Collapsible Pushdown Automata and Recursion Schemes
(Extended abstract)

M. Hague A. S. Murawski C.-H. L. Ong O. Serré

Abstract

Collapsible pushdown automa{@€PDA) are a new kind of higher-order pushdown automata irckivh
every symbol in the stack has a link to a stack situated somelelow it. In addition to the higher-order
stack operationgush; andpop,, CPDA have an important operation called//apse, whose effect is to
“collapse” a stacks to the prefix as indicated by the link from thtep,-symbol ofs. Our first result is
that CPDA are equi-expressive witbcursion schemeas generators of node-labelled ranked trees. In one
direction, we give a simple algorithm that transforms areovrd CPDA to an orders recursion scheme that
generates the same tree, uniformly foraf 0. In the other direction, using ideas from game semantics, we
give an effective transformation of orderrecursion schemes (not assumed thhbmogeneously typednd
hence not necessaribafg to ordern CPDA that computéraversalsover a certain finite graph determined
by the scheme, and hence paths in the tree generated by #raecBur equi-expressivity result is the first
such automata-theoretic characterization of (generaljrston schemes.

An important consequence of the equi-expressivity resuhat it allows us to translate decision prob-
lems on trees generated by recursion schemes to equivatdhéms on CPDA andice versa For example,
since the Modal Mu-Calculus Model-Checking Problem foesrgenerated by orderrecursion schemes
is n-EXPTIME complete, we show that it follows that the same dability result holds for the problem
of solving a parity game played on an ordecollapsible pushdown grapie. the configuration graph of a
corresponding (ordem) collapsible pushdown system; the latter subsumes sewvetknown results about
the solvability of games over (higher-order) pushdown gsapy (respectively) Walukiewicz, Cachat, and
Knapik et al. Moreover our approach yields techniques that are ragiidéfierent from standard methods
for solving model-checking problems on infinite graphs gatezl by finite machines. This transfer of tech-
niques goes both ways. Another innovation of our work is faa@htained proof of the solvability of parity
games on collapsible pushdown graphs by generaltisgdardtechniques in the field. By appealing to our
equi-expressivity result, we obtain a new proof of the dalility (and optimal complexity) of the Modal
Mu-Calculus Model-Checking Problem of trees generatedebynsion schemes. In contrast to higher-order
pushdown graphs, we show that Monadic Second-Order (MSyitts of collapsible pushdown graphs are
undecidable

Keywords Higher-order (collapsible) pushdown automata, higheleorecursion schemes, ranked and or-
dered trees, solution of parity games over configuratiopliga(innocent) game semantics and traversals.

[We direct readers to the (downloadable) long version [10§hi$ paper in which all proofs are presentgd.

*Oxford University Computing Laboratory (OUCL). Mat t hew. Hague@oni ab. ox. ac. uk
ToucCL. Andr zej . Mur awski @omni ab. ox. ac. uk

fOUCL. Luke.Ong@oni ab. ox. ac. uk

SLIAFA (CNRS and Universi Paris VII). O ivier.Serre@i afa.jussieu. fr

1 Introduction

Higher-order pushdown automa(®DA) were first introduced by Maslov [15, 16] as accepting devioes f
word languages. As varies over the natural numbers, the languages accepted byropdshdown automata
form an infinite hierarchy. lop. cit. Maslov gave an equivalent definition of the hierarchy in termisigher-
order indexed grammarsret another characterization of Maslow’s hierarchy was given byidaand Goerdt
[7, 8]: they studiechigher-order recursion schemeisat satisfy the constraint aferived typesand showed
that the word languages generated by ondetich schemes coincide with those accepted by otdebA.
Maslow’s hierarchy offers an attractive classification of the semi-dbt@danguages: orders 0, 1 and 2 are
respectively the regular, context-free and indexed languages,hfitilgyis known about languages at higher
orders.

Higher-order PDA as a generating device for (possibly infinite) label@#ted trees was first studied by
Knapik, Niwihski and Urzyczyn [13]. As in the case of word languages, an infiigt@rchy of trees is defined,
according to the order of the generating PDA; lower orders of the laleyaare well-known classes of trees:
orders 0, 1 and 2 are respectively the regular [18], algebraic [@haperalgebraic trees [12]. Knapék al.
considered another method of generating such trees, namely, by biglegrdeterministic) recursion schemes
that satisfy the constraint sfafety A major result in that work is the equi-expressivity of the two methods as
tree generators. Open since the early 1980s, a question of fundamngmdaiance in higher-type recursion is
to find the class of automata that characterizes the expressivity of fogtherrecursion schemesThe results
of Damm and Goerdt, and of Knapét al. may be viewed as attempts to answer the question; they have both
had to impose syntactic constraints (of derived types and safety reshgotihich seem awkward and rather
unnatural) on recursion schemes in order to establish their results. Ah@m@espondence with (general)
recursion schemes has never been proved before.

A partial answer was recently obtained by Knapik, Niski, Urzyczyn and Walukiewicz. In an ICALP’05
paper [14], they proved that order-2 homogeneously-typed (bubhecessarily safe) recursion schemes are
equi-expressive with a variant class of order-2 pushdown autombga panic automata In this paper, we
give a complete answer to the question. We introduce a new kind of higterjpushdown automata (which
generalizepushdown automata with lin®], or equivalently panic automata, to all finite orders), called
collapsible pushdown automat@PDA), in which every symbol in the stack has a link to a (hecessarily lower
ordered) stack situated somewhere below it. In addition to the higher-stated operationgush; and pop;,
CPDA have an important operation called/lapse, whose effect is to “collapse” a stackto the prefix as
indicated by the link from theop,-symbol ofs. The main result (Theorems 3 and 4) of this paper is that for
everyn > 0, ordern recursion schemes and ordeCPDA are equi-expressive as generators of trees.

