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COLLAPSING OF PRODUCTS

ALONG THE KÄHLER-RICCI FLOW

MATTHEW GILL

Abstract. Let X = M × E, where M is an m-dimensional Kähler manifold
with negative first Chern class and E is an n-dimensional complex torus. We
obtain C∞ convergence of the normalized Kähler-Ricci flow on X to a Kähler-
Einstein metric on M . This strengthens a convergence result of Song-Weinkove
and confirms their conjecture.

1. Introduction

Let M be an m-dimensional Kähler manifold with negative first Chern class and
let E be an n-dimensional complex torus. Independently from Yau and Aubin,
there exists a unique Kähler-Einstein metric gM on M [Yau,Au]. Fix a flat metric
gE on E. Recall that we can associate a (1, 1)-form ω to a Kähler metric g by
defining

(1) ω =

√
−1

2π
gij̄dz

i ∧ dzj̄ .

Throughout this paper, we will relate Kähler metrics g, gM , . . . with their Kähler
forms ω, ωM , . . . using the obvious notation. We will also refer to ω as a Kähler
metric since ω and g uniquely determine each other. Additionally, a uniform con-
stant C,C ′, . . . will be a constant depending only on the initial data whose definition
may change from line to line.

Let X = M × E and define projection maps πM : X → M and πE : X → E.
Let ω0 be any Kähler metric on X and consider the normalized Kähler-Ricci flow

(2)
∂

∂t
ω = −Ric (ω)− ω, ωt=0 = ω0.

Observe that

Ric (π∗
MωM + π∗

EωE) = −π∗
MωM .

Hence c1 (X) = −[π∗
MωM ] ≤ 0 and the flow (2) exists for all time by the work of

Tsuji [Ts] and Tian-Zhang [TZ]. Notice that in general ω0 is not a product. In
the case when ω0 is a product, the work of Cao shows that the flow exists for all
time and converges smoothly to a Kähler-Einstein metric on M [C]. We prove the
following theorem.

Theorem 1.1. Let ω(t) be the solution to the normalized Kähler-Ricci flow (2)
with initial Kähler metric ω0 on X = M × E. Then

(a) ω (t) converges to π∗
MωM in C∞ (X,ω0) as t → ∞.
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(b) For any z ∈ M , let E(z) = π−1
M (z) denote the fiber above z. Then etω (t) |E(z) →

ωflat|E(z) in C∞ (E(z), ωE) as t → ∞, where ωflat is a (1, 1)-form on X with
[ωflat] = [ω0] whose restriction to each fiber is a flat Kähler metric.

We remark that this theorem holds for any compact Kähler manifold that ad-
mits a flat metric, which includes certain quotients of complex tori. This theorem
strengthens a convergence result of Song and Weinkove and confirms their conjec-
ture [SW4]. They prove that when m = n = 1, the convergence in (a) takes place
in Cβ(X,ω0) for any β between 0 and 1, and that the convergence in (b) takes
place in C0 (E(z), ωE). They conjecture that the convergence in this case is in fact
C∞. Since the flow is collapsing, the standard linear parabolic theory does not
apply directly. If Evans-Krylov did apply [Ev,Kr], it would give the Cβ estimates
of Song-Weinkove. In this paper, we use the maximum principle to directly ob-
tain global estimates. We remark that it is also possible to use the local scaling
argument of Gross-Tosatti-Zhang [GTZ] to obtain the higher order estimates by
standard theory, and this has been done by Fong-Zhang [FZ].

This problem originates from the work of Song and Tian [ST1]. They considered
the normalized Kähler-Ricci flow on an elliptic surface f : X → Σ, where some of
the fibers may be singular. It was shown that the solution of the flow converges to
a generalized Kähler-Einstein metric on the base Σ in C1,1. This result was gen-
eralized to the fibration f : X → Xcan, where X is a nonsingular algebraic variety
with semi-ample canonical bundle and Xcan is its canonical model [ST2]. Theorem
1.1 is a step towards strengthening this convergence result to C∞. We remark that
Gross, Tosatti and Zhang have studied a similar manifold as in Theorem 1.1, but
considered the case where the Kähler class of the metric tends to the boundary
of the Kähler cone instead of evolving by the Kähler-Ricci flow [GTZ]. Fong and
Zhang have examined the rate of collapse of the fibers of a similar manifold along
the Kähler-Ricci flow in a recent preprint [FZ].

Theorem 1.1 is related to viewing the Kähler-Ricci flow with surgery as an ana-
lytic Minimal Model Program (MMP) as conjectured by Song and Tian and proved
in the weak sense [ST3]. The idea of the MMP is that after several blow-downs
and flips, a projective algebraic variety becomes either a minimal model or a Mori
fiber space (an algebraic fibration f : X → B where the generic fibers are Fano).
Recent results due to Song and Weinkove show that the Kähler-Ricci flow performs
blow-downs as canonical surgical contractions in complex dimension 2 [SW2] and
in the case of the blow-up of orbifold points [SW3]. Song and Yuan have given an
example of the flow performing a flip [SY]. Specific examples of collapsing along
the flow have been investigated by Song and Weinkove in the case of a Hirzebruch
surface [SW1] and by Fong in the case of a projective bundle over a Kähler-Einstein
manifold [F1].

After performing blow-downs and flips, the Kähler-Ricci flow is conjectured to
produce either a minimal model or a Mori fiber space. If we continue the flow on
a Mori fiber space, the flow is expected to collapse the fibers in finite time. An
example of this was examined by Song, Székelyhidi and Weinkove [SSW]. The rate
of collapse of the diameter was improved by Fong under an assumption on the Ricci
curvature [F2]. If we continue the flow on a minimal model, the flow exists for all
time because the canonical class is nef. In this case, the rescaled flow may collapse
in infinite time. This is the case considered in [ST1, ST2, SW4, FZ] and in this
paper.
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In section 2, we derive several estimates following [SW4]. Section 3 contains
new higher order estimates for the case of a degenerating metric using only the
maximum principle. If the metric is not degenerating, then the work in section 3
most likely gives an alternate proof of the results in [ShW]. For other examples of
where higher order estimates were obtained using only the maximum principle, see
[Ch,DH,LSY]. In section 4, we obtain the convergence of ω, completing the proof
of the main theorem.

2. Estimates

First we establish reference metrics and reduce the flow to a parabolic complex
Monge-Ampère equation. The Kähler class of ω evolves as

[ω(t)] = e−t[ω0] +
(
1− e−t

)
[ωM ].

This can be verified by substituting it with the normalized Kähler-Ricci flow. Note
that we have written ωM in place of π∗

MωM to simplify notation, and we will
continue to do so for the remainder of this paper.

