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Abstract

In this paper we examine the effect of collateral requirements on the prices of long-

lived assets. We consider a Lucas-style infinite-horizon exchange economy with heteroge-

nous agents and collateral constraints. There are two trees in the economy which can

be used as collateral for short-term loans. For the first tree the collateral requirement is

determined endogenously while the collateral requirement for loans on the second tree

are exogenously regulated. We show that the presence of collateral constraints and the

endogenous margin requirements for the first tree lead to large excess price-volatility of

the second tree. Changes in the regulated margin requirements for the second tree have

large effects on the volatility of both trees. While tightening margins for loans on the

second tree always decreases the price volatility of the first tree, price volatility of the

second tree might very well increase with this change. In our calibration we allow for the

possibility of disaster states. This leads to very large quantitative effects of collateral

requirements and to realistic equity risk premia. We show that our qualitative results

are robust to the actual parametrization of the economy.

Keywords: Collateral constraints, leverage, heterogeneous agents, endogenous mar-

gins, regulated collateral.
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1 Introduction

The vast majority of debt, especially if it extends over a long period of time, is guaranteed

by tangible assets called collateral. For example, residential homes serve as collateral for

short- and long-term loans to households, and investors can borrow money to establish a

position in stocks, using these as collateral. The margin requirement dictates how much

collateral one has to hold in order to borrow one dollar. Clearly these margin requirements

will have important implications for the price of collateral and in the recent financial crisis

it was argued that excessively low margin requirements were part of the cause of the crisis.

In this paper, we conduct a quantitative study on the effect of margins requirements on

asset prices.

Many previous papers have formalized the idea that borrowing on collateral might give

rise to cyclical fluctuations in real activity and enhance volatility of prices (see e.g. Geanako-

plos (1997), Kiyotaki and Moore (1997) and Aiyagari and Gertler (1999)). In these models,

it is possible to have substantial departures of the market price from the corresponding price

under frictionless markets. These results have led researchers to suggest that by managing

leverage (or the amount of collateralized borrowing), a central bank can reduce aggregate

fluctuations (see e.g. Ashcroft et al. (2010) or Geanakoplos (2010)). However, establishing

the quantitative importance of collateral requirements as a source of excess volatility has

been a challenge in the literature (see Kocherlakota (2000) or Cordoba and Ripoll (2004)).

Moreover, so far, there have been few quantitative studies that take into account that a

household can use several different assets as collateral, and that regulated margin require-

ments for loans on one asset might have important effects on the volatility of other assets

in the economy.

In this paper we consider a Lucas (1978) style exchange economy with heterogenous

agents and collateral constraints. We assume that agents can only take short positions

if they hold an infinitely-lived asset (a Lucas tree) as a long position. This model was

first analyzed by Kubler and Schmedders (2003) and subsequently used by Cao (2009) and

Brumm and Grill (2010). As in Kubler and Schmedders (2003) we assume that agents can

default on a negative bond position at any time without any utility penalties or loss of

reputation. Financial securities are therefore only traded if the promises associated with

these securities are backed by collateral. Our main focus is on an economy with two trees

which can be used as collateral for short-term loans. For the first tree the collateral require-

ment is determined endogenously while the collateral requirement for loans on the second

tree are exogenously regulated. We show that the presence of collateral constraints and the

endogenous margin requirements for the first tree lead to large excess price-volatility of the

second tree. Changes in the regulated margin requirements for the second tree have large

effects on the volatility of both trees. While tightening margins for loans on the second

tree always decreases the price volatility of the first tree, price volatility of the second tree

might very well increase with this change. In our calibration we allow for the possibility of
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disaster states. This leads to very large quantitative effects of collateral requirements and

to realistic equity risk premia.

