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Abstract

Collapsible pushdown automata(CPDA) are a new kind of higher-order pushdown automata in which
every symbol in the stack has a link to a stack situated somewhere below it. In addition to the higher-order
stack operationspushi andpopi, CPDA have an important operation calledcollapse, whose effect is to
“collapse” a stacks to the prefix as indicated by the link from thetop

1
-symbol ofs. Our first result is

that CPDA are equi-expressive withrecursion schemesas generators of node-labelled ranked trees. In one
direction, we give a simple algorithm that transforms an order-n CPDA to an order-n recursion scheme that
generates the same tree, uniformly for alln ≥ 0. In the other direction, using ideas from game semantics, we
give an effective transformation of order-n recursion schemes (not assumed to behomogeneously typed, and
hence not necessarilysafe) to order-n CPDA that computetraversalsover a certain finite graph determined
by the scheme, and hence paths in the tree generated by the scheme. Our equi-expressivity result is the first
such automata-theoretic characterization of (general) recursion schemes.

An important consequence of the equi-expressivity result is that it allows us to translate decision prob-
lems on trees generated by recursion schemes to equivalent problems on CPDA andvice versa. For example,
since the Modal Mu-Calculus Model-Checking Problem for trees generated by order-n recursion schemes
is n-EXPTIME complete, we show that it follows that the same decidability result holds for the problem
of solving a parity game played on an order-n collapsible pushdown graphi.e. the configuration graph of a
corresponding (order-n) collapsible pushdown system; the latter subsumes severalwell-known results about
the solvability of games over (higher-order) pushdown graphs by (respectively) Walukiewicz, Cachat, and
Knapik et al. Moreover our approach yields techniques that are radically different from standard methods
for solving model-checking problems on infinite graphs generated by finite machines. This transfer of tech-
niques goes both ways. Another innovation of our work is a self-contained proof of the solvability of parity
games on collapsible pushdown graphs by generalizingstandardtechniques in the field. By appealing to our
equi-expressivity result, we obtain a new proof of the decidability (and optimal complexity) of the Modal
Mu-Calculus Model-Checking Problem of trees generated by recursion schemes. In contrast to higher-order
pushdown graphs, we show that Monadic Second-Order (MSO) theories of collapsible pushdown graphs are
undecidable.

Keywords: Higher-order (collapsible) pushdown automata, higher-order recursion schemes, ranked and or-
dered trees, solution of parity games over configuration graphs, (innocent) game semantics and traversals.
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1 Introduction

Higher-order pushdown automata(PDA) were first introduced by Maslov [15, 16] as accepting devices for
word languages. Asn varies over the natural numbers, the languages accepted by order-n pushdown automata
form an infinite hierarchy. Inop. cit.Maslov gave an equivalent definition of the hierarchy in terms ofhigher-
order indexed grammars. Yet another characterization of Maslow’s hierarchy was given by Damm and Goerdt
[7, 8]: they studiedhigher-order recursion schemesthat satisfy the constraint ofderived types, and showed
that the word languages generated by order-n such schemes coincide with those accepted by order-n PDA.
Maslow’s hierarchy offers an attractive classification of the semi-decidable languages: orders 0, 1 and 2 are
respectively the regular, context-free and indexed languages, though little is known about languages at higher
orders.

Higher-order PDA as a generating device for (possibly infinite) labelled ranked trees was first studied by
Knapik, Niwiński and Urzyczyn [13]. As in the case of word languages, an infinite hierarchy of trees is defined,
according to the order of the generating PDA; lower orders of the hierarchy are well-known classes of trees:
orders 0, 1 and 2 are respectively the regular [18], algebraic [6] and hyperalgebraic trees [12]. Knapiket al.
considered another method of generating such trees, namely, by higher-order (deterministic) recursion schemes
that satisfy the constraint ofsafety. A major result in that work is the equi-expressivity of the two methods as
tree generators. Open since the early 1980s, a question of fundamentalimportance in higher-type recursion is
to find the class of automata that characterizes the expressivity of higher-order recursion schemes1. The results
of Damm and Goerdt, and of Knapiket al.may be viewed as attempts to answer the question; they have both
had to impose syntactic constraints (of derived types and safety respectively, which seem awkward and rather
unnatural) on recursion schemes in order to establish their results. An exact correspondence with (general)
recursion schemes has never been proved before.

A partial answer was recently obtained by Knapik, Niwiński, Urzyczyn and Walukiewicz. In an ICALP’05
paper [14], they proved that order-2 homogeneously-typed (but not necessarily safe) recursion schemes are
equi-expressive with a variant class of order-2 pushdown automata called panic automata. In this paper, we
give a complete answer to the question. We introduce a new kind of higher-order pushdown automata (which
generalizespushdown automata with links[2], or equivalently panic automata, to all finite orders), called
collapsible pushdown automata(CPDA), in which every symbol in the stack has a link to a (necessarily lower-
ordered) stack situated somewhere below it. In addition to the higher-orderstack operationspushi andpopi,
CPDA have an important operation calledcollapse, whose effect is to “collapse” a stacks to the prefix as
indicated by the link from thetop1-symbol ofs. The main result (Theorems 3 and 4) of this paper is that for
everyn ≥ 0, order-n recursion schemes and order-n CPDA are equi-expressive as generators of trees.