We define a family of reference metrics ω̂t in the class of ω(t) by

ω̂t = e−tω0 +
(
1− e−t

)
ωM .

Pick a smooth volume form Ω on X such that

(3)

√
−1

2π
∂∂̄ log Ω = ωM ,

∫
X

Ω =
(
m+n
m

) ∫
X

ωm
M ∧ ωn

0 .

This is possible since ωM represents the negative of the first Chern class of X.
Consider the parabolic complex Monge-Ampère equation

(4)
∂

∂t
ϕ = log

ent
(
ω̂t +

√
−1
2π ∂∂̄ϕ

)m+n

Ω
− ϕ, ω̂t +

√
−1

2π
∂∂̄ϕ > 0, ϕt=0 = 0.

Then the solution ϕ to (4) exists for all time and ω(t) = ω̂t +
√
−1
2π ∂∂̄ϕ solves the

normalized Kähler-Ricci flow (2).
We derive uniform estimates for the Kähler potential ϕ. The result of Lemma 2.1

and Lemma 2.2 were proved in more general settings in the work of Song and Tian
[ST1]. See also [FZ] in the case of a holomorphic submersion X → Σ. Following
the notation in [SW4], we provide a proof for the reader’s convenience.

Lemma 2.1. There exists C > 0 such that X × [0,∞),

(a) |ϕ| ≤ C,
(b) |ϕ̇| ≤ C,
(c) 1

C ω̂m+n
t ≤ ωm+n ≤ Cω̂m+n

t .

Proof. We begin by calculating

entω̂m+n
t = e−mtωm+n

0 +
(
m+n

1

)
e−t(m−1)

(
1− e−t

)
ωm+n−1
0 ∧ ωM

+ . . .+
(
m+n
m

) (
1− e−t

)m
ωn
0 ∧ ωm

M .(5)

This equation implies that

(6)
1

C
Ω ≤ entω̂m+n

t ≤ CΩ.
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To obtain the upper bound for ϕ, assume that ϕ attains a maximum at a point
(z0, t0) with t0 > 0. At that point, the maximum principle implies

(7) 0 ≤ ∂

∂t
ϕ ≤ log

entω̂m+n
t

Ω
− ϕ ≤ logC − ϕ.

Thus we find ϕ ≤ logC, giving the upper bound. Similarly, we obtain a lower
bound giving (a).

To prove (b), we calculate the evolution equation of ϕ̇ to be

(8)

(
∂

∂t
−Δ

)
ϕ̇ = trω (ωM − ω̂t) + n− ϕ̇.

Note that by the definition of ω̂t there exists a constant C0 > 1 such that ωM ≤ C0ω̂t

(however it is not true that there exists C0 > 0 such that 1
C0

ω̂t ≤ ωM since ωM is

degenerate). Then at the maximum of the quantity Q1 = ϕ̇− (C0 − 1)ϕ,

0 ≤
(

∂

∂t
−Δ

)
Q1 = trω (ωM − ω̂t) + n− ϕ̇− (C0 − 1) ϕ̇+ (C0 − 1)Δϕ

≤ (C0 − 1) trω ω̂t + n− C0ϕ̇+ (C0 − 1) trω (ω − ω̂t)

≤ n+ (C0 − 1) (m+ n)− C0ϕ̇.(9)

Hence Q1 is bounded above, and so is ϕ̇ by (a).
To obtain the lower bound for ϕ̇, we define the quantity Q2 = ϕ̇ + (m+ 1)ϕ.

Working at a point where Q2 achieves a minimum,
(10)

0 ≥
(

∂

∂t
−Δ

)
Q2 = trω (ωM − ω̂t) + n− ϕ̇+ (1 +m) ϕ̇− (m+ 1) trω (ω − ω̂t)

≥ m (trω ω̂t + ϕ̇− (m+ n+ 1)) .

Using the arithmetic-geometric mean inequality and (6),

(11) e−
(ϕ̇+ϕ)
m+n =

(
Ω

entωm+n

) 1
m+n

≤ C

(
ω̂m+n
t

ωm+n

) 1
m+n

≤ C trω ω̂t ≤ C − ϕ̇.

This gives a uniform lower bound for ϕ̇ at (z0, t0), and hence a uniform lower bound
for ϕ̇.

Finally, for (c), using (a), (b) and (4) we have

(12)
1

C
≤ entωm+n

Ω
≤ C,

completing the proof of the lemma. �

Recall that we say two metrics ω1 and ω2 are uniformly equivalent if there exists
a constant C > 0 such that 1

Cω2 ≤ ω1 ≤ Cω2. We now show that ω is uniformly
equivalent to ω̂t. Although the following lemma is known in more generality (see
[ST1], [FZ]), we provide a proof for the reader’s convenience. We introduce another
family of reference metrics,

(13) ω̃t = ωM + e−tωE .

By writing ω̃0 = ωM + ωE and ω̃t = e−tω̃0 + (1− e−t)ωM , it is easy to see that ω̂t

and ω̃t are uniformly equivalent. We choose ω̃t so that its curvature tensor vanishes
on E which will be useful for the remainder of this paper.
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Lemma 2.2. The metrics ω and ω̃t are uniformly equivalent, i.e. there exists
C > 0 such that on X × [0,∞),

(14)
1

C
ω̃t ≤ ω ≤ Cω̃t.

We remark that since ω̂t is uniformly equivalent to ω̃t, we also have the following
corollary.

Corollary 2.3. The metrics ω and ω̂t are uniformly equivalent.

Now we will prove the above lemma using a method similar to Song andWeinkove.
The main difference in the proof is that we need to be careful with the curvature
tensor of ω̃t due to the increase in dimension.

Proof. By Lemma 2.1 part (c), the lemma will follow by bounding trω̃t
ω from above.

We begin with the evolution equation for the quantity log trω̃t
ω from [SW4]. This

is analogous to Cao’s [C] second order estimate, which is the parabolic version of
an elliptic estimate from Yau and Aubin [Yau,Au]:

(15)

(
∂

∂t
−Δ

)
log trω̃t

ω ≤ − 1

trω̃t
ω
gl̄kR(g̃t)kl̄

j̄igij̄ .

To control the Riemann curvature tensor of g̃, we choose product normal coor-
dinates for gM and gE . In these coordinates,

(16) R(g̃t)kl̄ij̄ =

{
R(gM )kl̄ij̄ , 1 ≤ i, j, k, l ≤ m,

0 , else .

