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[1] We investigate the development of fracture distributions as a function of displacement
to determine whether damage around small and large faults is governed by the same
process. Based on our own field work combined with data from the literature, we find
that (1) isolated single faults with small displacements have macrofracture densities that
decay as r−0.8, where r is distance from the fault plane, (2) mature fault damage zones
can be interpreted as a superposition of these r−0.8 decays from secondary fault strands,
resulting in an apparently more gradual decay with distance, and (3) a change in
apparent decay and fault zone thickness becomes evident in faults that have displaced
more than ∼150 m. This last observation is consistent with a stochastic model where strand
formation is related to the number of fractures within the damage zone, which in turn is a
function of displacement. These three observations together suggest that the apparent
break in scaling between small and large faults is due to the nucleation of secondary
faults and not a change in process.

Citation: Savage, H. M., and E. E. Brodsky (2011), Collateral damage: Evolution with displacement of fracture distribution and
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1. Introduction

[2] Most fault cores are enveloped by a halo of pervasive
cracking known as the damage zone, which decays in
intensity away from the fault [e.g., Brock and Engelder,
1977; Chester and Logan, 1986]. An important question
in fault and earthquake mechanics is how these damage
zones form and whether the same mechanisms govern
damage zone development throughout the growth of the
fault. Fracturing mechanisms could include the quasi‐static
stress field, dynamic shaking, the process zone associated
with the rupture tip, fault geometry, and linkage [e.g.,
Rispoli, 1981; Vermilye and Scholz, 1998; Rice et al., 2005;
Childs et al., 2009]. One way that this question has been
approached is through the study of how fault damage zones
scale with displacement [e.g., Beach et al., 1999; Fossen
and Hesthammer, 2000; Shipton et al., 2006; Childs et al.,
2009; Mitchell and Faulkner, 2009]. A break in the scal-
ing of fault zones could suggest that the processes involved
in creating damage change as the fault core matures.
However, damage zones around larger faults may be more
difficult to interpret than small faults due to overprinting
from multiple slip events.

[3] Previous studies of damage zone scaling have focused
on the fault length to thickness ratio [e.g., Vermilye and
Scholz, 1998], along‐strike variations in damage [e.g.,
Shipton et al., 2005], types of damage measured [Schulz and
Evans, 2000] and/or the scaling of damage zone thick-
ness with displacement [e.g., Knott et al., 1996; Beach
et al., 1999]. Here we focus on the decay of damage
away from the fault as a function of displacement as well
as the scaling of damage thickness with displacement. Pre-
vious studies have shown that damage (i.e., macroscopic
fractures, microfractures, deformation bands) decays sharply
with distance from the fault core [Brock and Engelder,
1977; Chernyshev and Dearman, 1991; Anders and
Wiltschko, 1994; Vermilye and Scholz, 1998; Chester et al.,
2005; Mitchell and Faulkner, 2009]. Here we use this
decay, or spatial gradient, of density as a diagnostic of fault
evolution. Because the decay directly captures the variation
in fracture density with distance from the fault surface, it is
unambiguously related to the faulting process.
[4] In this paper, we systematically build an understand-

ing of the damage falloff around faults with varying matu-
rity by beginning with measurements of the distribution and
extent of damage around small faults with minimal over-
printing. We focus particularly on the falloff of damage as a
function of distance from the fault as the gradient of damage
is less dependent on the local lithology than the absolute
number of fractures. Next we combine these new data with
published data on larger faults of all rock types to establish
the scaling of fault damage with displacement. We show
that damage zone thickness and falloff is a function of total
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fault displacement. Finally, we attribute an observed change
of damage scaling to the formation of secondary fault
strands and model the damage distribution around large
faults as overlapping damage zones of multiple, secondary
fault strands, using the same damage distribution found
for the smallest faults. By superposing the damage distri-
bution found around small faults onto secondary strands,
we successfully recreate the more complex damage dis-
tributions found around large faults, without invoking a
change in physics of fault zones with increasing maturity.

2. Small Faults: Four Mile Beach, California

[5] We analyze damage around faults by examining faults
with relatively small offsets and well‐developed damage
zones. For this part of the study, we measure the decay of

damage around three small, isolated, normal faults located
west of Santa Cruz, California (Figure 1). Fracture density
decay robustly captures features associated with faulting by
focusing on the systematic variations with distance from the
fault. Because the falloff of microfracture and macrofracture
density can differ for the same fault [Schulz and Evans,
1998], here we only consider macroscale features.

