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Abstract

In this paper, a novel supervised classification approach
called Collateral Representative Subspace Projection Mod-
eling (C-RSPM) is presented. C-RSPM facilitates schemes
for collateral class modeling, class-ambiguity solving, and
classification, resulting a multi-class supervised classifier
with high detection rate and various operational benefits
including low training and classification times and low pro-
cessing power and memory requirements. In addition, C-
RSPM is capable of adaptively selecting nonconsecutive
principal dimensions from the statistical information of the
training data set to achieve an accurate modeling of a rep-
resentative subspace. Experimental results have shown that
the proposed C-RSPM approach outperforms other super-
vised classification methods such as SIMCA, C4.5 decision
tree, Decision Table (DT), Nearest Neighbor (NN), KNN,
Support Vector Machine (SVM), 1-NN Best Warping Win-
dow DTW, 1-NN DTW with no Warping Window, and the
well-known classifier boosting method AdaBoost with SVM.

1 Introduction

During the past decade, classification techniques have
been applied to innumerous research areas including market
analysis, homeland defense, threat assessment systems, in-
trusion detection systems, credit card fraud detection, face

recognition, etc. Generally speaking, there are two broad
types of classification procedures: unsupervised and super-
vised classification [5]. Unsupervised classification is usu-
ally employed when relatively little information is known
about the data before classification; while supervised clas-
sification requires a class quantity that is high enough to
distinguish various class types. Detailed, supervised classi-
fication of large areas takes enormous input effort in terms
of time, manpower, and money [1].

For the past decade, PCA-based [2] approaches to su-
pervised classification have gained popularity in innumer-
ous research domains, specially due to the dimensionality
reduction capabilities of PCA (Principal Component Analy-
sis). For instance, [7][8] have popularized the use of PCA in
the domain of face recognition. Other PCA-based methods,
such as PCC [9] and SIMCA [12], thrive on the generality
of their methods, and attempt to develop a classifier that is
as stable as possible to the different distribution of various
existing data sets. Although having in common the use of
the PCA approach for dimensionality reduction, all the clas-
sifiers mentioned above approach the classification task dif-
ferently. In [7][8], the authors introduced a Bayesian clas-
sification approach that utilizes eigenspace decomposition
to simplify the estimation of Gaussian probability densities
for use as likelihood density estimates in their Bayesian ap-
proach. On the other hand, methods such as SIMCA [12]
and PCC [9] generated PCA models for each class in a
training data set independently and then employed a class-
deviation measure that, unlike the Bayesian approach, may



result in a testing instance being classified into more than
one class. The main difference between SIMCA and PCC
is that while SIMCA is concerned with the use of PCA only
for dimensionality reduction, PCC combines the intrinsic
information provided by both major and minor principal
components as well as their respective eigenvalues into its
class-deviation score function.

In this paper, a novel supervised classification ap-
proach, Collateral Representative Subspace Projection
Modeling (C-RSPM), is proposed which reworks PCC
[9][10][11][15] into a base class-deviation measure for su-
pervised classification. C-RSPM introduces the Represen-
tative Subspace Projection Modeling (RSPM) technique to
enhance the advantages of PCC. In contrast to the require-
ments of existing PCA based methods, in RSPM, a sub-
set of components needs neither to be in consecutive order
[7][8][12] nor to retain the entire principal component set
[7][8], and are automatically and adaptively selected from
the principal component set acquired from each class in
a training data set rather than through human observation
[7][8]. These nonconsecutive components are labeled rep-
resentative components and form a representative subspace
from which statistics suitable for a classification task are ac-
quired. Unlike PCC [9][10][11][15] which requires the es-
timation of the distribution of two classification thresholds,
namelyC1 (derived from major principal components) and
C2 (derived from minor principal components), the RSPM
technique allows C-RSPM to employ a single threshold
measureC in the multi-class classification task.C is a class
deviation quantity whose distribution is acquired from a set
of representative nonconsecutive components, rather than
from both major and minor components as in PCC. RSPM
simplifies the analysis of the false alarm rate of C-RSPM
by providing a single threshold function, which in turn also
contributes to the efficiency and speed of the statistical com-
putations of the C-RSPM approach.