We recall that an inequality of tensors Tkl̄ij̄ ≤ Skl̄ij̄ in the Griffiths sense is

defined as follows. For any vectorsX and Y of type T 1,0, we have Tkl̄ij̄X
kX lY iY j ≤

Skl̄ij̄X
kX lY iY j . Since Rm(gM ) (the Riemann curvature tensor of gM , Rkl̄ij̄) is a

fixed tensor on M , for every X and Y on M ,

(17)
∣∣∣R(gM )kl̄ij̄X

kX lY iY j
∣∣∣2
gM

≤ |Rm(gM )|2gM |X|2gM |Y |2gM .

This gives the following inequality in the Griffiths sense:

(18) −R(gM )kl̄ij̄ ≤ C1(gM )kl̄(gM )ij̄ .

Applying (16) and (18) to (15) gives

(
∂

∂t
−Δ

)
log trω̃t

ω ≤ 1

trω̃t
ω

m∑
i,j,l,k,p,q=1

C1g
l̄kgij̄ g̃

q̄i
t g̃j̄pt (gM )kl̄(gM )pq̄

= C1
1

trω̃t
ω
(trω ωM )

m∑
i=1

gīi

≤ C1
1

trω̃t
ω
(trω ωM ) (trω̃t

ω)

= C1 trω ωM .(19)
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Recall that there exists C0 > 1 such that ωM ≤ C0ω̂t. Now we define the
quantity Q3 = log trω̃t

ω − (C0C1 + 1)ϕ. Then at the maximum of Q3,(
∂

∂t
−Δ

)
Q3 ≤ C1 trω ωM − (C0C1 + 1)ϕ̇+ (C0C1 + 1) trω (ω − ω̂t)

≤ (C0C1 + 1)(m+ n)− (C0C1 + 1)ϕ̇− trω ω̂t

≤ C − 1

C
trω̃t

ω.(20)

To get the last line we use the fact that ϕ̇ is bounded from Lemma 2.1 part (b),
that ω̃t and ω̂t are uniformly equivalent, and Lemma 2.1 part (c). Using Lemma
2.1 part (a) and the maximum principle shows that Q3 is bounded, hence so is
trω̃t

ω. �

By choosing product normal coordinates for gM and gE , ∂k(g̃t)ij̄ = 0 for all i,
j and k and for all t ≥ 0. This implies that the Christoffel symbols for ω̃t do not
depend on t, hence we may write ∇̃ for both ∇g̃t and ∇g̃0 without ambiguity. This

also implies that the curvature tensor R(g̃t)ij̄k
l does not depend on time. Using

these facts, we prove the following lemma which we will make heavy use of for the
remainder of the paper. We remark that the proof of the following lemma uses the
product structure of the manifold in a very strong way.

Lemma 2.4. Let Rm(g̃0) denote the Riemann curvature tensor of g̃0, R(g̃0)ij̄k
l.

Then there exists a uniform C(k) > 0 for k = 0, 1, 2, . . . such that on X × [0,∞),

(21) |∇̃k
R
Rm(g̃0)|2 ≤ C(k),

where | · | denotes the norm with respect to g(t) and where ∇̃R is the covariant
derivative with respect to g̃0 as a Riemannian metric.

Proof. Recall that g̃t is a product metric on X = M × E. Using the fact that
Rm(g̃t) does not depend on time and Lemma 2.2,

(22) |∇̃k
R
Rm(g̃0)|2 = |∇k

g̃t,R Rm(g̃t)|2g ≤ C|∇k
g̃t,R Rm(g̃t)|2g̃t .

Then because gE is a flat metric on E,

(23) |∇̃k
R
Rm(g̃0)|2 ≤ C|∇k

g̃t,R Rm(g̃t)|2g̃t = C|∇k
gM ,R Rm(gM )|2gM ≤ C(k).

�

We will now bound the first derivative of the metric ω following the method of
[SW4].

Lemma 2.5. There exists a uniform C > 0 such that on X × [0,∞),

(24) S := |∇̃g|2 ≤ C and |∇̃g|2g̃0 ≤ C,

where | · | and | · |g̃0 denote the norms with respect to g(t) and g̃0 respectively.
Moreover,

(25)

(
∂

∂t
−Δ

)
S ≤ −1

2
|Rm(g)|2 + C ′

for some uniform C ′ > 0 and where Rm(g) denotes the Riemann curvature tensor

of g, Rij̄k
l.
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Proof. We will derive the evolution equation of S using a formula of Phong-Sesum-
Sturm [PSS]. We follow the notation of [PSS,SW4]. Let Ψk

ij = Γk
ij− Γ̃k

ij = gl̄k∇̃igjl̄,

where Γ and Γ̃ are the Christoffel symbols for g(t) and g̃0 respectively. Then we
have

(26) S = |Ψ|2 = gj̄igl̄kgpq̄Ψ
p
ikΨ

q
jl.

Before computing the evolution equation of S, we need the evolution equation of
Ψk

ij .

(27)
∂

∂t
Ψk

ij =
∂

∂t

(
gl̄k∂igjl − g̃l̄k∂ig̃jl̄

)
= gl̄k∂i

(
−Rjl̄ − gjl̄

)
= −∇iRj

k.

We also compute the rough Laplacian of Ψk
ij :

(28) ΔΨk
ij = gq̄p∇p∇q̄Ψ

k
ij = ∇q̄

(
R(g̃0)iq̄j

k −Riq̄j
k
)
= ∇q̄R(g̃0)iq̄j

k −∇iRj
k.

Hence we have

(29)

(
∂

∂t
−Δ

)
Ψk

ij = −∇q̄R(g̃0)iq̄j
k.

Now we calculate the evolution of S:
(30)
∂

∂t
S =

∂

∂t

(
gj̄igl̄kgpq̄Ψ

p
ikΨ

q
jl

)

= −
(
−Rj̄i − gj̄i

)
gl̄kgpq̄Ψ

p
ikΨ

q
jl − gj̄i

(
−Rl̄k − gl̄k

)
gpq̄Ψ

p
ikΨ

q
jl

+ gj̄igl̄k (−Rpq̄ − gpq̄)Ψ
p
ikΨ

q
jl + 2Re

(
gj̄igl̄kgpq̄

(
ΔΨp

ik −∇s̄R(g̃0)is̄k
p)

Ψq
jl

)
.

Taking the Laplacian of S,

(31) ΔS = |∇Ψ|2 + |∇̄Ψ|2 + gj̄igl̄kgpq̄

(
(ΔΨp

ik)Ψ
q
jl +Ψp

ik

(
Δ̄Ψq

jl

))
.

We have the following commutation formula:

(32)
(
Δ̄Ψq

jl

)
= ΔΨq

jl +Rj
rΨq

rl +Rl
rΨq

jr −Rr
qΨr

jl.