2.1. Description of Host Rock and Faults

[6] The host rock at Four Mile Beach is Santa Cruz
Mudstone. This rock is a late Miocene age medium to
thickly bedded (∼10 cm near the faults in this study),
organic siliceous mudstone [Clark, 1981]. There are inter-
beds of organic‐rich mudstones that are darkly colored and
more brittle than the thicker mudstone beds with which they
alternate. The degree of coupling varies between the layers.
At Low Tide Fault (Figure 1b), some of the layers are
mechanically well coupled, as evidenced by fractures con-
tinuing across layer boundaries. At Hackle Fault, fractures
in the darker layers tend to be vertical whereas the fractures
in the lighter mudstone tend to be at an angle to the principal
stress direction, assuming Andersonian faulting. We inter-
pret this to be because the thinner, more brittle dark mud-
stone fractured before the lighter mudstone layers. At Three
Mile Fault there is only one organic‐rich layer, as well as
some more thinly laminated light colored mudstone layers.
Fractures mostly continue across layer boundaries at this
fault. The vertical offset of beds is 0.35–0.7 m on the faults.

2.2. Background Fracture Density

[7] The background fracture density varied between
∼9–15 fractures/meter in the layers around the faults. The
difference in background density is related to the fracture
resistance of the layer. The background fractures surround-
ing Low Tide Fault are generally vertical and fracture ori-
entation rotates with proximity to the fault (Figure 2). Hackle
and Three Mile faults have vertical fractures as well as dip-
ping conjugate shear fractures. In order to account for the
differences in fracture resistance, we subtract the background
density from each layer. This result is the same (within error)
as fitting each individual transect and taking the mean of the
fits; however, this method is more robust because it mini-
mizes heterogeneities in any one transect. Although shear
fractures are present in the damage zone, there are no well‐
developed secondary fault strands with more than a few
centimeters of displacement and its own fault core.

2.3. Fracture Density From Transects at Four
Mile Beach

[8] On each fault, we measured several horizontal linear
transects using a measuring tape to mark the distance of
each fracture from the fault, taking care to remain within a
single bed for each transect. We then make a geometric
correction with fault dip to determine the perpendicular
distance from the fault, as well as a geometric correction for
the strike of the cliff face. We take multiple transects at
each site in order to diminish the effects of noncontinuous
features and local heterogeneity. Linear transects were pre-
ferred over other methods like line length over area methods
to avoid smoothing problems related to discontinuous sam-
pling (discussed further in section 3). Both shear fractures
and joints were counted. Transect lengths were generally one

Figure 1. (a) Location of Four Mile Beach (black star).
Black lines are California coast. (b) Low Tide Fault at Four
Mile Beach. The fault (red) ends near the top of the cliff,
where it splays.
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meter in perpendicular distance from the fault and the dam-
age zone thickness was determined by the point where
fracture density fell to background levels (in all cases the
thickness was much smaller than the length of the transects).
[9] We measured the decay in fracture density between

the fault core and the edge of the damage zone and found a
strong decay well fit by a power law function:

d ¼ cr�n ð1Þ

where d is fracture density in units of number per meter,
r is distance from the fault, n is an exponent describing
the decay, and c is a constant that is fault‐specific. As
is appropriate for power law fits, we present the data in
Figure 3 on a log‐log plot where the slope of a linear
regression is n [Steele and Torrie, 1980]. Other possible
functions that fit the data are described in section 3. The
value of n for the three small faults ranges from 0.67 ± 0.11
to 0.82 ± 0.14. Errors are the mean absolute deviation from
10,000 bootstrap resamplings of each fracture data set.
Based on this first example, we provisionally conclude that
small, isolated faults have a well‐defined average density
decay that is relatively steep (n ≈ 0.8).

Figure 2. Low Tide Fault. The fault core is red, and the fractures surrounding the fault are blue. Frac-
tures are nearly vertical away from the fault and rotate with proximity to the fault.

Figure 3. Representative transects of fracture density with
distance from the fault core for small faults. The boxes rep-
resent the background fracture density. A total of nine, five,
and five transects were collected on both sides of each fault
for Low Tide, Hackle, and Three Mile faults, respectively.
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[10] When comparing individual transects, the most dis-
tinct change in fracture falloff occurs where transects are
taken near more complicated fault geometry. For instance,
the fracture density falloff around Low Tide Fault is based
on nine transects, taken in different lithologic layers and on
both sides of the fault. The section of the fault ranging from
its intersection with the wave‐cut platform up to ∼2 m above
the platform is fairly straight, and the fracture falloff looks

similar in the transects taken in this region. However, when
the fault bends, there is a clear change in the falloff of
fracture density (Figure 4). The transect taken near the fault
bend (transect 2) show an increase in damage zone thickness
and a decrease in the decay exponent. If only areas around
the fault bend were measured, the density decay would be
shallower. Additionally, just above the area on the fault
where transects were taken, the fault branches into several
strands and ends (Figure 1). If transects were taken at this
fault tip, the falloff of fracture density would be very
gradual. We measured transects at several different locations
along the fault and our measurement is an average for the
whole fault.