Our equi-expressivity result has a number of far-reaching consequences. It allows us to translate decision
problems on trees generated by recursion schemes to equivalent problems on CPDA andvice versa. Chief
among them is the Modal Mu-Calculus Model-Checking Problem (equivalently Alternating Parity Tree Au-
tomaton Acceptance Problem, or equivalently Monadic Second-Order (MSO) Model-Checking Problem). We
observe that all these problems reduce to the problem of solving a parity game played on acollapsible push-
down graphi.e. the configuration graph of a corresponding collapsible pushdown system (CPDS). Recently
one of us has shown [17] that the above decision problems for trees generated by order-n recursion schemes
aren-EXPTIME complete. Thanks to our Equi-Expressivity Theorems, it follows that the same (n-EXPTIME
complete) decidability result holds for the corresponding CPDS problems, which subsumes many known re-
sults [20, 3, 14]. Moreover our approach yields techniques that are radically different from standard methods for
solving model-checking problems on infinite graphs generated by finite machines. We stress that this transfer
of techniques goes both ways. Indeed another innovation of our work isa self-contained (and without recourse
to game semantics) proof of the solvability of parity games on collapsible pushdown graphs by generalizing

1Higher-order recursion schemes are essentially simply-typed lambda calculus with general recursion and uninterpreted first-order
function symbols
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standardtechniques in the field. By appealing to our Equi-Expressivity Theorems, we obtain new proofs for
the decidability (and optimal complexity) of model-checking problems of trees generated by recursion schemes
as studied in [17].

In contrast to higher-order pushdown graphs (which do have decidable MSO theories [4]), we show that
MSO theories of collapsible pushdown graphs are undecidable. Hence collapsible pushdown graphs are, to
our knowledge, the first example of a natural class of finitely-presentable graphs that have undecidable MSO
theories while enjoying decidable modal mu-calculus theories.

2 Collapsible pushdown automata (CPDA)

Fix a stack alphabetΓ and a distinguishedbottom-of-stack symbol⊥ ∈ Γ. An order-0 stackis just a stack
symbol. Anorder-(n+1) stacks is a non-null sequence (written[s1 · · · sl]) of order-n stacks such that every
non-⊥ Γ-symbola that occurs ins has a link to a stack (of orderk wherek ≤ n) situated below it ins; we
call the link a(k + 1)-link. The order of a stacks is writtenord(s); and we shall abbreviate order-n stack to
n-stack. As usual, the bottom-of-stack2 symbol⊥ cannot be popped from or pushed onto a stack. We define
⊥k, theemptyk-stack, as:⊥0 = ⊥ and⊥k+1 = [⊥k]. When displayingn-stacks in examples, we shall omit
the bottom-of-stack symbols to avoid clutter (e.g. writing[[][a]] instead of[[⊥][⊥ a]]).

The setOpn of order-n stack operationsconsists of the following four types of operations:

1. popk for each1 ≤ k ≤ n

2. collapse

3. push
a,k
1 for each1 ≤ k ≤ n and eacha ∈ (Γ \ {⊥}), and

4. pushj for each2 ≤ j ≤ n.

First we introduce auxiliary operationstopi, which takes a stacks and returns the top(i − 1)-stack ofs; and
pusha

1, which takes a stacks and pushes the symbola onto the top of the top 1-stack ofs. Precisely let
s = [s1 · · · sl+1] be a stack with1 ≤ i ≤ ord(s), we define

topi [s1 · · · sl+1]
︸ ︷︷ ︸

s

=

{
sl+1 if i = ord(s)
topi sl+1 if i < ord(s)

(1)

pusha
1 [s1 · · · sl+1]

︸ ︷︷ ︸

s

=

{
[s1 · · · sl pusha

1 sl+1] if ord(s) > 1
[s1 · · · sl+1 a] if ord(s) = 1

(2)

We can now explain the four operations in turn. Fori ≥ 1 thepopi operation takes a stack and returns it
with its top(i − 1)-stack removed. Let1 ≤ i ≤ ord(s) we define

popi [s1 · · · sl+1]
︸ ︷︷ ︸

s

=

{
[s1 · · · sl] if i = ord(s) andl ≥ 1
[s1 · · · sl popisl+1] if i < ord(s)

(3)

We say that a stacks0 is aprefix of a stacks (of the same order), writtens0 ≤ s, just if s0 can be obtained from
s by a sequence of (possibly higher-order)pop operations.

Take ann-stacks. Fori ≥ 2 to constructpush
a,i
1 s we first attach a link from a copy ofa to the(i−1)-stack

that is immediately below the top(i− 1)-stack ofs, and then push the symbol-with-link onto the top1-stack of
s. As for collapse, suppose thetop1-symbol ofs has a link to (a particular copy of) thek-stacku somewhere
in s. Thencollapse s causess to “collapse” to the prefixs0 of s such thattopk+1 s0 is that copy ofu. Finally,
for j ≥ 2, the (higher-order)pushj operation simply takes a stacks and duplicates the top(j − 1)-stack ofs,
preserving its link structure.

2Thus we require anorder-1 stackto be a non-null sequence[a1 · · · al] of Γ-symbols such that for all1 ≤ i ≤ l, ai = ⊥ iff i = 1.
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One way to define these stack operations formally is to work with an appropriate numeric representation
of the links. Knapiket al. have shown how this can be done in the order-2 case in [14]. Here we introduce a
different encoding of links that works for all orders. The idea is simple:take ann-stacks and suppose there is
a link from (a particular occurrence of) a symbola in s to some(j − 1)-stack. Lets0 be the unique prefix ofs
whosetop1-symbol is that occurrence ofa. Then there is a uniquek such thatcollapse s0 = popk

j s0 where

popk
j meanspopj ; · · · ; popj

︸ ︷︷ ︸

k

. We shall represent the occurrence ofa with its link asa(j,k) in s. Formally, a

symbol-with-linkof ann-stack is writtena(j,k), wherea ∈ Γ, 1 ≤ j ≤ n andk ≥ 1, such that3 if j = 1 then
k = 1. Even though there is no link from⊥, for technical convenience, we assume ifa = ⊥ thenj = k = 1.