Our experimental results with various data sets from the
UCI [13] and UCR archives [4] demonstrate that C-RSPM
outperforms many methods such as SIMCA, C4.5 decision
tree, Decision Table (DT), NN, KNN, SVM, and AdaBoost
with SVM in the area of multi-class supervised classifica-
tion. Furthermore, C-RSPM’s applicability to the network
intrusion detection domain, assessed through experiments
with KDD Cup 99 [3] data sets, demonstrate that C-RSPM
is an ideal solution to misuse detection applications where a
high detection rate and lightweight classifier is required, as
for instance, in the lightweight agent-based intrusion detec-
tion architecture proposed in our previous work [15].

The remainder of this paper is organized as follows. In
Section 2, the C-RSPM architecture for supervised classifi-
cation is presented, including an elaboration on the formula-
tions of the RSPM data set adaptive technique. Experiments
and comparison results are discussed in Section 3. Finally,

conclusions are given in Section 4.

2 C-RSPM Supervised Classification

2.1 The C-RSPM Architecture

The architecture of the proposed C-RSPM approach is
illustrated in Figure 1, which includes theClassification
module andAmbiguity Solver module.

Figure 1. The C-RSPM Architecture

TheClassification module is composed of an array of
deviation classifiers which are executed collaterally, that is,
each of the classifiers receives and classifies the same test-
ing instance simultaneously. The basic idea of the C-RSPM
algorithm is that each classifier in theClassification mod-
ule, as shown in Figure 1, is trained with a different type
of known-class data from a training data set, through the
employment of the RSPM technique. Thus, training the C-
RSPM classifier consists basically of training each individ-
ual classifier to recognize instances of a specific class type.
The challenge of using the RSPM technique in multi-class
supervised classification is in keeping a high true detection
rate with an enough low false alarm rate. Theoretically, a
testing instance normal to a certain classifier’s training data
should either be entirely rejected by all the other classifiers
or be classified into no more than one class group. In this
context, two common issues should be carefully considered
and approached if the proposed collateral classification ar-
chitecture is to function properly:



• Globally unrecognized instance issue: A testing in-
stance is rejected by all classifiers and cannot be as-
signed a class label.

• Classification ambiguity issue: More than one classi-
fier accepts a testing instance as statistically normal to
their training data.

With a low programmed false alarm rate, the first is-
sue usually translates into the testing instance belonging
to an unknown class type. In the current C-RSPM ap-
proach, the rejected testing instances are simply assigned
an “Unknown” class label, which can also be addressed
via unsupervised classification. The second and most crit-
ical issue arises due to the fact that no classifier can ever
ensure a100% classification accuracy, and also due to
the fact that some data sets are composed of classes with
very similar correlative properties among them. To ap-
proach this issue, theAmbiguity Solver module is pro-
posed to coordinate and capture classification conflicts.
This module defines a class attachment measureAk called
the Attaching Proportion for each of thek ambiguous
classes, i.e., for all classes that during the classification
phase have recognized the testing instance as statistically
normal to their training data set. The meaning of the
Attaching Proportion quantity will be explored later af-
ter the parameters necessary for its proper elaboration are
presented.

The employments of both PCA [2] in feature vector di-
mensionality reduction and some form of class-deviation
measure (also known as anomaly detection) is common to
most supervised classifiers whose models are based on sta-
tistical inferences. For instance, in the SIMCA [12] method,
similarly to the methods proposed in this paper, a PCA
model is generated for each of the classes in the training
data set. Nevertheless, unlike in the C-RSPM approach, in
SIMCA, the principal components retained to model each
class are required to be consecutive in order and the num-
ber of components retained may be decided manually (as
in [7]) or through a cross-validation technique. Further-
more, SIMCA uses a measure of class-deviation which, un-
like C-RSPM, does not take into account the information
contained in the eigenvectors and eigenvalues. Instead, its
class-deviation measure is given by an F-test on the lin-
ear combination of the Euclidean distances between a test-
ing instance and its projection in eigenspace and to the
rectangular-like boundaries generated for each training data
class. Although an instance can be rejected by the SIMCA
classifier as statistically abnormal to all its trained PCA
models, multiple class assignment is allowed. This is an-
other prevailing difference between SIMCA and C-RSPM,
where class-label ambiguity is not allowed in C-RSPM.