Substituting (32) into (31) and combining it with (30), we obtain

(33)

(
∂

∂t
−Δ

)
S = S − |∇Ψ|2 − |∇̄Ψ|2 − 2Re

(
gj̄igl̄kgpq̄∇s̄R(g̃0)is̄k

pΨq
jl

)
.

Now we need to control the final term in (33) to complete the proof. By choosing
normal coordinates for g̃0,

2Re
(
gj̄igl̄kgpq̄∇s̄R(g̃0)is̄k

p
Ψq

jl

)
= 2Re

(
gj̄igl̄kgpq̄g

s̄r
(
∇̃rR(g̃0)is̄k

p −Ψa
irR(g̃0)as̄k

p

−Ψa
krR(g̃0)is̄a

p
+Ψp

arR(g̃0)is̄k
a
)
Ψq

jl

)
.(34)

We bound the first term in (34) using Lemma 2.4:

(35)
∣∣∣2Re(gj̄igl̄kgpq̄gs̄r∇̃rR(g̃0)is̄k

pΨq
jl

)∣∣∣ ≤ C|∇̃Rm(g̃0)|2 + CS ≤ C + CS.

Similarly for the remaining terms in (34),

(36)
∣∣∣2Re(gj̄igl̄kgpq̄gs̄rR(g̃0)as̄k

p
Ψa

irΨ
q
jl

)∣∣∣ ≤ C|Rm(g̃0)|2S ≤ CS.
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3914 MATTHEW GILL

Using (34), (35) and (36), we obtain the estimate

(37)
∣∣∣2Re(gj̄igl̄kgpq̄∇s̄R(g̃0)is̄k

pΨq
jl

)∣∣∣ ≤ C ′ + CS.

We combine (37) with (33) to obtain

(38)

(
∂

∂t
−Δ

)
S ≤ C ′ + CS − |∇Ψ|2 − |∇̄Ψ|2.

Define the quantity Q4 = S +A trω̃t
ω, where A is a large constant to be deter-

mined later. The evolution equation of trω̃t
ω is (see [SW4])(

∂

∂t
−Δ

)
trω̃t

ω = − trω̃t
ω − gl̄kR(g̃t)kl̄

j̄igij̄ − gl̄kg̃j̄it gq̄p∇̃igkq̄∇̃j̄gpl̄

≤ −gl̄kR(g̃t)kl̄
j̄igij̄ − gl̄kg̃j̄it gq̄p∇̃igkq̄∇̃j̄gpl̄.(39)

Using (39) and (38) we have
(40)(

∂

∂t
−Δ

)
Q4 ≤ C ′+CS−|∇Ψ|2−|∇̄Ψ|2−Agl̄kR(g̃t)kl̄

j̄igij̄−Agl̄kg̃j̄it gq̄p∇̃igkq̄∇̃j̄gpl̄.

To handle the fourth term in (40), we again work in product normal coordinates
for gM and gE . Using the same argument to control the curvature as in Lemma 2.2
and the fact that g and g̃t are uniformly equivalent,

(41)
∣∣∣gl̄kR(g̃t)kl̄

j̄igij̄

∣∣∣ ≤ C ′′(trω ω̃t)(trω̃t
ω) ≤ C ′′.

We combine (40), (41) and again use the uniform equivalence of g and g̃t, giving(
∂

∂t
−Δ

)
Q4 ≤ C ′ + CS − |∇Ψ|2 − |∇̄Ψ|2 +AC ′′ − A

C ′′′S

≤ −S − |∇̄Ψ|2 + C,(42)

where on the last line we choose A large enough so that C−A/C ′′′ ≤ −1 and throw
away the term |∇Ψ|2. Also ignoring the term |∇̄Ψ|2 gives an upper bound for Q4

by the maximum principle. Using Lemma 2.2 then shows that S is bounded above
as well. Since g ≤ Cg̃0 we also have an upper bound for |∇̃g|2g̃0 .

Now we derive (25). Notice that by definition |∇̄Ψ|2 = |Rm(g)−Rm(g̃0)|2, where
we use Rm(g̃0) for the Riemann curvature tensor of g̃0, R(g̃0)ij̄k

l. By Lemma 2.4,

(43) |Rm(g)|2 ≤ 2|Rm(g)− Rm(g̃0)|2 + 2|Rm(g̃0)|2 ≤ 2|∇̄Ψ|2 + C.

Substituting (43) into (42) along with the bound on S gives (25). �

Following [SW4], we bound the curvature tensor of g.

Lemma 2.6. There exists a uniform C > 0 such that on X × [0,∞),

(44) |Rm(g)|2 ≤ C.

Proof. We have the following evolution equation for curvature along the Kähler-
Ricci flow (see [SW4]):

(45)

(
∂

∂t
−Δ

)
|Rm(g)| ≤ C0

2
|Rm(g)|2 − 1

2
|Rm(g)|.
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Define the quantity Q = |Rm(g)| + (C0 + 1)S. Then using (25), (45) and the
maximum principle, we have the estimate

(46)

(
∂

∂t
−Δ

)
Q ≤ −1

2
|Rm(g)|2 + C,

obtaining a bound for |Rm(g)|2. �

Using Shi’s derivative estimates, we obtain bounds for the derivatives of cur-
vature. For a proof of the following lemma, please see [Sh] (or [SW4] Theorem
2.15).

Lemma 2.7. There exists a uniform C(k) for k = 0, 1, 2, . . . such that on X ×
[0,∞),

(47) |∇k
R
Rm(g)|2 ≤ C(k),

where ∇R is the covariant derivative with respect to g as a Riemannian metric.

3. Higher order estimates for the metric ω(t)

We will now use the curvature bounds and the maximum principle to obtain
higher order estimates for g. Examples of higher order estimates using similar
quantities and the maximum principle can be found in [Ch,DH,LSY].

Lemma 3.1. There exists a uniform C(k) > 0 for k = 0, 1, 2, . . . such that on
X × [0,∞),

(48) |∇̃kg|2 ≤ C(k).

Proof. We observe that a uniform bound on |∇̃Ψ|2 will give a uniform bound on

|∇̃∇̃g|2. We begin by calculating

(49)

∂

∂t
|∇̃Ψ|2 =

∂

∂t

(
gs̄rgj̄igl̄kgpq̄∇̃rΨ

p
ik∇̃sΨ

q
jl

)

= −
(
−Rs̄r − gs̄r

)
gj̄igl̄kgpq̄∇̃rΨ

p
ik∇̃sΨ

q
jl

− gs̄r
(
−Rj̄i − gj̄i

)
gl̄kgpq̄∇̃rΨ

p
ik∇̃sΨ

q
jl

− gs̄rgj̄i
(
−Rl̄k − gl̄k

)
gpq̄∇̃rΨ

p
ik∇̃sΨ

q
jl

+ gs̄rgj̄igl̄k (−Rpq̄ − gpq̄) ∇̃rΨ
p
ik∇̃sΨ

q
jl

+ 2Re
(
gs̄rgj̄igl̄kgpq̄∇̃r

(
ΔΨp

ik −∇b̄R(g̃0)ib̄k
p
)
∇̃sΨ

q
jl

)
.