Henceforth we shall adopt our numeric representation of symbols-with-links. We can now give the formal
definitions ofcollapse, push

b,i
1 andpushj (in terms ofpopj andpushb

1 as defined in (3) and (2) respectively).
Let 1 ≤ i ≤ ord(s) and2 ≤ j ≤ ord(s) we define

collapse s = pop
f
e s wheretop1 s = a(e,f)

push
b,i
1 s = pushb(i,1)

1 s

pushj [s1 · · · sl+1]
︸ ︷︷ ︸

s

=

{

[s1 · · · sl+1 s
〈j〉
l+1] if j = ord(s)

[s1 · · · sl pushjsl+1] if j < ord(s)

whereΘ〈j〉 is the operation of replacing every superscript(j, kj) (for somekj) occurring in the stackΘ by
(j, kj + 1); note that in casej = ord(s), the link structure ofsl+1 is preserved by the copy (as represented by

s
〈 j 〉
l+1) that is pushed on top ofs by pushj .

Example 2.1 Take the 3-stacks = [[[ a]] [[][ a]]]. (To save writing, we omit the superscript(1, 1).)
We have

push
b,2
1 s = [[[ a]] [[][ a b(2,1)]]]

push
c,3
1 (push

b,2
1 s) = [[[ a]] [[][ a b(2,1) c(3,1)]]]

push2(push
c,3
1 (push

b,2
1 s)) = [[[ a]] [[][ a b(2,1) c(3,1)][ a b(2,2) c(3,1)]]]

push3(push
c,3
1 (push

b,2
1 s)) = [[[ a]] [[][ a b(2,1) c(3,1)]] [[][ a b(2,1) c(3,2)]]]

collapse(push2(push
c,3
1 (push

b,2
1 s))) = collapse(push3(push

c,3
1 (push

b,2
1 s))) = [[[ a]]]

Collapsible pushdown automataare a generalization (to all finite orders) ofpushdown automata with links
[2, 1], which are essentially the same aspanic automata[14].

Definition 2.2 A tree-generatingorder-n collapsible pushdown automaton(n-CPDA) is a 5-tuple〈Σ, Γ, Q, δ, q0 〉
whereΣ is a ranked alphabet (i.e. eachΣ-symbolf has anarity ar(f) ≥ 0), Γ is a stack alphabet,Q is a finite
set of states,q0 is the initial state, andδ : Q × Γ −→ (Q × Opn + { (f ; q1, · · · , qar(f)) : f ∈ Σ, qi ∈ Q })
is the transition function.

Configurationsof an n-CPDA are pairs of the form(q, s) whereq ∈ Q ands is ann-stack overΓ; we
call (q0,⊥n) the initial configuration. A generalized configuration(ranged over byγ, γi, etc.) is either a

configuration or a triple of the form(f ; q1, · · · , qar(f); s). We define
`
> , a one-step labelled transition relation

of A over generalized configuration by clauses, one for each of the three types4 of labels` that annotate
`
> ,

3Thus 1-links are invariant – they always point to the preceding symbol and no stack operation will change that.
4I for internal or hidden Player-move,P for Player-move, andO for Opponent-move.
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namely,I, P andO:

I. (q, s)
(q′,θ)
> (q′, s′) if for someθ ∈ Opn we haveδ(q, top1 s) = (q′, θ) ands′ = θ(s)

P. (q, s)
(f ;q)
> (f ; q1, · · · , qar(f); s) if δ(q, top1 s) = (f ; q1, · · · , qar(f))

O. (f ; q1, · · · , qar(f); s)
(f,i)
> (qi, s) for each1 ≤ i ≤ ar(f).

A computation pathof ann-CPDA A is a finite or infinite transition sequence of the formρ = γ0
`0
>

γ1
`1
> γ2

`2
> · · · whereγ0 is the initial configuration. Every computation path is uniquely determined by the

associatedlabel sequence, namely,̀ 0 `1 `2 · · · . Observe that such label sequences satisfy the regular expression
(I∗ P O)ω + (I∗ P O)∗ Iω if the sequence is infinite, and(I∗ P O)∗ I∗(ε + P + P O) if the sequence is finite.
TheΣ-projectionof ρ is the subsequencèr1 `r2 `r3 · · · of labels of the shape(f, i) (in which casear(f) ≥ 1)
or of the shape(f ; ε) (in which casear(f) = 0, and the label marks the end of theΣ-projection). We say the
CPDAA generates theΣ-labelled treet just in case thebranch language5 of t coincides with theΣ-projection
of computation paths ofA.

3 Recursion schemes

Typesare generated from the base typeo using the arrow constructor→. Every typeA can be written uniquely
asA1 → · · · → An → o (arrows associate to the right), for somen ≥ 0 which is called itsarity; we shall
often writeA simply as(A1, · · · , An, o). We define theorder of a type byord(o) = 0 andord(A → B) =
max(ord(A) + 1, ord(B)). Let Σ be aranked alphabeti.e. eachΣ-symbolf has an arityar(f) ≥ 0 which
determines its type(o, · · · , o

︸ ︷︷ ︸

ar(f)

, o). Further we shall assume that each symbolf ∈ Σ is assigned a finite set

Dir(f) of ar(f) directions, and we defineDir(Σ) =
⋃

f∈Σ Dir(f). LetD be a set of directions; aD-treeis just
a prefix-closed subset ofD∗, the free monoid ofD. A Σ-labelled treeis a functiont : Dom(t) −→ Σ such that
Dom(t) is aDir(Σ)-tree, and for every nodeα ∈ Dom(t), theΣ-symbolt(α) has arityk if and only if α has
exactlyk children and the set of its children is{α i : i ∈ Dir(t(α)) } (i.e. t is arankedtree). We shall assume
that the ranked alphabetΣ contains a distinguished nullary symbol⊥ which will be used exclusively to label
“undefined” nodes.