Our equi-expressivity result has a number of far-reaching comsegs. It allows us to translate decision
problems on trees generated by recursion schemes to equivalentnpsotaieCPDA andrice versa Chief
among them is the Modal Mu-Calculus Model-Checking Problem (equithglé&tternating Parity Tree Au-
tomaton Acceptance Problem, or equivalently Monadic Second-Orde®jW®del-Checking Problem). We
observe that all these problems reduce to the problem of solving a panity gyed on &ollapsible push-
down graphi.e. the configuration graph of a corresponding collapsible pushdogtersy(CPDS). Recently
one of us has shown [17] that the above decision problems for treesaged by order: recursion schemes
aren-EXPTIME complete. Thanks to our Equi-Expressivity Theorems, it falldlat the sameEXPTIME
complete) decidability result holds for the corresponding CPDS probletmishveubsumes many known re-
sults [20, 3, 14]. Moreover our approach yields techniques thaadieally different from standard methods for
solving model-checking problems on infinite graphs generated by finite neschille stress that this transfer
of techniques goes both ways. Indeed another innovation of our warke#-contained (and without recourse
to game semantics) proof of the solvability of parity games on collapsible pwshdmphs by generalizing

'Higher-order recursion schemes are essentially simply-typed lanaclaus with general recursion and uninterpreted first-order
function symbols

standardtechniques in the field. By appealing to our Equi-Expressivity Theoreraglain new proofs for
the decidability (and optimal complexity) of model-checking problems of treesrgéed by recursion schemes
as studied in [17].

In contrast to higher-order pushdown graphs (which do have d@eiddSO theories [4]), we show that
MSO theories of collapsible pushdown graphs are undecidable. Heflepsible pushdown graphs are, to
our knowledge, the first example of a natural class of finitely-presentagbphs that have undecidable MSO
theories while enjoying decidable modal mu-calculus theories.

2 Collapsible pushdown automata (CPDA)

Fix a stack alphabdf and a distinguishetlottom-of-stack symbal € I". An order-0 stackis just a stack
symbol. Anorder-(n + 1) stacks is a non-null sequence (writtérs; - - - 5;]) of order« stacks such that every
non-L I'-symbola that occurs ins has a link to a stack (of orddrwherek < n) situated below it ins; we

call the link a(k + 1)-link. The order of a stack is written ord(s); and we shall abbreviate orderstack to
n-stack. As usual, the bottom-of-st&ckymbol L cannot be popped from or pushed onto a stack. We define
1, theemptyk-stack as: Lo = L and L1 = [Li] . When displaying:-stacks in examples, we shall omit
the bottom-of-stack symbols to avoid clutter (e.g. writjifd [a]] instead of [L] [La]]).

The setOp,, of ordern stack operationsonsists of the following four types of operations:

1. pop, foreachl <k <n

2. collapse

3. push?* for eachl < k < nand eachi € (I'\ { L }), and
4. push; for each2 < j <n.

First we introduce auxiliary operationsp,, which takes a stack and returns the topi — 1)-stack ofs; and
push$, which takes a stack and pushes the symbal onto the top of the top 1-stack af Precisely let
s=1[s1---s41] beastackwith <i < ord(s), we define

o B Si+1 if i = ord(s)
top; [\L,SZLI]/ N { top; Si+1 if i < ord(s) (1)
s
“ [51 s push{ s;11] if ord(s) >1
pushi M { [s1---s1114a] if ord(s) =1 2)

S

We can now explain the four operations in turn. For 1 the pop, operation takes a stack and returns it
with its top (i — 1)-stack removed. Let < i < ord(s) we define
[s1--s] if i = ord(s)andl > 1
pop; w { [s1---s1pop;si+1] if i < ord(s) (3)
We say that a stack is aprefix of a stacks (of the same order), writtesyy < s, just if so can be obtained from
s by a sequence of (possibly higher-ordgs) operations.

Take amn-stacks. Fori > 2to constructoush‘f’i s we first attach a link from a copy afto the(i — 1)-stack
that is immediately below the top — 1)-stack ofs, and then push the symbol-with-link onto the tbgtack of
s. As for collapse, suppose theop,-symbol of s has a link to (a particular copy of) thestacku somewhere
in s. Thencollapse s causes to “collapse” to the prefix, of s such thattop,, ; s¢ is that copy ofu. Finally,
for j > 2, the (higher-orderpush,; operation simply takes a staekand duplicates the tofy — 1)-stack ofs,
preserving its link structure.

2Thus we require anrder-1 stacko be a non-null sequenge:; - - - a;] of I'-symbols such thatforall < i <, a; = L iff i = 1.

2

One way to define these stack operations formally is to work with an apprepnieneric representation
of the links. Knapiket al. have shown how this can be done in the order-2 case in [14]. Here voeluti a
different encoding of links that works for all orders. The idea is simfake ann-stacks and suppose there is
a link from (a particular occurrence of) a symhoh s to some(j — 1)-stack. Letsy be the unique prefix of
Whosetop1 symbol is that occurrence af Then there is a uniqulesuch thatcollapse S0 = popé“ so where

k
symbol-with-linkof ann-stack is writteru %), wherea € I, 1 < j < nandk > 1, such thatif j = 1 then
k = 1. Even though there is no link from, for technical convenience, we assume i 1 thenj =k = 1.