2.2 Classification Module - The RSPM
Technique

The core of the classification module in the C-RSPM su-
pervised classification approach is the Representative Sub-
space Projection Modeling (RSPM) technique, which is
inspired from the observation and comparison of curves
derived from the sorted rows of the PCA score matrices
[9][10][11][15] of various training data sets. The term
“training data PCA score matrix” is referred to the projec-
tion of a matrix, whose columns and rows correspond to the
instances of a class of a training data set and their various
attribute values respectively, onto the eigenspace composed
of all principal components acquired from the training data.
Each row of a score matrix holds the projections of the train-
ing data instances onto the eigenspace dimension specified
by a single principal component. Some of the generated
curves of the score rows are very smooth, for instance, pos-
sessing a visibly horizontal slope representing the similar
characteristics of groups of instances in a training data set
in an intuitive manner, while other curves rise in an ob-
vious non-zero slope. Furthermore, it can be noticed that
the curve derived from the score row vector corresponding
to the largest eigenvalue [9][10][11][15] is always smooth,
in accordance to the fact that the largest eigenvalue result-
ing from PCA corresponds to the highest degree of simi-
larity among the most correlated dimensions of the training
data set. In our previous studies [9][10][11][15], a novel
anomaly detection scheme that uses the robust Principal
Component Classifier (PCC) to handle computer network
security problems was presented. The main idea of PCC
is to detect attacking traffic when it has a large and signif-
icant deviation from the normal traffic. That is, in PCC,
anomalies are treated as outliers, and an intrusion predic-
tive model is constructed from both the major and minor
principal components obtained from normal training data
instances. A distance threshold measure from an anomaly
to the cluster of normal instances is then calculated in the
transformed principal component space. In contrast, some
PCA-based methods make use of only major components in
a dimensionality reduction task, and do not utilize the inher-
ent information found in the selected principal components
subset, or their respective eigenvalues, in the formulation of
their predictive model [12].

With these observations in mind, a principal component
selection function based on the standard deviation, which
reflects the degree of smoothness of a distribution, of the
score matrix row vectors is defined to select representative,
possibly nonconsecutive, principal components which can
sufficiently model the essential features of a training data
set adaptively. These chosen representative principal com-
ponents are then utilized to compute a class-deviation mea-
sure, without resorting to empirical formulations based on



static and non-adaptive parameters that can affect a predic-
tive model’s ability to learn the structure of various kinds
of data sets. The experimental results in [9][10][11][15] re-
vealed that the empirical choice of major components that
account for a cumulative50% of the total variation and mi-
nor components whose eigenvalues are less than0.20 can be
used to generally and decently represent the distribution of
various training data sets, indicating the existence of hidden
clues and reasoning, from a statistical point of view, on why
these parameters and the flexibility of their values should
reflect information acquired statistically from the training
data set itself. Furthermore, reducing the number of classi-
fication thresholds to a single measure facilitates the anal-
ysis of a classifier’s false alarm rate by requiring only one
model, intended for the distribution of the single threshold
measure, to be generated so that false alarm rate statistics
can be computed.

For the training data of a given class, leti = 1, 2, . . . , p,
j = 1, 2, . . . , N , andX = {x ij} be ap × N -dimensional
matrix containingN p-dimensional column vectorsX j =
(x1j , x2j , . . . , xpj)′, representing theN training instances
of the class. In order to identify the 100γ% extreme obser-
vations that are to be trimmed, the Mahalanobis distance is
adopted for outlier trimming:

dj
2 = (X j − X̄ )′S−1(X j − X̄ ), where

X̄ = 1
N

N∑
j=1

X j and S = 1
N−1

N∑
j=1

(X j − X̄ )(X j − X̄ )′

Accordingly, for a givenγ value (e.g.,γ= 0.005), those ob-
servations corresponding to theγ*N largest values in vector
D =

