
generating TreeJ‘(M) is then defined at the end of this
section.

We let M = (WStacks,[...[LZ]...]n, %, (%»)aeg>
and define the transitions as follows

Ve pushi(s) if s is an A-stack with A € N and
Axy-xh0a) 25 teR,

. s —/;» push! (r) if s is a p-stack with p:0e V
and Arg, ) (popy(s)) =1 8,

o 55 pusht™ () if 5 is a @-stack with p : 7€ V.
of order k > 0 and Arg,y,\(pop; (push,,_;,1(s))) =
Tt

Example 10. In the figure below, we illustrate the definition
of M on the scheme Sy.

@ (Hy) v(Hy)

F(Fox)y(Hy) F(Fox)y(Hy) F(Fox)y(Hy)| 1= Feox
FGz(Hz) FGz(Hz) FGz(Hz) FGz(Hz) FGz(Hz)
. o] ewx| G(HX) ) G(HX) G (HX) G(HX)
Z|—> z | z | Z — Z — zZ z
w(Hy) « x @ (Hy) w(Hy)
F(Fox)y(Hy)| 1= Fox F(Fox)y(Hy) x F(Fox)y(Hy)
FGz(Hz) FGz(Hz) FGz(Hz) FGz(Hz) FGz(Hz) 2
. G(HX) GHX)| G(HX) GHX)| G(HX) G(HX)
- z Z — z Z - Z Z
»(Hy)
F(Fox)y(Hy) F(Fox)y(Hy)
FGz(Hz) FGz(Hz)
. G(HX) m X G(HX)
- z z | Z

The first line of the definition of v corresponds to

the case of an N-stack. To simulate the application of a
production rule Az; ---x, — e on the term encoded by
an A-stack s, we simply push the right-hand side e of the
production on top of s. The correctness of this rule directly
follows from the definition of [[ - ]. Doing so, a term starting
with a variable may be pushed on top of the stack, e.g. when

applying the production rule F pxy R ¢ (H y). Indeed,
we need to retrieve the value of the head variable in order
to simulate the next transition of S: the second and third
lines of the definition are normalisation rules that aim at
replacing the variable at the head of the top of the stack (for
instance, in the 5th stack of Example 10 the variable ¢) by
its definition (hence not changing the value of the associated
term). By iterative application, we eventually end up with

an N-stack encoding the same term and we can apply again
the first rule.

Proposition 1. Tree’(S) = Treet (M).

Sketch:  One easily concludes after establishing the
following soundness result about the definition of yve

e Let s be an N-stack in WStacks and a € 2.
For any t € Terms(N), if [s] — ¢ then 35’ €

WStacks, s ﬁ» sand [s'] =t
If 35’ € WStacks, s ﬁ s’ then [s] — [ 5]
o Let s € WStacks be a ¢p-stack for ¢ € V and let

s’ € WStacks be a y-stack for i) € V U N.
If s —;» s then [s] = [¢'], ord(¢) < ord(¢)) and

| topnford(gp)Jrl(S) | > | topnford(ap)Jrl(S,) |
o For all s € WStacks there exists a unique N-stack

*
s’ € WStacks such that s % s'.

From M we now define an n-CPDA A = (¥, T, Q, 8, qo )
generating the same tree as M. The set of states @
is equal to {qo,q1,...,qs),q«} where o(S) denotes
the maximal arity appearing in S. Intuitively the initial
state ¢ is only used to go from (qo,[...[L]1...]n) to
(gs,[---[LZ]1...]n); the state g4 is used to mark N-
stacks; for k € [1, o(S)], the state gy, is used to the compute
Arg,.(---). The transitions are given below.

o 8(q0, L, €) = (gx, pushy),
o If ¢ starts with F € N and F a1+ 2yp) — €€R:

- 6(gx,t,a) = (g«, pushy) if e starts with a symbol
in N,

- 6(qx,t,a) = (Grk(a),id) if e is a variable x : o
(here ¢d is the identity function),

- 0(qx,t,a) = (Gk(x), Pushy; push,, ;.15 popy) if
e starts with a variable x of order k£ > 0.

o Iftis aterm of the form ¢, - - - ¢, for some ¢ € VUN:

= 8(qu:t €) = (Gu(es)s popy; pushi®) if k < € and
ty : o,

= 6(an, 1, €) = (Gru(ry), popy; push™ " ") if k <
¢ and ty has order h > 0,

— 5(Qk7t, 6) = (qk_g, collapse) if k>/.

where, for all ¢ € T', g, () designates the state g () if
t starts with a variable z and g4 otherwise, and opi;op2
means applying op; followed by op2. An equivalent CPDA
using only one operation per transition may be obtained by
adding intermediary states.

Theorem 1. For every labeled recursion scheme S of order-
n, there is an n-CPDA A that generates the same tree.
Moreover, the number of states in A is linear in the maximal
arity appearing in S, and its alphabet is of size linear in



the one of S°.

Remark 3. In [18], the authors use Krivine machines [14]
as an abstract model to represent the sequence of rewrit-
ing of a scheme*. A Krivine machine computes the weak
head normal form of a \Y -term, using explicit substitu-
tions (called here environments). Environments are functions
assigning closures to variables, and closures themselves
are pairs consisting of a term and an environment. This
mutually recursive definition is schematically represented
by the grammar C := (t,p) and p := @ | plr — (]
where t is an term of the \Y -calculus with free-variable
and @ designates the empty environment. The \Y -term tc
represented by a closure C = (t, p) is inductively defined as
t in which every occurrence of a free variable x is replaced
by the term t,(,).

A pair s :: t (cf. Notation 2) can be seen as a closure
(t,p) where p(x) is defined for all variables x occurring
int by p(z) = Arg,i(y)(s). With this view in mind and up
to the translation of schemes into equivalent \Y -terms, the
LTS M faithfully simulates the Krivine machine presented
in [18]. Note that the correspondence is facilitated by the
use of labeled schemes.

This remark also allows us to inherit the simplifications
of [18] for the decidability of CPDA parity games.
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IV. SAFE HIGHER-ORDER RECURSION SCHEMES

In this section, we consider a syntactic subfamily of
recursion schemes called the safe recursion schemes. The
safety constraint was introduced in [10] but was already
implicit in the work of Damm [6] (see also [7, p. 44] for
a detailed presentation). This restriction constrains the way
variables are used to form argument subterms of the rules’
right-hand sides.

Definition 5 ([10]). A recursion scheme is safe if no
right-hand side contains an argument-subterm of order k
containing a variable of order strictly less than k.

For instance, the scheme in Example 3 is safe. On the
other hand, the scheme Sy of Example 4 is not because
the production F o xy < F(Fox)y(Hy) contains in its
right-hand side the argument subterm F'ox : 0 — o of order-
1 which contains the variable x : o of order-0. Urzyczyn
conjectured that (a slight variation of) the tree Ty, generated
by Sy, though generated by a order-2 scheme, could not be
generated by any safe scheme. This conjecture was recently
proved by Parys [16].

Remark 4. In [10], [11], the notion of safety is only defined
for homogeneous schemes. A type is said to be homogeneous

3The size of a scheme is defined as the sum of the sizes of the left and
right hand sides of the rewriting rules. In particular it is larger than the
sum of the sizes of all argument subterms of right hand sides of the rules.
4The authors work with the equivalent formalism of the \Y -calculus.
Sto represent applicative terms over N instead of \Y -terms.

if it is either ground or equal to 1 — -+ — T, — 0 Where
the 7;’s are homogeneous and ord(ry) = - -+ = ord(r,). By
extension, a scheme is homogeneous if all its non-terminal
symbols have homogeneous types. For instance (0 — o) —
0 — 0 is an homogeneous type whereas o — (0 — 0) —
o is not. We will see in Proposition 2 that dropping the
homogeneity constraint in the definition of safety does not

change the family of generated trees.

A. Safety and the Translation from Schemes to CPDA

In [10], [11], the motivation for considering the safety
constraint was that safe schemes can be translated into a
subfamily of the collapsible automata, namely higher-order
pushdown automata. An order-k pushdown automaton is
an order-k CPDA that does not use the collapse operation
(hence, links are useless).

Theorem 2 below shows that the translation of recursion
schemes into collapsible automata presented in Section III,
when applied to a safe scheme, yields an automaton in
which links are not really needed. Obviously the automaton
performs the collapse operations but whenever it is applied
to an order-k link its target is the (k— 1)-stack below the top
(k — 1)-stack. Hence any collapse operation can safely be
replaced by a pop,, operation. In doing so, we re-obtain the
translation of safe (homogeneous) schemes into higher-order
pushdown automata presented in [11].

Definition 6. A CPDA is link-free if for every configura-
tion (p, s) reachable from the initial configuration and for
every transition 0(p, top,(s),a) = (g, collapse), we have
collapse(s) = pop,(s) where £ is the order of the link
attached to top,(s).

Theorem 2. The translation of Section Il applied to a safe
recursion scheme yields a link-free collapsible automaton.

Sketch: We present the ingredients of the proof only at
order-2. For the general case, the ideas are similar but lead
to more technicalities.

Let us first introduce some notations. Let (¢,s =
[$1...8m]2) be a configuration of A reachable from the
initial configuration. For ¢ € [1,m] and j € [L,|s;|], we
denote by r(i,7), t(i,5) and o(i,j) respectively the j-th
symbol of stack s;, the target (if defined) in [1,4 — 1] of
its link and the order (if defined) of this link. By definition
of A, t(i,7) and o(4, j) are defined iff r(¢,j) is a term of
order k£ > 0 and in this case o(,7) is equal to 2 — k + 1

Moreover for i € [2,m], we let ¢; be the smallest index
at which s;_; and s; have a different symbol (or |s;| + 1 if
no such index exists).

The stack s satisfies the following properties:

1) for all i € [1,|s1]], t(1,4) is undefined;

2) forallie [2,m],¢; <|s;—1| and forall i € [2,m—1],

£ < sqls

3) forallie[2,m]and 1 < j < ¥, t(i,j) =t(i —1,7);



4) for all i € [2,m] with ¢; < |s;], 7(¢,¢;) does not
contain a variable of order 0 and is an argument
subterm of 7(i — 1,¢;) and if r(4,¢;) is of order 1
then ¢(i,¢;) =i — 1;

5) for all i € [2,m] with 57 € [{; + 1,]s;|], t(z,7) is
undefined;
6) if m > 2 then ¢, = |sp,| + 1 iff top,(s) = @t ...tp,

q = qi, for some k € [1, h] such that ord(t;) = 1.

These properties are proved by induction on the length of
the shortest path in the LTS from the initial configuration to
(g, s) and by inspection of the transitions of A.

Inspecting the transitions of A, a collapse operation can
only be performed if ¢ = gi and top,(s) = pt; ...ty with
k > hand ¢ : (7,...,7Tm,0). Thanks to Definition I,
@ti...ty is of order-1. Property 5 implies that ¢, is
either equal to |s,,| or to |[s,,| + 1. Property 6 implies
L # |$m|+1 as otherwise we would have k < h. Thus, we
have ¢,,, = |s,,| and by Property 4, collapse(s) = popy(s).

|

We get the following corollary extending (by dropping the
homogeneity assumption) a previous result from [11].

Corollary 1. Order-k safe schemes and order-k pushdown
automata generate the same trees.

B. Damm’s View of Safety

The safety constraint may seem unnatural and purely ad-
hoc. Inspired by the constraint of derived types of Damm,
we introduce a more natural constraint, Damm-safety, which
leads the same family of trees [6].

Damm-safety syntactically restricts the use of partial
application: in any argument subterm of a right-hand side
if one argument of some order-k is provided then all
arguments of order-k must also be provided. For instance
ifp:(0—>0)—>(0—>0)—>0—>0—0,f:0—0and
c: o, the terms ¢, ¢ f f and ¢ f f cc can appear as argument
subterms in a Damm-safe scheme but ¢ f and ¢ f f ¢ are
forbidden.

Definition 7 ([6]). A recursion scheme is Damm-safe if it
is homogeneous and all argument-subterms appearing in a
right hand-side are of the form oty - -ty with ¢ : 71 —

- — T, — o and either k = 0, k = n or ord(r;) >
ord(Tg41)-

As in Damm-safe scheme all argument subterms of an
argument subterm of order-k appearing in a right-hand side
have at least order-k, it is easy to see that Damm-safety
implies the safety constraint. However, the safety constraint,
even when restricted to homogeneous schemes, is less re-
strictive than Damm-safety. Consider for instance a variable
x : o and non-terminals G : 0 — o0 — o and C : o, then Gz
cannot appear as an argument-subterm in a safe scheme but
G C can. As G C does not satisfy Damm-safety constraint,
safety is syntactically more permissive than Damm-safety.
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However unsurprisingly, any safe scheme can be transformed
into an equivalent Damm-safe scheme of the same order.
The transformation consists in converting the safe scheme
into a higher-order pushdown automaton (Corollary 1) and
then converting this automaton back to a scheme using the
translation of [11]. In fact, this translation of higher-order
pushdown automata into safe schemes produces Damm-safe
schemes.

Proposition 2. Damm-safe schemes are safe and for every
safe scheme, there exists a Damm-safe scheme of the same
order generating the same tree.

V. EFFECTIVE SELECTION

Let (X1, -+ ,X¢) be a monadic second order (MSO)
formula with /¢ second-order free variables, and let
t be a term over a ranked alphabet ¥. The MSO
selection problem is to decide whether the formula
3X1...3Xe (X1, -+, X¢) holds in ¢, and in this case to
give a term t,, over the ranked alphabet = = ¥ x {0, 1}
(we take o(a, (b1,...,be)) = o(a)) such that the following
holds:

1) t = 7n(t,) where 7 is the alphabetical morphism from
= to % defined by 7((a,b)) = a for a € ¥ with
o(a) = 0 and 7((a,b);) = a; for a € ¥ with o(a) > 0
and i € 1, o(a)]. Intuitively, ¢, is obtained by marking
every node in ¢ by a vector of ¢ booleans. Indeed
for all non-leaf node u, there eLsts) a unique element
(c,b) € = such that for all = € (¢,b), uz is in t,. The
tuple b € {0,1}* is the label of the node u of ¢. The
label of a non-leaf node u of ¢ is denoted b,,

The formula ¢(X; « Uy,..., Xy < Uy) holds in ¢
where V1 <4 <, Uy ={uet]|b,(i) =1}
Intuitively, the second point states that this marking exhibits
a valuation of the X; for which ¢ holds in ¢. We refer to ¢,
as a selector for ¢ in t.

Let R be a class of generators of terms. We say that R has
the effective MSO selection property if there is an algorithm
that transforms any pair (R, p(X1,...,X,)) with R € R
into some R, € R (if exists) such that the term generated
by R, is a selector for ¢ in the term generated by R.

2)

Theorem 3. Labeled recursion schemes as well as CPDA
have the effective MSO selection property.

The proof of Theorem 3 is highly non-trivial and requires
a precise analysis of winning strategies in parity games
played over terms generated by CPDA (the key argument
is that winning strategies can be embedded into the CPDA
generating the term). We do not believe that a proof of the
statement for labeled recursion schemes can be obtained
without using an automaton model, and we think that it
shows the usefulness of CPDA in the study of logical
properties of schemes.



Remark 5. A similar statement for safe schemes can be
deduced from [8], [3], [5]. However the machinery for
general schemes is much more involved.

In [2] a much weaker notion, MSO-reflectivity, was con-
sidered. A class of generators of terms is MSO-reflective if
it has the effective MSO selection property for those formula
©(X) of the form p(X) = 2 € X < () where ¢(z) is
an MSO formula with a single first-order free variable (note
that in this case, there is a unique valuation of X that makes
©(X) holds). The main result of [2] follows from Theorem
3.

Corollary 2. Labeled recursion schemes as well as CPDA
have the effective MSO-reflectivity property.

Remark 6. A variant of selection [17] ask for exis-
tence of a formula ¥(Xi,...X) that is a selector for
o(X1,...Xy) in t in the following sense. Either nei-
ther of the formulas 3Xy...3X, (X1, -+ ,X¢) and
3X1...3Xe (X1, -+, Xp) holds in t or ¢ defines a unique
tuple (Ur,--- ,Uy) and this tuple also satisfies @. In [4] it
is shown that a selector does not always exist in general,
and the counter-example is for a tree generated by a (safe)
recursion scheme.

A degenerated version of selection is model-checking.
Theorem 1 together with a careful analysis of the complexity
of parity games on CPDA lead the same complexity as in
[13].

Corollary 3. The p-calculus model-checking of trees gener-
ated by recursion schemes is polynomial under the assump-
tion that the arity of types and the formula are bounded
above by a constant.
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APPENDIX

A. Proofs Omitted in Section Il

1) Labeled Recursion Schemes vs (Classical) Recursion Schemes:

We recall the notion of recursion schemes as it is usually considered in the literature (see e.g. [9]).

For each type 7, we assume an infinite set V- of variables of type 7, such that V., and V,, are disjoint whenever 7 = 7o,
and we write V' for the union of those sets V; as 7 ranges over types. We use letters z,y, v, ¥, X, &, ... to range over
variables.

A (deterministic) recursion scheme is a 5-tuple S = ( A, N, R, Z, L ) where

o A is a ranked alphabet of terminals and L is a distinguished terminal symbol of arity 0 (and hence of ground type)
that does not appear in any production rule,

o N is a finite set of typed non-terminals; we use upper-case letters F, G, H, ... to range over non-terminals,

e Z € N is a distinguished initial symbol of type o which does not appear in any right-hand side of a production rule,

« R is a finite set of production rules, one for each non-terminal F': (71, - , 7y, 0), of the form

Fzy -2z, — €

where the x; are distinct variables with x; : 7; for i € [1,n] and e is a ground term in Terms((A\{Ll}) u (N\{Z}) u
{x1,...,2, }). Note that the expressions on either side of the arrow are terms of ground type.

As for labelled schemes, the order of a recursion scheme is defined to be the highest order of (the types of) its non-
terminals.

A recursion scheme S induces a rewriting relation, denoted — s, over Terms(Au N). Informally, — s replaces any ground
subterm F't;...T,p) starting with a non-terminal F' by the right-hand side of the production rule F'z; --- z, — e in
which the occurrences of the "formal parameter” x; are replaced by the actual parameter ¢; for i € [1, o(F)].

The term M [t/x] obtained by replacing a variable x : 7 by a term ¢ : 7 over A U N in a term M over Au N u 'V is
defined® by induction on M by taking ¢[t/z] = ¢ for p #x € AU N UV, z[t/z] =t and (t1 t2)[t/x] = t1[t/x] t2[t/z].

The rewriting system — s is defined by induction using the following rules:

o (Substitution) Fty---t, —s e[t1/x1, -+ ,tn/x,] Where Fa; ---x, — e is a production rule of S.
o (Context) If t —>s t' then (st) —s (st’) and (ts) —s (t's).

Example 11. Let S be the order-2 recursion scheme with non-terminals {Z : o, H : (0,0), F : ((0,0,0),0)}, variables
{z:0, p:(0,0,0)}, terminals A = {f,a} of arity 2 and O respectively, and the following rewrite rules:

Z — f(Ha)(Ff)
Hz — H(Hz)
Fo — ga(Fy)

The figure below depicts the first rewriting steps of —g starting from the initial symbol Z.

%Note that ¢ does not contain any variables and hence we do not need to worry about capture of variables.

12



/\
f B 1
H o> @
| P AF
a a F a ‘
\
! !
/ /
f /\
PN H f
Z——> H F [ N
\ | H a F
a f \ \
a f
\ ! / f
P
nor i F
| |
f‘lf\’H f
“ P
.

As illustrated above, the relation — s is confluent, i.e. for all ground terms ¢,¢; and to, if t =% ¢, and ¢t —% to (here —%
denotes the transitive closure of —g), then there exists ¢’ such that ¢; Hf‘é t' and t Hf’g t’. The proof of this statement is
similar to proof of the confluence of the lambda-calculus.