Note. We write [m] as a shorthand for{ 1, · · · , m }. Henceforth we fix a ranked alphabetΣ for the rest
of the paper, and setDir(f) = [ar(f)] for eachf ∈ Σ; thusDir(Σ) = [ar(Σ)], writing ar(Σ) to mean
max{ ar(f) : f ∈ Σ }.

For each typeA, we assume an infinite collectionVarA of variables of typeA, and writeVar to be
the union ofVarA as A ranges over types; we writet : A to mean that the expressiont has typeA. A
(deterministic)recursion schemeis a tupleG = 〈Σ,N ,R, S 〉 whereΣ is a ranked alphabet ofterminals; N
is a set of typednon-terminals; S ∈ N is a distinguishedstart symbolof type o; R is a finite set of rewrite
rules – one for each non-terminalF : (A1, · · · , An, o) – of the formF ξ1 · · · ξn → e where eachξi is in
VarAi , ande ∈ T o(Σ∪N ∪ { ξ1, · · · , ξn }) i.e.e is anapplicative term6 of typeo generated from elements of
Σ ∪N ∪ { ξ1, · · · , ξn }. Theorder of a recursion scheme is the highest order of the types of its non-terminals.

We use recursion schemes as generators ofΣ-labelled trees. Thevalue treeof (or the treegeneratedby)
a recursion schemeG, denoted[[G ]], is a possibly infinite applicative term, but viewed as aΣ-labelled tree,

5The branch languageof t : Dom(t) −→ Σ consists of infinite words(f1, d1)(f2, d2) · · · just if for 0 ≤ i < n, we have
t(d1 · · · di) = fi+1; and of finite words(f1, d1) · · · (fn, dn)a just if for 0 ≤ i < n, we havet(d1 · · · di) = fi+1 andt(d1 · · · dn) = a.

6Applicative termsare constructed from the generators using the application rule: ifd : A → B ande : A then(de) : B. Standardly
we identify finiteΣ-labelled trees with applicative terms of typeo generated fromΣ-symbols endowed with 1st-order typesas given
by their arities.
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constructed from the terminals inΣ, that is obtained by unfolding the rewrite rules ofG ad infinitum, replacing
formal by actual parameters each time, starting from the start symbolS. See e.g. [13] for a formal definition.

g
tt

t JJ
J

a g
tt

t JJ
J

a h

h

...

Example 3.1 Let G be the order-2unsafe(in the sense of [13]) recursion scheme with
rewrite rules wherez : o andϕ : (o, o):

S → H a

H z → F (g z)
F ϕ → ϕ (ϕ (F h))

where the arities of the terminalsg, h, a are2, 1, 0 respectively. The value tree[[G ]] (as
shown on the right) is theΣ-labelled tree defined by the infinite termg a (g a (h (h (h · · · )))). The only infinite
path in the tree is the node-sequenceε · 2 · 22 · 221 · 2211 · · · .

4 From CPDA to recursion schemes

In this section we show that there is an effective translation from order-n CPDAA to order-n recursion schemes
GA (wheren ≥ 0) such thatA andGA define the sameΣ-labelled tree (Theorem 3). We begin by introducing a
method to represent higher-order stacks and configurations by applicative terms constructed from non-terminals
of the same order. Our approach simplifies the (order-2) translation in [14] and generalizes it to all finite orders
in a non-trivial way.

Fix a tree-generatingn-CPDAA. W.l.o.g. we assume that the state-set ofA is [m] wherem ≥ 1. Let 0 be
the base type. Inductively, forn ≥ 0, we define the typen + 1 = nm → n wherenm = n × · · · × n

︸ ︷︷ ︸

m times

. Thus

n + 1 = nm → (n − 1)m → · · · → 0m → 0. For each stack symbola, each1 ≤ e ≤ n and each state
1 ≤ p ≤ m, we introduce a non-terminal

Fa,e
p : (n − e)m → (n − 1)m → · · · → 0m → 0

that represents the symbola with a link of ordere (in statep). Note that the type ofFa,e
p is not homogeneous

in the sense of Knapiket al. [13]. In addition, for each0 ≤ i ≤ n − 1, we introduce a non-terminalΩi : i, and
fix a start symbolS : 0. LetNA be the set of all non-terminals. We shall use the following shorthand: LetP (i)
be a term with an occurrence ofi; we write〈P (i) | i〉 to mean them-tuple〈P (1), · · · , P (m) 〉. E.g.〈Fa,e

i | i〉
means〈 Fa,e

1 , · · · ,Fa,e
m 〉 : ((n − e)m → n)m.