Margin requirements are a crucial feature of our model. They determine with how much

leverage agents can invest in risky assets. Following Geanakoplos (1997) and Geanakoplos

and Zame (2002), we endogenize the margin requirements by introducing a menu of finan-

cial securities. All securities promise the same payoff, but they distinguish themselves by

their respective margin requirement. In equilibrium only some of them are traded, thereby

determining an endogenous margin requirement. This implies, of course, that for many

bonds and many next period’s shocks, the face value of the debt falls below the value of

the collateral. As a result there is default in equilibrium. However, in an extension of the

model we allow for costly default by introducing a real cost to the lender. We examine the

impact of such default costs on equilibrium trading volume and prices. As an alternative

to endogenous margin requirements, we also consider regulated margin requirements. In

particular, our two-tree economy allows us to compare a tree with endogenous margins to

a tree with regulated margins.1

In our calibration of the model there are two heterogeneous agents with Epstein-Zin

utility. They have identical elasticities of substitution (IES) but distinguish themselves by

their risk-aversion (RA). The agent with the low risk aversion is the natural buyer of risky

assets and takes on leverage to finance these investments. The agent with the high risk

aversion has a strong insurance motive against bad shocks and, therefore, is a natural buyer

of safe bonds and a natural seller of risky assets. The idea behind this model setup is as

follows. When the economy is hit with a negative shock, the collateral constraint forces

the leveraged agent to reduce consumption or to even sell risky assets to the risk-averse

agent, thereby resulting in substantial changes in the wealth distribution which in turn

affect agents’ portfolios and asset prices.

We start our analysis with an economy with a single Lucas tree that can be used as

collateral. In this baseline model we exogenously assume that collateral requirements are

set to the lowest possible level that still ensures that there is never default in equilibrium.

To obtain a sizable market price of risk, we follow the specification in Barro and Jin (2009)

and introduce the possibility of ‘disaster shocks’ into the otherwise standard calibration. In

this model, the effect of scarce collateral on the volatility of the tree is quantitatively large.

We then allow agents to choose from a menu of bonds with different margin requirements

1Depending on the asset that is used as collateral, market forces might play an important role in es-

tablishing margin requirements. For stocks the situation is not obvious: The Federal Reserve Board sets

minimum margin requirements for broker-dealer loans, using what is called Regulation T. In fact, until 1974,

the Fed considered initial margin percentages as an active component of monetary policy and changed them

fairly often (see Willen and Kubler, 2006). In the US housing market, there are no such regulations and

margins can be arbitrarily small.
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which are determined in equilibrium. Agents do trade bonds that have a positive probability

of default. However, as soon as we introduce moderate default cost, trade in these default

bonds is shut down.

The main contribution of the paper is the analysis of an economy with two trees which

have identical cash-flows but distinguish themselves by their ‘collateralizability’. We first

analyze a specification of the model in which only the first tree can be used as collateral.

In this specification, the return volatility of the collateralizable tree is significantly smaller

than that of the single tree in the baseline model. However, the volatility of the second

tree, which cannot be used as collateral, is comparable. A possible interpretation of these

findings is to identify the collateralizable tree with housing and the non-collateralizable tree

with the aggregate stock market. Using stocks as collateral is subject to many regulations

and often very costly, while individuals can easily use houses. Volatility and excess returns

for houses is much smaller than for stocks, which is in line with our findings.

We then relax the assumption of the non-collaterizability of the second tree. We assume

that a regulating agency sets an exogenous margin requirement for this tree. We find that

regulation of the second tree has a strong impact on the volatility of the first tree. In

particular, a tightening of margin requirements for the regulated tree uniformly decreases

volatility of the unregulated tree. For the regulated tree, tighter margins initially increase

the price volatility but then decrease it once margins become very large. We further show

how the regulation of margin requirements only in times when the economy exhibits strong

growth can substantially decrease volatility compared to the case of uniform regulation of

margin requirements. This result holds true both for the baseline model with a single tree

as well as the two-tree economy and suggests a strong policy recommendation for counter-

cyclical margin requirements.

Finally, we conduct a thorough sensitivity analysis and show that our qualitative results

are robust to the actual parametrization of the economy. In particular, we document that

the key effects for the two-tree economy are robust to changes in the magnitude of the

disaster shocks.

The remainder of this paper is organized as follows. We introduce the model in Section 2.

In Section 3 we discuss results for economies with a single tree. Section 4 focuses on

economies with two trees. In Section 5 we consider extensions and sensitivity analysis.