Informally the value tree of (or the tree generated by) a recursion scheme S, denoted [ S ]|, is a (possibly infinite) term,
constructed from the terminals in A, that is obtained as the "limit" of the set of all terms that can obtained by iterative
rewriting from the initial symbol Z.

The terminal symbol L : o is used to formally restrict terms over A U N to their terminal symbols. We define a map
()% : Terms(A U N) —> Terms(A) that takes an applicative term and replaces each non-terminal, together with its
arguments, by | : o. We define (-)* inductively as follows, where a ranges over A-symbols, and F' over non-terminals
in N:

at = a

Ft = 1

()t = {L if st =1
(sttt) otherwise.

Clearly if ¢ € Terms(A U N) is of ground type then ¢+ € Terms(A) is of ground type as well.

Terms built over A can be partially ordered by the approximation ordering < defined for all terms ¢ and ¢’ over A by
t <t if t n (A\{L})* < t. In other terms, ¢’ is obtained from ¢ by substituting some occurrences of L by arbitrary terms
over A.

The set of terms over A together with < form a directed complete partial order. Meaning that any directed subset D of
Terms(A) (i.e. D is not empty and for all ,y € D, there exists z € D such that z < z and y < z) admits a supremum,
denoted sup D.

Clearly if s —s t then st < t*. The confluence of —s implies that the set {¢* | Z —% ¢} is directed. Hence the value
tree of (or the tree generated by) S can be defined as its supremum.

[ST = sup{t"|[Z %t}

Example 12. The value tree of the recursion scheme S of Example 11 is:
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The following theorem relates both notions of schemes.

Theorem 4. The recursion schemes and the labeled recursion schemes generate the same terms. Moreover the translations
are linear and preserves order and arity.

Proof: Let S = ( AN, R, Z, L) be a recursion scheme. We define a labeled recursion scheme &' = <X, N R, Z, L)
generating the term [S]. For each terminal symbol f € A, we introduce a non-terminal symbol, denoted f :
0 — -+ — 0 —o0. The set N’ of non-terminal symbols of &' is N u {f | f € A} u {X} where X is assumed to be
—

o(f)
a fresh non-terminal. With a term ¢ over A U N, we associate the term ¢ over N’ obtained by replacing every occurrence

of a terminal symbol f by its nonterminal counterpart f. The production rules R’ of S’ are:

(Fay - 2pn > €|Fay -2, — e€R}

U {fxy - To(f) L>9ci|feAwith o(f)>0andie€[1,0(f)]}
u {¢ -5 X |ce Awith g(c) = 0}

Conversely, let A be ranked alphabet and let S = <X, N,R,Z, L be a labeled recursion scheme generating a ranked
tree. We define a recursion scheme &’ = ( A, N,R’, Z, 1 ) generating the same term as S. The set of production rules of
S’ are defined as follows:

e If Fay-oap — e belongs to R (in this case it is the only rule starting with F') then F'x; --- x,, — e belongs
to R'.

o If, for some c of arity 0, F.wy --- 2,, —> e belongs to R (in this case it is the only rule starting with I’ and e starts
with a non-terminal that has no rule in R) then F'xy --- x, — c belongs to R’.

o If, for some f € A of arity o(f) > 0, Fxq - xy, LN e; belongs to R for all 1 < i < o(f), then Fxq -+ x, —
fe1---eys) belongs to R'.

2) Extra Examples of Labeled Recursion Schemes:

Due to space limitation we could only give two examples of labelled recursion schemes in the main body of the paper.
We present here some extra example to illustrate the mechanism of labelled recursion schemes as well as their expressive
power.

Example 13. Let Ty be the tree corresponding to the deterministic context-free language Pref({a™b" | n > 0}). As it is the
case for all prefix-closed deterministic context-free languages (see [A2], [A3] or Theorem 1 at order 1), Ty is generated
by an order-1 scheme S.

Z % HX Hr % H(Bz)

b b
Brxr — = Hx — =z

with Z,X :oand H,B : 0 — o.
The tree generated by Sy is given below:

14
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Example 14. Following the same ideas as for Si (see Example 3), the order-2 scheme Scyp, given below defines the tree
Toxp = Pref({a”ch?" | n = 0}).

z % FB Fo - F(Dy) Doz -5 p(px)

Bz % & Fo 5 ¢X
with Z,X : 0, B:0o— 0, D: (0 — 0,0,0) and F : (0 — 0,0). If we denote by D™ B the term of type o — o defined
by D°B = B and D"*' B = D (D" B) for n > 0, we have Z <- FD"B. As D intuively doubles its argument, D" B

behaves as B%" for n = 0. In particular, D™ B X reduces by b*" 1o X.
For all n = 0, we have:

n oM
72 FD'B- D'BX 2> X.

Example 15. At order k + 1 > 1, we can define the tree Tex, = Pref({a™cb™Px(™ | n > 0}) where we
let expy(n) = n and exp, . (n) = 2P0V for k > 0. We illustrate the idea by giving an order-3 scheme
generating Teyp,, = Pref({a" cb? | n=0}).
Z £ FDy Fy = F(Dyv)
b
Dappr —> (p(be)e Bz — 2
Fp = ¢pBX Dz —= (4)

with Z,X : 0, B: 0o — o F: ((o > 0,0,0),0), D1 : (0 = 0,0,0) and Dy : ((0 — 0,0,0),0 — 0,0,0). If we
denote by D% D the term of type (0 — 0,0, 0) defined by DY D1 = Dy and Dg“ Dy = Dy DY Dy for n = 0, we have

7 = F DY Dy. As Dy intuitively double its argument with each application, Dy Dy behaves as D?" and hence D} B
behaves as B> . o
b2

WehaveVnZO:Z%FD§D1—0>D3D13X:X.

15



B. Proofs Omitted in Section III
1) Justification of Definition 4:
We start with a fact that justifies the second part of Definition-4

Definition 4. The term associated with a well-formed ¢-stack s € Stacks with p e N UV is
[sT = [popi(s):: o T[Arg, ()] [Argyem () -

Equiv., if top(s) : o then: [ s] = [ pop,(s) = top(s) ]
If topy(s) : 71 — ... = 74 — o then:

s 1 = [ popi(s) :: top, (s) | [Arg, (collapse(s)) ] - --
[Arg,(collapse(s)) .

Fact 1. Let s be a well-formed p-stack. If top,(s) : o then:
[s1 = [popi(s) = top(s) -
If topy(s) : 11 — ... = 74 — o then:
[s] = [ popy(s) :: topy(s) ]| [Arg, (collapse(s)) ] - - [Argy(collapse(s))]-

Proof: The first case (top,(s) : o) is immediate. Assume that top,(s) is equal to @ty ---¢, with ¢ € N UV of type
T = ... = Ty — 0 and for all i € [1,n], t; € T of type 7;. Note that £ = o(¢) — n. We have:

[sT = [popi(s): e[ Arg(s)T - [Arg,(s) I[ Arg, ()] [Arg,e(s)1
[pop, (s)::pti-tn ]

= [popy(s) = topy (s) 1 [ Arg, (collapse(s)) ] - - [ Aty _o(collapse(s)) ]

2) Proof of Lemma 1:

Lemma 1. We have the following properties:

1) For all p-stacks s € WStacks with o € V.U N of type 71 — ... — T,(,) — 0 and for all k € [1, 0(p)], Argy(s) is
equal to some r :: t € CStacks with t of type Ty.

2) Forall s::te CStackswitht: 7 €T, [s::t] is a term in Terms,(N).

3) For all s € WStacks, [ s]| belongs to Terms(N).

Proof: We start proving the first point and then use it to obtain the second one. Combining them, we finally prove the
last point.
(1) We proceed by induction on the size of s € WStacks. The base case considers the stack [---[LZ]1 - ],. As o(Z) =0,
there is nothing to prove.

Fix some stack s and assume that the property holds for all stacks smaller than s € WStacks. Let ¢t; ---t, : 7 be the
top symbol of s with o e N UV, £ € [1,0(p)] and t; € " for all i € [1,£]. If ¢ is of type 71 — ... — T,y — o then for
all i € [1,£], t; is of type 7; and 7 is the type Tp11 — ... = Ty,

If k < {, Arg,(s) = pop,(s) :: tx and there is nothing to prove. If o(p) = k > {, Arg,(s) = Arg,_,(collapse(s)).
To conclude by induction, the only thing we have to prove that Arg, ,(collapse(s)) is well defined. As ord(r) > 0, we
have by definition of WStacks that collapse(s) is well-defined and that its top symbol starts with a symbol 1 of type 7.
As |collapse(s)| < |s| and as p(¢)) = o(p) — € = k — £ = 1, we have by induction hypothesis that Arg,_,(collapse(s)) is
well-defined and is equal to some r :: t € CStacks with ¢ € I" of type 7j_¢1¢ = Tk.

(2) We proceed by induction on the size of s :: t. The base case deals with [---[L];--]n = Z. As [[ ]n = Z] & Z, the
property holds.

Assume that the property holds for all elements of CStacks smaller than some s :: ¢t € CStacks with ¢ : 7. Let us show
that [ s :: t] is of type 7. The case where t € N is trivial. The one where ¢ = ¢;t2 is immediate by induction as both
[s:t2] and [[s :: t1 ]| have a size smaller than [[s :: ¢]|. The last case is when ¢ is a variable x € V. Assume that the

)—>O.
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variable x appears in an A-production forsome A:7 =7 — ... =T,

Tek(z)- We have [s:a] < [ Arg,i(+)(s) |- By definition of CStacks, s is an A-stack and using point (1), Arg,,)(s) is
equal to r :: t' with 7 € Stacks and t' : Ty () € I'. Thus [s = @] = [r :: #']] for some 7 smaller than s and using the
induction hypothesis, one concludes that [ s :: ] is a term in Terms.,, ., (V).

(4) — o in N. In particular the variable z is of type

(3) Let s € WStacks whose top-symbol starts with ¢ : 7 = 71 — ... — 7,(,,) — 0. Clearly pop, (s) ::  belongs to CStacks
and by point (2), [ pop;(s) :: ¢ is of type 7. Points (1) and (2) implies that, for all k € [1, o(¢)], [ Arg,(s) ]| is of type
71, Hence, from Definition 4 it directly follows that [[ s ]| is of type o. [ ]

3) Proof of Lemma 2:

Lemma 2. Let k € [2,m] and let s = s’ + top,(s) € WStacks. For all non-empty @-stacks r £ top,(s), [Arg,(s' H#7r)] =
[Arg,(s+7)] for all L€ [1, o(p)].

Proof: We show, by induction on the size of r, that s+ and s’ +r are well-formed and [Arg,(s'+H )] =
[ Arg,(s+r)] for all £ € [1, ()] where ¢ € N UV denotes the head symbol of top, (r).

The base case (which considers [-- - [LZ]; - - - ]x) is immediate. Assume that the property holds for all substack of top;(s)
smaller than some @-stack r = top,(s). We will show that it holds for r.

The key observation is that: top,(s+ 1) = topy(s’ +r) and either collapse(s+ 1) = collapse(s+r) if the link
attached to topmost symbol of r is order greater than k or collapse(s + 1) = s+ collapse(r) and collapse(s’ +r) =
s+ collapse(r) otherwise.

As s’ + 1 is a substack of s (which is well-formed), s’ + r is well-formed as well. To prove that s + 7 is well-formed,
we need to show that any non-empty substack of s+ r satisfies the two properties expressed in Definition 1. The case of
a proper substack immediately follows the induction hypothesis. We can deduce that s 4 r satisfies these two properties
from the above observations. Indeed the first property only depends on the top most order-1 stack (and top,(s+r) =
top, (s’ + 1)) and the second property follows from the fact that top, (s + ) = top, (s’ + ) and top, (collapse(s +r)) =
top, (collapse(s’ +1)).

Assume that the top symbol of r is equal to @t ---t,. Let £ € [1,0(p)] and let us show that [ Arg,(s+7)]
[ Are,(s' 4 1)L
x  If £ < nthen [Arg,(s+7)]] = [ s+ popi(r) == t¢] and [Arg,(s+ )] = [ ¢ + pop;(r) == t¢]. By induction
hypothesis, we have that [ s + ' :: t]] = [ ' #7 :: t]| for any proper substack ' of r, in particular for ' = pop, ().

x If £ > n then [[Arg, (s +r)] = [Arg,_,(collapse(s + 1)) ] and [[ Arg,(s +r)] = [Arg,_,,(collapse(s + 1)) ]

From the above observation, we either have collapse(s +1r) = collapse(s’ +r) and the equality trivially holds or
collapse(s + 1) = s+ collapse(r) and collapse(s’ +1) = s + collapse(r) in which case the equality follows by
induction hypothesis as | collapse(r) | < |r|. [ |

4) Proof of Lemma 3:

Lemma 3. Let s be a p-stack in WStacks for some ¢ : 7y — ... = Ty,) = 0in V U N and let L € [1, o()] with ¢ of
order k > 0. If Arg,(s) is equal to r :: t € CStacks with t starting with }p € N OV then pop,,_;..1(s) = pop,_j1(r),

| top—p+1(8) [ > [topn_jsr (1) |-

Proof: We proceed by induction of the size of s. The base case which considers the stack [---[ LZ]; - - - ], is immediate
as 0(Z) = 0.

Assume that the property holds for all stacks in WStacks smaller than some stack s € WStacks. Let pt;...t,, be the
top symbol of s with p : 71 — ... — T,y = oin V.U N and m € [0, o(¢)]. Let £ € [1, o(¢)] and let k be the order of
Te. Assume that Arg,(s) =r :: t.

If £ < m, Arg,(s) = pop;s :: tg. In particular 7 is equal to pop,(s) and the property holds because pop,, ;. (1) =
PO, _11(pop1(s)) = pop,,_p,1(s) as n—k + 1 > 2 (indeed k < n by definition of n).

If £ > m, Arg,(s) = Arg,_,,(collapse(s)). By induction hypothesis, pop,_.(collapse(s)) = pop,_,.1(r). To
conclude it is enough to show that pop,,_,..(collapse(s)) = pop,,_j.,1(s). Let k" be the order of top,(s). As top,(s) =
pty- -ty isof type 7, +1 — ... —> T () — 0, We have k&’ > k. By definition of well-formed stacks, the order of the

)
link attached to top symbol is equal to n — &’ + 1. In particular, pop,, ., (collapse(s)) = pop, _j.41(5). [ |
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5) Proof of Proposition 1:

Proposition 1. Tree®(S) = Tree’ (M).

Proof: The proof relies on two lemmas.
The first lemma states the soundness of the first line of the definition of ﬁ

Lemma 4. Let s be an N-stack in WStacks and a € X.
It € Terms(N), [s] >t = 35’ € WStacks, s %» sand[[s'] =t
Js’ € WStacks, s %» s’ = [s]->1[51

Proof: Let s € WStacks be an A-stack for some A € N and let a € X. By definition of [s], [s] is equal to
Al[Arg,(s)] - [[Argg(A)(S)]]'
Assume that [ s] — ¢ for some ¢ € Terms(N). By definition of —, there exists a production Axy - -4y —> t’

in R such that ¢ is equal to ¢'[x1/[ Arg,(s) ]|, .., %(a)/[ Arg,a)(s) ]. By definition of —;{, we have s % pusht (s)

hence we only need to note that [[push'i'(s)]] is equal to t'[z1/[[ Arg;(s) [],. ... 2p(a)/[[ Arg,(a)(s) []]. Indeed, as ¢’ is of
ground type, [[push’i/(s)]] is equal to [ s :: ¢' ]| which is by definition equal to ¢'[21/[[ Arg (s) - .., Z,(a)/[ Argya)(s) I]-
Now, assume that s —;» s’ for some s’ € WStacks. By definition of %», there exists a production Axy - - - To(A) LN
t' € R such that s’ = pushi,(s). As s is an A-stack, we have [[s] = A[[Arg,(s)] ... [ Arg,(4)(s)]. Furthermore [ s is
equal to ¢'[x1/Arg; (s), ..., Ty(a)/Arg, 4(s)]. Hence by definition of <, [s ]| — [ [
The second lemma states the soundness of the second and third lines of the definition of M. Moreover, it permits to
conclude that there are no infinite path labeled by e in M.
Lemma 5. We have the following properties:
1) Let s € WStacks be a -stack for ¢ € V and let s' € WStacks be a -stack for v € V U N. If s —;» s’ then
[[S]] = [[S/]]’ OTd(‘P) < 0Td(‘/’) and | topnford(ap)Jrl(S) | > | topnford(gp)Jrl(S/) |
2) For all s € WStacks there exists a unique N-stack s' € WStacks such that s % s

Proof:
(1) Let ¢ be a variable in V" and let s be a @-stack in WStacks.We distinguish two cases depending on the order of the ¢.
*  Assume that ¢ is of ground type and that Arg,, ) (pop;(s)) is some r :: t € CStacks.

We have by definition of M that s —/;» s' = push’(r). To show that [[s] is equal to [s'], we simply unfold the
definitions.
[s1 = [popy(s) = 0] = [Arggy(popy (s) ] = [r = t] "= [pushi(r)] = [']

Assume that s = push/ (r) is a 1-stack for some 1) € NUV. We have ord (1)) = ord(p) = 0. As | Arg, (pop,(s)) | < |s|-2,
we have that | top,,  ,(s) = s| > |top, ,(s') = §'|.

*  Assume that ¢ is of type 7 = 71 — ... = Ty, — o of order k > 0. Assume that Arg, ) (pop; (push,_;1(s))
is equal to r :: t € CStacks. First recall that, from Lemma 1, we have that ¢ : 7. We have by definition that s v s =

push™ 1 (r). Let us show that [ s] = [ s .
Using Fact 1, we have that:
[T = [ popi(s)::top(s')] [ Arg,(collapse(s'))]. .. [Argg(@)(collapse(sl))]]
=[popy ()21 (1) =[Ag, ()] (2) — [ A, ()] (2)
= [popi(s) :: ¢l Argy(s) 1] - - - [ Argyp) () I = [ -

The equalities denoted (1) and (2) are proven below:

def

= [[T = t]] = [Argrk(w)(popl(pUSh’nkarl(S)))]]
e [[Argrk(ga)(popl(s))]] = [[popi(s) =] (D)

[ pop, (s') :: topi(s) ]
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and for all 4 € [1, ()],

[ Arg;(collapse(s')) ] = [ Arg, (collapse(push'" "1 (1) ]
= [ Arg;(pop;,—j11(7)) ]l )
et [Arg, (Popy, k41 (popy (Push, _441(s)))) ]
= [ Arg;(s) ]
As both ¢ and ¢ have type 7, and as ¢ is of the form 1) t; - - -ty for some ¢ > 0, it directly follows that ord(p) < ord(v).
The fact that | top,,_o,q(p)+1(5) | > | 0P, _orap)+1(8") | directly follows from Lemma 3.

(2) Assume by contradiction that there exists an infinite sequence (s;);>o of stacks in WStacks such that for all ¢ > 0,

S; He» si+1. For all 4 = 0, we denote by ¢; the top-symbol of s; and (; the head symbol of ¢;. According to (1), the order

of the ¢, increases and hence is ultimately constant. Let j and k be such that, for all i > j, ord(y;) is equal to k. Using
(1), the size of the top,,_,,;(s;) is strictly decreasing starting from j which leads the contradiction. [ ]
By definition of M, only well-formed N-stacks can be the source of non-silent transitions. Let s be a well-formed N-

* *
stack. If [[ s ] % t for a € ¥ then the N-stack s’ such that s % s’ is such that [[ s’ ]| = t. Conversely if s % s’ for some

N-stack s then [[ s]| %» s [
6) Proof of Theorem I:

Theorem 1. For every labeled recursion scheme S of order-n, there is an n-CPDA A that generates the same tree. Moreover,
the number of states in A is linear in the maximal arity appearing in S, and its alphabet is of size linear in the one of S.