3. Fracture Density Decay as a Function
of Displacement

[11] To investigate the evolution of damage distribution
with displacement, we combined our own results with
published fracture density profiles (Figure 5 and Table 1).
We report the displacement along the fault as reported by
the authors, which in most cases is vertical or horizontal

Figure 4. (a) Photo of transect 1, taken in straighter section
of fault below transect 2. (b) Photo of transect 2 taken near
bend in Low Tide Fault. (c) Change in fracture density
decay associated with the bend in the fault.

Figure 5. Damage decay exponent of the power law fit as a
function of fault displacement. Error bars represent the mean
absolute deviation from bootstrapping on 10,000 realiza-
tions. The points shown in gray represent data sets that have
been binned; actual decay may be less steep than reported
here. For instance, the points from the study at Four Mile
Beach would have decay exponents closer to one if data were
binned. The gray zone represents the 80% confidence limits
on the change point (Figure 10). Faults from literature
include Arava [Janssen et al., 2004], Punchbowl [Chester
and Logan, 1986], Muddy Mountain [Brock and Engelder,
1977], San Gabriel [Chester et al., 2004], Kern Canyon
(J. S. Chester, U.S. Geological Survey, Structure and petrol-
ogy of the Kern Canyon Fault, California: A deeply exhumed
strike‐slip fault, final technical report, 2001), Pirgaki and
Helike [Micarelli et al., 2003], 90 Fathom [Knott et al., 1996],
Flower [Sagy and Brodsky, 2009], Bartlett [Berg and Skar,
2005], 100 m [Beach et al., 1999], North and Glass
[Davatzes et al., 2003], and Lemont [Fletcher and Savage,
2007]. The Glass, North, Bartlett and Beach et al. [1999]
faults include deformation bands.
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separation. Whether separation or net slip is reported, the
order of magnitude is all that is important on a log scale.
Although reactivation could have occurred on any of the
faults in the data set, thereby obscuring some of the offset
that the fault has seen, this is equally likely on all faults in
the data set and therefore may account for some noise in the
data but cannot explain trends. Many host rock and fault
types are included. The decay of fracture density away
from a fault appears to be a nonlinear function of dis-
placement. The density decay is fairly constant (n ≈ 0.8) for
smaller faults. On faults with displacement greater than
∼150 m, the best fit damage decay exponent decreases with
increasing displacement (this crossover scale is formally
analyzed in section 5). The apparent falloff of damage
with distance becomes more gradual as slip progresses
beyond this threshold.
[12] Previous studies have found that the macrofracture

and microfracture density decay is also well fit by a loga-
rithmic or exponential function [Chester et al., 2005;Mitchell
and Faulkner, 2009]. We use the power law fit because
the stresses produced from a line or point source, such as
might be a realistic model of damaging fault slip, have power
law decay [Love, 1927, chapter VIII]. Individual faults in
this data set may be better fit by one of these functions
(Table 2), and the change in decay behavior is captured when
the whole data set is fit with any of these functional forms
(although the trend is most apparent with power law or
exponential fits; Figure 6). This implies that the evolution with
displacement presented here is a general, physical pheno-
menon and not an artifact of our chosen functional form.
[13] Six of the studies within this compiled data set pre-

sented their fracture densities in binned format (gray points
on Figure 5). In general, any smoothing has the effect of
making the fracture density decay appear steeper (i.e., larger
values of n) than the raw data. Figure 7 shows the effects
of binning on the change in decay for the small faults in
our study.
[14] Some of the studies within our data set measured

multiple transects on the same fault. In order to show a

representative view of the damage zone surrounding these
faults, we include all of the transects when possible. This
raises the question of how best to represent the average of
these transects. For instance, the Punchbowl data in Figure 5
represent four individual transects [Chester and Logan,
1986; Wilson et al., 2003], shown in Figure 8. For this

Table 2. Correlation Coefficients and Probability Values for All Faults in Figure 5a