Henceforth we shall adopt our numeric representation of symbols-wkb:IWe can now give the formal
definitions ofcollapse, push’{” andpush, (in terms ofpop; andpushl{ as defined in (3) and (2) respectively).
Let1 <i < ord(s) and2 < j < ord(s) we define

collapses = popg s wheretop, s = ale:f)
pushl{’Z s = pushb(z Y
. () TR
push; [s1---s141] = [51801 5)4] !f J= ord(s)
——— [S1---8] p’LLShjSH_l] if 7 < ord(s)

S

where©% is the operation of replacing every supersc(iptk;) (for somek;) occurring in the staclo by
(g, k; + 1); note that in casg = ord(s), the link structure o, is preserved by the copy (as represented by

sl+1) that is pushed on top afby push;.

Example 2.1 Take the 3-stack = [[[a]] [[][@]]1]. (To save writing, we omit the superscrift 1).)
We have

push‘{% = [[[a][[1[ab@V]]]
pushc?’(push [[[all [[]]ab®YcD]]]
[[[al]l [[1[ab®D @] ab? B:D]]]
(
C

3
3
[[[all (111 ad®>Dc®]] [[][ab21 2111
collapse(pushg(pushC (push1 s) =1[[[alll

5)
pushy(push” (push1 5))
pushs(push” (pushl s))

)

collapse(push2(pushf’g(push s))

Collapsible pushdown automasaie a generalization (to all finite orders)mishdown automata with links
[2, 1], which are essentially the samepic automatdl14].

Definition 2.2 Atree-generatingrder-n collapsible pushdown automatofm-CPDA) is a 5-tuple ¥, T", Q, 4, qo)
whereX is a ranked alphabet (i.e. eaEhsymbol f has ararity ar(f) > 0), I is a stack alphabeg is a finite
set of statesy is the initial state, and : Q@ xI' — (Q x Op,, + {(f;q1," - ,dar(s)) : F €5, 6 €Q})

is the transition function.

Configurationsof ann-CPDA are pairs of the forng, s) whereq € @ ands is ann-stack overl’; we
call (qo, L,,) theinitial configuration A generalized configuratiofranged over byy,v;, etc.) is either a

configuration or a triple of the forrf; q1,- - - , qar(r); s). We define>, a one-step labelled transition relation

: , : ‘
of A over generalized configuration by clauses, one for each of the thped tyf labels/ that annotate> ,

3Thus 1-links are invariant — they always point to the preceding symimbha stack operation will change that.
“I for internal or hidden Player-mové, for Player-move, and for Opponent-move.

namely,/, P andO:

/70 .
. (g,s) (q>) (¢',s") ifforsomed € Op,, we havei(q, top, s) = (¢',0) ands’ = 6(s)

(f59) ,
(@) > (fiar, qar(pyss) if6(q, topys) = (fiar, s dar(s))

P.
(f:8))
O. (fiq1, + +qar(s);s) > (@,s) foreachl <i < ar(f).

‘
A computation patlof ann-CPDA A is a finite or infinite transition sequence of the foom= >
¢ ‘

oGl > Y2 S where~y is the initial configuration. Every computation path is uniquely determined by the

associatethbel sequencenamely/, ¢; /5 - - - . Observe that such label sequences satisfy the regular expression
(I* PO)* + (I* PO)* I¥if the sequence is infinite, arid* P O)* I*(¢ + P + P O) if the sequence is finite.

The X-projectionof p is the subsequendg, ¢, ¢,, - - - of labels of the shapéf, i) (in which casear(f) > 1)

or of the shapéf; <) (in which caseur(f) = 0, and the label marks the end of theprojection). We say the
CPDA A generates thE-labelled tree just in case théranch languageof ¢ coincides with the-projection

of computation paths ofl.

3 Recursion schemes

Typesare generated from the base typesing the arrow constructer. Every typeA can be written uniquely
asAd, — --- — A, — o (arrows associate to the right), for some> 0 which is called itsarity; we shall
often write A simply as(A41, - - , 4,,0). We define therder of a type byord(o) = 0 andord(A — B) =
max(ord(A) + 1, ord(B)). Let X be aranked alphabet.e. eachx-symbol f has an arityar(f) > 0 which
determines its typéo, - - - ,0,0). Further we shall assume that each sympot ¥ is assigned a finite set

ar(f)
Dir(f) of ar(f) directions and we defin®ir(X) = (J,.s, Dir(f). Let D be a set of directions; R-treeis just

a prefix-closed subset @¥*, the free monoid oD. A X-labelled treeis a functiont : Dom(¢t) — X such that
Dom(t) is aDir(X)-tree, and for every node € Dom(t), the ¥-symbolt(«) has arityk if and only if « has
exactlyk children and the set of its children{sxi : i € Dir(t(«)) } (i.e. t is arankedtree). We shall assume
that the ranked alphabg&t contains a distinguished nullary symholwhich will be used exclusively to label
“undefined” nodes.

Note We write [m] as a shorthand fof1,--- ,m }. Henceforth we fix a ranked alphabBtfor the rest
of the paper and setDir(f) = [ar(f)] for eachf € ¥; thusDir(X) = [ar(X)], writing ar(X) to mean
max{ ar(f): fe X}

For each typed, we assume an infinite collectiobiar” of variables of typed, and write Var to be
the union of Var® as A ranges over types; we write : A to mean that the expressigrhas typeAd. A
(deterministic)yecursion schemeés a tupleG = (X, NV, R, S) whereX is a ranked alphabet aérminals A
is a set of typechon-terminals S € N is a distinguishedtart symbolof type o; R is a finite set of rewrite
rules — one for each non-termin&l : (A;,---, A,,0) —of the formF & --- &, — e where eaclg; is in
Vardi, ande € T (XSUNU{&, -, &, }) e eis anapplicative ter of typeo generated from elements of
YUNU{&, -, & }. Theorderof a recursion scheme is the highest order of the types of its non-terminals.