A term M : n − j where0 ≤ j ≤ n is said to behead normal if its head symbol is a non-terminal
of the formFa,e

p i.e. M has the shapeFa,e
p LMn−1 · · ·Mn−j , for somea, e andp and for some vectors of

termsL,Mn−1, · · · , Mn−j of the appropriate types; we shall callFa,e
p the head non-terminalof M . Let

0 ≤ j ≤ n, 1 ≤ p ≤ m and lets be aj-stack, a pair of the form(p, s) is called aj-configuration (thus a
configuration is ann-configuration). We shall use head-normal terms of typen−j, which has the general shape
Fa,e

p LMn−1 · · ·Mn−j : n − j, to representj-configurations; equivalently we usem-tuples of the form

〈Fa,e
i LMn−1 · · ·Mn−j | i〉 : (n − j)m

to representj-stacks. Suppose the configuration(p, s) is represented byFa,e
p LMn−1 · · ·M0 : 0. The idea is

that for1 ≤ k ≤ n, we have

(p, topk s) is represented byFa,e
p LMn−1 · · ·Mn−(k−1) : n − (k − 1)

(p, popk s) is represented byMn−k,p Mn−k−1 · · ·M0 : 0

(p, collapse s) is represented byLp Mn−e−1 · · ·M0 : 0

In particular the 0-configuration(p, top1 s) – where thetop1-symbol ofs is a with a link to the(e − 1)-stack
that is represented by them-tupleL : (n − e)m – is represented byFa,e

p L : n.
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What does it mean for a term to represent a configuration? To give a precise answer, we first consider
labelled rewrite rules of the general form, withq ranging over states andθ overOpn:

Fa,e
p Φ Ψn−1 · · ·Ψ0

(q,θ)
−_ Ξ(q,θ)

where for each0 ≤ j ≤ n − 1, we haveΨj = Ψj1, · · · , Ψjm is a vector of variables, with eachΨji : j;
similarly Φ = Φ1, · · · , Φm is a vector of variables, with eachΦi : n − e. The shape ofΞ(q,θ) depends on the
pair (q, θ) as shown in Table 1, where2 ≤ j ≤ n and1 ≤ e, k ≤ n: The labelled rewrite rules induce a family

Cases of(q, θ) CorrespondingΞ(q,θ)

(q, push
b,k
1 ) Fb,k

q Ψn−k 〈F
a,e
i Φ Ψn−1 | i〉Ψn−2 · · · Ψ0

(q, pushj) Fa,e
q Φ Ψn−1 · · ·Ψn−(j−1)〈F

a,e
i Φ Ψn−1 · · ·Ψn−j | i〉Ψn−(j+1) · · ·Ψ0

(q, popk) Ψn−k,q Ψn−k−1 · · ·Ψ0

(q, coll.) Φq Ψn−e−1 · · ·Ψ0

Table 1: Definition ofΞ(q,θ)

of labelledoutermosttransition relations
(q,θ)
−→ ⊆ T 0(NA)× T 0(NA). Informally we defineM

(q,θ)
−→ M ′ just if

M ′ is obtained fromM by replacing thehead(equivalently outermost) non-terminalF by the right-hand side
of the corresponding rewrite rule in which all formal parameters are in turnreplaced by their respective actual

parameters; since each binary relation
(q,θ)
−→ is a partial function, we shall writeM

(q,θ)
−→ to meanM ′. We shall

write
θ

−→ to mean the set of all transitionsM
(q,θ)
−→ M ′ that preserves the stateq of M . Let α = θ1 ; · · · ; θl

be a (composite) sequence of stack operations. We write
α

−→ ⊆ T 0(NA) × T 0(NA) to be the sequential

composition of the partial function
θ1−→, · · · ,

θl−→ (in this order).

The position of a given stack symbol in ann-stacks can be described by a sequence ofpop operations that
can “collapse” the stack up to the point where that position becomes thetop1-symbol. For example, the position
of b in the 2-stack[[a a][a b a][a a][a]] is pop2

2 ; pop1. In general such sequences are not unique, though
they can be normalized to one in which the respective orders of thepop operations form a non-increasing
sequence. We shall call a normalized sequence for a given stacks an s-probe. We say that a ground-type
termM representsa configuration(p, s) if for every s-probeα, if the top1-symbol ofα s is a(j,k), then the

head non-terminal ofM
α

−→ is Fa,j
p ; further (M

α
−→)

popk
j

−→ = (M
α

−→)
coll.
−→, and it represents the configuration

(p, collapse(α s)). Note thatF⊥,1
p Ωn−1 Ωn−1 · · ·Ωn−j : n − j represents thej-configuration(p,⊥n−j). The

following Theorem confirms that our notion of representation is the right one.

Theorem 1 (Correctness)LetM be a ground-type term,(p, s) be a configuration, andθ be a stack operation.

SupposeM represents(p, s). If M
θ

−→ M ′ thenM ′ represents the configuration(p, θ s).

Definition 4.1 Fix a tree-generating order-n CPDA A = 〈Σ, Γ, Q, δ, q0 〉 with Q = [m] for somem ≥ 1,
andq0 = 1. The order-n recursion scheme determined byA, written GA, consists of astart rule: S −_

F⊥,1
1 Ωn−1 Ωn−1 · · ·Ω0, and two types of rewrite rules (according to the type of their label), namely,I andP :

I. For each(q, θ) ∈ δ(p, a) and1 ≤ e ≤ n, there is anI-type rewrite ruleFa,e
p Φ Ψn−1 · · ·Ψ0

(q,θ)
−_ Ξ(q,θ),

whereΞ(q,θ) is as given in Table 1.
P. For each(f ; q1, · · · , qar(f)) ∈ δ(p, a) and1 ≤ e ≤ n, we have aP -type rule:

Fa,e
p Φ Ψn−1 · · ·Ψ0

(f ;q)
−_ f (Fa,e

q1
Φ Ψn−1 · · ·Ψ0) · · · (Fa,e

q
ar(f)

Φ Ψn−1 · · ·Ψ0).
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We write−→⊆ T 0(Σ ∪ NA) × T 0(Σ ∪ NA) for the one-step reduction relation7 between ground-type ap-
plicative terms, defined to be the substitutive and contextual closure of the rewrite rules.