Fault
Correlation Coefficient

Power Law
Probability Value

Power Law
Correlation Coefficient

Exponential
Probability Value

Exponential
Correlation Coefficient

Logarithmic
Probability Value

Logarithmic

Glass 0.72 4.84E‐09 0.54 5.94E‐06 0.74 2.39E‐09
Bartlett 0.68 2.44E‐27 0.63 4.19E‐24 0.57 1.07E‐20
Hackle 0.32 1.69E‐05 0.37 2.75E‐06 0.26 1.50E‐04
North 0.59 1.08E‐05 0.46 2.51E‐04 0.61 6.48E‐06
Helike 0.81 1.83E‐06 0.84 7.10E‐07 0.76 9.75E‐06
Low Tide 0.43 3.00E‐14 0.48 3.30E‐16 0.32 3.20E‐10
Three Mile 0.45 1.28E‐07 0.44 2.52E‐07 0.26 1.64E‐04
Lemont 0.70 2.50E‐09 0.76 6.95E‐11 0.75 1.35E‐10
Ninety Fathom 0.72 6.80E‐05 0.70 9.65E‐05 0.86 7.95E‐07
Pirgaki 0.55 5.13E‐09 0.37 8.80E‐06 0.66 1.49E‐11
Kern Canyon 0.80 1.87E‐16 0.60 4.56E‐10 0.68 2.55E‐12
Muddy Mountain 0.70 4.99E‐05 0.56 8.68E‐04 0.74 2.18E‐05
Flower 0.77 8.38E‐05 0.61 1.64E‐03 0.64 9.68E‐04
Punchbowl 0.38 9.62E‐12 0.27 2.27E‐08 0.51 3.76E‐17
Arava 0.33 6.34E‐03 0.56 1.00E‐04 0.45 8.22E‐04
San Gabriel 0.36 2.35E‐03 0.51 1.37E‐04 0.31 5.70E‐03
100 m 0.45 1.30E‐03 0.44 1.30E‐03 0.59 7.32E‐05

aA linear correlation coefficient is used to determine the correlation between the field data and the least squares fit of the three different functions we
tested. A larger coefficient (closer to one) represents a better correlation. The probability value represents the likelihood of exceeding the correlation
coefficient in a random sample taken from an uncorrelated parent population, given the number of data points [Bevington and Robinson, 2003]. Small
number represent small probabilities that the correlation came about randomly, i.e., a great deal of confidence in the fit.

Figure 6. Change in decay parameters with displacement
using (a) exponential and (b) logarithmic fits to the data.
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study, we follow the original authors in fitting one function
to a composite of the transects [Chester et al., 2005] and fit
these data with a power law function using a least squares
method. Alternatively, each transect can be fit individually,
and the average n can be used to determine falloff. We
investigate both a weighted and nonweighted average.
[15] For the nonweighted average we take the mean

from the 10,000 bootstrap realizations for each of the four
individual transects and combine them to calculate mean
and mean absolute deviation (Table 3). The mean absolute
deviation is very large in this case, mostly because of
transect DP15, which begins more than 10 m off the fault

and is centered on a secondary fault. Therefore, this transect
has negative value of n, i.e., increasing fracture density
with distance. Because fitting this transect alone makes little
sense as it was not meant to capture the falloff closer in to
the fault, we also calculate the nonweighted mean and mean
absolute deviation for the three transects which begin closer
to the fault, which reduces the mean absolute deviation
considerably. Table 3 shows that the nonweighted means
and the composite fit are the same within uncertainty.
[16] For the weighted average, we penalize fits that have

large variation by applying a weight that is equal to 1/s
where s is the absolute deviation. The weighting consider-
ably reduces the variation around the mean. The fits of
DP15 and DP6 are so poor that they have little influence
on the results. The weighted mean is slightly lower than the
composite fit mean.
[17] We conclude that the mean value of the falloff

exponent n calculated by any of these methods (composite
method, unweighted mean of transects, or weighted mean of
transects) results in similar values. However, the composite
fit most accurately includes all of the data collected and
therefore is used for Figure 5.

4. Total Fault Zone Thickness

[18] In addition to examining the fracture density decay,
we also compiled measurements of total fault zone thickness
(damage zone, as defined by the distance at which fracture
density falls to the local background level, plus fault core
thickness). We consider both the core and damage zone
thickness here because cores may grow at the expense of
damage zone thickness. When thickness for only one side of
the fault is reported, we double the half thickness. Scholz
[2002] suggested that damage zones grow as larger protru-
sions are encountered on a fractal fault with increasing
displacement, therefore the ratio of fault thickness to dis-
placement may be one. An opposing view is that damage
zone thickness is more a function of local geometry (like
fault linkages), and therefore highly variable along strike,

Figure 7. The fit to each data set is dependent on the number
of bins used. Although the data presented in the paper for
the Four Mile Beach faults are not smoothed in any way,
certain faults within the larger data set are (see Table 1)
and may have spuriously larger values of n.