We use recursion schemes as generatobs-labelled trees. Thealue treeof (or the treegeneratedby)
a recursion schem@, denoted] G |, is a possibly infinite applicative term, but viewed aZdabelled tree,

The branch languageof ¢ : Dom(t) — X consists of infinite wordg f1,d1)(fa,d2) - -- justif for 0 < i < n, we have
t(dy - -di) = fi+1; and of finite word f1,d1) - - - (fn, dn)ajustiffor 0 < i < n, we have(d; - - - d;) = fi+1 andi(dy - - - dyn) = a.

Applicative termsare constructed from the generators using the application rule: if — B ande : A then(de) : B. Standardly
we identify finite 3-labelled trees with applicative terms of typgenerated front-symbols endowed with 1st-order typas given
by their arities

constructed from the terminals h, that is obtained by unfolding the rewrite rules@®fad infinitum replacing
formal by actual parameters each time, starting from the start sysid&¢e e.g. [13] for a formal definition.

Example 3.1 Let G be the order-2insafe(in the sense of [13]) recursion scheme with /9\
rewrite rules where : o andy : (0, 0): a PN
a h
S — Ha L

Hz — F(gz)
Fo — ¢(p(F'h)

where the arities of the terminals h, a are2, 1,0 respectively. The value treG | (as
shown on the right) is thE-labelled tree defined by the infinite tegwa (g a (h (h (h ---)))). The only infinite
pathin the tree is the node-sequence2 - 22 - 221 - 2211 - - -.

4 From CPDA to recursion schemes

In this section we show that there is an effective translation from otd&PDA A to ordern recursion schemes
G 4 (Wheren > 0) such thatd andG 4 define the samE-labelled tree (Theorem 3). We begin by introducing a
method to represent higher-order stacks and configurations by dmglitsams constructed from non-terminals
of the same order. Our approach simplifies the (order-2) translation jlafithgeneralizes it to all finite orders
in a non-trivial way.

Fix a tree-generating-CPDA A. W.l.0.g. we assume that the state-setdf [m] wherem > 1. Let O be
the base type. Inductively, for > 0, we define the type + 1 = n™ — n wheren™ = n x --- x n. Thus
%\-,_/
m times
n+l=n"— (n-1)" — ..~ — 0™ — 0. For each stack symbal, eachl < ¢ < n and each state
1 < p < m, we introduce a non-terminal

Fpfin—e)" —=nm-1)" - —=0"—=0

that represents the symbolwith a link of ordere (in statep). Note that the type af,’“ is not homogeneous
in the sense of Knapikt al.[13]. In addition, for eacld < i < n — 1, we introduce a non-termin&l; : i, and
fix a start symbols : 0. Let N4 be the set of all non-terminals. We shall use the following shorthandPlgt
be a term with an occurrence gfwe write (P(¢) | i) to mean then-tuple (P(1),--- , P(m)). E.g.(F;"“| i)
means(7", -+, Fm) 1 ((n—e)™ — n)™.

Aterm M : n — j where0 < j < n is said to behead normalif its head symbol is a non-terminal
of the form 7, i.e. M has the shap&,“L M,,_; - -- M,,_;, for somea, e andp and for some vectors of
terms L, M, _1,--- , M,_; of the appropriate types; we shall cal,” the head non-terminalof M. Let
0<j<mn1<p<mandlets be aj-stack, a pair of the fornfp, s) is called aj-configuration (thus a
configuration is am-configuration). We shall use head-normal terms of typej, which has the general shape
FpLM,_1---M,_; : n— j,torepresenj-configurations; equivalently we use-tuples of the form

(FCL My -+ My |i) = (n—5)"

to represeng-stacks. Suppose the configuratigns) is represented b, L M,,_; --- My : 0. The idea is
that for1 < k < n, we have

(p, topy, 5) is represented by 7, LM,, - M,,_(_1) : n— (k — 1)
(p, popy, 5) is represented by M,, ., My,_—1 -+~ My : 0
(p, collapse s) is represented by L, M,,__1 -+ My : 0

In particular the 0-configuratiofp, top; s) — where thetop,-symbol of s is a with a link to the(e — 1)-stack
that is represented by the-tuple L : (n — ¢)™ —is represented h,“ L : n.

5

What does it mean for a term to represent a configuration? To givecagseranswer, we first consider
labelled rewrite rules of the general form, wiflianging over states ardover Op,,:

v o (@0 _
Fpr @Wpo1 Wy — Egp)

where for eactd < j < n — 1, we have\ITj = V¥, , ¥y, is a vector of variables, with each; : j;
similarly ® = ®,--- , ®,, is a vector of variables, with eaah; : n — e. The shape OE 4,9 depends on the
pair (¢, 0) as shown in Table 1, whee< j < n andl < e,k < n: The labelled rewrite rules induce a family

Cases of(q, 0) Corresponding =, 9

(g, push’™) For W, (F B, 1 |i) ¥, 4 - Ty

(¢, push;) Fg@Wn - Wy) (F @ Wy W |)W, g1y Yo

q, POpy n—k,q *n—k—1""" 70
(q) v 7 7
(g, coll.) PV, _e1-- Vg
Table 1: Definition OE(q,e)

of labelledoutermostransition relations“”. TO(N4) x T°(Ny). Informally we defined —— @) pp just if
M’ is obtained fromM by replacing thénead(equivalently outermost) non-terminal by the right-hand side

of the corresponding rewrite rule in which all formal parameters are inreplaced by their respective actual

(¢,9)

parameters since each binary relat%H» is a partial function, we shall writd/—— to mean)/’. We shall

(9,9)

write —°- to mean the set of all transitiodd ““% M’ that preserves the stageof M. Leta =61 ;---36;

be a (composite) sequence of stack operations. We w#ite C 7°(N4) x T°(N4) to be the sequential
.. . . 91 91 . .

composition of the partial function—, - - - , — (in this order).