A ground-type termR is called aredexif for some termR′ we haveR −→ R′ is asubstitutiveinstance of

a rewrite rule
`

−_, and the redex is said to beP -typeor I-typeaccording to the type of̀; by abuse of notation,

we shall writeR
`

−_ R′. A ground-type term is eitherhead terminal(i.e. of the shapef N1 · · ·Nar(f)) or head
non-terminal(i.e. the head symbol is a non-terminal). A head non-terminal ground term is either atomic (i.e.S
or Ω0) or it is head normal(i.e. the head symbol is of the formFa,e

p ), in which case, it is anI-type orP -type

redex. In order to prove the Theorem (Equi-Expressivity 1), we define by rule induction a binary relation
`
⇒

over pairs of the form(E, R) where` ranges overI-, P - andO-labels (as defined in Definition 2.2),E ranges
overactive contexts8, andR over redexes and head-terminal ground-type terms, as follows:

` is I- or P -type R
`

−_ R′

(E, R)
`
⇒ (E, R′)

` = (f, i) is O-type

(E, f N1 · · ·Nar(f))
`
⇒ (E[f N1 · · ·Ni−1 [-]Ni+1 · · ·Nar(f)], Ni)

Thus, suppose(E, R)
`
⇒ (E′, R′); it follows from definition that if` is I- or P -type, thenE[R] −→ E[R′]

(i.e. E = E′); otherwise` is O-type andE[R] = E′[R′]. SetE0 = [ ] andR0 = F⊥,1
1 Ωn−1 Ωn−1 · · ·Ω0

(note thatS −→ E0[R0]). Thanks to Theorem 1, we can now prove the following lemma (from which the
Equi-Expressive Theorem 1 follows):

Lemma 2 There is a 1-1 correspondence between (finite or infinite) computation pathof A of form γ0
`0
>

γ1
`1
> γ2

`2
> · · · and

`
⇒-reduction sequences(E0, R0)

`0⇒ (E1, R1)
`1⇒ (E2, R2)

`2⇒ · · · such that for
everyi ≥ 0, if Ri is head-normal, thenRi representsγi.

Theorem 3 (Equi-Expressivity 1) LetA be a tree-generating CPDA. The recursion schemeGA (as defined in
Definition 4.1) generates the sameΣ-labelled tree as the CPDAA.

5 From recursion schemes to CPDA

The previous section shows that order-n recursion schemes are at least as expressive as order-n CPDA. In this
section we shall sketch a proof of the converse. Hence CPDA and recursion schemes are equi-expressive. We
have already mentioned related results by Damm and Goerdt and by Knapiket al. Note that in both these cases,
correspondence is established with recursion schemes that are subjectto highly non-trivial syntactic constraints;
further the translation techniques depend on the constraints in a crucial way. Our translation from recursion
schemes to CPDA is novel; it is based on (innocent) game semantics [11] and,in particular, the notions oflong
transformandtraversalintroduced in [17].

Let G be an order-n recursion scheme. The long transform ofG, written G, is another recursion scheme
(of order 0) obtained fromG by a series of syntactic transformations. First we replace the right-hand sidese

of all G-rules by theirη-long forms9 peq. Then explicit application symbols are introduced: Each ground-type
subtermFe1 · · · en, whereF is a non-terminal, is replaced by @AFe1 · · · en for a suitable typeA. Finally, to
arrive atG, we curry each of the transformed rules:Fξ1 · · · ξn → e′ is replaced byF → λξ1 · · · ξn.e′. By
renaming we can ensure that for each variable nameϕi there is a unique nodeλϕ such thatϕi occurs inϕ.
The long transform of the scheme from Example 3.1 isS = λ.@H (λ.a), H = λz.@F (λy.g (λ.z) (λ.y)),
F = λϕ.ϕ (λ.ϕ (λ.@F (λx.h (λ.x)))).

7When defining−→ and the tree generated by the recursion schemeGA, we ignore the labels̀ that annotate the rules
`

−_.
8An active contextis just an ground-type applicative term that contains a ground-typed hole, into which a term may be inserted.
9Given†s1 · · · sm : (A1, · · · , An, o), we definep† s1 · · · smq = λϕ1 · · ·ϕn.† ps1q · · · psmq pϕ1q · · · pϕnq.
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GivenG, we further define a labelled directed graphGr(G), which will serve as a blueprint for the eventual
definition ofCPDA(G), the CPDA corresponding toG. To constructGr(G), we first take the forest consisting
of all syntactic trees of the right-hand sides ofG. We orient the edges towards the leaves and enumerate the
outgoing edges of any node from1 to ar(f), wheref is the node label. Exceptionally, edges from nodes
labelled by @ are numbered from0. Let us writev = Ei(u) iff (u, v) is an edge enumerated byi. Next, for
any non-terminalF , we identify (“glue together”) the rootrtF of the syntactic tree of the right-hand side of
the rule forF with all nodes labelledF (which were leaves in the forest). The nodertS , whereS is the start
symbol ofG, will be called the root ofGr(G). The graphGr(G) for Example 3.1 is given below.
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We are now ready to defineCPDA(G). The set of nodes ofGr(G) will
become the stack alphabet ofCPDA(G). The initial configuration will be the
n-stackpush

v0,1
1 ⊥n, wherev0 is the root ofGr(G). For ease of explanation,

we define the transition mapδ as a function that takes a nodeu ∈ Gr(G) to a
sequence of stack operations, by a case analysis of the labellu of u. Whenlu
is not a variable, the action is justpush

v,1
1 , wherev is an appropriate successor

of the nodeu. More precisely,v is defined to beE0(u) (for lu = @), E1(u)
(for lu = λϕ) or Ei(u) (if lu ∈ Σ andi is the direction that the automaton is
to explore in the generated tree). Finally, supposelu is a variableϕi and its
binder is a lambda nodeλϕ which is in turn aj-child. Then, assumingϕ is
of orderl ≥ 1, the action will be