Proof (sktech): Let s be a well-formed stack. We denote by (s ) the configuration of A4 defined by { s ) = (g, s)
if s is an N-stack and (s )) = (k(x),s) if s is a V-stack whose topmost symbol starts with a variable .

Clearly for any well-formed N-stack s, s ﬁ s"if and only if (s % «s"y.
For any V-stack s, if s He} s’ then { s e—:> (8" as intuitively - combines the definition of both - and Arg,(-).

Conversely for all V-stack, if s —/;» s" and s —j> { s2 ) then { s2 ) e_j) s M.
|
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C. Proofs Omitted in Section IV

1) Proof of Remark ??:

Remark ??. The second constraint in the definition of Damm-safety can be reformulated as : all argument subterms of an
argument subterm of order-k appearing in a right-hand side, have at least order-k.

Proof: Let us first show that the condition of Definition 7 implies the condition stated in Remark ??. Let¢ : pt; --- £y be
an argument subterm of a right hand side of a Damm-safe scheme with ¢ : 77 — --- — 7, — o. It is enough to show that the
t;’s have at least of order ord(t). If £ = 0 or £ = n (i.e. ord(t) = 0), the condition trivially holds. Assume that 0 < ¢ < n.
As the scheme is homogeneous, the order of ¢ i maxX;c[s41,n] ord(t;) + 1 = ord(r¢+1) + 1. Due to the Damm-safety
condition, ord(7¢) = ord(re+1) + 1 = t. Using homogeneity, it implies that ord(t;) = ord(r;) = ord(r;) = ord(t).

Let us now show that the condition stated in Remark ?? implies the condition of Definition 7.

Lett: oty --- t; be an argument subterm of a right hand side of a Damm-safe scheme with ¢ : 74 — --- — 7, — 0 and
0 < k < n. Using homogeneity, we have ord(t) = ord(7,+1)+ 1. Toward a contradiction, assume that ord(7y) = ord(7gx+1).
This would imply that the argument subterm ¢ of order ord(r+1) + 1 = ord(r;) + 1 contains the argument subterm ¢ of
strictly smaller order ord(7y). [ |

2) Proof of Proposition 2:

Proposition 2. Damm-safe schemes are safe and for every safe labeled scheme, there exists a Damm-safe labeled scheme
of the same order generating the same tree.

Proof: Let S be a Damm-safe scheme, let us show that S is safe. Assume by contradiction that it is not and let ¢ be
an argument subterm of minimal size appearing in a right-hand side and violating the safety condition (i.e. ¢ contains a
variable of order less than ord(t)). The term ¢ can be written @ty -ty with p : 77 — -+ > 7, >0 and 0 < £ < n. As
S is Damm-safe, all the ¢;’s have at least order ord(t) (cf. Remark ??) and one of them ¢;, contains a variable of order
strictly smaller than ord(t). This contradicts the minimality of ¢.

Let S be a safe scheme. By Corollary 1, we can construct a higher-order pushdown automaton 4 of the same order
generating the same tree. It is easy to very that the translation of [10] of higher-order pushdown automata into safe schemes
in fact produces Damm-safe schemes. Therefore applying it to the automaton A yields a Damm-safe scheme generating the
same tree as S and of the same order. [ ]

3) Proof of Theorem 2:

The following proof substantiate the proof sketch given in Section IV only at order 2. We start with the proof at order-2
to get intuition of the objects. Then we sketch the key invariants for the proof in the general case.

Theorem 2 (order-2). The translation of Section III when applied to a safe order-2 recursion scheme yields a link-free
CPDA

Proof: Let S be an order-2 safe scheme and let A be the CPDA constructed from S in Section III-B.

To show that A is link-free, we first show that, in any reachable configuration’ (¢, s = [s1...5m,]2), we can define the
target of the links of s using only the symbols appearing in the stack. Then, this stronger result allows us to conclude.

For this, we need to introduce some notations. For i € [1,m] and j € [1,]s;|], we denote by (7, ), ¢(i,) and o(i, j)
respectively the j-th symbol of stack s;, the target (if defined) in [1,¢ — 1] of its link and the order (if defined) of this link.
By definition of A, ¢(i,7) and o(i,j) are defined iff r(4,j) is a term of order k£ > 0 and in this case o(i, j) is equal to
2—-k+1

Moreover for i € [2,m], we let £; be the smallest index at which s;_; and s; have a different symbol (or |s;| + 1 if no
such index exists).

The stack s satisfies the following properties:

1) forall i € [1,[s1]], t(1,4) is undefined;

2) for all i € [2,m], ¢; <|s;—1] and for all ¢ € [2,m — 1], £; < |s;];

3) forallie[2,m]and 1 <j < ¥;, t(i,5) =t(i —1,));

4) for all 4 € [2, m] with ¢; < |s;|, 7(¢, ¢;) does not contain a variable of order 0 and is an argument subterm of (i —1, ¢;)

and if r(i,¢;) is of order 1 then ¢(¢,¢;) =i — 1;

i.e. reachable from the initial configuration
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5) for all i € [2,m] with j € [{; + 1,]s;]], t(¢,4) is undefined;

6) if m = 2 then £, = |s,,| + 1 iff top,(s) = ¢t1...th, ¢ = qx for some k € [1, k] such that ord(t;) = 1.

These properties are proved by induction on the length of the shortest path in the LTS from the initial configuration to
(g, s) and by inspection of the transitions of .A. These properties trivial hold for the initial configuration. Assume that they
are verified by a configuration (g, s), let us show that they hold for any configuration (p,r) such that (g, s) %» (p, 7).

We distinguish several cases depending on the transition of A applied to go from (g, s) to (p,s’). Let ¢ be top,(s) and
let ¢, t'(7,7), 0'(i,7), (4, j) be the notions corresponding to s’.
x If ¢ starts with F € N and if Fx1 -+ 2,5 — €€ R.

« The transition is 0(q«,t,a) = (g«, push). Then e starts with a non-terminal and p = ¢ = ¢4 and s’ = pushi(s).
If m = 1, there is nothing to prove. Otherwise, as ¢ = ¢, by Property 6, ¢,, < |s.,| hence, ¢,, = £/ . Therefore,
all properties for s’ are inherited from s. In particular Property 5 is still satisfied as we did not attached a link to the
order-0 term we just pushed on top of s.

o The transition is 6(q«,t, a) = (¢rk(x), ¢d). Then s’ = s and all properties are inherited from s.

o The transition is 6(q«,t,a) = (¢rk(a), Pushy; pushy; pop,). Then e starts with a variable x of order 1, p = gy,
q = Guk(z) and s" = pop, (pushy(pushi(s))). The most interesting case is that of Property 6. As £7, | = [smy1| + 1,
we need to show that top, (s') = @ty ...tn, ¢ = qi for some k € [1, h] such that ord(tx) = 1. The only non-immediate
part is that k£ < h. It holds as otherwise it would imply that top, (s’) is an argument subterm of order-2 (as it misses
at least one argument of order-1) which leads a contradiction as the scheme we consider has order-2 (hence all its
argument subterms have order < 1).

= If tis a term of the form ¢t; ---¢; for some pe V U N.

« The transition is 6(qx,t,€) = (Grk(ty)> POP1; Pushi*). Then k < h, ty : 0, p = Gk, ¢ = Guk(ry) and s’ =
push’*(pop; (s)). If m = 1, there is nothing to prove. Otherwise, as t), : o, by Property 6, £,, < |sp|. If £y < |5]
then all properties are trivially inherited from s. The interesting case is ¢,, = |8;,|. In this case, £, = |s.,|: indeed,
Property 4 guaranties that 7(m, £,,,) is an argument subterm of r(m — 1, £,,), hence tj, is as well an argument subterm
of r(m — 1,¢,,) (as it is an argument subterm of r(m, ¢,,)) hence differs from r(m — 1, £,,). It remains to show that
Property 4 holds (the others are inherited). As r'(m,¢,,) = t has order 0, the only thing to prove is that ¢; does not
contains a variable of order-0. But, as t; is an argument subterm of ¢ and because ¢ does not contain any variable of
order 0 (by induction hypothesis) the same holds for #y.

« The transition is §(qx,t, €¢) = (qu(tk),popl;push'i‘“’2). Then k < h and t; has order 1, p = qr, ¢ = Grk(zy)
and s’ = push!*™ "*!(pop, (s)). First remark that the previous transition was necessarily (qx, push’; pushs; pop;)
(coming from state g) or (gg, collapse) (coming from some state g, with A > k). In the first subcase, s, was a
prefix of s,,_1 hence s/, and s/, ; differs in their last symbol, meaning that ¢/, = |s/ |; the only thing to prove is
Property 4 holds (the others are inherited) and in particular that ¢;, does not contain a variable of order 0: but this is a
consequence of the safety constraint because ¢;, is an argument subterm of a right-hand-side and as it has order-1 the
safety constraint imposes that it does not contain a variable of order 0.

For the second subcase (the previous transition was a collapse), we remark that £,,, < |s,,| (see next case below). Hence
we can conclude as in case above when ¢; : o.

o The transition is d(gk, t, €) = (gx—n, collapse). Then k > h, p = qx, ¢ = qp—p, and s’ = collapse(s). All properties
except Property 6 are inherited. For Property 6, we use the the second part of Property 2 to crucially guaranty that the
stack s is such that £/, < |s/,| (here n’ refers to the stack height in s’).

We are now ready to conclude that A is link-free. Inspecting the transitions of A, a collapse operation can only be
performed if ¢ = ¢ and top,(s) = @ty ...t with k > h and ¢ : (71,...,Tm,0). Thanks to Definition 1, @ t; ...t} is of
order-1. Property 5 implies that £, is either equal to |s,,| or to |s,,| + 1. Property 6 implies £,, # |s;,| + 1 as otherwise
we would have k < h. Thus, we have ¢,,, = |sy,| and by Property 4, collapse(s) = pops(s). [ |

To extend the previous proof at any order n, we first need to introduce notations to designate positions in an order-n
stack.

Let s = [s1,...8m]n be an order-n stack. For h € [0,n], we inductively define an h-position in s as the index of an
order-h stack inside s. An h-position in s is a tuple 7 € N*~" such that:

« if h = n there is only one position : the empty tuple &;

o if h=n—1thenice[l,m];

e if h <n —1 then i = ij for some i € [1,m] and j an h-position in s;.
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The set of h-positions in s is denoted Posy,(s). For two positions i and j, we write i < j if 7 is smaller than j for the
lexicographic order. We denote by maxp,(s) the maximum element of Posy,(s).

For any h € [0,n — 1] and any i € Posy,(s), we inductively define the order-h stack occurring at postion i, denoted s(i),
by:

« if h = n there is only one h-position : the empty tuple £ and we let s(g) = s;

o if h =n —1 then s(i) = s3;

e if h <n —1 then as 7 = ij with i € [1,m] and j is an h-position in s;, we take s(i) = s;(7).

Notation 3. For a symbol appearing in the stack z, R(x), T(x) and O(x) respectively designate the symbol (in T'), the
target of the link (if defined) and the order of the link (if defined) appearing in x.

By construction of A, T'(s(i)) and O(s(7)) are defined iff R(s(7)) is a term of order k£ > 0 and in this case O(S(i)) is
equal to n — k + 1.

For all h € [0,n — 1] and all i = (i1, ..., i) € Posy(s), we define pred(i) € Posy,(s) and sup(i) € Pospi1(s) if h <n
by pred(i) = (i1,...,453 — 1) if 43 > 1 and pred(i) is undefined otherwise and sup(i) = (i1,...,%73_).

For all h € [0,n — 1], the position i = (i1, ... +i5)) € Posy(s) is initial if 47 = 1. In other terms, ¢ is initial if and only
if pred(7) is undefined.

For all h € [1,n — 1], we define a partial mapping ¢? with domain in Pos,(s) associating to an h-position 7 a 0-position

in s(7). The value of ¢2(i) (when it is defined) is the smallest O-position j in s(7) such that r(7) differs from R(< (i)).

Remark that ¢”(7) is undefined for a non-initial 7 if and only if s(7) is a substack of s(pred(7)).

Theorem 2 (arbitrary order). The translation of Section III when applied to a safe order-n recursion scheme yields a
link-free CPDA

Proof: We define by induction on the order h the notion of safe stack. All order-1 stacks are safe stacks. An oder-(h+1)
stack s = [$1...8m]n+1 is safe if:

1) for all i € [1,m], s; is a safe order-h stack.

2) for all i € [2,m], £"(i) is defined and is such that ¢(i) belongs to Posy(s;_1) and R(s;(¢"(i))) is an argument
subterm of R(s;_1(¢"(i))) which does not contain any variable of order < n — h + 1. If R(s;(¢"(i))) is of order > 0
then T'(s;(¢7(i))) =4 — 1. For all j > £7(i) in Posy(s;), R(s;(7)) is not of order n — h + 1.

We slightly relax the notion of safe stack by defining w-safe stack for w € [2,h + 1]. An oder-(h + 1) stack s =

[$1...8m]nt1 is w-safe if:

1) forall i € [1,m — 1], s; is a safe order-h stack, s,, is safe if w = h + 1 and s,,, is w-safe otherwise;

2) for all i € [2,m] where m’ = m if w < h+ 1 and m’ = m — 1 otherwise, ¢ (i) is defined and is such that ¢% (i)
belongs to Pos(s;—1) and R(s;(¢"(i)) is an argument subterm of R(s;_1(¢"(i))) which does not contain any variable
of order < n — h + 1. If R(s;(¢"(7))) is of order > 0 then T'(s;(¢*(i))) = i — 1. For all j > ¢"(i) in Posg(s;),

R(s;(j)) is not of order n — h + 1.

By an induction similar to the order-2 case, we can prove that for all reachable configuration (g, s), s is w-safe iff top; (s)
starts with ¢ : (71, ..., Tp(4),0), ¢ = ¢; With ord(7;) = n —w + 1; otherwise s is safe.

We are now ready to conclude that A is link-free. Inspecting the transitions of A, a collapse operation can only be
performed if ¢ = ¢ and top,(s) = pty...t, with k > h and ¢ : (71,...,Tm,0). Let us write w = n — ord(r;) + 1.
By the above property s is w-safe. Let w’ = n — ord(top,(s)) + 1. We have w’ < w and the link is of order w’. Let
s’ be the topmost order-w’ stack of s. By definition of w-safety it is safe. The last part of Property 2 implies that égi, is
max,,(s’) hence Property 2 implies that the link of the top-most symbol of s’ point to the previous order-(w’ — 1) stack.
Hence collapse(s) = pop,, (s).

|
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D. Collapsible Pushdown Games: Complexity and Winning Strategies

This section is devoted to the study of parity games played on LTS of CPDA. For simplicity of presentation we omit the
input alphabet and introduce the concept of Collapsible pushdown processes (CPDP). The main focus is on complexity of
deciding the winner and in establishing the existence of strategies realised by CPDA transducer synchronised with the one
defining the game. This latter result is the key ingredient to prove the effective selection property.

Comparison with previous proofs from [9] and [2].

The lines behind the proof of the main result of this section (Theorem 5) slightly differ from the one of a
similar statement (where complexity was not studied precisely, neither strategies) from [9]. Indeed, in [9] the
induction step removes the outmost links at the same time as in reduces the order. As a consequence, the
definition of collapse rank was different, and the transformation from a usual CPDA to a rank-aware one is
different. Separating both steps (removing the link and decreasing the order) seemed necessary with respect to
designing strategies realised by CPDA, which is crucially used later for effective selection. Note that a similar
proof technique (but without any consideration on strategies and precise complexity) was considered in [2].
Hence the main added value here are: precise (and improved) analysis of the complexity (which requires several
optimisations) and existence of winning strategies realised by CPDA synchronised with the one defining the
game.

1) Collapsible Pushdown Processes:

First we introduce, for any stack symbol ~ an operation on stacks that does top; rewriting: this operation, denoted rew;,
takes the top; element and replace it by v without modifying the link. Formally:

- [$1-- s rew] si41] if ords > 1
rew; [$1-:--S1+1]1 =
| —

S

(51570 if ords = 1 and 8,41 = a9F)

We also let id for the identity operation (i.e. id(s) = s for all stack s).

We now introduce the notion of collapsible pushdown processes which differs from CPDA from the fact that they have
no input alphabet (and can be non-deterministic).

An order-n collapsible pushdown process (n-CPDP) is a 4-tuple A = (T, Q, A, qo » where T is the stack alphabet, Q) is
the finite set of control states, gy € Q is the initial state, and A : Q x ' — 2@xOPn(I)xOpn(I) i the transition function
and satisfies the following constraint. For any ¢,y € @ x I, for any (¢’, op1,0p2) € A(q,~y) one has that op; € {rew$ | a €
T'} U {id} and ops ¢ {rew? | a € T'}: hence a transition will always act on the stack by doing (possibly) rewriting the top
symbol and then (possibly) doing another kind of operation on the stack. In the following we will use notation (¢’, op1; op2)
instead of (¢, op1, op2) (to stress that one performs op; followed by opo).

Configurations of an n-CPDP are pairs of the form (g, s) where ¢ € @ and s is an n-stack over I'; we call (qo, L) the
initial configuration, where L, = [...[L]1.. ]n.

An n-CPDP A = (T, Q, A, qo ) naturally defines a transition graph Graph(A) := (V, E €V x V') whose vertices V are
the configurations of .4 and whose edge relation F is given by: ((q, s), (¢, ")) € E iff 3(¢, op1; op2) € A(g, top;(s)) such
that s = opa(op1(s)). Such a graph is called an n-CPDP graph.

2) n-CPDP Parity Games:

Let G = (V,E € V x V) be a graph. Let Vg w Va be a partition of V' between two players, Eloise and Abelard. A
arena is such a tuple G = (G, Vg, Va). A colouring function 2 is a mapping Q : V — C < N where C is a finite set of
colours. An infinite two-player parity game on an arena G is a pair G = (G, Q).

Eloise and Abelard play in G by moving a pebble between vertices. A play from some initial vertex vy proceeds as
follows: the player owning vy moves the pebble to a vertex vy such that (vg,v1) € E. Then the player owning v; chooses
a successor vz and so on. If at some point one of the players cannot move, she/he loses the play. Otherwise, the play is an
infinite word vov1vs - - - € V and is won by Eloise just in case liminf(Q(v;))i=0 is even. A partial play is just a prefix of
a play.

A strategy for Eloise is a function assigning, to every partial play ending in some vertex v € Vg, a vertex v’ such that
(v,v") € E. Eloise respects a strategy ® during a play A = vov v - - - if vip1 = D (vg - - -v;), for all ¢ = 0 such that v; € Vg.
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A strategy @ for Eloise is winning from a position v € V' if she wins every play that starts from v and respects ®. Finally,
a vertex v € V is winning for Eloise if she has a winning strategy from v. Symmetrically, one defines the corresponding
notions for Abelard. It follows from Martin’s determinacy Theorem [AS5] that, from every position, either Eloise or Abelard
has a winning strategy.

Now let A =<{T',Q, A, qo ) be an order-n CPDP and let Graph(A) = (V, F) be its transition graph. Let Qg w QA be a
partition of () and let 2 : Q — C' < N be a colouring function (over states). Altogether they define a partition Vg w Va of
V' whereby a vertex belongs to Vg iff its control state belongs to Qg, and a colouring function 2 : V' — C where a vertex
is assigned the colour of its control state. The structure G = (Graph(.A), Vg, Va) defines an arena and the pair G = (G, )
defines a parity game (that we call a n-CPDP parity game).

Given an n-CPDP parity game, we will consider the following two algorithmic questions:

1) Decide whether (qo, L,,) is winning for Eloise.

2) If (go, L) is winning for Eloise, provide a description of a winning strategy for Eloise from (go, Ly,).

To answer the second question we will consider strategies realised by n-CPDA transducers.

3) CPDA strategies:

Let A =(T',Q, A, qo ) be an order-n CPDP, let Graph(A) = (V, E) be its transition graph, let G = (Graph(A), Vg, Va)
be an arena associated with 4 and let G = (G,€)) be a corresponding n-CPDP parity game.