The position of a given stack symbol in arstacks can be described by a sequenceaf operations that
can “collapse” the stack up to the point where that position becomésghesymbol. For example, the position
of binthe 2-stack [aa] [aba] [aa] [a]] is pop3 ; pop;. In general such sequences are not unique, though
they can be normalized to one in which the respective orders opdheoperations form a non-increasing
sequence. We shall call a normalized sequence for a given stanls-probe We say that a ground-type
term M representsa configuration(p, s) if for every s-probeaq, if the top,-symbol ofa s is aUk) then the

. k
head non-terminal ol -~ is F; further(ML)% = (M- and it represents the configuration

(p, collapse(a s)). Note that}‘pL’1 Q1 Qo1+ Qn_j : n — j represents thg-configuration(p, L,,—;). The
following Theorem confirms that our notion of representation is the rigat on

Theorem 1 (Correctness)Let M be a ground-type ternip, s) be a configuration, and be a stack operation.
Suppose\/ representgp, s). If M O M’ thenM represents the configuratidmp, 0 s).

Definition 4.1 Fix a tree-generating orderCPDA A = (X, T, Q,d, qo) with Q = [m] for somem > 1,
andqgy = 1. The ordern recursion scheme determined by, written GG 4, consists of astart rule S —
}‘1“(2”,1 Q,_1 ---Qg, and two types of rewrite rules (according to the type of their label), namelyd P:

(9,9)

—

. For each(¢,0) € 6(p,a) andl < e < n, there is anl-type rewrite ruleF;“ ® ¥, ;--- ¥ — Eqq),
whereZ, ¢) is as given in Table 1.

P. Foreach(f;q1, -, qar(s)) € 0(p,a) andl < e < n, we have aP-type rule:

— (o

fg’ea\l’nfl""l’o 2 f(}"gl’eglll‘nfl""l’io) . (}"ge(f)q)‘\l,nil...\yio).

6

We write — C 79(X U Ny4) x T9(X U Ny) for the one-step reduction relatibbetween ground-type ap-
plicative terms, defined to be the substitutive and contextual closure céinge rules.
A ground-type ternR is called aredexif for some termR’ we haveR — R’ is asubstitutiveinstance of
¢
a rewrite rule—, and the redex is said to l&-typeor I-typeaccording to the type of, by abuse of notation,

‘
we shall writeR — R'. A ground-type term is eithdread terminali.e. of the shap¢ N - - - N, () or head
non-terminal(i.e. the head symbol is a non-terminal). A head non-terminal ground terithés atomic (i.e.S
or Qo) or it is head normal(i.e. the head symbol is of the forif,), in which case, it is at-type or P-type

redex. In order to prove the Theorem (Equi-Expressivity 1), wenddfiy rule induction a binary relatiod
over pairs of the forn{ £, R) where/ ranges over-, P- andO-labels (as defined in Definition 2.2 ranges
overactive contexf§ andR over redexes and head-terminal ground-type terms, as follows:

0
lisI-or P-type R — R’ = (f,i)is O-type
(E,R) = (E,R) (B, f N1+ Nar()) = (B[f Ni -+ Nioa [] Niga -+ Na()], Vo)

Thus, SUpposéE, R) = (E', R'); it follows from definition that if¢ is I- or P-type, thenE[R] — E[R']
(.e. E = E'); otherwisel is O-type andE[R] = E'[R/]. SetEy = [JandRy = Fi"'Qy 19, 1 Qo
(note thatS — Ey[Ry]). Thanks to Theorem 1, we can now prove the following lemma (from whieh th

Equi-Expressive Theorem 1 follows):

0
Lemma 2 There is a 1-1 correspondence between (finite or infinite) computationgbathof form ~ >

¢ ¢
" > Yo < ... and=-reduction sequenced, Ry) L (E1, Ry) 4 (E9, R2) % ... such that for

everyi > 0, if R; is head-normal, theri; representsy;.

Theorem 3 (Equi-Expressivity 1) Let. A be a tree-generating CPDA. The recursion schémg(as defined in
Definition 4.1) generates the sarielabelled tree as the CPDA.

5 From recursion schemes to CPDA

The previous section shows that orderecursion schemes are at least as expressive aswi@BDA. In this
section we shall sketch a proof of the converse. Hence CPDA antdsiecischemes are equi-expressive. We
have already mentioned related results by Damm and Goerdt and by Katagpilote that in both these cases,
correspondence is established with recursion schemes that are subjgbily non-trivial syntactic constraints;
further the translation techniques depend on the constraints in a crugialQua translation from recursion
schemes to CPDA is novel; it is based on (innocent) game semantics [11f g=dticular, the notions dbng
transformandtraversalintroduced in [17].