Section 6 concludes.

2 The Economic Model

We examine a model of an exchange economy that extends over an infinite time horizon

and is populated by infinitely-lived heterogeneous agents.

4



2.1 Infinite-Horizon Economy

This section describes the details of the infinite-horizon economy.

The Physical Economy

Time is indexed by t = 0, 1, 2, . . .. A time-homogeneous Markov chain of exogenous shocks

(st) takes values in the finite set S = {1, . . . , S}. The S × S Markov transition matrix is

denoted by π. We represent the evolution of time and shocks in the economy by a countably

infinite event tree Σ. The root node of the tree represents the initial shock s0. Each node

of the tree, σ ∈ Σ, describes a finite history of shocks σ = st = (s0, s1, . . . , st) and is also

called date-event. We use the symbols σ and st interchangeably. To indicate that st
′

is a

successor of st (or st itself) we write st
′

� st. We use the notation s−1 to refer to the initial

conditions of the economy prior to t = 0.

At each date-event σ ∈ Σ there is a single perishable consumption good. The economy is

populated by H agents, h ∈ H = {1, 2, . . . , H}. Agent h receives an individual endowment

in the consumption good, eh(σ) > 0, at each node. In addition, at t = 0 the agent owns

shares in Lucas trees. We interpret these Lucas trees to be physical assets such as firms,

machines, land or houses. There are A different such assets, a ∈ A = {1, 2, . . . , A}. At

the beginning of period 0, each agent h owns initial holdings θha(s
−1) ≥ 0 of tree a. We

normalize aggregate holdings in each Lucas tree, that is,
∑

h∈H θha(s
−1) = 1 for all a ∈ A.

At date-event σ, we denote agent h’s (end-of-period) holding of Lucas tree a by θha(σ).

The Lucas trees pay positive dividends da(σ) in units of the consumption good at all

date-events. We denote aggregate endowments in the economy by

ē(σ) =
∑

h∈H

eh(σ) +
∑

a∈A

da(σ).

The agents have preferences over consumption streams representable by the following re-

cursive utility function, see Epstein and Zin (1989),

Uh(c, st) =















[

ch(st)
]ρh

+ β





∑

st+1

π(st+1|st)
(

Uh(c, st+1)
)αh





ρh

αh















1

ρh

,

where 1
1−ρh

is the intertemporal elasticity of substitution (IES) and 1 − αh is the relative

risk aversion of the agent.

Security Markets

At each date-event agents can engage in security trading. Agent h can buy θha(σ) ≥ 0

shares of tree a at node σ for a price qa(σ). Agents cannot assume short positions of the
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Lucas trees. Therefore, the agents make no promises of future payments when they trade

shares of physical assets and thus there is no possibility of default.

In addition to the physical assets, there are J financial securities, j ∈ J = {1, 2, . . . , J},

available for trade. These assets are one-period securities in zero-net supply. Security j

traded at node st promises a payoff of one unit of the consumption good at each immediate

successor node st+1. We denote agent h’s (end-of-period) portfolio of financial securities

at date-event σ by φh(σ) ∈ R
J and denote the price of security j at this date-event by

pj(σ). Whenever an agent assumes a short position in a financial security j, φh
j (σ) < 0, she

promises a payment in the next period. In our economy such promises must be backed up

by collateral holdings.

Collateral and Default

At each node σ, we associate with each financial security j ∈ J a tree a(j) ∈ A and

a collateral requirement kj
a(j)(σ) > 0. If an agent sells one unit of security j, then she

is required to hold kj
a(j)(σ) units of tree a(j) as collateral. If an asset a can be used as

collateral for different financial securities, the agent is required to buy kj
a(j)(σ) shares for

each security j ∈ Ja, where Ja ⊂ J denotes the set of financial securities collateralized by

the same tree a. In the next period, the agent can default on her earlier promise. In this

case the agent loses the collateral she had to put up. In turn, the buyer of the financial

security receives this collateral associated with the initial promise.2

Since there are no penalties for default, a seller of security j at date-event st−1 defaults

on her promise at a successor node st whenever the initial promise exceeds the current value

of the collateral, that is, whenever

1 > kj
a(j)(s

t−1)
(

qa(j)(s
t) + da(j)(s

t)
)

.