We aim at defining a notion of n-CPDA transducers that provide a description for strategies in G, that is describe a
function from partial plays in G into V.

Consider a partial play A = vovy ---vg in G where v9 = (go, L,). An alternative description of A is by the sequence
(q1,rewr;op1) - (qe, rewp; ope) € (Q x Opp(T') x Op,(T'))* such that v; = (¢;,s;) for all 1 < ¢ < £ and s; =
op;(rew;(s;—1)) (with the convention that sy = L,). We may in the following use implicitly this representation of A when
needed. Similarly, one can represent a strategy as a (partial) function ® : (Q x Op,,(T") x Op,,(T'))* — Q x Op,,(T") x Op,, (T),
the meaning being that in a partial play A ending in some vertex (g, s) if ®(A) = (¢, rew; op) then the player moves to
(¢, op(rew(s))).

An n-CPDA transducer realising a strategy in G is a tuple S = (X, S, §, 7, 5o » where X is a stack alphabet, S is a finite
set of states, sp € .S is the initial state,

§: S5 x X x(Q x Opp(T) x Opyp(T)) = S x Opp(2) x Opp(X)
is a deterministic transition function and
T:Sx X > Q xOpy,(T) x Op,(T)

is a deterministic choice function (note that we do not require 7 to be total). For both § and 7 we do the same requirement
as for the transition function for CPDP, namely that the first stack operation should be a top-rewriting (or the identity) and
that the second one should not be a top-rewriting.

A configuration of T is a pair (s,0) where s is a state and o is an n-stack over X; the initial configuration of 7T is
(s0,Ln). With a configuration (s, o) is associated, when defined, a (unique) move in G given by 7(s, top;(c)) A partial
play A = (¢q1,rewr,0p1) - - (qe, rewy, opy) in G induces a (unique, when defined) run of T which is the sequence such that

(50,00)(s1,01) -+ (5¢,00)

where (sp,00) = (S0,Lln) is the initial configuration of 7 and for all 0 < ¢ < ¢ — 1 one has
d(si, top1(04), (qiv1, Te€Wit1;0pit1)) = (Siy1,meW; 15 0p;, 1) With 0511 = op}, (rew;,(0;)). In other words, the control
state and the stack of 7 are updated accordingly to d.

We say that 7 is synchronised with A iff for all (s,a, (q,rew;op)) € S x & x (Q x Opyp(T") x Op,(T)) such that
5(s,a, (q,rew;op)) = (s',rew’; op’) is defined one has that op and op’ are of the same kind, i.e. either they are both a pop,,
(for some k) or both a push,, (for some k) or both a pushy® (the symbol pushed being possibly different but the order
of the link being the same) or both collapse or both ¢d. In particular, if one defines the shape of a stack s as the stack
obtained by replacing all symbols appearing in s by a fresh symbol § (but keeping the links) one has the following.

Proposition 3. Assume that T is synchronised with A. Then, for any partial play A in G ending in a configuration with
stack s, the run of T on A, when exists, ends in a configuration with stack o such that s and o have the same shape.

The strategy realised by T is the (partial) function s defined by letting ¢s(A) = 7((s, top;(c))) where (s,0) is the
last configuration of the run of 7 on A.
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We say that Eloise respects ps during a partial play A = (qi,7ewi;op1)--- (g, rewy;ope) in G iff for all
0 < i < ¢—1if the last configuration in (g1, rews;op1) - - - (gi, rew;; op;) belongs to Vg then (git1,7e€wit1;0pir1) =
ws((qu, rews;opy) - - - (qi, rews; op;)) )

We say that @s is well-defined iff for any partial play A = (g1, rews;op1) - - - (qe, rewy; ope) where Eloise respects ¢s if
the last vertex (qe, s¢) in A belongs to Vg then ¢s(A) € A(g, top,(se)), i.e. the move given by s is a valid one.

4) Main Result:

Theorem 5. Let A = (T, Q,0,q0) be an n-CPDA and let G be an n-CPDA parity game defined from A. Then one has
the following results.
1) Deciding whether (qo, L) is winning for Eloise is an n-EXPTIME complete problem.
2) If (qo, L,) is winning for Eloise then one can effectively construct an n-CPDA transducer T synchronised with A
realising a well-defined winning strategy for Eloise in G from (qo, L,,).

The proof is by induction on the order and each induction step is itself divided into two steps: the first one removes the
outermost links while the second one lowers the order.

Before going to the proof, we give in Section D5 a normalisation result (Theorem 6). Then Section D6 explains how
to removes the outermost links and Section D7 shows how to reduce the order. Finally Section D8 combines the previous
constructions and provides the proof of Theorem 5 together with a precise complexity analysis.

5) Rank-aware CPDP:

Fix, for the whole subsection, an n-CPDP A = (I',Q, A, qo), a partition Qg w Qa of @ and a colouring function
Q:@Q — C < N. Denote by G its transition graph, by G the arena induced by G and the partition Qg w QA and by G the
parity game (G, ).

Let s be an order-n stack. We first associate with s = s1,- - , s a well-bracketed word of depth n, € (X U {I[,1})*:

[§1---8¢] ifmn=>1
S ifn=0 (ie. se)

s =

In order to reflect the link structure, we define a partial function target(s) : {1,---,|3|} — {1,---,|3|} that assigns to
every position in {1,---,|3|} the index of the end of the stack targeted by the corresponding link (if exists; indeed this is
undefined for 1, [ and 1). Thus with s is associated the pair {3, target(s)); and with a set S of stacks is associated the
set § = {(5,target(s)) | s € S}.

/x
Example 16. Consider the stack s = [[[La]] [[L]1[LaBA1]]. Then § = [[[Lal] [[LI[LaB~]]] and
target(5) = 4, target(14) = 13, target(15) = 11 and target(16) = 7.

A finite path in G is a non-empty sequence of configurations vgvy - - - v, such that for all 0 < ¢ < m — 1, there is an
edge in G from v; to v;11. An infinite path is an infinite sequence of configurations vgv; - - - such that for all ¢ > 0, there
is an edge in G from v; to v;41. Note that we do not require vy to be the initial configuration.

We now define a generalisation of n-stacks called indexed n-stacks. Recall that a stack s is equivalently described as a
pair {3, target(s) ) (recall that S is a well-bracketed word description of s and that target(s) gives the link structure). An
indexed n-stack is described by a triple (3, target(s),ind(s)) where § = 51 ---53 and target(s) are as previously and
where ind(s) : {1,...,|5]} — N is a partial function that is defined in any position j < || — n such that 5; ¢ {[,1}.
The previous conditions on the domain of ind(s) ensure that any symbol in s which is not the topmost one has a value by
ind(s) that we refer to as its index. An indexed configuration is a pair formed by a control state and an indexed stack.

The erasure of an indexed n-stack (3, target(s),ind(s)) is the n-stack {3, target(s) ). We extend the notion of erasure
to indexed configuration in the obvious way.

With any path A = vgvy - - -, with v; = (p;, s;) for all ¢ > 0, we inductively associate a sequence of indexed configurations
A’ = (v} - such that the following holds.

o The erasure of A’ equals A (the erasure of a sequence of indexed configurations being defined as the sequence of the

respective erasures). N
» For any indexed configuration v}, = (¢, s},) the following holds. Denote by s;,, = (s, target(sy,), ind(s},) ), let

8!, = x1--- Ty, and let j be in the domain of ind(s),) such that z; 1 = ]. Then let j* > j be the largest integer such
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Figure 4. Example of a sequence of indexed stacks

that x, = 1 for all j + 1 < k < j’ and let ¢ be the unique integer such that x; - - -z is well-bracketed. Then, for any
i <k <y, ifind(s),)(k) is defined, one has ind(s;,)(k) < ind(s},)(j), and this inequality is strict if ind(s],)(j) # O.
Intuitively, position j is the topmost symbol of some (j’ — j)-stack, and any symbol in this stack has an index smaller
than the topmost symbol.

The intended meaning of the index of some symbol in the stack is the following. The index is equal to the largest integer
i such that since v;/v} the symbol no longer appears as a top; -element. If one uses the stack to store (and maintain) some
information, the index is the moment from which this information was no longer updated. Hence when some symbol appears
again as the top,-element, one has to update the information by taking into account all that happened since v;/v} (included).

The intuitive idea behind the forthcoming definition of A’ is rather simple. The indices are always preserved, so one
only cares on new positions in the stack. On doing a push,, the indices of the copied stack are inherited from the original
copy. Then when new indices are needed (because a position is no longer the {op, one, it get index m + 1 if the current
configuration is vy, +1).

Before going to the formal definition, we start with an example.

Example 17. In figure 4, we give an example (at order 3) that illustrates the previous intuitive idea as well as the formal
description below (ignore the information on colours for this example). We only describe the indexed stacked (omitting the
control states), and indicate the stack operation (but omit the id operation). Indices are written as superscripts.

Now, we formally give the construction (the previously mentioned properties easily follow from the definition). The initial
configuration v, = (po, s3), is obtained by letting ind(s{,) be the constant (partial) function equal to 0. Assume now that
v} -+ - vl has been constructed, let v, = (pm, s,,) With s/, = (5, target(sy,),ind(s),) ) and let Vi1 = (Pm+1, Sm+1)

with Sp1 = (Sma1,target(smy1) ). We let v), 1 = (Dmt1,8,41) With 57, 1 = (Spy1,target(smir),ind(s), 1))
where ind(s;, ) is defined thanks to a case distinction.

« A top-rewriting operation followed by a push?’k operation is applied in configuration v,,. Then all previous indices are
inherited and the former top,-element gets index m + 1. Formally, ind(s, . ,)(j) = ind(s,,)(j) whenever j < |5,,| —n
and ind(s),11)(|Sm| —n) =m + 1.
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o A top-rewriting operation followed by a push, operation is applied: $,,+1 = pushy(s,,). First, all existing indices
are preserved, i.e. ind(s, ;)(j) = ind(s),)(j) whenever j belongs to the domain of ind(s;,). Then one writes 5,
as [--- [t]11™ ! with t being well-bracketed; hence, 3,51 = [--- [t] [t] 1™ %+, Then we let ind(s;,1+1)(|§7n| —
(n—k+1)+j) = ind(s,)(|sh| — (n — k + 1) — (|t| + 2) + 7) for all j > 1 such that the second member of the
equality is defined: the indices are simply copied from the former top (k — 1)-stack. Finally, the former top,-element
gets index m + 1: ind(s),,1)(|Sm| —n+k—3)=m+ 1L

« A top-rewriting operation followed by a either a popy operation or a collapse or id is applied in configuration v,, in
A. Then all indices are inherited from the previous indexed stack. Formally, ind(s),,,)(j) = ind(s),)(j) whenever j
belongs to the domain of ind(s;, ;).

The following proposition is crucial for the rest of the proof. In particular, it means that if we stored some information
on the stack, the index gives the "expiry date" of the stored information, that is the step in the computation starting from
which the information has no longer been updated.

Proposition 4. Let A = vovy - - - be a path and A' = vjv] - - - be as above. Let m > 0, let s}, = (S, target(sy,),ind(s,,) )
be the indexed stack in v),,. Let j be such that i = ind(s),)(j) is defined. If i > 0, then (i — 1) is the largest integer such that
the j-th letter of Sy, is a copy of topy(si—1). If i = O, there is not i’ such that the j-th letter of S, is a copy of top,(si).

Proof: Immediate by induction on m and from the definition of A’ from A. ]

Our main goal is to enrich the stack alphabet in order to compute the link-rank. Assume that in configuration v,, the
top,-element has a link (that is possibly a copy of a link) that was created in configuration v;: then the link-rank in vy, is
defined as the smallest colour since the creation of the link, i.e. min{Q(v;), - - - (vy,)}. In order to maintain this information,
we need to define two other concepts: the collapse-rank (for updating after performing a collapse) and the pop-rank for k
(for updating after performing a popy,).

We first introduce the notion of ancestor. Fix a finite path A = vgvy - - - Uy, let v, = (g, $) be some configuration in A
and let « be a symbol in s. Then the ancestor of x is the configuration v; where ¢ is the index of z in v}, (the indexed
version of v,,).

We now introduce the notion of collapse-rank. Fix a finite path A = vgv; - - - vy, and assume that the top,-element of vy,
has a (k + 1)-link for some k. Then the collapse-ancestor in vy, is the ancestor of the top;-element of the pointed k-stack
and the collapse-rank in v,, is the smallest colour visited since the collapse-ancestor (included).

Example 18. Consider the sequence of indexed stacks given in Figure 4 (the colours of the corresponding configurations
are indicated on the right part of the figure).

In v§ the collapse-ancestor is 6 and the collapse-rank is therefore 4. In v}, the collapse-ancestor is 2 and the collapse-rank
is therefore 1.

Next, we give a notion of pop-rank. Fix a partial play A = vgv; - - - vy, and a configuration v,,, = (¢, s) in A. Then, for
any 1 < k < n, the pop-ancestor for k, when defined, is the ancestor of the top,-element of pop,(s) and the pop-rank for
k, when defined, is the smallest colour visited since the pop-ancestor for &k (included). In particular, the pop-rank for n is
the smallest colour visited since the stack has height at least the height of s.

Example 19. Again, consider the sequence of indexed stacks given in Figure 4.

In configuration v{ the pop-ancestor (resp. pop-rank) for 3 is 6 (resp. 4), the pop-ancestor (resp. pop-rank) for 2 is 8
(resp. 5) and the pop-ancestor (resp. pop-rank) for 1 is 5 (resp. 2).

In configuration v}, the pop-ancestor (resp. pop-rank) for 3 is 0 (resp. 0), the pop-ancestor (resp. pop-rank) for 2 is 2
(resp. 1) and the pop-ancestor (resp. pop-rank) for 1 is 12 (resp. 2).

Consider a finite path A = vgvy - - - v, in G ending in a configuration v, = (g, s) such that top,(s) has an n-link (if the
link is a k-link for some k < n the following concepts are not relevant). The link-ancestor of vy, is the configuration v;
where the original copy of the n-link in top; (s) was created®, or vy if the link was present in the stack of the configuration
vo. The link-rank of vy, is the minimum colour of a state occurring in A since its link-ancestor v; (inclusive) i.e. it is
min{Q(v;), - - - Q(vm)}.

Example 20. Consider the sequence of indexed stacks given in Figure 4. The link-ancestor of configuration v§ is configuration
vh and its link-rank is 5. The link-ancestor of configuration v\, is configuration v and its link-rank is 2.

8Formally, one could index links as well: whenever performing, in configuration vj, a push'ly’e, one attaches to the newly created link the index j + 1.
Later, if the link is copied (by doing a push,, operation) then the index is copied as well.
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Definition 8. An n-CPDP A = (T',Q, A, qo y equipped with a colouring function is rank-aware from a configuration vq if
there exist a function LinkRk : Q x I' — N such that for any finite path A = vgvy - - - vy, the link-rank (if defined) of the
configuration vy = (q, s) is equal to LinkRk(q, top,(s)). In other words, the link rank can be retrieved from the control
state together with the top,-element of the stack.

Remark 7. In the current setting, if the ancestor of the pointed stack (resp the ancestor of the the top,-element of popy(s)
/ the link-ancestor) is v, then the collapse-rank (resp the pop-rank / the link-rank) is simply the smallest colour seen since
the beginning of the play. Hence, it does not make much sense but it permits the construction to remain uniform.

The next theorem shows that we can restrict our attention to CPDP games where the underlying CPDP is rank-aware.

Theorem 6. For any n-CPDP A = (T, Q, A, qo) and any associated parity game G, one can construct an n-CPDP Ay
and an associated parity game Gy such that the following holds.

o There exists a mapping v from the configurations of A to that of Ay such that:
— for any configuration vy of A, A is rank-aware from v(v);
— Eloise has a winning strategy in G from some configuration vy iff she has a winning strategy in Gy from v(vg);
o If there is an n-CPDA transducer Sy synchronised with Ay realising a well-defined winning strategy for Eloise in
Gk from v(qo, Ly), then one can effectively construct an n-CPDA transducer S synchronised with A realising a
well-defined winning strategy for Eloise in G from the initial configuration (qo, Ly,).

The proof of Theorem 6 is a non-trivial generalisation of [A4, Lemma 6.3] (which concerns 2-CPDP) to the general
setting of n-CPDP and starting from an arbitrary configuration. The rest if the subsection is devoted to this proof.

Fix an n-CPDP A = (I',Q, A, qo ), a partition Qg w Qa of @ and a colouring function 2 : Q — C < N. Denote
by G the induced parity game. We define a rank-aware (to be proven) n-CPDP A,k = (T, Qrk, Ark, ork » such that
Q. = Q x C and

Lic =T x (Cu{O}) x (Cu{C, 1)) x (€™ u {O})

We define a map v that associates with any configuration of A a configuration of A,x. Let (¢, s) be a configuration in
A. Then v(q, s) = ((¢,2(q)), s’) where s’ is obtained by:

« Replacing every internal symbol «y (i.e. that is not the top; -element) by (v, (5, (J, Q) if it has an n-link and by (v, O, T, )

otherwise.

« Replacing the top,-element v by (v,Q(q),2(q),2(q)) if it has an n-link and otherwise by (~, Q(q), T,2(q)).

We equip A,k with a colouring function €, by letting Q,x(q,8) = Q(q). Our construction will satisfy the following
invariant. Let A be a finite path (in Graph(.A,y)) starting in some configuration (g, s) ending in some configuration
((g,0),s) then the following holds. First, # is the minimal colour visited from the beginning of the path. Second, if
top,(s) = (o, m¢, my, 7) then

e m, is the collapse-rank;

« my is the link-rank if it makes sense (i.e. there is an n-link in the current top;-symbol) or is T otherwise;

o 7 is the pop-rank: 7(i) is the pop-rank for i for every 1 < i < n.

Let us now explain how v is defined. Let (g, s) be some configuration in A. Then v(q, s) = ((¢,(q),s’) where s’ is
obtained by:

« Replacing every internal symbol «y (i.e. that is not the top; -element) by (v, (5, (5, Q) if it has an n-link and by (v, O, T, )

otherwise.

« Replacing the top,-element v by (v,Q(q),2(q),2(q)) if it has an n-link and otherwise by (v, Q(q), T,2(q)).

Trivially, at the beginning of the path the invariant holds.

The transition function of A, mimics that of A and updates the ranks as explained below. First, let us explain the
meaning of symbols (J. Such symbols will never been created using a pushi’k or a rew? action: hence they can only be
duplicated (using push,,) from symbols originally in the stack. The meaning of a symbol O is that the corresponding object
(collapse-rank, link-rank or pop-rank) has not yet been settled. However, when a (J symbol appears in the top,-element the
various ranks can be easily retireved as they necessarily equal the smallest colour visited so far (as noted in Remark 7): this
is why we made the computation of the minimal colour visited so far in the control state of A,y.

In order to make the construction more readable, we do not formally describe A but rather explain how A4, behaves.
It should be clear that A, can be formally described to fit this informal description (and that some extra control states
are actually needed as we allow to do several stack operation per transition); technical issues about this construction are
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discussed in Remark 8. Note that the description below also contains the inductive proof of its validity, namely that m,,
my; and 7 are as stated above. To avoid case distinction on whether the link-rank is defined or not, we take the following
convention that min(t,7) = 1 for every i € N.

The intuitive idea is the following. One stores in the stack information on the various ranks, and after performing a pop,,
or a collapse, one needs to update the information stored in the new top,-element. Indeed this information has no longer
been updated since the ancestor configuration (this was the last time it was on top of the stack). To update it, one uses either
the collapse-rank / pop-rank in the previous configuration, which is exactly what is needed for this update.

Assume A,y is in configuration v, = ((g, ), s) with top,(s) = (a, me, my, 7) and let vovs - - - v be the beginning of the
path of Graph(A,x) where we denote v; = ((g;,0;), s;) (hence g¢ = q and s; = s). For any (¢, rew]; op) € A(g, ) (note
that the case where no rew, is performed corresponds to the case where v = «) the following behaviours are those allowed
n ((g,0), s).