δ(u) =

{

pushn−l+1 ; pop
p+1
1 ; push

Ei(top1),n−l+1
1 if j = 0

pushn−l+1 ; pop
p
1 ; collapse ; push

Ei(top1),n−l+1
1 otherwise

wherepush
Ei(top1),k
1 is defined to be the operations 7→ push

Ei(top1 s),k
1 s.

If the variable has order0 we usepop
p+1
1 ; push

Ei(top1),1
1 if j = 0, and

pop
p
1 ; collapse ; push

Ei(top1),1
1 otherwise. It can be shown that runs of

CPDA(G) are in 1-1 correspondence with traversals, as defined in [17]. Since
traversals are simplyuncoverings(in the sense of [11]) of paths in the value
tree[[G ]] we have the following theorem:

Theorem 4 (Equi-Expressivity 2) For any order-n recursion schemeG, the CPDA determined by it,CPDA(G),
generates the value tree[[G ]].

6 Games over collapsible pushdown graphs

We are interested in solving parity games over collapsible pushdown graphsi.e. we want to know whether one
can decide, for any position in such a game, ifÉlöıse has a winning strategy from it, and if so, determine its
complexity. Anorder-n collapsible pushdown system10 (n-CPDS) is given by a quadrupleA = 〈Γ, Q,∆, q0 〉
whereΓ is the stack alphabet,Q is a finite state-set,∆ ⊆ Q×Γ×Q×Opn is the transition relation, andq0 is
the initial state.Configurationsof ann-CPDS are pairs of the form(q, s) whereq ∈ Q ands is ann-stack over

Γ. We define a one-step labelled transition relation of the CPDSA, written
`
> where` ∈ Q×Opn, which is a

family of binary relations over configurations, as follows:(q, s)
(q′,θ)
> (q′, s′) iff we have(q, top1 s, q′, θ) ∈ ∆

and s′ = θ(s). The initial configuration is(q0,⊥n). We can now define theconfiguration graph of A:

vertices are just the (reachable) configurations, and the edge relation isthe relation
`
> restricted to the reachable

configurations.

10We use collapsible pushdownsystem(as opposed toautomaton) whenever the device is used to generate a graph.
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Example 6.1 Take the 2-CPDS11 with state-set{ 0, 1, 2 }, stack alphabet{ a, b,⊥} and transition relation
given by

(0,−, 1, t), (1,−, 0, a), (1,−, 2, b), (2, †, 2, 1), (2, †, 0, 0)

where− means any symbol,† means any non-⊥ symbol, andt, a, b, 0 and1 are shorthand for the stack opera-
tionspush2, push

a,2
1 , push

b,2
1 , collapse andpop1 respectively. We present its configuration graph (with edges

labelled by stack operations only) as follows:

0[[]]
t // 1[[][]]

a //

b��

0[[][a]]
t // 1[[][a][a]]

a //

b��

0[[][a][a a]]
t // 1[[][a][a a][a a]] · · ·

b��
2[[][b]]

1��

0

ggPPPPPP
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1��

0

iiTTTTTTTT

2[[][a][a a][a a b]] · · ·
1��

0

kkXXXXXXXXXXXX

2[[][]] 2[[][a][a]]
1��

0

kkVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

2[[][a][a a][a a]] · · ·
1��

0

llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

2[[][a][]] 2[[][a][a a][a]] · · ·
1��

0

llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

2[[][a][a a][]]

Let G = 〈V, E 〉 denote the configuration graph ofA, letQE∪QA be a partition ofQ and letΩ : Q → C ⊂ N

be a colouring function. Altogether they define a partitionVE ∪ VA of V whereby a vertex belongs toVE iff
its control state belongs toQE, and a colouring functionΩ : V → C where a vertex is assigned the colour
of its control state. The structureG = 〈G, VE, VA 〉 is ann-CPDS game graphand the pairG = 〈 G, Ω 〉 is
a n-CPDS parity game. A play in G from the initial vertexv0 = (q0,⊥n) works as follow: the player that
controlsv0 (Élöıse ifv0 ∈ VE or Abelard otherwise) moves a token fromv0 to some neighbourv1 (we assume
here thatG has no dead-end), then the player that controls the token moves it to a neighbourv2 of v1 and so on.
A play is therefore an infinite pathv0v1 · · · and is won byÉlöıse iff lim inf〈Ω(vi) : i ≥ 0 〉 is even. Finally,v0

is winning for some player if he has a winning strategy from it. See [19, 22, 21] for more details.

In this section we consider the following problem:

(P1) Given ann-CPDS parity game decide if́Elöıse has a winning strategy from the initial configuration.