The payment by a borrower of security j at node st is, therefore, always given by

fj(s
t) = min

{

1, kj
a(j)(s

t−1)
(

qa(j)(s
t) + da(j)(s

t)
)

}

.

2Following Geanakoplos and Zame (2002) we make the strong assumption that an agent can default on

individual promises without declaring personal bankruptcy and giving up all the assets he owns. There are

no penalties for default and a borrower always defaults once the value of the debt is above the value of the

collateral. Since this implies that the decision to default on a promise is independent of the debtor, we do

not need to consider pooling of contracts as in Dubey et al. (2000), even though there may be default in

equilibrium. This treatment of default is somewhat unconvincing since default does not affect a household’s

ability to borrow in the future and it does not lead to any direct reduction in consumption at the time of

default. Moreover, declaring personal bankruptcy typically results in a loss of all assets, and it is rarely

possible to default on some loans while keeping the collateral for others. However, there do exist laws for

collateralizable borrowing where default is possible without declaring bankruptcy. Examples include pawn

shops and the housing market in many US states, in which households are allowed to default on their

mortgages without defaulting on other debt. It is certainly true that the recent 2008 housing crises makes

this assumption look much better.
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Our model includes the possibility of costly default. This feature of the model is meant

to capture default costs such as legal cost or the physical deterioration of the collateral asset.

For example, it is well known that housing properties in foreclosure deteriorate because of

moral hazard, destruction, or simple neglect. We model such costs by assuming that part

of the collateral value is lost and thus the payment received by the lender is smaller than

the value of the borrower’s collateral. Specifically, the loss is proportional to the difference

between the face value of the debt and the value of collateral, that is, the loss is

lj(s
t) = λ

(

1− kj
a(j)(s

t−1)
(

qa(j)(s
t) + da(j)(s

t)
)

)

for some parameter λ ≥ 0. The resulting payment to the lender of the loan in security j

when fj(s
t) < 1 is thus given by

rj(s
t) = max

{

0, fj(s
t)− lj(s

t)
}

= max
{

0, (1 + λ)kj
a(j)(s

t−1)(qa(j)(s
t) + da(j)(s

t))− λ
}

.

If fj(s
t) = 1 then rj(s

t) = fj(s
t) = 1. This repayment function does not capture all costs

associated with default. For example, it does not allow for fixed costs which are independent

of how much the collateral value falls short of the repayment obligation. However, our

functional form offers the advantage that the resulting model remains tractable since the

repayment function is continuous in the value of the collateral.

The specification of the collateral requirements kja(st) for bond j, tree a and across date-

events st has important implications for equilibrium prices and allocations. The collateral

levels kja(st) are endogenously determined in equilibrium. In this paper we examine two

different rules for the endogenous determination of collateral levels. The first rule determines

endogenous collateral requirements along the lines of Geanakoplos and Zame (2002). The

second rule assumes exogenously regulated capital-to-value ratios which in turn lead to

endogenous collateral requirements.

Default and Endogenous Collateral Requirements

One of the contributions of this paper is to endogenize collateral requirements in an

infinite-horizon dynamic general equilibrium model. For this purpose, our first collateral

rule follows Geanakoplos (1997) and Geanakoplos and Zame (2002) who suggest a simple

and tractable way to endogenize collateral requirements. They assume that, in principle,

financial securities with any collateral requirement could be traded in equilibrium. Only

the scarcity of available collateral leads to equilibrium trade in only a small number of such

securities. Our first rule follows this approach.

Recall that the S direct successors of a node st are denoted (st, 1), . . . , (st, S) and that

Ja denotes the set of bonds collateralized by the same tree a. We define endogenous

margin requirements for bonds j ∈ Ja collateralized by the same tree a ∈ A as fol-

lows. For each shock next period, s′ ∈ S, there is at at least one bond which satisfies

kj
a(j)(s

t)
(

qa(j)(s
t, s′) + da(j)(s

t, s′)
)

= 1. For each bond in the set Ja the promised payoff
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is equal to the collateral in (generically) exactly a single state. Generically the set Ja thus

contain exactly S bonds, however the bond with the lowest collateral requirement is re-

dundant in our model because its payoff vector is collinear with the tree’s dividend vector.