Figure 8. Four transects from the Punchbowl fault. Lines
are power law fits to each individual transect. See text for
discussion of the anomalous fit to transect DP15 which is
centered on a secondary fault.
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and independent of displacement [Shipton et al., 2005]. Field
studies and compilations show that damage zones grow lin-
early with displacement, but not at all locations along the
fault [Shipton and Cowie, 2001] or that damage zone thick-
ness is only subtly correlated with displacement, with most of
the damage zone growing early in the fault slip history
[Childs et al., 2009]. We see steep fault zone growth with
cumulative displacement until about 2400 m of displacement,
and then fault zones grow much more gradually (Figure 9).
Fracture density from drill cores [Micarelli et al., 2003;
Heermance et al., 2003; Bradbury et al., 2007] and estimates
of fault zone thickness from studies of low‐velocity zones
around faults [Li et al., 2004; Cochran et al., 2009] agree
with the field data, indicating that fracture measurements at
the surface are not unduly influenced by exhumation.

5. Confirmation of Change in Slope Using
Bayesian Information Criterion

[19] By performing a Bayesian information criterion
(BIC) [Main et al., 1999] analysis, we establish that the
fracture falloff and width for the full suite of faults are

indeed best fit by two slopes rather than a single function.
In this method, the goodness of fit with two slopes is
penalized for having extra fitting parameters. For two power
laws,Main et al. [1999] formulated the BIC in log‐log space
for a combination of two linear regressions separated by
the change point, x*, to be optimized by the procedure.
Therefore, the total of free parameters for two separate
trends was 5 as opposed to 3 for a single regression with
unknown variance. The BIC for the two slope fit is com-
pared as a function of change point x* to the single
regression. The fit with the maximum value of BIC is pre-
ferred. Thus, the method simultaneously ascertains how
many free parameters are justified and the position of the
slope break for a two‐slope fit if it is the preferred model.
[20] In this application we utilize a constrained fit that

reduces the number of free parameters and hence reduces the
penalty associated with the BIC accordingly [seeMain et al.,
1999, equation (4)]. For the density decay exponent n, we
constrain the slope of the regression to the small fault data
to be constant, thus reducing the number of free parameters
by one. We use the unsmoothed data to establish the change

Table 3. Comparison of Methods to Combine Multiple Transectsa

Power Law Exponent, n All Transects Nonweighted Three Transects Nonweighted All Transects weighted Composite Fit

Mean 0.27 0.54 0.26 0.4
Mean absolute deviation 0.43 0.28 0.02 0.04

aWe did a least squares fit of a power law for the Punchbowl fault transects [Chester and Logan, 1986; Wilson et al., 2003]. The mean exponent, n, was
computed from 10,000 bootstrap realizations on the data set. The mean absolute deviation represents the residuals from the fit.

Figure 9. Total fault zone thickness as a function of fault displacement. The gray zone represents the
80% confidence limits on the change point (Figure 10). Field studies from literature include all of the
faults referenced in Figure 5 as well as Punchbowl [Schulz and Evans, 2000], 8 m, 14 m, and Lonewolf
[de Joussineau and Aydin, 2007], Caleta Coloso [Mitchell and Faulkner, 2009], Carboneras [Faulkner
et al., 2003], and Wadi Araba [Du Bernard et al., 2002], and multiple faults from Beach et al. [1999] and
multiple measurements along the Big Hole Fault [Shipton and Cowie, 2001]. Data from drill cores include
Aigion [Micarelli et al., 2003], Chelungpu [Heermance et al., 2003], San Andreas [Bradbury et al., 2007],
and multiple faults from Fossen and Hesthammer [2000]. Low‐velocity zones are plotted for San Andreas
[Li et al., 2004] and Calico faults [Cochran et al., 2009]. The error bars represent a range of values reported.
Additional information is available in Table 1.
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point of n in Figure 5 in order to preserve homogeneity of
data types. As noted above, binned data tends to steepen
apparent fracture falloff. For fault thickness, we required that
the regression slope for large faults be nonnegative, i.e., fault
damage zones cannot become thinner with increasing dis-
placement. The nonnegativity constraint does not affect the
number of free parameters in the BIC calculation.
[21] Both the damage density decay and fault zone

thickness are best fit by two slopes (Figure 10). For the
fracture density falloff exponent n, the most likely change
point is 151 m of displacement (150–1321 m with 80%
confidence limits). The most likely change point for the fault
zone thickness is ∼2400 m of displacement (80% confidence
interval 1514–3715 m).

6. Influence of Other Factors on Damage
Zone Development

[22] Many factors have been shown to affect fracture
spacing and fault development including depth of faulting,
lithology, and layer thickness. We explore the effects of
these parameters on damage density decay and fault zone
thickness in our data set below. The style of faulting (strike‐
slip, thrust, normal) may affect damage zone development

as well, but there is a dearth of thrust faults our data set
(three) that make this analysis impossible at this time.