1) Assume op = pop,, for some 1 < k < n, let popy(s)

the configuration ((¢’,6"), s”) where 6’ = min(6, Q(q’)
a) (o, 0,0 ,(¢,...,0)) if m/, =0, mj =C and 7
b) (/,0,1,(¢,...,0")) if m, =0, mj =1 and 7" = (C,..
¢) (o/,min(m., 7(k),Q(q")), mln(ml,T(kz) Q(q'), ™), Wlth

T’/(z’) _ {min(T/(i),T(k)7 ) ifi<k

= ¢’ and let top,(s’) = (¢/,m,, mj,7’). Then A, can go to
and s” is obtained from s’ by replacing top, (s
d s" is obtained from s’ by replacing top; (s') by
=(O,...,O).
O).

min(7(4), 2(¢")) ifi>k

Cases (a) and (b) correspond to the case where one reach (possibly a copy) of a symbol that was in the stack from the
very beginning and that never appeared as a top,-element: then the value of the collapse-rank, link-rank (if defined
this is case (a) otherwise it is case (b)) and pop-ranks are all equal to ¢’.

We now explain case (c). Let v, be the ancestor of top,(popy(s)). Then z > 0 as otherwise we would be in case (a)
or (b). By Proposition 4, it follows that top; (popy(s)) = top;(sz—1), and by induction hypothesis, at step (z — 1),
m,, m; and 7" had the expected meaning. Let y be the index of the top;-element of the pointed stack in s’: y is also
the top,-element of the pointed stack in s,_1, and moreover y < x. The collapse-rank in v,41 is

min{Q(Qy)v s 7Q(qw—l)7 Q(qw)v s 7Q(qn)7 Q(q’)}
= min{min{Q(gy), ..., 2(gz—1)}, min{Q(qz), ..., Aqn)}, ¢)}
=min{mg, 7(k), 2(¢')}

Similarly, when defined, the link-ancestor of s’ is the same as the one in s, _1: hence the pop-rank in wvyy is
minfmy, 7(k), 2(q')}
For any i < k, top,(pop;(s’)) = topy(sz—1) and therefore the pop-rank for ¢ in v41 is obtained by updating 7/(7) to
take care of the minimum colour seen since v, — which (as for the collapse-rank) is min{7(k), Q(¢’)}: therefore the
pop-rank for ¢ in veyq equals min{7'(z), 7(k), Q(q")}.
For any i > k, pop;(s’) = pop,;(s) and thus top, (pop;(s’)) = top,(pop,(s)). Therefore the pop-rank for ¢ in veyq
is obtained by updating the one in v, to take care of the new visited colour Q(q’): hence the pop-rank for 4 in veyq
equals min{7(z), 2(¢")}.
2) Assume op = collapse, let collapse(s) = s’ and let top,(s’) = (¢/,m., m},7"). Then A,k can go to the configuration

((¢',0"),s") where ¢ = min(6,€(q’)) and s” is obtained from s’ by replacing top,(s’) by

a) (0,0 ,(¢,...,0")) if m/, =0, mj =0 and 7" = (O,...,0).

b) (o, ¢,1,(¢,...,0)) if m, =0, mj=1and 7" = (O,...,0).

¢) (¢/,min(m., me, Q(q¢")), min(mj, m., Q(q")), ") with

T”(’L') _ min (7' (i), me, Q(¢)) ifi <k
min(r(i),2¢'))  ifi>k

The proof follows the same line as for the previous case (pop;,).

Cases (a) and (b) correspond to the case where one reach (possibly a copy) of a symbol that was in the stack from the
very beginning and that never appeared as a top;-element: then the value of the collapse-rank, link-rank (if defined
this is case (a) otherwise it is case (b)) and pop-ranks are all equal to 6’.

We now explain case (c). Let v, be the collapse-ancestor of vg. Then = > 0 as otherwise we would be in case (a) or
(b). By induction hypothesis, m/, and 7’ give the collapse-rank / link-rank / pop-ranks in v,_1. Moreover the ancestor

29



of the top,-element of the target of the top link in s’ is the same as the one in v,_1. Therefore the collapse-rank is
obtained by taking the minimum of the collapse-rank in v,_; with min{Q(q,),...Q2(¢n), 2(¢')} = min{m., Q(¢')}.
Similarly (if defined) the link-ancestor in s’ being the same as the one in v,_1, the link-rank is obtained by taking
the minimum of the one in v,_; with min{Q(qy),...2(¢n), 2(¢')} = min{m., Q(¢")}.
Let i < k. The ancestor of top, (pop;(s’)) is the same as the ancestor of top; (pop,;(sz—1)). Therefore the pop-rank for
i in vg41 is obtained by taking the minimum of the one in v, 1 with min{Q(q,), ... Q2(g.), 2(¢")} = min{m., Q(¢")}.
Let ¢ > k. Then the ancestor of top,(pop,(s’)) is the same as the ancestor of top,(pop,(s,)): indeed the collapse
only modified the top,, stack. Therefore the pop-rank for 7 in vy1; is obtained by taking the minimum of the one in
vg with the new visited colour Q(q’).

3) Assume op = push; for some 2 < j < n, let pushj(rewgv’mc’m“ﬂ(s)) = s’ and let top,(s’) = (7, me, my, T) (note
that O does not appear in top, (s’)). Then, A,k can go to the configuration ((¢’,6’), s”) where ¢ = min(6,(¢’)) and
s” is obtained from s’ when replacing top,(s’) by (v, min(m., Q(¢")), min(my, Q(q’)), ") with

i) = min(7(i), (q")) ifi#j
Q(q) ifi=j

Indeed, the collapse-ancestor in the new configuration is the same as the one in s. As by induction hypothesis m.. is
the collapse-rank in vy, the collapse-rank in vy is obtained by updating m. to take care of the new visited colour,
namely by taking min{m., Q(¢’)}. Similarly, if defined, the link-ancestors in v, and v,11 are identical and then the
link-rank in veyq is min{m., Q(q’)}.

For any ¢ # j, the ancestor of top,(pop,(s)’) and the ancestor of top,(pop,(s’)) are the same. Again using the
induction hypothesis one directly gets that the pop-rank for i in vy equals min{r (), Q(¢')}.

The index of the ancestor of top; (pop;(s’)) is by definition £+ 1. Hence as the only colour visited since vg1 is ©(q")
it equals the pop-rank for j.

4) Assume op = push’™® with 1 < k < n, and 8 € (I'\{L}). Then Ay can go to (¢',6’), where ¢’ = min(0,Q'(¢)),
and apply successively rewgv"mc’m“ﬂ and pushgﬁ’m;’m;’T,)’k where m, = min(7(k),Q(¢")), m; = Q(¢') if k =n
and m; = { otherwise, and /() = min(7(7),Q(¢")) for every i > 2 and 7(1) = Q(¢).

Indeed, the pointed stack in s’ is topy, (pop,(s)) and therefore the collapse-rank in ve; is the minimum of the pop-rank
for k in s and of the new visited colour (¢’), that is min{r(k),Q2(¢’)}.

If £ = n, the link-ancestor of vy is ve41 itself and hence the link-rank is the colour of the current configuration,
namely Q(q’).

For any i > 2, as pop,(s) = pop;(s’) one also has top,(pop,(s’)) = top,(pop;(s)) and therefore the pop-rank for i
in vp41 equals the minimum of the one in v, with the new visited colour Q(q’), that is min{r(¢), (¢’)}. Finally as
the ancestor of pop,(s’) is ve41 then the pop-rank for 1 is the current colour, namely Q(q’).

From the previous description (and the included inductive proof) we conclude that, for any configuration vy of A, A,y is
rank-aware from v(vy).

Remark 8. One must object that A,y does not fit the definition of n-CPDP. Indeed, in a single transition it can do a
top-rewriting followed by another stack operation and followed again by a top-rewriting (which itself depends on the new
top,-element). One could add intermediate states and simply decompose such a transition into two transitions, but this
would be problematic later when defining an n-CPDA transducer realising a winning strategy.

Hopefully, one can define a variant A., of Ak that has the same properties as Ay and additionally fits the definition
of n-CPDP. The idea is simply to postpone the final top-rewriting to the next transition. Indeed, it suffices to add a new
component on the control state where one encodes the top-rewriting that should be performed next: this top-rewriting is then
performed in the next transition (note that this fits the definition as performing two top-rewriting is the same as only doing
the last one). However, there is still an issue as the top-rewriting was actually depending on the top,-symbol (one updates
the various ranks) hence, one cannot save the next top-rewriting in the control state without first observing the symbol to
be rewritten. But this is not a problem, as it suffices to remember which kind of update should be done (one concerning a
pop,, or one concerning a collapse) and to store in the control state the various objects needed for this update (for this
one can simply store the former top,-element).

One also need to slightly modify the Link Rk function so that it return the link-rank of the top,-symbol after it is rewritten.
This can easily be done as the domain of LinkRk is Qi % T'yx.

Note that Al, and Ak use the same stack alphabet, but that the state space of A uses an extra component of size
linear in the one of the stack alphabet.
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In conclusion building a rank-aware (valid) n-CPDP from a non-aware one increases (by a multiplicative factor) the
stack alphabet by C"*3 and the state set by O(C™*3).
For now on, we uses Ay to mean A., .

We are now ready to conclude the proof of Theorem 6. First recall that we defined 2, by letting Q,x(q,0) = ©(q). Then,
we define a partition Q,xE @ Qrk,a of Qi by letting the states in Qg to be those states with their first component in
(e, and those states in (J;x, A to be those states with their first component in Q. Let G,k be the corresponding arena and
let G,k be the corresponding n-CPDP parity game.

Consider the projection ¢ defined from configurations of A,y into configurations of .4 by only keeping the first component
of the control state, and by only keeping the I" part of symbols appearing in the stack. Note that, on the domain of v !,
¢ and v~ coincide. Also note that  preserve the shape of stacks’, i.e. for any configuration vy, the stack in v, has the
same shape as the stack in v(vyk).

We extend ( as a function from (possibly partial) plays in Gy into (possibly partial) plays in G by letting {(vjv] -+ ) =
C(vp)¢(vy) -+ -. It is obvious that for any play A’ in G,y starting from v(vp), its image ((A’) is a play in G starting from
vp; moreover these two plays induces the same sequence of colours and at any round the player that controls the current
configuration is the same in both plays. Conversely, from the definition of A, it is also clear that there is, for any play A
in G starting from vy, a unique play A’ in G,y starting from v(vg) such that ((A’) = A.

In particular, ¢ can be used to construct a strategy in G from a strategy in G,i. Indeed, let ®,) be a strategy for Eloise
from v(vp) in G,x. We define a strategy ® in G from v(vp). This strategy maintains as a memory a partial play A,y in Gx
such that, if Eloise respects ®, in G starting from v after having played A one has ((A,i) = A and moreover A,y is a play
in Gy starting from v(vy) where Eloise respects ®,i. Initially, we let Ay = v(vg). Assume that we have been playing A
and that Eloise has to play next. Then she considers v, = D, (Ax) and she plays to v where v is the unique configuration
such that (A - v;k) = A - v. Finally one updates A, to be Ay - vyk. If it is Abelard that has to play next and if he moves
to some v, then Eloise updates Ay to be Ay - vy where vy is the unique configuration such that A,y - vy is a valid play
and such that {(v;) = v. A symmetrical construction can be done to build a strategy of Abelard in G from one in Gy.

Now, assume that v(vg) is winning for Eloise (resp. Abelard) and call ®,, an associated winning strategy. Let ® be the
strategy in G obtained as explained above. Then ® is winning for Eloise (resp. Abelard) in G from v (this follows directly
from the fact that @, is winning and that we have the property that (A,x) = A for any partial play A in G consistent with
®). Hence this proves that Eloise has a winning strategy in G from vy iff she has a winning strategy in Gy from v/(vp).

Finally, from the previous construction of a strategy ® from a strategy ®,x we prove that if there is an n-CPDA transducer
Sik synchronised with A, realising a well-defined winning strategy @, for Eloise in G,x from v(qo, L), then one can
effectively construct an 7-CPDA transducer S synchronised with A realising a well-defined winning strategy ® for Eloise
in G from the initial configuration (qo, L,,). Indeed, in our previous construction of ®, we maintained a partial play Ay
in G, and used the value of @, (Ax) to define ®(A). But if @,y is realised by an n-CPDA transducer Sy, it suffices
to remember the configuration of this transducer after playing A,y (as this suffices to compute ¢,k (A,k)). Hence, the only
things that need to be modified from Sy to obtain S is that one needs to "embed" the transition function of A,y into it, so
that S can read/output elements in @ x Op,(I") x Op,(T') instead of Qi x Opy,(T'rk) x Opp(Tyxk). This can easily (but
writing the formal construction would be quite heavy) be achieved by noting that the shape of stacks is preserved by (:
hence if S,i is synchronised with A,y then S is synchronised with A (as A, and A are "synchronised", and S, and S
are "synchronised" as well).

If we summarise, the overall blowup in the transformation from G to G,i given by Theorem 6 is as follows.

Proposition 5. Let A and A,y be as in Theorem 6. Let {0, - ,d} be the set of colours. Then the set of states of Ay has
size O(|Q|(d + 1)"3) and the stack alphabet of Ay has size O(|T|(d + 1)?7F5).

Moreover the set of colours used in G and G,y are the same.

Proof: By construction together with Remark 8. [ ]

6) Removing the n-links:
In this subsection, we show how one can remove the outmost links.

Theorem 7. For any rank-aware n-CPDP A, = (Tx, Qk, Ak, Gorky and any associated parity game Gk, one can
construct an n-CPDP Ays and an associated parity game G such that the following holds.

o Ajs does not create n-links.

9Recall that the shape of a stack is the stack obtained by replacing all symbols appearing in s by a fresh symbol # (but keeping the links).

31



o There exists a mapping v from the configurations of Ay to that of Ay such that:
- Eloise has a winning strategy in G,y from some configuration vy iff she has a winning strategy in Gy from v(vg);

o If there is an n-CPDA transducer Si; synchronised with Ay realising a well-defined winning strategy for Eloise in
Gyt from v(qork, Ln), then one can effectively construct an n-CPDA transducer Sy synchronised with Ay realising
a well-defined winning strategy for Eloise in Gy from the initial configuration (qo.rk, Ln)-

The whole section is devoted to the proof of Theorem 7 and we thus fix from now on, a rank-aware n-CPDP A,y =
{Tyk, Qrk, Ark, qovx » (together with a function LinkRk), a partition Q,x g w Qrk, A of Qyk, a colouring function Q : Q,x —
C < N and we let C = {0,...,d}. Denote by G the transition graph of A,x, by G,k the arena induced by G,y and the
partition Q,x E w Qi A, and by G,y the parity game (G, ).

Consider the following informal description of a new game Gy (here 1f intend to mean link-free) defined from Gyx. The
new game mimics G,y except that whenever a player wants to perform a push]" operation, this is replaced by the following
"negotiation" between the players:

« First, Eloise has to provide a vector R = (Ro,--- Ry) € (29)4*! whose intended meaning is the following: she
claims that she has a strategy such that if the newly created n-link (or a copy of it) is eventually used by doing a
collapse then it leads to a state in R; where 7 is the smallest colour visited since the original copy of the link was
created.

« Then, Abelard has two options. He can agree with Eloise’s claim, pick a state ¢ in some R; and perform a pop,, action
whilst going to state ¢ (through an intermediate dummy vertex coloured by ): this is the case where Abelard wants to
simulate a collapse involving the n-link. Alternatively Abelard can decide to push the symbol (v, 7%)) (and a dummy
1-link is attached).

Later in some configuration (g, s) with a top;-element of the form (v, ﬁ) if the player controlling ¢ wants to simulate
a transition (¢, op; collapse) that collapses the stack, then this move is replaced by one that goes to a sink configuration
that is winning for Eloise iff ¢’ € R; where i = LinkRk(q,) is the link rank and hence corresponds to the smallest colour
visited since the original copy of symbol (7, T%)) was pushed onto the stack (recall that A,k is rank-aware). The intuitive
idea is that, when simulating a collapse (involving an order-n link), Eloise wins iff her initial claim on the possible states
reachable by following the link was correct. Otherwise she loses.

We now define Ay and the associated game Gjs. We start with an informal description of Ajs and then formally describe
its structure.

The n-CPDP Ay simulates Ay as follows. Assume that the play is in some configuration (g, s) and that the player
that controls it wants to simulate a transition (¢’, rew$; op) € A (g, top,(s)). In case op is neither of the form pushf n
nor of the form collapse with top,(s) having an n-link then the same transition (¢’, rew{;op) is available in Ay and is
performed. The interesting case is when op = push? " and it is simulated by Ay as follows.

« The control state of Ajs is updated to be ¢” and one performs rews.
« From ¢°, Eloise has to move to a new control state ¢’ and can push any symbol of the form (o, ﬁ) where R =
(Ro, -+ Ry) € (29)4*+1. A dummy 1-link is attached (and will never be used for a collapse).
« From ¢’, Abelard has to play and choose between one of the following two options:
— either go to state ¢ and perform no action on the stack,
— or pick a state p in some R;, go to an intermediate new state p’ (of colour 7) without changing the stack and from
this new configuration go to state p and perform a pop,, action.

The intended meaning of such a decomposition of the push? '™ operation is the following: when choosing the sets in R,
Eloise is claiming that she has a strategy such that if the n-link created by pushing 3 is eventually used for collapsing the
stack then the control state after collapsing will belong to R?; where ¢ is meant to be the smallest colour from the creation
of the link to the collapse of the stack (equivalently it will be the link rank — as computed in A, — the just before
collapsing). Note that the R; are arbitrary sets because Eloise has not a full control on the play (and in general cannot force
R; to be a singleton). Then Abelard is offered to simulate the collapse (here state p* is only used for going through a state
of colour 7). If he does not want to simulate a collapse then one stores R for possibly checking its truth later in the play.

Assume that later, in configuration (p’, s’) one of the two players wants to simulate a transition (p”, rewl ; collapse)
involving an n-link. By construction, topl( ") is necessanly of the form (’y, ﬁ) Then the simulation is done by going to a
sink configuration that is winning for Eloise iff p” € Rpink Rk(p' y)» i€ Eloise wins iff her former claim on B was correct.

Formally we set Ajyx = (T, Qir, Ait, go,1¢ ) With

o I'Nf =T ulxx (2Q"'k)d+1

o Qi =Quu{q | g€ Qu, Verrk}u{q? | g€ Qutui{d’|geQu, 0<i<d}u{t,ff}
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o Ay is defined as follows, where ¢,q range over Q.x, «, /3, range over I'; and B = (Ro, ..., Rq) ranges over
(2Qrk)d+1.

- If (¢, rew?; op) € Awx(q,) and if op is neither of the form pushf"n nor collapse, then (¢', rew; op) € A(q, )
and (¢', rew{™""; op) € Axe(q, (7, R)). .
- If (¢, rew§ ;push’f’") € Anc(q,7), then (¢°, rew;id) e Ay q,v) and (¢°, Tewga"R); id) € A (q, (7, ﬁ))

- Forall ¢7 € Q. A(¢”,7) = A(¢”, (7, R)) = {(¢", push” 2 11) | 'S e (29)"+1)).
~ Forall ¢’ € Qir, A(¢", (1, B)) = {(q,zd)} U{(p'id) |0 <i<dandpe R;}.
~ Forall ¢ € Qi A(¢, (. K)) = {(¢, pop,,)}-
- If (¢, rew§; collapse) € Ark( ,7), then (¢', rew; collapse) € Alt( ,7)-
- If (q rewy; collapse) € Aw(q,7), then (t,id) € Ay (g, (v, Tf))) if g’ € RpinkRrk(q,y) and (ff,id) € Ay(q, (v, Tf)))
if q ¢ RLGkRk(q,v)
= Ax(t, (7, R)) = {(t,id)} and Ax(ff, (v, R)) = {(f,id)}.
We let Gyt be the transition graph of Ajs. Now, in order to define a game graph Gis out of Gy we let Qi g = Qg U {q” |
q € Q:x, v € I'yx}. Finally to define a corresponding n-CPDP parity game G); we extend ) by letting, Vg € Q,x and v € Ty,
Q(q7) = Q(q") = d (as one cannot loop forever in such states, it means that they have no influence on the parity condition),
Q(q*) = i for every 0 < i < d, Q(#t) = 0 and Q(ff) = 1 (hence a play that visits # is winning for Eloise and a play that
visits ff is winning for Abelard, as these states are sinks).
Note that Aj; never create an n-link.