(Therefore, we consider only models with at most S − 1 bonds in our numerical analysis

of the model.) The arguments in Araujo et al. (2010) show that adding additional bonds

with other collateral requirements (also only using tree a as collateral) do not change the

equilibrium allocation. In the presence of S bonds as specified above, any bond with an

intermediate collateral requirement can be replicated by holding a portfolio of the existing

bonds using the same amount of collateral.

We begin our model examinations always with economies with a single bond, J = 1,

on which agents cannot default. That is, the collateral requirements are endogenously

set to the lowest possible value which still ensures no default in the subsequent period

(this specification is similar to the collateral requirements in Kiyotaki and Moore, 1997).

Formally, the resulting condition for the collateral requirement k1
a(1)(s

t) of this bond is

k1a(1)(s
t)

(

min
st+1≻st

(

qa(1)(s
t+1) + da(1)(s

t+1)
)

)

= 1.

We refer to this bond as the ‘risk-free’ or ‘no-default’ bond.

To simplify the discussion of models with several bonds, it is useful to refer to the

different bonds by the number of states in which they default, respectively. In our model

specifications below, the set Ja always contains a no-default bond. In models with several

bonds, the second bond defaults in precisely one state, the third bond in precisely two states,

and so on. Hence we refer to these additional bonds as the 1-default bond, the 2-default

bond etc. In the absence of default costs, some of these bonds will typically be traded in

equilibrium. However, we see below that, in our calibration, rather moderate default costs

generally suffice to shut down trade in these bonds.

Financial Markets Equilibrium with Collateral

We are now in the position to formally define the notion of a financial markets equi-

librium. To simplify the statement of the definition, we assume that for a set of trees

Â ⊂ A collateral requirements are endogenous, that is for each â ∈ Â, there exist a set Jâ

of S bonds for which this tree can be used as collateral. It is helpful to define the terms

[φh
j ]

+ = max(0, φh
j ) and [φh

j ]
− = min(0, φh

j ). We denote equilibrium values of a variable x

by x̄.

Definition 1 A financial markets equilibrium for an economy with initial tree holdings (θh(s−1))h∈H

and initial shock s0 is a collection of agents’ portfolio holdings and consumption allocations as

well as security prices and collateral requirements for all trees â ∈ Â ⊂ A
(

(

θ̄h(σ), φ̄h(σ), c̄h(σ)
)

h∈H
; (q̄a(σ))a∈A , (p̄1(σ))j∈J ,

(

k̄jâ(σ)
)

j∈Jâ,â∈Â

)

σ∈Σ
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satisfying the following conditions:

(1) Markets clear:

∑

h∈H

θ̄h(σ) = 1 and
∑

h∈H

φ̄h(σ) = 0 for all σ ∈ Σ.

(2) For each agent h, the choices
(

θ̄h(σ), φ̄h(σ), c̄h(σ)
)

solve the agent’s utility maximization

problem,

max
θ≥0,φ,c≥0

Uh(c) s.t. for all st ∈ Σ

c(st) = eh(st) +
∑

j∈J

(

[φj(s
t−1)]+rj(s

t) + [φj(s
t−1)]−fj(s

t)
)

+

θh(st−1) ·
(

q̄(st) + d(st)
)

− θh(st) · q̄(st)− φh(st) · p̄(st)

0 ≤ θhâ(s
t) +

∑

j∈Jâ

k̄jâ(s
t)[φh

j (s
t)]−, for all â ∈ Â.

(3) For all st and for each â ∈ Â, there exists for each state s′ ∈ S a financial security j such

that â = a(j) and

k̄jâ(s
t)
(

q̄â(s
t, s′) + dâ(s

t, s′)
)

= 1.