Applying the Laplacian to |∇̃Ψ|2,

(50)

Δ|∇̃Ψ|2 = |∇∇̃Ψ|2 + |∇̄∇̃Ψ|2

+ gs̄rgj̄igl̄kgpq̄

((
Δ∇̃rΨ

p
ik

)
∇̃sΨ

q
jl + ∇̃rΨ

p
ik

(
Δ̄∇̃sΨ

q
jl

))

= |∇∇̃Ψ|2 + |∇̄∇̃Ψ|2 + 2Re
(
gs̄rgj̄igl̄kgpq̄

(
Δ∇̃rΨ

p
ik

)
∇̃sΨ

q
jl

)

+Rs̄rgj̄igl̄kgpq̄∇̃rΨ
p
ik∇̃sΨ

q
jl + gs̄rRj̄igl̄kgpq̄∇̃rΨ

p
ik∇̃sΨ

q
jl

+ gs̄rgj̄iRl̄kgpq̄∇̃rΨ
p
ik∇̃sΨ

q
jl − gs̄rgj̄igl̄kRpq̄∇̃rΨ

p
ik∇̃sΨ

q
jl,
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where on the last line we use a commutation formula similar to (32). Putting
together (49) and (50), we obtain the evolution equation

(
∂

∂t
−Δ

)
|∇̃Ψ|2 = 2|∇̃Ψ|2 − |∇∇̃Ψ|2 − |∇̄∇̃Ψ|2

− 2Re
(
gs̄rgj̄igl̄kgpq̄∇̃r∇b̄R(g̃0)ib̄k

p∇̃sΨ
q
jl

)
(51)

+ 2Re
(
gs̄rgj̄igl̄kgpq̄

(
∇̃rΔ−Δ∇̃r

)
Ψp

ik∇̃sΨ
q
jl

)
.

Choose coordinates so that g̃0 is the identity and ∂ig̃0 = 0 and ∂i1∂i2 g̃0 = 0 at a
point as in [T]. To deal with the fourth term in (51), we calculate

∇̃r∇b̄R(g̃0)ib̄k
p = ∇̃rg

b̄a
(
∇̃aR(g̃0)ib̄k

p −Ψα
iaR(g̃0)αb̄k

p −Ψα
kaR(g̃0)ib̄α

p

+Ψp
αaR(g̃0)ib̄k

α
)
+ gb̄a

(
∇̃r∇̃aR(g̃0)ib̄k

p − ∇̃rΨ
α
iaR(g̃0)αb̄k

p

−Ψα
ia∇̃rR(g̃0)αb̄k

p − ∇̃rΨ
α
kaR(g̃0)ib̄α

p −Ψα
ka∇̃rR(g̃0)ib̄α

p

+ ∇̃rΨ
p
αaR(g̃0)ib̄k

α +Ψp
αa∇̃rR(g̃0)ib̄k

α
)
.(52)

We now bound all of the terms arising from (52) using Lemmas 2.4 and 2.5. For
the first term in (52),

∣∣∣2Re(gs̄rgj̄igl̄kgpq̄∇̃rg
b̄a∇̃aR(g̃0)ib̄k

p∇̃sΨ
q
jl

)∣∣∣ ≤ C|∇̃g||∇̃Rm(g̃0)||∇̃Ψ|

≤ C|∇̃Ψ|2 + C.(53)

We bound the second, and similarly the third and fourth terms in (52):

∣∣∣2Re(gs̄rgj̄igl̄kgpq̄∇̃rg
b̄aΨα

iaR(g̃0)αb̄k
p∇̃sΨ

q
jl

)∣∣∣ ≤ C|∇̃g||Rm(g̃0)||∇̃Ψ|

≤ C|∇̃Ψ|2 + C.(54)

Calculating similarly for the remaining terms in (52), we obtain the following bound
for the fourth term of (51):

(55) 2Re
(
gs̄rgj̄igl̄kgpq̄∇̃r∇b̄R(g̃0)ib̄k

p∇̃sΨ
q
jl

)
≤ C|∇̃Ψ|2 + C.

Using the same coordinates as above, we compute the commutation relation for(
∇̃rΔ−Δ∇̃r

)
Ψp

ik to handle the last term in (51):

∇̃rΔΨp
ik = ∇̃r

(
gb̄a∇a∇b̄Ψ

p
ik

)

= ∂rg
b̄a
(
∂a∂b̄Ψ

p
ik − Γα

ia∂b̄Ψ
p
αk − Γα

ka∂b̄Ψ
p
iα + Γp

αa∂b̄Ψ
α
ik

)

+ gb̄a
(
∂r∂a∂b̄Ψ

p
ik − ∂rΓ

α
ia∂b̄Ψ

p
αk − Γα

ia∂r∂b̄Ψ
p
αk − ∂rΓ

α
ka∂b̄Ψ

p
iα

− Γα
ka∂r∂b̄Ψ

p
iα + ∂rΓ

p
αa∂b̄Ψ

α
ik + Γp

αa∂r∂b̄Ψ
α
ik

)
.(56)
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Δ∇̃rΨ
p
ik = gb̄a∇a∇b̄∇̃rΨ