Consider some configuration vg = (po, So) in Gyx. We explain now how to define an "equivalent" configuration v(v)
in Gys (here equivalent is in the sense of Theorem 8). The transformation consists in replacing any occurrence of a stack
letter (call it ) with an n-link in so by another letter of the form (v, TB)) and replace the n-link by a 1-link. The vector
R is defined as follows. Let s’ be the stack obtained by popping every element and stack above <, and let R = {q |
Eloise wins in Gy from (g, collapse(s'))}. Then one sets R = (R, --- , R).

Example 21. Assume we are playing a two-colour parity game and let

e

so=[[[al) [[1labecl] [[1[abed]]],

Ry={r|(r,[[[al]]) is winning for Eloise in Gk}

Ro={r|(r,[[[a] ]m] 11) is winning for Eloise in Gk}

Then
v(so) = [[[al] [[1Tab(c,(Ri,R))11 [[1Tab(c, (Ri,R))(d, (Ra, R2))111.

The rest of this section is devoted to the proof of the following result.
Theorem 8. Eloise wins in Gy from some configuration vy if and only if she wins in Gy from v(vg).

Assume that the configuration vg = (pg, o) is winning for Eloise in Gy, and let ®,; be a winning strategy for her.
Using ®,, we define a strategy ®); for Eloise in Gy from v(vg). The strategy @) maintains as a memory a partial play
Avk in Gy, that is an element in V} (where Vi denotes the set of vertices of Gii). At the beginning A,y is initialised to
be (po, so). The play Ay will satlsfy the following invariant: assume that the play ends in a configuration (p, s), then the
last configuration in A,y has control state p and its top,-element is either top; (s) or (top;(s), R) for some R (and in this
case there is an n-link from the top;-symbol of s).

We first describe ®y¢, and then we explain how A,y is updated.

Choice of the move. Assume that the play is in some vertex (p, s) with p € Qir g\{q¢" | ¢ € Q:x, 7y € I'rk}. The move given
by @y depends on Py (Ax) = (g, rew;op) (we shall later argue that ®js is well defined while proving that it is winning).
o If op is neither of the form pushf"n nor collapse then Eloise plays (g, rew§;op) if top,(s) = v and she plays
o R :
(q, rewg ' );op) if top,(s) = (v, R). )
« If op = collapse and top,(s) = v € Ty then Eloise plays (q, rew$; collapse).
« If op = collapse and top,(s) = (v, R) then Eloise plays (t,id). We shall later see that this move is always valid.
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(@ R)

o« If op = push’f’" then Eloise plays plays (¢°, rew$;id) if top,(s) = ~ and she plays (¢°, rew, sid) if topq(s) =
(v, R).
In this last case, or in the case where p € Qa and Abelard plays some (¢, rew;id) (resp. some (¢°, rewgo"ﬁ);id)),
we also have to explain how Eloise behaves from (¢°, rew§(s)) (resp. (¢°, rew?’ )(s))

Eloise has to play (¢°, push(’B ’?)’1) where S € (2@m)4+1 describes which states can be reached if the n-link created
by pushing 3 (or a copy of it) is used for collapsing the stack, depending on the smallest visited colour in the meantime. In
order to define S, she considers the set of all possible continuations of Ay - (g, push?™ (o)) (where (p, o) denotes the last
vertex of A;i) where she respects her strategy ®,i. For each such play, she checks whether some configuration of the form
(r, pop,, (o)) is eventually reached by collapsing (possibly a copy of the) n-link created by push? " If such an r exists, she
considers the smallest colour ¢ visited from the moment where the link was created to the moment collapse is performed
(i.e. the link rank just before collapsing). For every i € {0, ...d}, the set S; is defined to be the set of states r € @) such
that the preceding case happens. Formally,

Si={r|3 A -vo---vk Vg1 --- play in Gy where Eloise respects @, and s.t.
vy = (q,push?’"(a)), vg+1 = (r, pop,(0)) is obtained by applying collapse from vy,
vo is the link ancestor of vy and ¢ is the link rank in v}

Finally, we set S = (S0, ..., S4) and Eloise plays (¢’, pushgﬂ’g)’l).

Update of A,x. The memory A,y is updated after each visit to a configuration with a control state in Q. U {t, ff}. We
have several cases depending on the transition.

« If the last transition is of the form (g, rew§; op) or (q, rewgo"R); op) with op being neither of the form push? "™ nor
collapse, then we extend A, by applying transition (g, rew; op), i.e. if (p,o) denotes the last configuration in Ay,
then the updated memory is Ay - (g, op(rew$(o))).

o If the last transition is of the form (#,:d) or (ff,id), the play is in a sink configuration. Therefore we do not update

A as the play will loop forever.
h(ﬂ’?

o If the last transitions form a sequence of the form (¢, rew$;id) - (¢°, pushy )’1) - (g,id) or of the form

(q°, rew§a’]_%)); id) - (¢, pushgﬁ’?)’l) - (g, id), then the updated memory is A - (g, push?’"(cr)), where (p, o) denotes
the last configuration in Ay.

8,81
pushg )

« If the last transitions form a sequence of the form (¢°, rew$;id) - (¢°, )+ (r*,id) - (r, pop,,) or of the form

(q°, rew( o T, cid)- (q° push( 5.5 Y-(id) - (r, popn), then we extend A, by a sequence of actions (consistent with

®,y) that starts by performing transition (g, push ") and ends up by collapsing (possibly a copy of) the link created
at this first step and goes to state p while visiting ¢ as a minimal colour in the meantime. By definition of 'S such a
sequence always exists. More formally, if (p, o) denotes the last configuration in Ay, then the updated memory is a
play in Gx, Ay - Vg - - - Uk - V41, where Eloise respects @, and such that vy = (q, pushf’"(a)), Vg1 = (1, popn(0))
is obtained by applying collapse from vy, vg is the link ancestor of vy and ¢ is the link rank in vy.

Therefore, with any partial play Ay in Gy¢ in which Eloise respects her strategy ®y, is associated a partial play A,y in
G,x- An immediate induction shows that A,y is a play where Eloise respects ®,x. The same arguments works for any infinite
play Aj¢ that does not contain a state in {t, ff}, and the corresponding play A,y is therefore infinite, starts from v(po, so)
and Eloise respects @, in that play. Therefore it is a winning play.

Moreover, if Ay is an infinite play that does not contain a state in {#, ff}, it easily follows from the definitions of ®); and
A that the smallest infinitely visited colour in Aj¢ is the same as the one in A;i. Hence, any infinite play in Gy starting
from v(po, so) where Eloise respects ®j¢ and that does not contain a state in {#, ff} is won by Eloise.

Now, consider a play that contains a state in {#, ff} (hence loops on it forever). Reaching a configuration W1th state
in {t, ff} is necessarily by simulating a collapse from some configuration with a top,-element of the form («, R)
should distinguish between those elements (a, 72)) that are "created" before (i.e. by the v function) or during the play (by
Eloise). For the second ones, one may note that whenever Eloise wants to simulate a collapse, she can safely goes to state t
(meaning ®j; is well defined): indeed, if this was not the case, it would contradict the way 'S was defined when simulating
the original creation of the link. For the same reason, Abelard can never reach state ff provided Eloise respects her strategy
®)¢. Now consider an element (c, 7%)) created by v and assume that one player wants to simulate a collapse from some
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configuration with such a top;-element. Call Aj¢ the partial play just before and call A,k the associated play in Gyk. Then
in A, Eloise respects her winning strategy ®,. If she has to play next in Ay, strategy ®, indicates to play collapse; if
it is Abelard’s turn to move he can play collapse. In both case, the configuration that is reached after collapsing is winning
for Eloise (it is a configuration visited in a winning play). Hence, by definition of v, its control state belongs to R where
B = (R, -+, R), and therefore from the current vertex in Gy; there are no transition to ff and there is at least one to .
Therefore plays where Eloise respects ®j¢ and that contain a state in {tt, ff} necessarily contains state # hence are won by
Eloise.
Altogether, it proves that ®j; is a winning strategy for Eloise in Gy from v(vp).

Let us now prove the converse implication Assume that the configuration v (pg, so) is winning for Eloise in Gy, and let
®y¢ be a winning strategy for her. Using ®jr, we define a strategy @,y for Eloise in G, from (po, so). First, recall how
v(po, o) is defined: every symbol « in s with an n-link is replaced by a pair (o, (R,..., R)) where R is the set of states
r such that Eloise wins from (r,s') where s’ is the stack obtained by first removing every symbol (and stacks) above «
and then performing a collapse. We can therefore assume that we have a collection of winning strategies, one per each
such configurations (r,s") — call such a strategy ®.;°. Then, during a play where Eloise respects @, if one eventually
visits such a configuration (r, s’), the strategy ®,; will mimic the winning strategy <I>:1’f/ from that point and therefore the
resulting play will be winning for Eloise. Then in the rest of this description we mostly focus on the case of plays where
this phenomenon is not happening.
The strategy ®,; maintains as a memory a partial play Ay in Gy, that is an element in Vlz" (where Vir denotes the set of
vertices of G¢). At the beginning Ay is initialised to the configuration v(pg, o). After having played Ay, the play Ay will
satisfy the following invariant. Assume that the play Aj ends in a configuration (p, s) then the following holds.
o If top;(s) = q, the last configuration of A,y has control state p and its top;-element is « and it has a k-link for some
k <n.

o If topy(s) = (a T%)), the last configuration of A,y has control state p and its top;-element is « and it has an n-link.
Moreover, if Eloise keeps respecting @,y in the rest of the play, if (possibly a copy of) this link is eventually used in
a collapse, then the state that will be reached just after doing the collapse will belong to R; where ¢ will be the link
rank just before collapsing.

We first describe @,y and we then explain how Aj; is updated. Recall that we switch to a known winning strategy in case
we do a collapse from (possibly a copy of) an n-link that was already in sg.

Choice of the move. Assume that the play is in some vertex (p,s) with p € Q.x g. The move given by @, depends on
D¢ (Ayg) = (g, rew; op) (we shall later argue that ®j¢ is well defined while proving that it is winning).
(o, )

« If g € Q. then Eloise plays (¢, rew$; op) where « is such that either rew = rew{ or rew = rew, . Note that in
this case, op is neither a collapse involving an n-link nor of the form pushf o
(o, )

« If ¢ = rP then Eloise plays to (r, rew; push?"™) where « is such that either rew = rew$ or rew = rew\
« If ¢ = t then Eloise plays (r, collapse) for some arbitrary r € R; where we let i = LinkRk(p, top, (s)) and (a, B)
denotes the top,-element of the last vertex of Aj. Note that in this case, the collapse involves an n-link.

Update of Aj;. The memory Ay is updated after each move (played by any of the two players). We have several cases
depending on the last transition.

« If the last transition is of the form (g, rew{;op) and op is neither a collapse involving an n-link nor of the form
pushf " then Ajs is extended by mimicking the same transition, i.e. if (p, o) denotes the last configuration in A, then

the updated memory is Ay - (g, op(rew$ (o)) if top,(c) = ~ for some v € 'y, and is Ay - (q,op(rew?’ )(cr)) if

—

top, (o) = (v, R) for some (v, R) € T'j.
« If the last transition is of the form (g, rew?; push”™) then, we let (p, o) denotes the last configuration in Ay.

If top,(c) = v for some v € I'; then the updated memory Ay - (¢, rews (o)) - (q7,pushgﬁ’_R))’l(rewf(a))) :
(¢, pushi” ! (rews () where ®ie(Aue - (4°, rews () = (¢, pushi” ! (rews ().

If top,(c) = (7, 5) for some (v,5) € Ty then the updated memory Ay - (qﬁ,rew§a’?)(0)) .
(¢" pushi” " " (rew(™ 2 )(0)) - (g, pushi” " (rew® 7 (0)))  where @A - (¢ rewi™ (@) =
(¢", push” T (rewi™ 2 (@))).
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o If the last transition is of the form (r, collapse) and the collapse follows to an n-link, then we have two cases. Either
the collapse was following (possibly a copy of) an n-link that was already in sy in case we claim (and prove later)
that one ends up in a winning configuration and then switch to a corresponding winning strategy as already explained.
Either one follows an n-link that was created during the play, in which case we let Ajf = vy - - - v, and denote by v; the
link ancestor of v,,, '°. Then the updated memory is obtained by backtracking inside Ay until reaching the configuration
where the (simulation of the) collapsed n-link was created (this configuration is v;, the link ancestor) and then extend
it by a choice of Abelard consistent with the collapse. That is the updated memory is vg - - - v; - (7, a) - (r, pop,,())

where v; = (p’, o) and £ denotes the link rank in the configuration A, was just before doing the collapse.

Therefore, with any partial play A, in G,y in which Eloise respects her strategy ®.y, is associated a partial play Ay in
Gi¢. Note that if we end up in a configuration that is known to be winning, Aj¢ is no longer extended. This also implies
that when collapsing an n-link that was already in sy one necessarily ends up in a winning configuration. Indeed assume
the contrary and let Ay be the constructed play before collapsing: then either Eloise has to play and therefore moves to t
(and therefore the configuration in A,y after collapsing is winning by definition of v, leading a contradiction) of Abelard
could move to ff (leading a contradiction with ®j; being winning). Therefore from now on we restrict our attention to the
case where the n-links (and their copies) in sg are never used to do a collapse.

An easy induction shows that Eloise respects Py in Ajr. The same arguments works for an infinite play A, and the
corresponding play Ay is therefore infinite (one simply considers the limit of the Ay in the usual way !'!), starts from
v(po, so), never visits a state in {t#, ff} and Eloise respects ®y; in that play. Therefore it is a winning play.

Now, in order to conclude that any play A,k in Gy in which Eloise respects strategy @,y is winning for her, one needs
to relate the sequence of colours in A, with the one in Aj¢. For this, we introduce a notion of factorisation of a partial play
Ak = vov1 - - vy, in Gy (we should later note that it directly extends to infinite plays). A factor is a nonempty sequence
of vertices of the following kind:

(1) it is a sequence vy - - - v such that the stack operation from vp_; to vy is of the form rew?;push?’ﬁ, the stack
operation from vg_1 to vy is a collapse involving an n-link, and vy, is the link ancestor of vy.

(2) oritis a single vertex;
Then the factorisation of A, denoted Fact(A,x) is a sequence of factors inductively defined as follows (we underline
factors to make them explicit): Fact(Aw) = vg - - - vk, Fact(v,41 -+ vy,) if there exists some & such that vg - - - v is as in
(1) above, and Fact(Ax) = vo, Fact(vy - - - v,) otherwise.

In the following, we refer to the colour of a factor as the minimal colour of its elements.

Note that the previous definition is also valid for infinite plays. Now we easily get the following proposition (the result
is obtained by reasoning on partial play using a simple induction combined with a case analysis. Then it directly extends to
infinite plays).

Proposition 6. Let A, be some infinite play in Gy starting from (po, so) where Eloise respects ®. and assume that

there is no collapse that follows (possibly a copy of) an n-link already in sqg. Let Ai; be the associated infinite play in Gy

constructed from . Let Ay o, Ak 1, -+ be the factorisation of Ay and, for every i > 0, let ¢; be the colour of Ay ;.
Then the sequence (c;);=o and the sequence of colours visited in Ay have the same lim inf.

The previous proposition directly implies that @, is a winning strategy for Eloise from (po, s0) in Gyk.
In order to complete the proof of Theorem 7 it remains to establish the following proposition.

Proposition 7. If there is an n-CPDA transducer Syt synchronised with Ajs realising a well-defined winning strategy for
Eloise in Gy Sfrom v(qo vk, Ln), then one can effectively construct an n-CPDA transducer Sy synchronised with Ay realising
a well-defined winning strategy for Eloise in Gy from the initial configuration (qo.rk, Ln)-

Proof: The result follows from a carefully analysis of how we defined @,y from ®j¢ in the proof of Theorem 8. As we
now only focus on the initial configuration (go ,x, L) we will not have to deal with the special case of doing a collapse
following (possibly a copy of) an n-link originally in the initial configuration. Also note that v(qo 1k, Ln) = (go,rk;, Ln)-

10Here we implicitly extends the notion of link ancestor as follows. In Gy instead of creating n-link one pushes symbol of the form (3, TE)) hence

whenever doing a pushgﬁ ’T%)’l one attaches to the vector 1 the index of the current configuration. Then if the top1 element of vy, is some (3, T%))

then the link ancestor of Um is defined to be v; where 7 is the indexed attached with R. Note in particular that the control state in the link ancestor is
necessarily of the form p”.

' Let (un)n>0 be a sequence of finite words. For any n = 0 let up = ul - - - uﬁ" Then the limit of the sequence (urn)n>0 is the (possibly infinite)
word o = a%al - -+ such that o is maximal for the prefix ordering and for all 0 < i < || there is some N; such that u}, = o for all n > N;.

In our setting, the play Aj¢ associated with an infinite play A,y is defined as the limit of the sequence of partial plays (A]})n>0 where AJ} is the partial
play associated with Ay truncated to its n + 1 first vertices. From the definitions of the A} it is easily verified that the limit Aj¢ is infinite.
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Recall that @, uses as a memory a partial play Ay in Gy¢ and considers the value of ®i¢(Aj) to determine the next move
to play. Now assume that ®y is realised by an n-CPDA transducer Sj¢ synchronised with Aj¢. Hence, instead of storing Aj¢
it suffices to store the configuration Sy is in after reading Ajs.

One can also notice that the stack sy in the last configuration of some partial play A, and the stack sjf in the last
configuration of the associated Aj; have the same shapes provided one replaces in sjf every 1-link from a symbol in
[y x (297%)9+1 by an n-link. Recall that these 1-links are never used to perform a collapse: hence replacing those 1-links
by n-links does not change the issue of the game, and if one does a similar transformation on Sy it still realises a winning
strategy, and it is synchronised with the transformed version of Ajs.

Now, it follows from the way one defined @, (both the choice of the move and the memory update) that one can design
an n-CPDA transducer S, synchronised with A,y realising a well-defined winning strategy for Eloise in Gk from the
initial configuration (go 1k, L,). In all cases but one S,i simulates Sie. The only problematic case is when the move to play
is some (r, collapse) involving an n-link. Indeed, one needs to backtrack in Ay (namely retrieve the configuration of St
after the link ancestor) and extend it by doing (r¢,id) (where £ is the link rank) and then (7, pop,,); one needs to retrieve
the configuration of Sy¢ right after this. If one performs a collapse in S, one directly retrieves the stack content, but the
control state of Sy is still missing. However, one can modify Sy so that after the simulation of the creation of an n-link,
i.e. after a symbol of the form (v, ﬁ) in pushed, it stores in its top;-element the control state it will be in after doing the
transitions (¢, id)(r, pop,,), for each 0 < £ < d and each r € Ry (this can easily be computed). As this information is then
propagated when copying the symbol/link, it is available in the {op,-element before doing a collapse involving an n-link,
hence S;i can also correctly retrieve the control state of Sy.