6.1. Depth of Faulting

[23] Damage zones are hypothesized to narrow with depth
due to the increase in the strength of rock outside the fault
zone [e.g., Scholz, 2002]. We plot the studies in our data set
that reported a depth of faulting as a function of both decay
exponent and total damage zone thickness (Figure 11).
Depth of faulting shows a slight trend toward increasing
fault zone thickness with depth; however, the two deepest
faults also have large displacements (Caleta Coloso and
Carboneras faults [Faulkner et al., 2003; Mitchell and
Faulkner, 2009]). The damage density decay exponent
shows no relationship to depth of faulting.

6.2. Thickness of Fractured Layer

[24] Typically, the unit thickness of the layer being frac-
tured is positively correlated with fracture spacing [e.g.,
Pollard and Aydin, 1988; Bai and Pollard, 2000]. In terms
of fault damage zones, however, we find that the unit
thickness is not the primary control of damage zone decay or
fault zone thickness (Figure 12). Fault zone thickness may
decrease with increasing unit thickness but there is no clear
pattern for damage density decay in terms of unit thickness.

6.3. Lithology

[25] Different rock types have been shown to affect the
development of fault zones [e.g., Evans, 1990]. Although
we see little effect of lithology on total fault thickness, there

Figure 10. Bayesian information criteria (BIC) as a func-
tion of change point, x, for the double slope fit for (a) the
fracture decay n and (b) the fault zone thickness.

Figure 11. Depth of faulting controls on (top) fracture
decay exponent and (bottom) fault zone thickness. Neither
parameter shows a clear trend with depth of faulting, unlike
displacement in Figures 5 and 9.
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is an effect of lithology on the decay exponent (Figure 13).
However, most of the small faults in our study are in sili-
ciclastic rocks, and displacement effects (which we argue
are primary) are skewing the siliciclastic fault trend.
Therefore, we remove all faults with less than 150m of
displacement. There is no lithological effect on the decay
exponent when the small faults are removed (Figure 13b).

6.4. Influence of Displacement on the Fault Constant c

[26] Just as the decay exponent n evolves with displace-
ment, the constant c (equation (1)) changes with displace-
ment as well. This parameter is related to the maximum
density of fracturing in the host rock, and therefore will be
lithology dependent. When we plot the entire data set shown
in Figure 5, there is no clear relationship between c and
displacement. However, when we sort the data set to include
only the faults in siliciclastic sedimentary host rocks, we see
that the value of c from the power law fit increases until
around 150 m of displacement and then remains constant
(Figure 14). This is expected since rock cannot be fractured
indefinitely and remain a cohesive unit.
[27] The variations of c emphasize the value of the strat-

egy of this study in focusing on n. The absolute fracture
density is less consistent and more difficult to interpret than
the decay of fracture with distance from the fault.

7. Interpretation: The Control of Secondary
Strands on Damage Falloff

[28] We interpret the reduction in the best fit damage
decay exponent with displacement in Figure 5 as a result of
the distribution of slip onto secondary strands within the

Figure 13. (a) Lithologic effects on decay exponent. The
data indicate a lithological effect on density decay, with faults
hosted in crystalline rocks showing a more gradual decay.
(b) However, when only faults with greater than 150 m dis-
placement are shown, which eliminates mostly small silici-
clastic faults, the trend is erased. (c) Fault zone thickness
shows minimal correlation with lithology.

Figure 14. Fault constant, c, as a function of displacement
for siliciclastic faults; c appears to increase with displacement
until 150 m displacement has been achieved, at which point c
ceases to increase.

Figure 12. Unit thickness controls on (top) fracture decay
exponent and (bottom) fault zone thickness. Neither param-
eter shows a clear trend with unit thickness, unlike displace-
ment in Figures 5 and 9.
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damage zone. In our hypothesis, well‐localized, isolated
faults are expected to have a narrow decay of damage with
distance from a strand. Faults with more secondary strands
are expected to have a broader distribution of damage due to
the superposition of multiple loci of fracturing (Figure 15a)

[Chester et al., 2004]. This superposition results in a change
in the apparent decay from any one strand.