Let G be an orders recursion scheme. The long transform(@fwritten G, is another recursion scheme

(of order 0) obtained fronds by a series of syntactic transformations. First we replace the right-hidesles

of all G-rules by theim-long form$ "e7. Then explicit application symbols are introduced: Each ground-type
subtermFe; - - - e,,, WhererF' is a non-terminal, is replaced by @'e; - - - e,, for a suitable typed. Finally, to
arrive atG, we curry each of the transformed rule&¢; - -- &, — €' is replaced byF — & ---&,.€/. By
renaming we can ensure that for each variable namthere is a uniqgue nod&y such thatp; occurs ing.

The long transform of the scheme from Example 3.8is A@H (A.a), H = Az.@F (Ay.g (A.2) (A.y)),
F=Xp.0 (A (A@QF (Az.h (A.x)))).

4
"When defining— and the tree generated by the recursion schémewe ignore the labeléthat annotate the rules—.
8An active contexis just an ground-type applicative term that contains a ground-typedihtdevhich a term may be inserted.
9GivenTsl coo8moi (A1, Anyo),wedefin€ st sm T = Aprcon s Tsm T e Ton

GivenG, we further define a labelled directed gra®t{G), which will serve as a blueprint for the eventual
definition of CPDA(G), the CPDA corresponding 6. To constructGr(G), we first take the forest consisting
of all syntactic trees of the right-hand sides@f We orient the edges towards the leaves and enumerate the
outgoing edges of any node frointo ar(f), where f is the node label. Exceptionally, edges from nodes
labelled by @ are numbered frofn Let us writev = E;(u) iff (u,v) is an edge enumerated byNext, for
any non-terminal’, we identify (“glue together”) the roott » of the syntactic tree of the right-hand side of
the rule forF' with all nodes labelled” (which were leaves in the forest). The nodg, whereS is the start
symbol of G, will be called the root ofar(G). The graphGr(G) for Example 3.1 is given below.

We are now ready to definePDA(G). The set of nodes d&r(G) will A
become the stack alphabet@?DA(G). The initial configuration will be the V1
n-StaCkpusthO’l 1., whereuv is the root ofGr(G). For ease of explanation, P @ N
we define the transition mapas a function that takes a node= Gr(G) to a Az A
sequence of stack operations, by a case analysis of thel Jatel. Wheni,, (Zpl Zl
is not a variable, the action is juﬁnsh”’l, wherev is an appropriate successor N
of the nodeu. More preciselyy is defined to beby(u) (for I, = @), By (u) Ap Ay
(for I, = Ap) or E;(u) (if I, € ¥ andi is the direction that the automatonis -~ i)l zl
to explore in the generated tree). Finally, supplsis a variablep; and its - V1 PN
binder is a lambda nod&® which is in turn aj-child. Then, assuming is - A A A

. . 0 y1 v1 2
of order! > 1, the action will be 4 0) y
) V1
() = | PUshuir s pop 5 pushy O fj=0 A
push, ;.1 3 pop} 5 collapse ; pushlei(mpl)’n_lel otherwise @\
1«
Wherepushf"(to”l)’k is defined to be the operation— pushiEi(t(”’1 kg,)‘ﬁ
If the variable has ordeb we usepop? ™ ; pushfi(wpl)’l if 5 =0, and 751
popl 5 collapse ; pmfﬁf”“”‘””’1 otherwise. It can be shown that runs of A
CPDA(G) are in 1-1 correspondence with traversals, as defined in [17]. Since Vi

traversals are simplyncoveringgin the sense of [11]) of paths in the value
tree[G]| we have the following theorem:

Theorem 4 (Equi-Expressivity 2) For any orders recursion schemé’, the CPDA determined by i€EPDA(G),
generates the value trde~ |.

6 Games over collapsible pushdown graphs

We are interested in solving parity games over collapsible pushdown graptve want to know whether one
can decide, for any position in such a gameElfise has a winning strategy from it, and if so, determine its
complexity. Anorder-n collapsible pushdown systefh(n-CPDS) is given by a quadruplé = (T', Q, A, q0)
wherel is the stack alphabef) is a finite state-seth C @ x I' x Q x Op,, is the transition relation, ang) is

the initial state Configurationsf ann-CPDS are pairs of the forify, s) whereq € @ ands is ann-stack over

I'. We define a one-step labelled transition relation of the CRD®ritten ﬁ wherel € Q x Op,,, whichis a

: : : , . (q',0) :
family of binary relations over configurations, as follows; s) B (¢, s') iff we have(q, top; s,¢',0) € A
ands’ = 6(s). The initial configuration iS¢, L,,). We can now define theonfiguration graph of A:

vertices are just the (reachable) configurations, and the edge relatierrédation> restricted to the reachable
configurations.

\We use collapsible pushdovaysten{as opposed tautomato) whenever the device is used to generate a graph.