From this (somehow informal) description of S, the reader should be convinced that Sy correctly simulates Sy on
Ay, hence realises a winning strategy in G,. The fact that Sy is synchronised with A,y follows from the fact that it is
synchronised with the variant of Sy¢ that itself is synchronised with the variant of Ay which is synchronised with A,,. H

Opitmisation. The set Qs has size O(|Q.k|(|T:k| + d)), which is not very satisfactory for complexity reasons. Actually, one
would prefer a variant of the construction where |T';i| does not appear in the blowup concerning states. This factor actually
comes from states {¢” | ¢ € Q,x, v € T'tk}, and one can easily get read of them by doing the following modification of
Ajs. When simulating a pushf ™, instead of going to ¢°, one stores 3 (thanks to a rew, operation) in the top, element
of the stack (hence the stack alphabet gets augmented by a linear factor in |Ti|) and goes to a special state ¢'. State ¢ is
controlled by Eloise and the transition function is the same as from ¢° where 3 is the symbol stored on the top,-element
of the stack.

It is straightforward that this modification does not change the validity of the previous statements.

If we summarise, the overall blowup in the transformation from G, to Gys given by Theorem 7 is as follows.

Proposition 8. Let A, and Ajs be as in Theorem 7. Then the set of states of Ay has size O(|Qyk|d) and the stack alphabet
of Ay has size O(|Ty|? - 2!@xxl(@+1)),
Finally the set of colours used in G, and Gy are the same.

Proof: By construction together with the optimisation below. [ ]

7) Reducing the Order:

In the previous section we have constructed from a game played on a rank-aware n-CPDP another game played on an
n-CPDP that does not create n-links. The winning regions (resp. winning strategies realised by n-CPDA transducer) in the
original game can then be recover from the winning regions (resp. winning strategies realised by n-CPDA transducer) in
the latter game.

In this section, we prove a result in a similar flavour. Namely, starting from a game played on an n-CPDP that does
not create n-links, we construct a game played on an (n — 1)-CPDP, and we show that the winning regions(resp. winning
strategies realised by n-CPDA transducer) in the original game can be recover from the winning regions (resp. winning
strategies realised by (n — 1)-CPDA transducer) in the latter game.

We situate the techniques developed here in a general and abstract framework of (order-1) pushdown automata whose
stack alphabet is a possibly infinite set: abstract pushdown automata. We start by introducing this concept and show how
n-CPDP that does not create n-links fit into it. Then, we introduce the notion of conditional games. Finally, we show how
such games can be solved by reduction to a (n — 1)-CPDP parity game, and from the proof we also get the expect result
on the existence of strategies realised by CPDA transducers.

We situate the techniques developed here in a general and abstract framework of (order-1) pushdown automata whose
stack alphabet is a possibly infinite set.
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An abstract pushdown automaton is a tuple A = (A, Q, A, qo) where A is a (possibly infinite) set called an abstract
pushdown alphabet and containing a bottom-of-stack symbol denoted L € A, @ is a finite set of states, go € @ is an initial

state and =,
A:Qx A—2@xAT

is the transition relation (here AS? = {¢} U A U A - A are the words over A of length at most 2). We additionally require
that for all @ # L, A(g, a) does not contain any element of the form (¢, L) nor (¢, La), and that A(g, L) does not contain
any element of the form (¢, €) nor (¢’,a) nor (g,ab) with a # L or b = L, i.e. the bottom-of-stack symbol can only occur
at the bottom of the stack, and is never popped nor rewritten.

An abstract pushdown content is a word in St = L(A\{L})*. A configuration of A is a pair (¢,u) with ¢ € @ and
u € St.

Remark 9. In general an abstract pushdown automaton is not finitely describable, as the domain of A is infinite and no
further assumption is made on A.

Example 22. An order-1 pushdown process is an abstract pushdown automaton whose stack alphabet is finite.

A abstract pushdown automaton A4 induces a possibly infinite graph, called an abstract pushdown graph, denoted G =
(V, E), whose vertices are the configurations of A and edges are defined by the transition relation A, i.e., from a vertex
(g, u - a) one has an edge to (¢’,u - u’) whenever (¢,u’) € A(q, a).

Example 23. Order-n CPDP that does not create n-links (i.e. never use stack operation of the form push]™) are special
cases of abstract pushdown automata. Indeed, let n > 1 and consider such an order-n CPDP A = (T',Q, A, qo). Let A be
the set of all order-(n — 1) stacks over T, and for every p € Q and a € A with v = topy(a), we define A'(p,a) by

« (¢:¢) € A(p,a) iff (q,pop,) € Alg,7);

o (q,a -d') e Al(p,a) with ' = rewf(a) iff (¢, rews; push,,) € Alq,7);

e (g.') € A(p,a) with @’ — op(rews:(a)) iff (g, rew?; op) € A(q, ) and op ¢ {pop,., push, ).
It follows that A and the abstract pushdown automaton {A,Q, A’ qo) have isomorphic transition graphs.

Consider now a partition Qg U Qa of @) between Eloise and Abelard. It induces a natural partition Vg U VA of V by
setting Vg = Qg x St and VA = Qa x St. The resulting game graph G,ps = (Vi, Va, E) is called an abstract pushdown
game graph. Let () be a colouring function from @ to a finite set of colours C' = N. This function is easily extended to a
function from V' to C by setting Q((¢g,0)) = Q(q). Finally, an abstract pushdown parity game is a parity game played on
such an abstract pushdown game graph where the colouring function is defined as above.

For every subset R € @ we define the conditional game induced by R over Gays, denoted Gaps(R), as the game played
over Gaps Where a play A is winning for Eloise iff one of the following happens:

« In A no configuration with an empty stack (i.e. of the form (g, 1)) is visited, and A satisfies the parity condition.

o In A a configuration with an empty stack is visited and the control state in the first such configuration belongs to R.
More formally, the set of winning plays W(R) in Gans(R) is defined as follows (W, stands for the parity condition on
gabs):

W(R) = Wpar \VF(@Q x {LHV] © VF(R x {LHV*

For any state ¢, any stack letter @ # 1, and any subset R < @ it follows from Martin’s Determinacy theorem [AS5] that
either Eloise or Abelard has a winning strategy from (g, La) in G.ps(R). We denote by R(g, a) the set of subsets R for
which Eloise wins in Gaps(R) from (¢, La):

R(q,a) = {R < Q| (¢, La) is winning for Eloise in G,ps(R)}

We now build a new game whose winning region embeds all the information needed to determine the sets R(q,a).
Moreover in the underlying game graph the vertices no longer encode stacks.

For an infinite play A = vov; - -+ in Gaps, let Steps, be the set of indices of positions where no configuration of strictly
smaller stack height is visited later in the play. More formally, Steps, = {i € N | Vj > i sh(v;) > sh(v;)}, where
sh((q, Lai---an)) = n+ 1. Note that Steps, is always infinite and hence induces a decomposition of the play A into finite
pieces.

In the decomposition induced by Steps,, a factor v; - - - v; is called a bump if sh(v;) = sh(v;), called a Stair otherwise
(that is, if sh(v;) = sh(v;) + 1 and j =i+ 1).

For any play A with Steps, = {ng < n; < ---}, we can define the sequence (mcol’);=o € N by letting mcol® =
min{Q(vg) | n; < k < n;y1}. This sequence fully characterises the parity condition.
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Proposition 9. For a play A, A € W, iff liminf((mcol?);=0) is even.

In the sequel, we build a new parity game G over a new game graph G = (17, E) This new game simulates the abstract
pushdown graph, in the sense that the sequence of visited colours during a correct simulation of some play A in G,ps is
exactly the sequence (mcol?);=o. Moreover, a play in which a player does not correctly simulate the abstract pushdown game
is losing for that player. We will show how the winning region in G allows us to compute the sets {ae A| ReR(q,a)}.

Before providing a description of the game graph 5, let us consider the following informal description of this simulation
game. We aim at simulating a play in the abstract pushdown game from the initial configuration (qg, 1). In G we keep track
of only the control state and the top stack symbol of the simulated configuration.

The interesting case is when the simulated play is in configuration with control state p and top stack symbol a, and the
player owning p wants to perform transition (g, a’b), i.e. go to state g, rewrite a into a’ and push b on top of it. For every
strategy of Eloise, there is a certain set of possible (finite) prolongation of the play (consistent with her strategy) that will
end with popping b (or actually a symbol into which b was rewritten in the meantime) from the stack. We require Eloise to
declare a vector S = (Sp,...,Sq) of (+1) subsets of @), where S; is the set of all states the game can be in after popping
(possibly a rewriting of) b along those plays where in addition the smallest visited colour while (possibly a rewriting of) b
was on the stack is q.

Abelard has two choices. He can continue the game by pushing b onto the stack and updating the state (we call this a
pursue move). Otherwise, he can pick a set \S; and a state s € .S;, and continue the simulation from that state s (we call this
a jump move). If he does a pursue move, then he remembers the vector 'S claimed by Eloise; if later on, a transition of the
form (s,e) € Q x {} is simulated, the play goes into a sink state (either # or ff) that is winning for Eloise if and only if
the resulting state is in Sy where 6 is the smallest colour seen in the current level (this information will be encoded in the
control state, reset after each pursue move and updated after each jump move). If Abelard does a jump move to a state s in
S;, the currently stored value for ¢ is updated to min(8, 4, 2(s)), which is the smallest colour seen since the current stack
level was reached.

There are extra edges to simulate transition of the form (g,a’) € Q x A where the top stack element and the value of
are updated.

V(g,a") € A(p,a)

(,a’, B, min(6, (q)))

If3(r,e) € A(p,a)st.” € Ry If3(r,e) € A(p,a)st.r ¢ R

(T et

(
‘}%

R.,0,4,b,9)

(p,a’

(@6, 5.90@)  (s,a, B, min(8,i,9(s)),i) —> (s,d’, B, min(8, i, 2(s)))
VsesS;

Figure 5. Local structure of (j .

Let us now precisely describe the game graph G. We refer the reader to Figure 5.
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« The main vertices of G are those of the form (p,a,ﬁ,@), where p € Q, a € A, B = (Ro, ..., Rq) € (29)4*! and
0c{0,...,d}. A vertex (p,a, B,0) is reached when simulating a partial play A in Gps such that:

— The last vertex in A is (p,ua) for some u € A*.

— Eloise claims that she has a strategy to continue A in such a way that if @ (or a rewriting of it) is eventually
popped, the control state reached after popping belongs to R;, where ¢ is the smallest colour visited since the stack
height was at least |ual.

— The colour 6 is the smallest one since the current stack level was reached from a lower stack level.

A vertex (p, a, ﬁ, 6) is controlled by Eloise if and only if p € Qg.

o The vertices # and ff are here to ensure that the vectors R encoded in the main vertices are correct. Both are sink
vertices and are controlled by Abelard. Vertex # gets colour 0 and vertex ff gets colour 1. As these vertices are sinks,
a play reaching # is won by Eloise whereas a play reaching ff is won by Abelard.

There is a transition from some vertex (p,a, R,0) to t, if and only if there exists a transition rule (r,e) € A(p, a),

such that r € Ry (this means that R is correct with respect to this transition rule). Dually, there is a transition from a

vertex (p, a, ﬁ, ) to ff if and only if there exists a transition rule (r,&) € A(p,a) such that r ¢ Ry (this means that
is not correct with respect to this transition rule).

« To simulate a transition rule (¢,a’) € A(p, a), the player that controls (p, a, ﬁ, 6) moves to (g, a’, ﬁ, min(6, Q(q))).
Note that the last component has to be updated as the smallest colour seen since the current stack level was reached
is now min(6, Q(q)).

« To simulate a transition rule (q,a’d) € A(p,a), the player that controls (p,a,ﬁ,ﬁ) moves to (p,a’, ﬁ,@,q,b). This
vertex is controlled by Eloise who has to give a vector S = (So,...,Sg) € (2?)%+! that describes the control states
that can be reached if b (or a symbol that rewrites it later) is eventually popped. To describe this vector, she goes to
the corresponding vertex (p,a’, ]_%), 0,q,b, ?)

Any vertex (p, d’, I_%), 0,q,b, ?) is controlled by Abelard who chooses either to simulate a bump or a stair. In the first
case, he additionally has to pick the minimal colour of the bump. To simulate a bump with minimal colour ¢, he goes
to a vertex (s,a’,ﬁ,min(@,z’,Q(s))), for some s € S;, through an intermediate vertex (s,a’,ﬁ,min(@,i,Q(s)),i)
coloured by 1.

To simulate a stair, Abelard goes to the vertex (g, b, ?, Q(q))-

The last component of the vertex (that stores the smallest colour seen since the currently simulated stack level was
reached) has to be updated in all those cases. After simulating a bump of minimal colour ¢, the minimal colour is
min(6, 4, Q(s)). After simulating a stair, this colour has to be initialised (since a new stack level is simulated). Its value,
is therefore €2(q), which is the unique colour since the (new) stack level was reached.

The vertices of the form (p,a, ﬁ, 0) get colours Q(p). Intermediate vertices of the form (p,d’, ﬁ, 0,q,b) or
(p,d’, R,0,q,0, ?) get colours d.
The following theorem relates the winning region in G with G,ps and the conditional games induced over G,ps.

Theorem 9. The following holds.

1) A configuration (pi, L) is winning for Eloise in Gy, if and only if (pin, L, (D, ..., D), Upin)) is winning for Eloise
in G.
2) Forevery qe Q, a€ Aand R< Q, R e R(q,a) if and only if (q,a, (R, ..., R),Q(q)) is winning for Eloise in G.

The rest of the section is devoted to the proof of Theorem 9. We mainly focus on the proof of the first item, the proof
of the second one being a subpart of it. We start by introducing some useful concept and then prove both implications.

To help readability, we will use upper-case letters, e.g. A or ®, to denote objects (plays, strategies...) in Gaps, and
lower-case letters, e.g. A or ¢, to denote objects in G.

Recall that for an infinite play A = vovy - - - in Gaps Steps, denote the set of indices of positions where no configuration
of strictly smaller stack height is visited later in the play. More formally, Steps, = {i € N | Vj = i sh(v;) = sh(v;)},
where sh((q, La; ---ay)) = n+ 1. Note that Steps, is always infinite and hence induces a factorisation of the play A into
finite pieces. Recall that for any play A with Steps, = {ng < n1 < ---}, we define the sequence (mcol?);>o € NV by
letting mcol = min{Q(vy) | n; <k <njy1}.

Indeed, for any play A with Steps, = {no <ni < ---}, one can define the sequence (A;);>o by letting A; = vy, - - - vy, ;.
Note that each of the A; is either a bump or a stair. In the later we designate (A;);>o as the rounds factorisation of A.

For any play A in @, a round is a factor between two visits through vertices of the form (p, a, ﬁ, ). We have the following
possible forms for a round.
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o The round is of the form (p, a, ]_%), 0)(q,d, ]_%), ) and corresponds therefore to the simulation of a transition (g, a’). We
designate it as a trivial bump.

« The round is of the form (p,a, ;s ,0)(p, d ﬁ,@,q,b)(p, a,R,0,q,b, ?)
(s,d’, B, min(6,i,(s)),i)(s, d ﬁ, mln(@, i,9(s))) and corresponds therefore to the simulation of a transition (g, a’b)
pushing b followed by a sequence of moves that ends by popping b (or a rewriting of it). Moreover ¢ is the smallest
colour encountered while b (or other top stack symbol obtained by successively rewriting it) was on the stack. We
designate it as a (non-trivial) bump.

o The round is of the form (p, a, R, 0)(p,a, R.0, q,b)(p,d, .0, q,b, ?)
(q,0, g, Q(q)) and corresponds therefore to the simulation of a transition (g, a’b) pushing a symbol b leading to a new
stack level which the play will never go below. We designate it as a stair.

We define the colour of a round as the smallest colour of the vertices in the round.
For any play A = vgviv2--- in G we consider the subset of indices corresponding to vertices of the form (p, a, R ,0).
More precisely:

Roundsy = {n | v, = (p,a,ﬁ,@), peQ, ac A Re (29)* 0<h < d}

The set Rounds) induces a natural factorisation of X into rounds. Indeed, let Roundsy = {ng < ni < ng < ---}, then
for all 0 < i < |Roundsy| we let \; = vy, - - vy,,,,. We call the sequence (\;);>o the round factorisation of . For every
i > 0, A; is a round and the first vertex in \;; equals the last one in \;. Moreover, A = A\ ©A2OA3®- - -, where A\; © ;1
denotes the concatenation of \; with \;;; without its first vertex.

In order to prove both implications of Theorem 9, we build from a winning strategy for Eloise in one game a winning
strategy for her in the other game. The main argument to prove that the new strategy is winning is to prove a correspondence
between the factorisations of plays in both games.

Direct implication

Assume that the configuration (p;,, 1) is winning for Eloise in Gy, and let ® be a corresponding winning strategy for
her.

Using ®, we define a strategy ¢ for Eloise in G from (i, L, (&, . .., @), 2(pin)). The strategy ¢ maintains as a memory
a partial play A in G,ps, that is an element in V;f)s (where Vs denotes the set of vertices of G,1s). At the beginning A is
initialised to the vertex (p;n,L). We first describe ¢, and then we explain how A is updated. Both the strategy ¢ and the
update of A, are described for a round.

Choice of the move. Assume that the play is in some vertex (p, a, ]_%), ) for p € Qg. The move given by ¢ depends on
D(A):

o If ®(A) = (r,¢), then Eloise goes to # (Proposition 10 will prove that this move is always possible).

« If ®(A) = (¢,a’), then Eloise goes to (¢,a’b, B, min(8,Q(q))).

o« If ®(A) = (g, a’b), then Eloise goes to (p,a’,ﬁ,@,q,b).

In this last case, or in the case where p € Qa and Abelard goes to (p, d’, TE), 6,q,b), we also have to explain how Eloise
behaves from (p,a’, B,0,q,b). She has to provide a vector S € (29)4+1 that describes which states can be reached if b
(or its successors by top rewriting) is eventually popped, depending on the smallest visited colour in the meantime. In order
to define S, Eloise considers the set of all possible continuations of A - (g, ua’b) (where (p, ua) denotes the last vertex of
A) where she respects her strategy ®. For each such play, she checks whether some configuration of the form (s, wua’) is
visited after A - (g, ua’b), that is if the stack level of b is eventually left. If it is the case, she considers the first configuration
(s,ua’) appearing after A - (q,ua’b) and the smallest colour 4 since b and (possibly) its successors by top-rewriting were on
the stack. For every i € {0,...d}, S;, is exactly the set of states s € ) such that the preceding case happens. More formally,

Si={s|3 A-(quabvg---uvg(s,ua’)--- play in G,ps where Eloise respects ® and
s.t. |vj| > |ual, Vj =0,....k and min({Q(v;) | j =0,...,k} v {Q(¢)}) =i}

Finally, we let S = (So,...,S4) and Eloise moves to (p, d,R,0,q,b,8).
Update of A. The memory A is updated after each visit to a vertex of the form (p, a, Tf, #). We have three cases depending
on the kind of the last round:

o The round is a trivial bump and therefore a (¢q,a’) transition was simulated. Let (p,ua) be the last vertex in A, then
the updated memory is A - (q, ua’).
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o The round is a bump, and therefore a bump of colour 7 (where ¢ is the colour of the round) starting with some transition
(g,a’d) and ending in a state s € .S; was simulated. Let (p, ua) be the last vertex in A. Then the memory becomes A
extended by (g, ua’b) followed by a sequence of moves, where Eloise respects ®, that ends by popping b and reach
(s,ua’) while having ¢ as smallest colour. By definition of .S; such a sequence of moves always exists.

o The round is a stair and therefore we have simulated a (g, a’b) transition. If (p, ua) denotes the last vertex in A, then
the updated memory is A - (¢, ua’d).

Therefore, with any partial play A in G in which Eloise respects her strategy ¢, is associated a partial play A in G,ps.
An immediate induction shows that Eloise respects ® in A. The same arguments works for an infinite play A, and the
corresponding play A is therefore infinite, starts from (p;,, L) and Eloise respects ® in that play. Therefore it is a winning
play.

The following proposition is a direct consequence of how ¢ was defined.