7.1. Stochastic Model of Fracture Density Decay

[29] To evaluate the plausibility of strand evolution
influencing the observed damage decay with displacement,
we utilize a simple stochastic model to combine the ob-
servations made from small and large faults. Stochastic si-
mulations are a way of exploring a data set by imposing a
small set of probabilistic rules governing the behavior in the
distributions and then randomly sampling the proposed
distributions to see how robustly the major observations are
recreated. This method has been used to model fault net-
works [Kagan, 1982; Harris et al., 2003] and aftershock
sequences [Ogata, 1988]. The stochastic method allows us
to explore the data, investigate hypotheses, and tease out
various relationships. The appeal to this simplistic approach
is that no specific physical mechanism (e.g., fault strand
interaction, stress shadows) needs to be invoked, so that we
can determine if the strand scenario is plausible without also
determining the exact mechanics involved.
[30] We simulate the development of fault strands in a

damage zone by distributing fractures throughout a set
damage zone thickness, randomly allowing some of them to
become secondary faults. The decay of damage away from a
single fault is set as r−0.8, as observed along the small faults
in our study. In this way, we allow strands to form anywhere
in the damage zone; however, they are more likely to form
close to the main fault. The number of fractures in the
system is generated proportional to the total displacement on
the main fault and each new fracture has a very small
probability of becoming a secondary fault with its own
damage profile. This probability is the only free parameter
in the model.
[31] We use a stochastic model to simulate the fracture

distribution. We start by assigning a total number of frac-
tures N to be simulated in the damage zone based on the
total slip on the fault system S as

N ¼ kS ð2Þ

where k is a constant for all faults. The total number of
fractures that can be generated is capped at 1000. TheFigure 15. (a) Cartoon of fault zones with localized and

distributed slip surfaces.(b) Stochastic model prediction of
the damage decay exponent for pshear = 0.05% (blue). Error
bars are the mean absolute deviation from bootstrapping on
10,000 realizations. Data from Figure 5 are shown in black
and gray, where gray represents faults with binned fracture
densities. (c) Recreation of fracture distribution at the
Punchbowl fault using a fracture decay of r−0.8 for each
reported secondary strand within the damage zone [Chester
and Logan, 1986; Wilson et al., 2003]. Arrows delineate the
position of reported strands. A maximum fracture density of
106 fractures per meter (density closest to the main fault)
was imposed, and the fault constant c was determined for
each strand by the fit to the data.

Table 4. Stochastic Model Parameters

Model
Parameter Value Constraint

k 30 fractures per
meter of slip

Average number of
fractures in the damage
zone of a fault divided
by total displacement,
based on faults at Four
Mile Beach

xmin 3 mm Smallest spacing between
main fault and first
fracture measured in
the field studies
in this paper

xmax 500 m Half thickness of the
largest fault thickness
on Figure 5
(Carboneras Fault
[Faulkner et al., 2003])

pshear ∼0.05% Free
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thickness over which the fractures can be distributed is
500 m from the main strand, i.e., the half thickness of the
thickest fault in the database [Faulkner et al., 2003]; how-
ever, new damage zones on secondary strands can extend
beyond that. We then distribute the N fractures in space
using a stochastic algorithm where the requisite fracture
distribution is obtained by inverting the uniform distribution
[Press et al., 2007, section 7.3]. The fracture distribution
around an initial strand that is consistent with the small fault
observations, i.e.,

p xð Þ ¼

Z x

xmin

1

r0:8
dr

Z

xmax

xmin

1

r0:8
dr

ð3Þ

where the normalization in the denominator is imposed
so that the total probability of a fracture in the interval
xmin to xmax is 1. The values of xmin and xmax as well as k
are all determined from the field observations (Table 4).
Equation (3) is implemented by randomly assigning a value
of p for each of the N fractures and solving for x. As a result,
the distance, x, of any particular fracture from the fault is
described by

x ¼ x0:2

min
þ p x0:2

max
� x0:2

min

� �� �0:5
ð4Þ

where p is a random number between 0 and 1. Each of the N
fractures has a small probability, pshear, of becoming a shear
fracture. A fracture becomes the main fault strand when

1� p2 � pshear ð5Þ

where p2 is a random number between 0 and 1. If a new
shear fracture is formed, then subsequent fractures of the N
fractures in the population are distributed around that new
origin using the same procedure as before (equation (4)).
[32] This stochastic model for developing fault strands is a

function of the minimum distance between a shear surface
and the closest fracture, the maximum distance from the
fault at which fractures can form, the number of fractures
generated per meter of slip and the probability that a fracture
will become a fault strand (Table 4). Most of those variables
are directly and independently constrained by the observa-
tional data. The value of xmin is the smallest distance mea-
sured between the fault and the first fracture at Four Mile
Beach, xmax is the farthest distance from the fault that the
fracture can form from the main fault, based on the half
thickness of the largest damage zone in Figure 9 and the

number of fractures per unit slip, k, is measured for two of
the faults at Four Mile beach. The only free parameter is
pshear. We fit this parameter by requiring that the change
in behavior occur around 150 m of fault displacement. We
then generate simulations exploring values of pshear that will
match this fall off and find that that pshear is tightly con-
strained by the data to fall at 0.05% (±0.04%).
[33] The model fits the data well (Figure 15b) and shows