Example 6.1 Take the 2-CPDS with state-set{ 0, 1,2}, stack alphabef a,b, 1 } and transition relation
given by

(07 R 17 t)u (17 ™ 07 CL), (17) 27 b)7 (27 T? 27 1)7 (27 T? 07 0)
where— means any symbot, means any non- symbol, and, a, b, 0 and1 are shorthand for the stack opera-

tionspushs, push’f’z, pushb’2, collapse andpop, respectively. We present its configuration graph (with edges
labelled by stack operations only) as follows:

O[[]] =111 —>0[[1[al] —=1[[1[a][al] —>0[[1[al[aa]] —=1[[][a][aa][aa]]
VO\ 0 ¢b
2[[1001] 2[[1[al[ab]] 2[[1[al[aa][aab]]

i

1
2001011 2[[1[a]l[a]] 2[[1ld[ad[aa]]
1 1

2001 0a 1] 2A[1la][ad][d]]
1
2[[1la][ad[]]

LetG = (V, E') denote the configuration graphdf let Qg U Qa be a partition of) andlet? : Q — C C N

be a colouring function. Altogether they define a partitignu Va of V whereby a vertex belongs gz iff

its control state belongs @, and a colouring functiof : V' — C where a vertex is assigned the colour
of its control state. The structue = (G, Vg, Va) is ann-CPDS game grapland the pailG = (G,Q) is
an-CPDS parity game A play in G from the initial vertexvy = (qo, L,,) works as follow: the player that
controlsvg (Eloise ifuy € Vi or Abelard otherwise) moves a token framto some neighbour; (we assume
here thatz has no dead-end), then the player that controls the token moves it to doeigh of v; and so on.

A play is therefore an infinite patlyv, - - - and is won byEloise iff lim inf (Q(v;) : i > 0) is even. Finallyy

is winning for some player if he has a winning strategy from it. See [19, P02 more details.

In this section we consider the following problem:
(P;) Given ann-CPDS parity game decideffloise has a winning strategy from the initial configuration.

From the well-known techniques of [9], it follows that (i) ProbleRy{ is polynomially equivalent to Problems
(P2) and (P3) in the following; and (ii) ProblemR,) is equivalent to Problen®,) — the reduction fromR;)
to (P4) is polynomial, but non-elementary one in the other direction :

(P2) Given amm-CPDS graph’, and a mu-calculus formula, doesy hold at the initial configuration oz?
(P3) Given an alternating parity tree automaton aneCPDS graph(z, does it accept the unravelling 6?
(P4) Given an MSO formula and ann-CPDS graphZ, doesp holds at the root of the unravelling 61?

An useful fact is that the unravelling of anCPDS graph is actually generated byraCPDA (one mainly
has to note that putting labels on the edges makes4BEDS graplideterministicand hence its unravelling as
desired). Thus an important consequence of the Equi-Expressivéyréims is the following.

Theorem 5 Lett be a tree generated by an orderrecursion scheme. Consider the following problems:

(P,) Givent and a modal mu-calculus formula, doesp hold at the root of?
(P%) Givent and an alternating parity tree automaton, does the automaton ac¢@ept
(P)) Givent and an MSO formula, doesy hold at the root of?

Then problen{P;) is polynomially equivalent to proble(@®;) for everyi = 2,3, 4.

Since the Modal Mu-Calculus Model Checking Problem for trees gésbiay (higher-order) recursion
schemes is decidable [17], we obtain the following as an immediate consequenc

UThis is inspired by an example in [5].

Theorem 6 Problems(P;) — (P,) are decidable with complexity-EXPTIME complete.

Another remarkable consequence of the Equi-Expressivity Theordimatiis gives totally new techniques
for model-checking or solving games played on infinite structure geneogtadtomata. In particular it leads
to new proofs / optimal algorithms for the special cases that have beesideoed previously [20, 3, 14].
Conversely, as the Equi-Expressivity Theorems works in both dire¢tisasiote that a solution of Problem
(P1) would give a new proof of the decidability of Problerf8),) — (P’,), and would give a new approach to
problems on recursion schemes. Actually, the techniques of [20, 14jecgeneralized to solweCPDS parity
games without reference to [17]. Further it gives effective winningtstiies for the winning player (which was
not the case in [14] where the special case 2 was considered).

Theorem 7 Solving am-CPDS parity game is-EXPTIME complete and it can be achieved without reference
to the decidability result in [17]. Further one can build anCPDA with output that realizes a winning strategy
for the winning player.

Remark 6.2 This result can easily be generalized to the case where the game hakitargrw-regular win-
ning condition, and is played on theclosure of the configuration graph of anCPDS graph. Consequently
parity games on Caucal graphs [4, 3] are a special case of this prable

As the class ot-closure of configuration graphs of CPDS admits decidable mu-calculogeékeand as
it contains the class of Caucal graphs (which enjoy decidable MSO tkddtle one can consider the MSO
theories of configuration graphs of CPDS.

Theorem 8 (Undecidability) MSO theories of configuration graphs of CPDS are undecidable. Htree
class ofz-closure of configuration graphs of CPDS strictly contains the Caucablys.

For a proof, recall that MSO interpretation preserves MSO decidabilibyv bonsider A AL A

e — 0 — 0 — -

the following MSO mterpretauon] of the configuration graph of the 2-CPDS in Exam¢B ¢B ¢B
A
ple6.1:14(x,y) = x —>y/\x —>yandIB(a: y) = x —>y,WIthC— T'batb1* R

andR =0ta0 VvV 10ta01. Note that for thed-edges, the constraitit requires that the YBA YBA -
target vertex should be in the next column to the right, wRilepecifies the correct row. \LB

Observe thaf’s image is the “infinite half-grid” on the right, which has an undecidable
MSO theory.

A
e —> ...