p
ik

= gb̄a
(
∂r∂a∂b̄Ψ

p
ik − Γβ

ra∂β∂b̄Ψ
p
ik − Γβ

ia∂r∂b̄Ψ
p
βk

− Γβ
ka∂r∂b̄Ψ

p
iβ + Γp

βa∂r∂b̄Ψ
β
ik

− ∂aR(g̃0)ib̄r
αΨp

αk −R(g̃0)ib̄r
α∂aΨ

p
αk + Γβ

iaR(g̃0)βb̄r
αΨp

αk

+ Γβ
raR(g̃0)ib̄β

α
Ψp

αk − Γα
βaR(g̃0)ib̄r

β
Ψp

αk + Γβ
αaR(g̃0)ib̄r

α
Ψp

βk

+ Γβ
kaR(g̃0)ib̄r

αΨp
αβ − Γp

βaR(g̃0)ib̄r
αΨβ

αk − ∂aR(g̃0)kb̄r
αΨp

iα

−R(g̃0)kb̄r
α∂aΨ

p
iα + Γβ

kaR(g̃0)βb̄r
αΨp

iα + Γβ
raR(g̃0)kb̄β

αΨp
iα

− Γα
βaR(g̃0)kb̄r

β
Ψp

iα + Γβ
iaR(g̃0)kb̄r

α
Ψp

βα + Γβ
αaR(g̃0)kb̄r

p
Ψp

iβ

− Γp
βaR(g̃0)kb̄r

αΨβ
iα + ∂aR(g̃0)αb̄r

pΨα
ik +R(g̃0)αb̄r

p∂aΨ
α
ik

− Γβ
αaR(g̃0)βb̄r

p
Ψα

ik − Γβ
raR(g̃0)αb̄β

p
Ψα

ik + Γp
βaR(g̃0)αb̄r

β
Ψp

ik

− Γβ
iaR(g̃0)αb̄r

p
Ψα

βk − Γβ
kaR(g̃0)αb̄r

p
Ψα

iβ + Γα
βaR(g̃0)αb̄r

p
Ψβ

ik

)
.(57)

Putting these together and making use of our choice of coordinates,

(
∇̃rΔ−Δ∇̃r

)
Ψp

ik = ∇̃rg
b̄a
(
∇̃a(Rib̄k

p −R(g̃0)ib̄k
p)−Ψα

ia(Rαb̄k
p −R(g̃0)αb̄k

p)

−Ψα
ka(Rib̄α

p −R(g̃0)ib̄α
p
) + Ψp

αa(Rib̄k
α −R(g̃0)ib̄k

α
)
)

+ gb̄a
(
− ∇̃rΨ

α
ia(Rαb̄k

p −R(g̃0)αb̄k
p
)

− ∇̃rΨ
α
ka(Rib̄α

p −R(g̃0)ib̄α
p)

+ ∇̃rΨ
p
αa(Rib̄k

α −R(g̃0)ib̄k
α) + Ψβ

ra∇̃β(Rib̄k
p −R(g̃0)ib̄k

p)

+ ∇̃aR(g̃0)ib̄r
αΨp

αk +R(g̃0)ib̄r
α∇̃aΨ

p
αk −Ψβ

iaR(g̃0)βb̄r
αΨp

αk

−Ψβ
raR(g̃0)ib̄β

αΨp
αk +Ψα

βaR(g̃0)ib̄r
βΨp

αk −Ψβ
αaR(g̃0)ib̄r

αΨp
βk

−Ψβ
kaR(g̃0)ib̄r

α
Ψp

αβ +Ψp
βaR(g̃0)ib̄r

α
Ψβ

αk + ∇̃aR(g̃0)kb̄r
α
Ψp

iα

+R(g̃0)kb̄r
α∇̃aΨ

p
iα −Ψβ

kaR(g̃0)βb̄r
αΨp

iα −Ψβ
raR(g̃0)kb̄β

αΨp
iα

+Ψα
βaR(g̃0)kb̄r

βΨp
iα −Ψβ

iaR(g̃0)kb̄r
αΨp

βα −Ψβ
αaR(g̃0)kb̄r

pΨp
iβ

+Ψp
βaR(g̃0)kb̄r

α
Ψβ

iα − ∇̃aR(g̃0)αb̄r
p
Ψα

ik −R(g̃0)αb̄r
p∇̃aΨ

α
ik

+Ψβ
αaR(g̃0)βb̄r

pΨα
ik +Ψβ

raR(g̃0)αb̄β
pΨα

ik −Ψp
βaR(g̃0)αb̄r

βΨp
ik

+Ψβ
iaR(g̃0)αb̄r

pΨα
βk +Ψβ

kaR(g̃0)αb̄r
pΨα

iβ −Ψα
βaR(g̃0)αb̄r

pΨβ
ik

)
.(58)

Using (58) and Lemmas 2.4, 2.5 and 2.7, we can bound all the terms resulting from
the final term of (51). Starting with the first term from (58):

(59) 2Re
(
gs̄rgj̄igl̄kgpq̄∇̃rg

b̄a∇̃aRib̄k
p∇̃sΨ

q
jl

)
≤ C|∇̃g||∇̃Rm(g)||∇̃Ψ|.

We bound |∇̃Rm(g)| by observing that

(60)
(
∇̃a −∇a

)
Ril̄p

r = Ψα
iaRαl̄p

r +Ψα
paRil̄α

r −Ψr
αaRil̄p

α,
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and so

(61)
|∇̃Rm(g)|2 ≤ 2|(∇̃ − ∇) Rm(g)|2 + 2|∇Rm(g)|2

≤ C|Ψ|2 + C|Rm(g)|2 + 2|∇Rm(g)|2 ≤ C,

where to get the last inequality we use Lemmas 2.5 and 2.7. Substituting (61) into
(59) gives the bound

(62) 2Re
(
gs̄rgj̄igl̄kgpq̄∇̃rg

b̄a∇̃aRib̄k
p∇̃sΨ

q
jl

)
≤ C|∇̃Ψ| ≤ C|∇̃Ψ|2 + C.

For the second term from (58), using Lemmas 2.4 and 2.5,

2Re
(
gs̄rgj̄igl̄kgpq̄∇̃rg

b̄aR(g̃0)ib̄k
p∇̃sΨ

q
jl

)
≤ C|∇̃g||∇̃Rm(g̃0)||∇̃Ψ|

≤ C|∇̃Ψ|2 + C.(63)

Similarly, we bound the remaining terms arising from (58) and obtain the estimate

(64) |2Re
(
gs̄rgj̄igl̄kgpq̄

(
∇̃rΔ−Δ∇̃r

)
Ψp

ik∇̃sΨ
q
jl

)
| ≤ C|∇̃Ψ|2 + C.

Substituting (55) and (64) into (51),

(65)

(
∂

∂t
−Δ

)
|∇̃Ψ|2 ≤ C2|∇̃Ψ|2 + C.

By the definition of Ψ,

(66) ∇lΨ
k
ij − ∇̃lΨ

k
ij = −Ψα

liΨ
k
αj −Ψα

ljΨ
k
iα +Ψk

lαΨ
α
ij .

Using this with Lemma 2.5, we have

(67) |∇̃Ψ|2 ≤ 2|∇Ψ|2 + 2|∇̃Ψ−∇Ψ|2 ≤ 2|∇Ψ|2 + C.