From the well-known techniques of [9], it follows that (i) Problem (P1) is polynomially equivalent to Problems
(P2) and (P3) in the following; and (ii) Problem (P1) is equivalent to Problem (P4) – the reduction from (P1)
to (P4) is polynomial, but non-elementary one in the other direction :

(P2) Given ann-CPDS graphG, and a mu-calculus formulaϕ, doesϕ hold at the initial configuration ofG?
(P3) Given an alternating parity tree automaton andn-CPDS graphG, does it accept the unravelling ofG?
(P4) Given an MSO formulaϕ and ann-CPDS graphG, doesϕ holds at the root of the unravelling ofG?

An useful fact is that the unravelling of ann-CPDS graph is actually generated by ann-CPDA (one mainly
has to note that putting labels on the edges makes then-CPDS graphdeterministicand hence its unravelling as
desired). Thus an important consequence of the Equi-Expressivity Theorems is the following.

Theorem 5 Let t be a tree generated by an order-n recursion scheme. Consider the following problems:

(P′
2) Givent and a modal mu-calculus formulaϕ, doesϕ hold at the root oft?

(P′
3) Givent and an alternating parity tree automaton, does the automaton acceptt?

(P′
4) Givent and an MSO formulaϕ, doesϕ hold at the root oft?

Then problem(Pi) is polynomially equivalent to problem(P′
i) for everyi = 2, 3, 4.

Since the Modal Mu-Calculus Model Checking Problem for trees generated by (higher-order) recursion
schemes is decidable [17], we obtain the following as an immediate consequence.

11This is inspired by an example in [5].
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Theorem 6 Problems(P1) – (P4) are decidable with complexityn-EXPTIME complete.

Another remarkable consequence of the Equi-Expressivity Theorems isthat it gives totally new techniques
for model-checking or solving games played on infinite structure generatedby automata. In particular it leads
to new proofs / optimal algorithms for the special cases that have been considered previously [20, 3, 14].
Conversely, as the Equi-Expressivity Theorems works in both directions, we note that a solution of Problem
(P1) would give a new proof of the decidability of Problems(P′

2) – (P′
4), and would give a new approach to

problems on recursion schemes. Actually, the techniques of [20, 14] canbe generalized to solven-CPDS parity
games without reference to [17]. Further it gives effective winning strategies for the winning player (which was
not the case in [14] where the special casen = 2 was considered).

Theorem 7 Solving ann-CPDS parity game isn-EXPTIME complete and it can be achieved without reference
to the decidability result in [17]. Further one can build ann-CPDA with output that realizes a winning strategy
for the winning player.

Remark 6.2 This result can easily be generalized to the case where the game has an arbitrary ω-regular win-
ning condition, and is played on theε-closure of the configuration graph of ann-CPDS graph. Consequently
parity games on Caucal graphs [4, 3] are a special case of this problem.

As the class ofε-closure of configuration graphs of CPDS admits decidable mu-calculus theories, and as
it contains the class of Caucal graphs (which enjoy decidable MSO theories [4]), one can consider the MSO
theories of configuration graphs of CPDS.

Theorem 8 (Undecidability) MSO theories of configuration graphs of CPDS are undecidable. Hencethe
class ofε-closure of configuration graphs of CPDS strictly contains the Caucal graphs.

•
A //

B��

•
A //

B��

•
A //

B��

· · ·

•
A // •

A //

B��

•
A //

B��

· · ·

•
A // •

A //

B��

· · ·

•
A // · · ·

For a proof, recall that MSO interpretation preserves MSO decidability. Now consider
the following MSO interpretationI of the configuration graph of the 2-CPDS in Exam-

ple 6.1:IA(x, y) = x
C

−→ y ∧ x
R

−→ y andIB(x, y) = x
1

−→ y, with C = 1
∗
b a t b 1∗

andR = 0 t a 0 ∨ 1 0 t a 0 1. Note that for theA-edges, the constraintC requires that the
target vertex should be in the next column to the right, whileR specifies the correct row.
Observe thatI ’s image is the “infinite half-grid” on the right, which has an undecidable
MSO theory.

Conclusions. In this paper, we introducecollapsible pushdown automataand prove that they are equi-expressive
with (general) recursion schemes for generating trees. This is the first automata-theoretic characterization of
higher-order recursions schemes. We argue that the equi-expressivity result is significant because it acts as a
bridge, enabling inter-translation between model-checking problems abouttrees generated by recursion scheme
and solvability of games on collapsible pushdown graphs. We show (Theorem 8) that order-n CPDS are strictly
more expressive then order-n pushdown systems for generating graphs. As forfurther directions : (i) The
most pressing open problem is whether order-n CPDA are equi-expressive with order-n PDA for generating
trees. The conjecture is that the former are strictly more expressive. Specifically it is conjectured thatUrzy-
czyn tree[2] is definable by a 2-CPDA but not by any 2-PDA.(ii) Is there a finite way to represent the set of
winning positions of ann-CPDS parity game (equivalently to represent the set of vertices where agiven modal
mu-calculus formula holds)?(iii) Is there aǹa la Caucal definition for theε-closure of CPDS graphs? As trees
generated byn-CPDA are exactly those obtained by unravelling ann-CPDS graph, is there a class of transfor-
mationsT from trees to graphs such that every(n+1)-CPDS graph is obtained by applying aT -transformation
to some tree generated by ann-CPDA? Note that aT -transformation may in general not preserve MSO de-
cidability, but should preserve mu-calculus decidability of trees generatedby n-CPDA. (iv) The algorithm that
transforms recursion schemes to CPDA (briefly sketched in Section 5) uses ideas in game semantics. It would
be an interesting (and we believe challenging) problem to obtain a translation that uses only first principles.
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