{
dj

2
}

will be removed.
Assume that after trimming, the training data set hasL

instances (L < N ) with elementsx ij , wherei = 1, 2, . . . , p
andj = 1, 2, . . . , L, andµ̄i andsii are the sample mean and
variance of theith row (i.e.,ith feature) in this training data
set. We can generate the normalized training data setZ =
{z ij} using Equation (1), andZ j = (z1j , z2j , . . . , zpj)′ is
the corresponding column vectors ofZ.

z ij =
x ij − µ̄i√

sii
. (1)

Next, compute a new robust estimate of the correlation
matrix S using matrixZ. Let (λ1, E1), (λ2, E2), . . . , (λp,
Ep) be thep eigenvalue-eigenvector pairs of the robust cor-
relation matrixS, where λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0.
Also, let matrixY=

{
y ij

}
be the projection of matrixZ

onto thep-dimensional eigenspace, whereY is defined as
the training data score matrix with the score column vec-
tors Y j=(y1j , y2j , . . . , ypj)′ which correspond to the pro-
jection of each of theL normalized training instances onto
the eigenspace composed of allp principal components ac-
quired from the robust correlation matrixS.

After all these steps, a principal component selection
function is defined as given in Equation (2), which is based
on the distribution of the eigenspace features, or the score
row vectorsRi = (y i1, y i2, . . . , y iL) of matrixY. The prin-
cipal components whose corresponding score row vectors
Ri satisfy this selection function are selected as the repre-
sentative components, while all other principal components
are discarded.

φ < STD(Rm) < a + b× (1− exp(−α)), (2)

whereφ is an adjustable coefficient used to filter out the
score row vectors inY with very little variability, i.e., with
extremely small standard deviation values. Based on our
empirical studies,φ is set to 0.0001 throughout our experi-
ments. The variableα is the pre-set false alarm rate which
is also adjustable,STD(Rm) is the standard deviation of
the score row vectors satisfying the selection function and
corresponding to the(m)th principal component (m ∈ M ),
M is defined as the selected principal component space. Fi-
nally, a andb are adjustable coefficients. From our empir-
ical studies,a andb are both set to the arithmetic mean of
the standard deviation values from those score row vectors
Ri ∈ Y whose standard deviation values are greater than
the refinement thresholdφ. In Equation (2), the value of
the right-hand side inequality should be in[a, a + b). To
avoid the inequality goes to infinite,a andb are restricted
to finite values. Please also note that the right-hand side
value of Equation (2) increases asα increases, resulting in
a decrease in the restrictions to outlier detection with an in-
crease of the false alarm rate.

In this manner, those principal components whose corre-
sponding score row vectors in matrixY satisfy the threshold
function given in Equation (2) are selected automatically
as representative components, and are used to calculate the
distance threshold measureCthresh, replacing theC1 and
C2 thresholds proposed in [9][10][11]. Therefore,Cthresh

is used as the discriminator in the multi-class classification
process. To determine this threshold from theL projected
training instances in matrixY, compute the distance vector
C = {c j}, j = 1, 2, . . . , L using the class-deviation func-
tion:

c j =
∑

m∈M

(ymj)
2

λm
,

wherem ∈ M is the index of the features (or rows) cor-
responding to the representative principal components,λm

is the eigenvalue of themth principal component, andymj

is the score value of themth eigenspace feature for thejth

projected training data instance. TheC vector holds the
distribution of the class-deviation scores of theL projected
training data set observations.

Then, the elements in vectorC are sorted in the as-
cending order of values, where the sorted score vector



SC is now called an empirical distribution. With the de-
sired programmed false alarm rateα of the classifier, find
the element inC that corresponds to the approximately
((1− α) ∗ 100%)th percentile of its empirical distribution,
that is, the element inSC corresponding to the nearest in-
teger value to((1 − α) ∗ L). This value corresponds to the
threshold valueCthresh of that class with the programmed
false alarm rateα, and will be used in the classification
phase.