Proposition 10. Let \ be a partial play in G that starts from (Pin, L, (&,...,9),2Upin)), ends in a vertex of the form
(p, a, _R), 0), and where Eloise respects . Let A be the play associated with X built by the strategy ¢. Then the following
holds:

1) A ends in a vertex of the form (p,ua) for some u € A*.

2) 0 is the smallest visited colour in A since a (or a symbol that was later rewritten as a) has been pushed.

3) Assume that A\ is extended, that Eloise keeps respecting ® and that the next move after (p, ua) is to some vertex (r,u).
Then r € Ry.

Proposition 10 implies that the strategy ¢ is well defined when it provides a move to #. Moreover, one can deduce that,
if Eloise respects o, ff is never reached. N
For plays that never reach the sink state #, using the definitions of G and ¢, we easily deduce the following proposition.

Proposition 11. Let A be a play in G that starts from (pin, L,(2,...,9),Qpin)), and where Eloise respects ¢. Assume
that \ never visit tt, let A be the associated play built by the strategy o, and let (A;);>0 be its rounds factorisation. Let
(A\i)i=o0 be the rounds factorisation of \. Then, for every i > 1 the following hold:

1) \; is a bump if and only if A; is a bump

2) \; has colour mcolf\.

Now consider a play A in G starting from (Pin, L, (@,...,9), Qpin)) where Eloise respects . Either the A loops
in # (hence is won by Eloise). Or, thanks to Proposition 11 the sequence of visited colours in X is (mcolf\)izo for the
corresponding play A in G,ps. Hence, using Proposition 9 we conclude that A is winning if and only if A is winning; as A
is winning for Eloise, it follows that \ is also winning for her.

Converse implication

First note that in order to prove the converse implication one could follow the direct 1mp11cat10n and consider the point of
view of Abelard. Nevertheless the proof we give here starts from a winning strategy for Eloise in G and deduces a strategy
for her in Gabs this induces a more involved proof but has the advantage to lead to an effective construction of a winning
strategy for Eloise in G, if one has an effective strategy for her in G.

Assume now that Eloise has a winning strategy ¢ in G from (pi,, L, (&, . ..,2),Q(pn)). Using ¢, we build a strategy
® for Eloise in G, for plays starting from (Pin, L). R

The strategy ¢ maintains as a memory a partial play A in G, that is an element in V*. At the beginning A\ is initialised
(o) (pin, J_, (@, ceey @), Q(]Zm))

For any play A where Eloise respects ® the following will hold.

« Aisaplay in G that starts from (pi,,, L, (&, ..., @), Q(pin)) and where Eloise respects her winning strategy ¢.

o The last vertex of X is some (p,a, K,0) if and only if the current configuration in A is of the form (p, ua).

« If Eloise keeps respecting ®, and if a (or a symbol that rewrite it later) is eventually popped the configuration reached

will be of the form (r,u) for some r € R;, where i is the smallest visited colour since a (or some symbol that was
later rewritten as a) was on the stack.

Note that initially the previous invariants trivially hold.

In order to describe ®, we assume that we are in some configuration (p,ua) and that the last vertex of A is some
(p, a, R ,0). We first describe how Eloise plays if p € Q. and then we explain how = is updated.
Choice of the move. Assume that p € Qg. Then the move given by ® depends on ¢()).
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o If o(\) = (¢,¢/, B, min(6, Q(q))), Eloise plays transition (¢, a’).

o If o(A) = (p,d, R.0, q,b), then Eloise applies plays transition (¢, a’b).

o If ©()\) = tt, Eloise plays transition (, &) for some state r € Ry. Lemma 6 will prove that such an r always exists.
Update of \. The memory X is updated after each move (played by any of the two players). We have several cases depending
on the last transition.

« If the last move was from (p,ua) to (¢, ua’) then the updated memory is A - (¢,a’, B, min(6, Q(q))).

« If the last move was from (p, ua) to (¢, ua’b), let (p,a’, B,0,q,b, 8) = o(X-(p,d, R, 6, q,b)). Intuitively, 'S describes

Wthh states Eloise can force a play to reach if b is eventually popped. Then the updated memory is A+ (p, a’, 7%), 0,q,b)-
(p,a', R.0,¢,b, ) (0,5, 5,2(q)).

o If the last move was from (p, ua) to (7, u) the update of A\ is as follows. One backtrack in A until one finds
a conﬁguratlon of the form (p/,a/,R’,¢,p",a”, ) that is not immediately followed by a vertex of the form
(s,a”, R,0”,i). This configuration is therefore in the stair that simulates the pushing of a” onto the stack (here
if o # a then a” was later rewritten as a). Call_)\" the prefix of A ending in this configuration. The updated
memory is A - (r,a’ R’ ,min(6’,0,9Q(r)),0) - (r,a’ R’ ,min(6’,0,Q(r))). Formally, write A = A1 © A2 @ -+ O Ak
where (\;)1<i<k is the round factorlsatlon of /\ Let h < k be the largest integer such that /\h is a
stair and let N, = (¢, R 0 (v, RO p" a0, R0, " B) (", ”,Tf’,ﬂ(_”)). Define )| =
(p',d,R,0)(p,d, R0, p", ”)(p,a,R’,H’, P, //,T%))(r,a,R’,mln(O/,H,Q( ),0) - (r,a’,R,min(¢,0,Q(r))).
Then the updated memory is A1 QA2 @+ - O Ap—1 O N},.

The following lemma gives the meaning of the information stored in C.

Lemma 6. Let A be a partial play in G ,y,s, where Eloise respects ®, that starts from (piyn, 1) and that ends in a configuration
(p, ua). We have the following facts:
1) The last vertex of X is @,a,ﬁ,@) with B € (29)4*1 and 0 < 0 < d. _
2) X is a partial play in G that starts from (pin, L, (@,..., D), Qpw)), that ends with (p,a, R,0) and where Eloise
respects .
3) 0 is the smallest colour visited since a (or some symbol that was later rewritten as a) was pushed.
4) If A is extended by some move that pops a, the configuration (r,u) that is reached is such that r € Ry.

Proof: The proof goes by induction on A. We first show that the last point is a consequence of the second and third
pomts Assume that the next move after (p,ua) is to play a transition (r,e) € A(p,a). The second point implies that
(p, a, B ,0) is winning for Eloise in G. If p € QE, by definition of @, there is some edge from that vertex to #, which
means that r € Ry and allows us to conclude. If p € Qa, note that there is no edge from (p, a, I_%), 0) (winning position for
Eloise) to the losing vertex ff. Hence we conclude the same way.

Let us now prove the other points. For this, assume that the result is proved for some play A, and let A’ be an extension
of A. We have two cases, depending on how A’ extends A:
« A’ is obtained by applying a transition of the form (g,a’) or (g, a’b). The result is trivial in that case.
« A’ is obtained by applying a transition of the form (r,¢). Let (p,ua) be the last configuration in A, and let R be the
last vector component in the last vertex of A when in configuration (p, ua). By the induction hypothesis, it follows that
A = A - (r,u) with r € Ry. Considering how X is updated, and using the fourth point, we easily deduce that the new
memory A is as desired.
|
Actually, we easily deduce a more precise result.

Lemma 7. Let A be a partial play in Gays starting from (pi, L) and where Eloise respects ® and let (A;)is0 be its rounds
factorisation. Let (\;)i—o,... x be the rounds factorisation of \. Then the following holds:

o A\; is a bump if and only if A; is a bump.

e \; has colour mcolf\.

Both lemmas 6 and 7 are for partial plays. A version for infinite plays would allow us to conclude. Let A be an infinite
play in G,ps. We define an infinite version of A by considering the limit of the ()\;));>0 where ); is the memory after the
i first moves in A. See Footnote 11 on page 36 for a similar construction. It is easily seen that such a limit always exists,
is infinite and corresponds to a play won by Eloise in G. Moreover the results of Lemma 7 apply.

Let A be a play in G,ps with initial vertex (pin, L), and where Eloise respects ®, and let \ be the associated infinite play
in G. Therefore A is won by Eloise. Using Lemma 7 and Proposition 9, we conclude, as in the direct implication that A is
winning.
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Main Result

Theorem 10. For any n-CPDP Ay = <I‘1f, Q]f, Alf, qo,ity that does not create n-links and any associated parity game Gy,
one can construct an (n — 1)-CPDP A= <F Q,A ,Goy and an associated parity game G such that the following holds.

e (goat, Ln) is winning for Eloise in Gy lfand only if (Go, Ln— ) is winning for Eloise in G.

o If there is an (n — 1)-CPDA transducer S synchronised wzth A realising a well-defined winning strategy for Eloise
in G Sfrom (qo, Ln—1), then one can effectively construct an n-CPDA transducer Sis synchronised with Ajs realising a
well-defined winning strategy for Eloise in Gy from the initial configuration (qo.1£, Ln).

Proof:
Following Example 23, Aj; can be seen as an abstract pushdown automaton. In particular, we can apply the construction
of Section D7. We claim that the resulting game G is associated with an (n — 1)-CPDP.
Indeed, one simply needs to consider how the graph G is defined and make the following observations concerning the
local structure given in Figure 5 when G is played on the transition graph of an n-CPDP that does not create links.
1) For every vertex of the form (p, a, ﬁ, ), (p,a, ﬁ, 0,q,b), (p,a, ﬁ, 0,q,b, ?) or (s,a, R,¥, i), a and b are (n — 1)-
stack.
2) For every vertex of the form (p, a, R0, q,b) or (p,a, R0, q,b, ?), one has a = b.

This implies that any vertex in G can be seen as a pair formed by a state in a finite set and an (n — 1)-stack. Then one
concludes the proof by checking that the edge relation is the one of an (n — 1)-CPDP (for the transition to vertices # and
ff one introduces vertices (#,a) and (ff,a) for any (n — 1)-stack a).

Therefore, the first point follows by Theorem 9. N N

We now turn to the last point and therefore assume that there is an (n — 1)-CPDA transducer S synchronised with A
realising a well-defined winning strategy ¢ for Eloise in G from (gy, L,,_1). We argue that the strategy ® constructed in
the proof of Theorem 9 can be realised, when G, is obtained from an n-CPDP Aj; that does not create n-links, by an
n-CPDA transducer Sjy synchronised with Aj. N

For this, let us first have a closer look at ®. The key ingredient in ® is the play A in G, and the value of ® uniquely
depends on ¢()). In particular, if ¢ is realised by an (n — 1)-CPDA transducer S, it suffices to know the configuration of
S after reading A in order to define ®. We claim that it can be computed by an n-CPDA transducer Sj; (synchronised with
Aif); the hard part being to establish that such a device can update correctly its memory.

Let A = wvovy - --ve and let 7y = (po, S0)(p1,81) - - - (pe, S¢) be the run of S associated with ), i.e. after having played
vg - - - Vg, S is in configuration (py, si). Denote by Last(r)) the last configuration of 7y, i.e. (pe, s¢). To define ®, Last(r)y)
suffices but of course, in order to update Last(ry), we need to recall some more configurations from r). In the case where
the last transition applies an order-k stack operation with & < n (i.e. it is neither pop,, nor push,,), then the update is
simple, as it consists in simulating one step of S. If the last stack operation is push,, then the update of A consists in
adding three vertices and the corresponding update of r is simple (as the only operation on the (n — 1)-stack is to rewrite
the top,-element). If the last stack operation is pop,, one needs to backtrack in A (hence in ry): the backtrack is to some
v with k maximal such that vy, is of the form (p’,a’, R', 0, p",a", ﬁ) and vg41 = (p”,a” ﬁ ,Q(p")). Once v, has been
found, the update is fairly simple for both A and 7, (one simply extends the remalmng preﬁx of A by two extra vertices
whose stack content is unchanged compared with the one in vy).

Define the following set of indices where A = vgvy - - - vy

Ext(\) = {h | vy is of the form (p,a’, R, 0, p",a", B) and vp41 = (p",d", B, Q(p"))} U {£}

Note that after a partial play A the cardinality of Fxt(\) is equal to the height of the stack in the last configuration of A.
For any partial play A in Gy¢ define the following n-stack (note that it does not contain any n-link)

Mem(A) = [}, S, = Sk, ]

where we let
o Ext(\) = {k1 <---kp}, X being the memory associated with A as in the proof of Theorem 9
o s} is the (n — 1)-stack obtained from s; (recall that (p;,s;) denotes the j-th configuration of ry) by appending p; to
its top;-symbol (i.e. we work on an enriched stack alphabet).
Note that Last(ry) is essentially top;(Mem(A)) as the only difference is that now the control state is stored in the
stack. Moreover Mem(A) can easily be updated by an n-CPDA transducer: for the case of a transition involving an order-k
stack operation with & < n one simulates S on top; (Mem(A)); for the case of a transition involving a push,, one first
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simulates S on top; (Mem(A)) (as one may do a rew, before push,,) and then makes a push,, to duplicate the topmost
(n — 1)-stack in Mem(A); finally, for the case of a pop,,, one simply needs to do a pop,, in Mem(A) to backtrack and
then update the control state. This is how we define Si¢!2.

The fact that S is synchronised with A4j¢ comes from the definition of how Sj¢ behaves when the transition in Ay
involves a pop,, or a push,,, and for the other cases it follows from the initial assumption of S being synchronised with

A. [ |

If we summarise, the overall blowup in the transformation from Gy to G given by Theorem 10 is as follows.

Proposition 12. Let Ay and A be as in Theorem 10. Then the set of states of A has size O(22d+DIRel) and the stack
alphabet of A has size O(|T¢|). N
Finally the set of colours used in Gy and G are the same.

Proof: By construction. [ ]

8) Proof of Theorem 5:

The proof of Theorem 5 consists in combining theorems 6, 7 and 10. Indeed, starting from an n-CPDP, by (n — 1)
successive applications of this three results, we obtain a 1-CPDP parity game. If we apply to this latter (pushdown) game
the construction of Section D7 we end up with a game on a finite graph. Solving this game and following the chain of
equivalences provided by theorems 6, 7 and 10 concludes the proof.

Concerning complexity, one step of successive application of the construction in theorems 6, 7 and 10 results in an
(n — 1)-CPDP with stack alphabet of size O(|T|2 - 2!QI@+D™™") and state set of size O(2/Q1@+D""") (complexity follows
from propositions 5, 8 and 12.

If one let exp,, be the function defined by expy(z) = z for all 2 and exp,_;(z) = 2°P=(*)| we conclude that the
1-CPDP obtained after (n — 1) successive applications of the three reductions has a stack alphabet of size O(|T|?(*~1) .
exp,,_1(|Q|(d + 1)"*5)) and state set of size O(exp,,_;(|Q|(d + 1)"®)). Finally the finite game we obtain is a parity
game with (d + 1) colours on a graph with O(|T|*™Vexp, (|Q|(d + 1)**%)) vertices. This latter game can be solve in
O[T Dexp,, (|QI(d + 1)7+6)])

In particular the overall complexity of deciding the winner in an n-CPDP parity game is:

« n-times exponential in the number of states of the CPDP;

e (n + 1)-times exponential in the number of colours;

« polynomial in the stack alphabet of the CPDP.

Hardness already holds when one considers reachability condition (i.e. does the play visit a configuration with a final
control state?) for games generated by higher-order pushdown automata (i.e. CPDP that never use collapse). A self content
proof of this result was established by Thierry Cachat and Igor Walukiewicz, but was unfortunately not published [A1].

2Technically speaking, if we impose that a transition of Sj¢ does a rew, (or id) followed by another stack operation, we may not be able to do the
update of the stack after doing a pop,,. However, we can use the same trick as the one used to define A, (see Remark 8).
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E. Proofs Omitted in Section V
1) Proof of Theorem 3:

Theorem 3. Labeled recursion schemes as well as CPDA have the effective MSO selection property.

Proof: Let ¢(Xy,---,X,) be a monadic second order formula with ¢ second-order free variables, and let & =
(X,N,R,Z, L) be a labelled recursion scheme.

Relying on Theorem 1, we consider a CPDA A such that Tree® (S) = Tree® (A).

Let t,, be a term over the ranked alphabet ¥ x {0, 1}¢. We say that t, is a marking of a term t over the ranked alphabet
¥ iff ¢ is obtained from ¢, by forgetting the {0, 1} component. Formally, if we let m denotes the natural projection from
¥ x {0,1}* into ¥, we require that ¢ = {m(uy,) | u, € t,} and that for all u,, v, € ty, T(u,) = T(vy) = Uy = vy, (ie. ™
is injective on t,).

Let ¢, be a marking of a tree t. Then we define for any 1 < ¢ < ¢ the set U; = {m(uy) |
u, ends by some (@u, by, -+, bye) with by, ; = 1} of nodes in ¢ which are the image by 7 of a node whose i-th component
is 1.

Thanks to the well-known equivalence between logic and tree automata, there is a nondeterministic parity tree automaton
B, working on X x {0, 1}¢ trees such that a tree t, is accepted by B, iff ¢, is the marking of a tree ¢ such that ¢(X; —
Up,... X < Up) holds in ¢.

Recall that acceptance of a tree by a nondeterministic parity tree automaton can be seen as existence of a winning strategy
in a parity game that is (informally) played as follows. The two players, Eloise and Abelard move down the tree a pebble
to which is attached a state of the automaton; the play starts at the root (with initial state attached to the pebble); at each
round Eloise provides a valid transition (w.r.t the current state and the current node label) of the automaton and Abelard
moves the pebble to some son and update the state attached to the pebble according to the transition chosen by Eloise. In
case the pebble reach a leaf, the play ends and Eloise wins iff the state is final (we have final states in the tree automaton
to handle finite branches); otherwise the play is infinite and Eloise wins iff the smallest infinitely visited priority is even.

For some t,, the previous acceptance game is easily seen to be a collapsible pushdown games. The underlying arena
is essentially a synchronised product of the transition graph of a collapsible pushdown process with the finite graph
corresponding to B,. Now consider a variant of this game where instead of checking whether a given ¢, is accepted
by B, the players wants to check, for a given tree ¢, whether there exists some ¢, such that ¢, is accepted by B, and ¢, is
a marking of t. The game is essentially the same, except that now Eloise is also giving the marking of the current vertex
(i.e. 7). Again, this leads to a collapsible pushdown game and one directly checks that Eloise wins from the root iff there
is a marking of ¢ that is accepted by B,. Call /G this game and call A’ the underlying CPDP.

Apply Theorem 5 to G. Then either Eloise has no winning strategy from the initial configuration (call it
(go,[---[L]1--.]n)) and we are done (there is no selector). Otherwise one can effectively construct an n-CPDA transducer
T synchronised with A’ realising a well-defined winning strategy for Eloise in G from (go,[...[L]1...]n). As A" and
T are synchronised, we can consider their synchronised product, call it ,A”. Hence in A" the configurations contain extra
informations (coming from 7); in particular, for any configuration, if the control state from the .4" component is controlled
by Eloise, then the control state from the 7~ component provides the next move Eloise should play: in particular, it provides a
transition of the tree automaton, together with information regarding the marking. Transform .A” by removing every transition
that is not consistent with the strategy described by 7 then the tree generated by this new CPDA is isomorphic to some ¢,
(that is a marking of ) together with an accepting run of B, on it. Now if we forget the component from B, we obtain a
CPDA A, that generates a marking ¢, of ¢.

Finally, as we can transform .4, back to a labeled recursion scheme, we get S, as expected.

The proof for CPDA follows the same line, except that one directly work on CPDP games.

2) Proof of Corollary 3:

Corollary 3. The p-calculus model-checking of trees generated by recursion schemes is polynomial under the assumption
that the arity of types and the formula are bounded above by a constant.

Proof: The u-calculus model-checking of trees generated by recursion schemes reduces to solving CPDP parity games.
If the arity of types and the formula are bounded above by a constant, the number of states in the CPDP generating the
arena as well as the number of colours in the game are bounded as well (see Theorem 1). Then, thanks to the complexity
analysis (see section D8) of Theorem 5, we easily conclude. [ ]
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