Conclusions In this paper, we introduasllapsible pushdown automaaad prove that they are equi-expressive
with (general) recursion schemes for generating trees. This is theudtmshata-theoretic characterization of
higher-order recursions schemes. We argue that the equi-exisesssult is significant because it acts as a
bridge, enabling inter-translation between model-checking problems ttbestgenerated by recursion scheme
and solvability of games on collapsible pushdown graphs. We show (&ime®) that orderr CPDS are strictly
more expressive then orderpushdown systems for generating graphs. Asfiiother directions: (i) The
most pressing open problem is whether ordeZPDA are equi-expressive with orderPDA for generating
trees The conjecture is that the former are strictly more expressive. Spdyifiicis conjectured thatUrzy-
czyn tred?2] is definable by a 2-CPDA but not by any 2-PD@) Is there a finite way to represent the set of
winning positions of am-CPDS parity game (equivalently to represent the set of vertices wiggveramodal
mu-calculus formula holds)@ii) Is there ara la Caucal definition for the-closure of CPDS graphs? As trees
generated by:.-CPDA are exactly those obtained by unravelling@a@PDS graph, is there a class of transfor-
mationsZ from trees to graphs such that evény+ 1)-CPDS graph is obtained by applyingatransformation

to some tree generated by arCPDA? Note that & -transformation may in general not preserve MSO de-
cidability, but should preserve mu-calculus decidability of trees genebgtedlCPDA. (iv) The algorithm that
transforms recursion schemes to CPDA (briefly sketched in Section $)des#s in game semantics. It would
be an interesting (and we believe challenging) problem to obtain a translagionsiss only first principles.

10

References

[1]

[2]

[3]

[4]

[5]
[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a reitricat level 2 for string languages.
Technical Report PRG-RR-04-023, Oxford University Computingdratory, 2004.

K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restmcat level 2 for string languages.
In Proceedings of the 8th International Conference on Foundations of &eft8cience and Computa-
tional Structures (FOSSACS’Q5)olume 3411 ofLecture Notes in Computer Sciencpages 490-501.
Springer-Verlag, 2005.

T. Cachat. Higher order pushdown automata, the Caucal hierafofmaphs and parity games. Rro-
ceedings of Automata, Languages and Programming, 30th Internd@mi@quium (ICALP’03) volume
2719 ofLecture Notes in Computer Sciencpages 556—569. Springer-Verlag, 2003.

D. Caucal. On infinite terms having a decidable monadic theorPréceedings of Mathematical Foun-
dations of Computer Science 2002, 27th International Symposium (MEY;Solume 2420 of_ecture
Notes in Computer Sciencgmges 165-176. Springer-Verlag, 2002.

D. Caucal and S. Hassen. Higher-order recursive schemiggtd>communication, 28 pages, July 2006.

B. Courcelle. The monadic second-order logic of graphs IX: maehand their behaviour3.heoretical
Computer Scien¢d 51:125-162, 1995.

W. Damm. The IO- and Ol-hierarchytheoretical Computer Scienc20:95-207, 1982.

W. Damm and A. Goerdt. An automata-theoretical characterization dtHgerarchy.Information and
Control, 71:1-32, 1986.

E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and deteymin&roceedings of the 32nd
Annual Symposium on Foundations of Computer Science (FOC$8g¢s 368-377. IEEE Computer
Society, 1991.

M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collalespjushdown automata and recursion
schemes. Technical report, Oxford University Computing Labora9y7. Preprint, 56 pages, down-
loable from

users. com ab. ox. ac. uk/ | uke. ong/ publ i cati ons/ cpda-1 ong. pdf.

J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF: lodiéls, observables and the full
abstraction problem, Il. Dialogue games and innocent strategies, IUllAgbstract and universal game
model. Information and Computatiqri63:285—-408, 2000.

T. Knapik, D. NiwiAski, and P. Urzyczyn. Deciding monadic theories of hyperalgebrags.ttaProceed-
ings of Typed Lambda Calculi and Applications, 5th International Confegg TLCA'01) volume 2044
of Lecture Notes in Computer Sciencpages 253—267. Springer-Verlag, 2001.

T. Knapik, D. Niwihski, and P. Urzyczyn. Higher-order pushdown trees are eadyrolceedings of the
5th International Conference on Foundations of Software Science antp@ational Structures (FOS-
SACS’'02)volume 2303 of_ecture Notes in Computer Sciencpages 205-222. Springer-Verlag, 2002.

T. Knapik, D. Niwinski, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars and paniaratt In
Proceedings of Automata, Languages and Programming, 32nd htternal Colloquium (ICALP’05)
volume 3580 ol ecture Notes in Computer Sciencpages 1450-1461. Springer-Verlag, 2005.

A. N. Maslov. The hierarchy of indexed languages of an arlyittavel. Soviet mathematics Doklady
15:1170-1174, 1974.

[16] A. N. Maslov. Multilevel stack automatdroblems of Information Transmissioh2:38-43, 1976.

[17] C.-H. L. Ong. On model-checking trees generated by higherroedeirsion schemes. Proceedings of
the 21st Annual IEEE Symposium on Logic in Computer Science (L6%; $d@ges 81-90. IEEE Computer
Society, 2006.

[18] M. O. Rabin. Decidability of second-order theories and automata foritentrees. Transactions of the
American Mathematical Society41:1-35, 1969.

[19] W. Thomas. On the synthesis of strategies in infinite gamd3rdoeedings of the 12th Annual Symposium
on Theoretical Aspects of Computer Science (STACSW@B)ime 900 ofLecture Notes in Computer
Sciencespages 1-13. Springer-Verlag, 1995.

[20] I. Walukiewicz. Pushdown processes: games and model-checkinfprmation and Computatign
157:234-263, 2001.

[21] I. Walukiewicz. A landscape with games in the backgroungPioceedings of the 19th Annual IEEE
Symposium on Logic in Computer Science (LICS'fdyes 356—-366. Computer Society Press, 2004.

[22] W. Zielonka. Infinite games on finitely coloured graphs with applicatiorsutomata on infinite trees.
Theoretical Computer Scienc200(1-2):135-183, 1998.