Now, let X’ =
{

x ′ij
}

, i = 1, 2, . . . , p and j =
1, 2, . . . , N ′, be ap × N ′-dimensional matrix containing
N ′ p-dimensional column vectorsX ′

j=(x ′1j , x ′2j , . . . , x ′pj)′,
representing theN ′ testing instances of a class. Next,
let Y ′

j=(y ′1j , y ′2j , . . . , y ′pj)′ correspond to the projection of
each of theN ′ testing instances, normalized through Equa-
tion (1) with the samēµi andsii values acquired from the
training data set after trimming, onto the eigenspace com-
posed of allp principal components from the robust correla-
tion matrixS. Next, compute the distance vectorC’ =

{
c ′j

}
(j = 1, 2, . . . , N ′) using the class-deviation function:

c ′j =
∑

m∈M

(y ′mj)
2

λm

for all N ′ projected testing instances, whereλm is the
eigenvalue of themth representative component,m ∈ M
is the index of those representative components, andy ′mj

is the the score value of themth eigenspace feature of the
normalized and projected original instanceX ′

j . Finally, the
classification rules classify each of the observationsX ′

j

(j = 1, 2, . . ., N ′) using the following decision rules.

Thejth instance is classified as statistically abnormal to the
class training data if

c ′j > Cthresh,

and classified as otherwise normal to the class if

c ′j 6 Cthresh.

2.3 Ambiguity Solver Module

Assuming there are more than one classifier trained by
the RSPM technique, as shown in theClassification
Module of Figure 1, which classify an unknown testing in-
stance as statistically normal to the training data of their
respective classes. To solve this consequent classification
ambiguity issue, theAttaching Proportion measureAk

is developed for each of thek ambiguous classes in Equa-
tion (3).

Ak =
c ′j

(k)

Cthresh
(k)

, (3)

whereAk is calculated for each of thek ambiguous classes,
Cthresh

(k) is the threshold value of the classifier trained with

the data of the class typek, c ′j
(k) is the class-deviation score

of the jth testing instance calculated under the classifier
trained with the data of the class typek. The class label
of the classifier with the lowestAk value is assigned to the
ambiguous testing instance since the lowest attaching pro-
portion measure reflects a closer resemblance of the testing
instance to the specific class type.Ak can be viewed as a
measure of the degree of normality of an instance with re-
spect to a class type, or in other words, the lower theAk

value is, the lower the distance of the testing instance in
question to those instances lying close to the center of the
spatial distribution of classk is. The ratioAk ranges from
[0, 1], since the maximum deviation score of thejth normal
instance under the class typek is c ′j

(k) = Cthresh
(k), and

it indicates in which percentile of normality, that is, within
which percentile of the empirical distribution of the sorted
class-deviation score vector of the classifier of class typek,
the testing instance lies in. Hence, a lowerAk value indi-
cates lower percentiles and greater similarity to the data of
class typek.

2.4 Advantages of C-RSPM

The advantages of our proposed C-RSPM supervised
classification approach are summarized as follows.

• Cthresh is based on the automatically selected repre-
sentative components from the principal component
set derived from the training data set, rather than from
the pre-defined choice of major and/or minor compo-
nents originated from empirical formulations. Also,
only a single thresholdCthresh needs to be used for
classification.

• Eliminates any dependency on statistic distributional
assumptions about the training data sets. Unlike many
statistical-based methods that need to assume a normal
distribution of the parameters [7] or resort to the use
of the central limit theorem by requiring the number
of features to be greater than 30 [16][17], the RSPM
technique does not have these constraints.

• It has significantly increased robustness to various
kinds of training data sets possessing different distri-
butions of principal components and eigenvalues, es-
pecially in domains where high dimensional data sets
are used.

• It is lightweight, and has lower memory, storage, and
processing power requirements than most of the other
methods.



3 Performance Evaluation

To generalize performance evaluation, various data sets
with different distributions are employed to assess the per-
formance of C-RSPM in multiclass classification and mis-
use detection. The data sets for multiclass classification are
from the UCI KDD Archive [13] and the UCR Time Se-
ries Classification/Clustering repository [4]; while the data
set for misuse detection is the KDD Cup 1999 data [3]. C-
RSPM is implemented in MatLab [6] as a supervised clas-
sification approach.