Define the quantity Q1 = |∇̃Ψ|2 + 2(C1 + 1)|Ψ|2. Then using (38), (65), (67) and
Lemma 2.5,(

∂

∂t
−Δ

)
Q1 ≤ C1|∇̃Ψ|2 + C + 2(C1 + 1)

(
C + C|Ψ|2 − |∇Ψ|2 − |∇̄Ψ|2

)

≤ −|∇̃Ψ|2 + C.(68)

This gives a uniform bound for |∇̃Ψ|2 and hence a uniform bound for |∇̃g|2.
Now we may proceed inductively to derive estimates of any order. As in the case

when k = 1, it will suffice to bound |∇̃kΨ|2 by induction. Computing as in (51),

the evolution equation of |∇̃kΨ|2 is(
∂

∂t
−Δ

)
|∇̃kΨ|2 = (k + 1)|∇̃kΨ|2 − |∇∇̃kΨ|2 − |∇̄∇̃kΨ|2 − 2Re

〈
∇̃kT, ∇̃kΨ

〉

+ 2Re
〈(

∇̃kΔ−Δ∇̃k
)
Ψ, ∇̃kΨ

〉
,(69)

where 〈·, ·〉 denotes the inner product with respect to g and where T is the ten-

sor T k
ij = ∇b̄Rib̄j

k. We work in coordinates where g̃0 is the identity and ∂ig̃0 =
0, ∂i1∂i2 g̃0 = 0, . . . , ∂i1∂i2 . . . ∂ik+1

g̃0 = 0 at a point as in [T]. Using these coordi-

nates, Γ̃ = 0, . . . , ∇̃kΓ̃ = 0 and Γ = Ψ, . . . , ∇̃kΓ = ∇̃kΨ. Proceeding as we did to
obtain (55), we bound the fourth term in (69) by C|∇̃kΨ|2+C since all lower order
derivatives of Ψ are bounded by induction. As in (58), the final term is made up of
terms involving derivatives of curvature tensors and derivatives of Ψ of order less
than or equal to k. All terms here are good, since a k-th order derivative of Ψ is
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what we are estimating, and by induction lower order derivatives of Ψ are bounded.
Derivatives of order less than or equal to k of Rm(g) are bounded by induction and
Lemma 2.7 since differentiation with respect to g and g̃0 differs by terms involving
lower order derivatives of Ψ as in (61). Any derivatives of Rm(g̃0) are bounded by
Lemma 2.4. As above, we obtain the estimate

(70)

(
∂

∂t
−Δ

)
|∇̃kΨ|2 ≤ Ck|∇̃kΨ|2 + C.

We define the quantity Qk = |∇̃kΨ|2 +2(Ck +1)|∇̃k−1Ψ|2. We have the inequality

|∇̃kΨ|2 ≤ 2|∇∇̃k−1Ψ|2 + 2|(∇− ∇̃)∇̃k−1Ψ|2

≤ 2|∇∇̃k−1Ψ|2 + C(71)

since (∇ − ∇̃)∇̃k−1Ψ is made up of terms involving Ψ and ∇̃k−1Ψ and hence is
bounded by the induction hypothesis. Then using this and (70), we have(

∂

∂t
−Δ

)
Qk ≤ Ck|∇̃kΨ|2 + C + 2(Ck + 1)

(
C − |∇∇̃k−1Ψ|2

)

≤ −|∇̃kΨ|2 + C,(72)

giving us a bound for |∇̃kΨ|2. �

Because of the symmetries of the metric tensor gij̄ , we obtain the following
lemma bounding the barred derivatives of the metric.

Lemma 3.2. There exists a uniform C(k) > 0 for k = 0, 1, 2, . . . such that on
X × [0,∞),

(73) | ¯̃∇kg|2 ≤ C(k).

Using Lemmas 3.1 and 3.2, we construct estimates for all possible covariant
derivatives of the metric.

Lemma 3.3. There exists a uniform C(k) > 0 for k = 0, 1, 2, . . . such that on
X × [0,∞),

(74) |∇̃k
R
g|2 ≤ C(k),

where ∇̃R is the covariant derivative with respect to g̃0 as a Riemannian metric.

Proof. Let a = (a1, a2, . . . , ak) be a k-tuple with symbolic entries z or z̄. We define

∇̃ai to be the operator ∇̃ if ai = z or ¯̃∇ if ai = z̄. Then we define ∇̃a to be the
operator ∇̃a1 . . . ∇̃ak (if a is a 0-tuple, define ∇̃a to be the identity). To prove the

lemma, it suffices to bound the quantity |∇̃ag|2.
We will proceed by induction on k. The case where k = 1 is handled by Lemmas

3.1 and 3.2. For the general k we may assume that there exists an index l such
that al = z, otherwise we are done by Lemma 3.2. Choose l to be the greatest
index such that al = z and define a′ to be the (l−1)-tuple containing the first l−1

entries of a. If l = k, we observe that a bound on |∇̃ag|2 will follow from a bound

on |∇̃a′
Ψ|2.
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We will introduce some notation: if A and B are tensors, let A ∗ B denote any
linear combination of products of A and B formed by contractions with the metric
g. If l is not equal to k, by commuting the covariant derivatives, we have

∇̃ag = ∇̃a′∇̃ ¯̃∇k−lg

= ∇̃a′
(
¯̃∇∇̃ ¯̃∇k−l−1g +Rm(g̃0) ∗ ¯̃∇k−l−1g

)

= ∇̃a′
(
¯̃∇k−l∇̃g + ¯̃∇k−l−1Rm(g̃0) ∗ g + . . .+Rm(g̃0) ∗ ¯̃∇k−l−1g

)
.(75)

Hence a bound on |∇̃ag|2 follows from a bound on |∇̃a′ ¯̃∇k−lΨ|2 since the other
terms are bounded by Lemma 2.4 and induction. We will now complete the proof
by bounding |∇̃a′

Ψ|2 for a general (k − 1)-tuple a′.
Notice that if every entry of a′ is z or if every entry of a′ is z̄, the proof is

complete by Lemmas 3.1 and 3.2. Now let r be the greatest index such that a′r = z̄
and define a′′ to be the (r − 1)-tuple containing the first r − 1 entries of a′. If
r = k − 1, then
(76)

|∇̃a′
Ψ|2 = |∇̃a′′ ¯̃∇Ψ|2 = |∇̃a′′

(Rm(g)−Rm(g̃0))|2 ≤ |∇̃a′′
Rm(g)|2+|∇̃a′′

(Rm(g̃0)|2.

Notice that the second term on the right hand side of (76) is bounded by Lemma

2.4. We observe that ∇̃a′′
Rm(g) differs from ∇a′′

Rm(g) only by terms involving

Rm(g), . . . ,∇k−3
R

Rm(g) and Ψ, . . . , ∇̃k−3
R

Ψ. By induction and Lemma 2.7, we have

a bound for ∇̃a′′
Rm(g), and hence

(77) |∇̃a′
Ψ|2 ≤ C.