that the change in the best fit density decay exponent can
arise from the generation of new strands. When the fault
has experienced little displacement, there are few fractures
in the damage zone. Since the expected number of strands is
equal to the number of fractures multiplied by the proba-
bility of a fracture becoming a shear strand, for small slips
the expected number of secondary strands is less than 1; that
is, secondary strands are absent. As the number of fractures
increases with slip, it becomes more likely that a strand will
be present.
[34] The probability of a fracture becoming a shear fault in

our model has to be very low (∼0.05%) in order to fit the
observed change in the best fit decay exponent at ∼150 m.
If we increase the probability, the observed change in the
exponent occurs at smaller displacements. Faults form from
the coalescence of fractures and the probability parameter
may represent a critical crack density necessary for that
coalescence [Lockner et al., 1992], indicating that the
damage zone needs to be heavily fractured before secondary
strands start developing.

7.2. Strand Superposition on the Punchbowl Fault

[35] We illustrate the defocusing effect of strands on
damage around a real fault with a well‐documented example
of a large‐displacement fault. We create a composite curve
by superposing damage peaks where secondary strands are
reported along the Punchbowl Fault [Chester and Logan,
1986; Wilson et al., 2003; Chester et al., 2005]. We assume
that each strand (including the main strand) has an r−0.8 decay
in fracture density, as per the small faults in our study,
and sum the peaks to give the total damage zone decay
(Figure 15c). The fracture density decrease is significantly
matched by superimposing fault strands (Table 5). Although
each individual transect has less than seven secondary faults,
even one secondary fault located toward the edge of the
damage zone can substantially alter the slope of the frac-
ture decay. Figure 15c demonstrates that the superposition
of peaks with steep falloffs is a viable model for the appar-
ent shallowing of fracture density for large faults.

8. Discussion

[36] Previous work has evaluated the evolution of dam-
age with displacement and proposed changes over a sub-
set of the displacements or with different data types (i.e.,
microfractures) than considered here and found consistent
results [Beach et al., 1999; Mitchell and Faulkner, 2009].
This study is the first to cover displacements ranging over
5 orders of magnitude for both macroscopic fracture den-
sity decay and fault zone thickness at a wide range of
localities and thus is the first work to observe the distinc-
tion in behavior for faults displaced more or less than
∼150 m as a general feature. It is also the first work to
interpret the change in behavior as due to the superposition

Table 5. Comparison of the Different Functional Forms Fit to

Punchbowl Fault Fracture Density Profilea

Reduced Chi‐Square Probability Value

Composite 0.07 >0.99
Power Law 0.07 >0.99
Log 0.07 >0.99

aThe chi‐square values are reduced (chi‐square/degrees of freedom). The
probability value represents the probability of observing a value of reduced
chi‐square that is equal to or greater than the value we calculate from a
random sample with a given number of samples and degrees of freedom.
If the value is close to one, the assumed distribution describes the spread
of data well [Bevington and Robinson, 2003].
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of a relatively simple damage decay as determined from
isolated small faults.
[37] The r−0.8 damage falloff from small faults noted in

this study may be a result of the stress field around the fault
during slip. The slope of the decay in stress with distance is
in turn a function of the geometry of the source [Love, 1927,
chapter VIII]. As noted by Grady and Kipp [1987], fracture
density is proportional to stress raised to a power at a fixed
stressing rate and therefore the observed damage falloff may
be due to protrusions from the fault surfaces which act as
mechanical strong points, i.e., irregularly shaped asperities
[Sagy and Brodsky, 2009]. The change in slope in total fault
thickness suggests that asperity size affects fault thickness
[Scholz, 2002] for small faults but not for more mature
faults. One possibility is that strand formation may allow for
slip to be distributed throughout a zone, thereby making
motion past large asperities possible without further dam-
aging host rock. If there are fewer asperity collisions on
more mature faults, then small earthquakes on immature
faults should have more high‐frequency energy than small
earthquakes on mature faults. Indeed, recent work has
shown that ground motions are larger for earthquakes on
less mature faults [Radiguet et al., 2009].

9. Conclusions

[38] We find that damage zones around all faults studied
can be well fit by superposition of a simple form of damage
decay. For faults with less than ∼150 m of total displace-
ment, damage decays as approximately the inverse of dis-
tance from the fault and fault zone thickness grows with
displacement. Once a fault has slipped more than ∼150 m,
the apparent decay is much more gradual and fault zone
thickness grows less with displacement. The weakening of
the decay can be explained by the superposition of multiple
fault strand damage peaks rather than a change in the indi-
vidual fault damage decay. Secondary strands may nucleate
when enough fractures are available to coalesce into shear
planes. The break in scaling of damage zone thickness with
displacement can be explained by the strand nucleation and
does not require a change in physical processes between
small and large faults.
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