Please note that throughout the experiments, the array of
classifier components of C-RSPM were programmed with a
typical false alarm rateα value of0.1%, that is, the values of
the99.9%th percentile of the empirical sorted scores distri-
butionsSC of the training data of each classifier component
were chosen as the threshold values to be employed dur-
ing classification. Also, for each classifier, 10-fold cross-
validation experiments were executed for each data set.
The C-RSPM is compared with SIMCA and methods im-
plemented in the WEKA [14] software package, including
C4.5 decision trees, Decision table (DT), NN, KNN (K=5),
SVM, and AdaBoost with SVM.

3.1 Experimental results for Multiclass
Classification

The data sets used for multiclass classification include:

• Wine data set: Acquired from the UCI KDD Archive
[13] and composed of 3 classes.2

3 of each class data
instances are randomly selected to train the classifier
and the remaining13 of the instances are used to test
the classifier.

• Pham (Synthetic Control) data set: Composed of 6
classes, and acquired from the UCR Time Series Clas-
sification/Clustering repository [4]. The data set is
made available into already separate training and test-
ing data sets.23 of training data are randomly selected
to do the classification for cross-validation purpose.

• Xi (Face all) data set: Composed of 14 classes
and acquired from the UCR Time Series Classifica-
tion/Clustering repository [4]. The data set is made
available into already separate training and testing data
sets.23 of training data are randomly selected to do the
classification for cross-validation purpose.

The classification accuracy and their corresponding stan-
dard deviations on the three selected data sets for C-RSPM
and several other classification methods are presented in Ta-
ble 1. As shown in this table, C-RSPM maintains a high
classification accuracy (> 96%) and outperforms the other

selected supervised classification methods. This is indica-
tive that the use of RSPM to generate predictive models
for different class types allows the C-RSPM architecture
to distinguish among distinct class types with high accu-
racy. Another observation that can be attained from these
experimental results is the fact that the classification accu-
racy of some methods vary significantly among the training
data sets used. For example, the accuracy of C4.5 ranges
from 56.28% to 93.25%, and the accuracy of Decision Ta-
ble (DT) ranges from34.36% to 90.44%. These results in-
dicate that these methods do not generate predictive models
that are well fit for various types of training data sets. In
contrast, C-RSPM maintains a high classification accuracy
of over 96% for all the training data sets, generating pre-
dictive models well fit for all the data sets, as the results
indicate. In addition, it needs to be pointed out that the
classification results for the 1-NN Best Warping Window
DTW (NNBWWDTW) and 1-NN DTW with no Warping
Window (NNDTW) methods shown in Table 1 are acquired
directly from [4] for the UCR data sets only, and no cross-
validation results are available.

Table 1. Multiclass classification accuracy
comparison among C-RSPM, SIMCA, NN,
C4.5, DT, KNN (K=5), SVM, AdaBoost with
SVM, NNBWWDTW, and NNDTW using the
Wine, Pham, and Xi data sets. Standard devi-
ations are shown in parentheses.

Accuracy (%) Wine Pham Xi
C-RSPM 96.12% 99.78% 99.05%

(+0.10) (+0.05) (+0.08)
SIMCA 87.64% 99.60% 88.68%

(+4.97) (+0.15) (+3.24)
NN 84.26% 88.00% 71.40%

(+2.20) (+3.72) (+5.35)
C4.5 93.25% 91.57% 56.28%

(+0.44) (+0.87) (+8.99)
DT 90.44% 68.33% 34.36%

(+1.97) (+6.86) (+10.93)
KNN 84.26% 87.66% 64.38%

(+5.32) (+4.07) (+5.22)
SVM 95.74% 96.33% 92.28%

(+0.20) (+1.03) (+2.16)
AdaBoost 94.74% 96.33% 93.09%
with SVM (+0.18) (+0.56) (+0.91)

NNBWWDTW N/A 98.30% 80.80%
NNDTW N/A 99.30% 80.80%

Another important observation is that C-RSPM has sig-
nificantly lower training and classification times than all the
other methods, specially when compared to those of SVM



and SIMCA, the latter whose training time requirement is
exacerbated by the use of cross-validation in the princi-
pal component selection process. In addition, C-RSPM re-
quires less memory and storage for the components required
for the classification phase, in contrast to the instance-based
methods such as NN and KNN, which require storage for
hundreds of training data instances.