If r < l − 1, we commute the covariant derivatives,

∇̃a′
Ψ = ∇̃a′′ ¯̃∇∇̃l−1−rΨ

= ∇̃a′′
(
∇̃ ¯̃∇∇̃l−r−2Ψ+Rm(g̃0) ∗ ∇̃l−r−2Ψ

)

= ∇̃a′′
(
∇̃l−r−1 ¯̃∇Ψ+ ∇̃l−r−2Rm(g̃0) ∗Ψ+ . . .+Rm(g̃0) ∗ ∇̃l−r−2Ψ

)
.(78)

Notice that the norm of the first term of (78) is bounded as in (77) and the norms of
the other terms are bounded by induction and Lemma 2.4, completing the proof. �

4. Convergence

In this section we will complete the proof of the main theorem by showing that
ω(t) converges smoothly to ωM as t → ∞. Fix z ∈ M and define a function ρz on
E(z) := π−1

M (z) by

(79) ω0|E(z)+

√
−1

2π
∂∂̄ρz > 0, Ric

(
ω0|E(z) +

√
−1

2π
∂∂̄ρz

)
= 0,

∫
E(z)

ρzω
n
0 = 0.

Note that since ρz varies smoothly with z, we may define a smooth function ρ(z, e)
on X. Then

(80) ωflat := ω0 +

√
−1

2π
∂∂̄ρ
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determines a closed (1, 1)-form on X with [ωflat] = [ω0]. Also, ωflat may not be a
metric on X, but ωflat|E(z) is a flat Kähler metric on each fiber.

We will now prove the following estimate for ϕ, which will give us the convergence
of ω(t).

Lemma 4.1. There exists a uniform C > 0 such that on X × [0,∞),

(81) |ϕ| ≤ C(1 + t)e−t.

Proof. This proof follows similarly as in [SW4]. To simplify notation, let bk denote
the binomial coefficient bk =

(
m+n
k

)
. Then using (3) and the fact that [ωflat] = [ω0],

(82) Ω = bmωm
M ∧ ωn

flat.

We define the quantity Q = ϕ− e−tρ and calculate its evolution

∂

∂t
Q = log

ent
(
ω̂t +

√
−1
2π ∂∂̄ϕ

)m+n

bmωm
M ∧ ωn

flat

− ϕ+ e−tρ

= log
ent

(
e−tωflat + (1− e−t)ωM +

√
−1∂∂̄Q

)m+n

bmωm
M ∧ ωn

flat

−Q.(83)

Now let Q1 = etQ−At, where A is a constant to be determined later. Suppose Q1

attains its maximum at a point (z0, t0) with t0 > 0. Then at that point

0 ≤ ∂

∂t
Q1 ≤ et log

ent (e−tωflat + (1− e−t)ωM )
m+n

bmωm
M ∧ ωn

flat

−A

= et log
ent

(
bme−nt(1− e−t)mωm

M ∧ ωn
flat + . . .+ e−(m+n)tωm+n

flat

)
bmωm

M ∧ ωn
flat

−A

≤ et log
(
1 + C1e

−t + . . .+ Cme−mt
)
−A

≤ C −A.(84)

If we choose A > C, we obtain a contradiction, and hence Q1 must attain its
maximum at t = 0. This gives the estimate ϕ ≤ C (1 + t) e−t, and we can similarly
obtain a lower bound. �

We may now complete the proof of the main theorem.

Proof. Using Lemma 3.3, Lemma 4.1 and the definition of ω(t), we immediately
see that ω(t) → ωM in C∞ as t → ∞, proving part (a).

We will restrict Lemma 2.5 to E(z) using a method similar to that in [To].
Choose complex coordinates xm+1, . . . , xm+n on E so that gE is the identity and
g|E is diagonal with entries λm+1, . . . , λm+n. Then choose complex coordinates
x1, . . . , xm on X such that at a point p the space spanned by ∂

∂x1 |p, . . . , ∂
∂xm |p is

orthogonal to the space spanned by ∂
∂xm+1 |p, . . . , ∂

∂xm+n |p with respect to g. In this
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coordinate system, g is diagonal with entries λ1, . . . , λm+n, and so

∣∣∇Eg|E(z)

∣∣2
g|E(z)

=

m+n∑
i,j,k=m+1

1

λiλjλk
∇̃kgij̄ |E(z)∇̃kgij̄ |E(z)

≤
m+n∑

i,j,k=1

1

λiλjλk
∇̃kgij̄∇̃kgij̄

= |∇̃g|2 ≤ C.(85)

By restricting the uniform equivalence of g and g̃t to E(z), we see that g|E(z) is

uniformly equivalent to e−tgE . Using this fact coupled with (85) we estimate the
derivative of etg|E(z):

|∇Ee
tg|E(z)|2gE = e2tgj̄iE gl̄kE gq̄pE ∇E,i(g|E(z))kq̄∇E,j(g|E(z))lp̄

≤ Ce−t(gE)
j̄i(gE)

l̄k(gE)
q̄p∇E,i(g|E(z))kq̄∇E,j(g|E(z))lp̄

= Ce−t
∣∣∇Eg|E(z)

∣∣2
g|E(z)

≤ C ′e−t.(86)

Similarly, we obtain estimates for the k-th order derivative of etg|E(z):

(87) |∇k
Ee

tg|E(z)|2gE ≤ Ce−kt.

We constructed gflat to be a flat metric when restricted to the complex torus
E(z), and so it is given by a constant Hermitian metric on Cn. Using a standard
coordinate system for E(z), we see that ∇k

Egflat = 0 for all k, thus

(88) |∇k
E(e

tg|E(z) − gflat|E(z))|2gE ≤ Ce−kt.

It remains to show that etg|E(z) → gflat|E(z) in C0(E(z)). Define a function ψ
on E(z) by

(89) ψ = e−tϕ|E(z) − ρz.

Letting ΔE denote the Laplacian with respect to gE ,

(90) ΔEψ = trgE (e
tg|E(z) − gflat|E(z)).

Combining (88) with k = 1 and (90) gives the estimate

(91) |∇EΔEψ|2gE ≤ Ce−t.

Since
∫
E
ΔEψω

n
E = 0, for each time t there exists a point y(t) in E(z) so that

ψ(y(t), t) = 0. Applying the Mean Value Theorem with (91) shows that

(92) |ΔEψ(x, t)|2gE = |ΔEψ(x, t)−ΔEψ(y(t), t)|2gE → 0

as t → ∞. (88), (90) and (92) show that etg|E(z) → gflat|E(z) in C∞ on E(z),
completing the proof of the main theorem. �
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