3.2 Experimental results for Misuse De-
tection

Misuse detection, a specific application of multiclass su-
pervised classification, is conducted to further validate the
feasibility and effectiveness of C-RSPM in the network in-
trusion detection application domain which has gained in-
creasingly momentum and demand in recent years. The net-
work intrusion data set from the KDD Cup 1999 data [3] is
used in the experiments and is composed of four classes of
network attacks:

• Back data set: Composed of 441 training and 111 test-
ing instances.

• Teardrop data set: Composed of 194 training and 77
testing instances.

• Smurf data set: Composed of 5000 training and 23000
testing instances.

• Neptune data set: Composed of 5000 training and
5719 testing instances.

Table 2. Misuse detection accuracy compar-
ison among C-RSPM, SIMCA, C4.5, DT, NN,
KNN, SVM, and AdaBoost with SVM for the
KDD data. Standard deviations are shown in
parentheses.

Accuracy (%) KDD
C-RSPM 99.91(+0.05)%
SIMCA 95.41(+1.10)%

C4.5 92.94(+2.10)%
DT 81.79(+3.60)%
NN 99.11(+0.60)%

KNN 99.30(+0.52)%
SVM 99.70(+0.23)%

AdaBoost with SVM 99.78(+0.12)%

Table 2 shows the classification accuracy and their
corresponding standard deviations for the 10-fold cross-
validation experiments for C-RSPM, SIMCA, C4.5 deci-
sion tree, DT, NN, KNN, SVM, and AdaBoost with SVM

[14]. As shown in Table 2, C-RSPM maintains a high clas-
sification accuracy (> 99%) and outperforms all the other
selected algorithms. Furthermore, as previously mentioned,
C-RSPM was observed to require lower training and clas-
sification times than the methods used in the evaluation.
These results clearly depict the excellent performance of the
C-RSPM approach. Moreover, the promising experimental
results suggest that C-RSPM seems to offer a very suitable
lightweight and highly accurate solution to the pending high
detection rate and lightweight misuse detection method re-
quired by many intrusion detection applications [15].

4 Conclusion

A novel supervised classification approach called C-
RSPM is proposed in this paper. C-RSPM utilizes the
RSPM technique, which is based on the powerful PCA tool
and adaptive representative principal component selection
technique. Furthermore, the RSPM technique is integrated
with collateral classification and ambiguity solving modules
into the C-RSPM architecture, capable of performing high
accuracy supervised classification. The performance of the
C-RSPM supervised classification approach was evaluated
against the performance of many well known supervised
classification algorithms such as SIMCA, NN, KNN, C4.5
decision tree, Decision Table, 1-NN Best Warping Window
DTW, 1-NN DTW with no Warping Window, SVM and Ad-
aBoost with SVM using various data sets from the KDD,
UCI, and UCR archives. Experimental results have demon-
strated that the C-RSPM approach performs the best among
all the selected methods, maintaining an accuracy of over
96% on all experiments. In addition, the results also indi-
cate that the C-RSPM approach yields a predictive model
with higher stability and lower bias than the other selected
methods, capable of maintaining a high detection rate for
all the employed data sets, as opposed to the other methods,
which present large variances in their detection rates for the
same group of data sets employed. Furthermore, the novel
C-RSPM and its main component, the RSPM technique,
present high accuracy, as the experimental results indicate,
and various operational benefits such as lower memory and
processing power requirements than the other supervised
classification methods in the performance comparison, all
due to the fact that only very little information about the
principal components and computed thresholds have to be
stored for the execution of the classification stage. These
benefits provide C-RSPM with a lightweight characteristic
that makes its utilization suitable in real-time demanding
applications.
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