The approach in Kubler and Schmedders (2003) can be used to prove existence. The

only non-standard part—besides the assumption of recursive utility, which can be handled

easily—is the assumption of default costs. Note, however, that our specification of these

costs still leaves us with a convex problem and standard arguments for continuity of best

responses go through.

To approximate equilibrium numerically, we use the algorithm in Brumm and Grill

(2010). In Appendix A, we describe the computations and the numerical error analysis in

detail. For the interpretation of the results to follow it is useful to understand the recursive

formulation of the model. The natural endogenous state-space of this economy consists of

all agents’ beginning of period financial wealth as a fraction of total financial wealth (i.e.

value of the trees cum dividends) in the economy. That is, we keep track of the current

shock st and of

ωh(st) =

∑

j∈J

(

[φh
j (s

t−1)]+rj(s
t) + [φh

j (s
t−1)]−fj(s

t)
)

+ θh(st−1) ·
(

q̄(st) + d(st)
)

∑

a∈A qa(st) + d(st)
,

across all agents h ∈ H. As in Kubler and Schmedders (2003) we assume that a recursive

equilibrium on this state space exists and compute prices, portfolios and individual con-

sumptions as a function of the exogenous shock and the distribution of financial wealth. In

our calibration we assume that shocks are iid and that these shocks only affect the aggregate

growth rate. In this case, policy- and pricing functions are independent of the exogenous
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shock, thus depend on the wealth distribution only, and our results can be easily interpreted

in terms of these functions.

Regulated Collateral Requirements

The second rule for setting collateral requirements relies on regulated capital-to-value

ratios. An agent selling one unit of bond j with price pj(s
t) must hold collateral with a

value of at least kj
a(j)(s

t)qa(j)(s
t). We can interpret the difference between the value of the

collateral holding and the debt as the amount of capital an agent must put up to obtain

the loan in form of a short position in the financial security. A (not further modeled)

regulating agency now requires debtors to hold a certain minimal amount of capital relative

to the value of the collateral they hold. Put differently, the regulator imposes a lower bound

mj

a(j)(s
t) on this capital-to-value ratio,

mj

a(j)(s
t) =

kj
a(j)(s

t)qa(j)(s
t)− pj(s

t)

kj
a(j)(s

t)qa(j)(st)
.

Using language from financial markets we also call these bounds margin requirements. If

the margin requirement is regulated to be mj

a(j)(s) in shock s ∈ S and constant over time,

then the collateral requirement at each node st is

kj
a(j)(s

t) =
pj(s

t)

qa(j)(st)(1−mj

a(j)(st))
.

Note that, contrary to the exogenous margin requirement, the resulting collateral require-

ment is endogenous since it depends on equilibrium prices. For economies with regulated

margins, condition (3) of the definition of a financial markets equilibrium must be replaced

by the following condition.

(3’) For all st and for each â ∈ Â, the collateral requirement k̄jâ(s
t) of the unique bond j

with â = a(j) and the given margin requirement mj
â(st) satisfies

k̄jâ(s
t) =

p̄j(s
t)

q̄â(st)(1−mj
â(st))

.

Sometimes people use the term margin requirement for the capital-to-loan ratio,

kjaqa(s
t)− pj(s

t)

pj(st)
,

which does not have a natural normalization and can be larger than one. On the contrary,

the margin requirement mj

a(j)(st) as defined above has a natural normalization since it is

bounded above by one.
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2.2 Calibration

This section discusses the calibration of the model’s exogenous parameters.

2.2.1 Growth rates

We consider a growth economy with stochastic growth rates. The aggregate endowment at

date-event st grows at the stochastic rate g(st+1) which (if no default cost are incurred)

only depends on the new shock st+1 ∈ S, that is, if either λ = 0 or fj(st+1) = 1 for all

j ∈ J , then
ē(st+1)

ē(st)
= g(st+1)

for all date-events st ∈ Σ. If there is default in st+1, then the endowment ē(st+1) is reduced

by the costs of default and the growth rate is reduced respectively.

There are S = 6 exogenous shocks. We declare the first three of them, s = 1, 2, 3,

to be “disasters”. We calibrate the disaster shocks to match the first three moments of

the distribution of disasters in Barro and Jin (2009). Also following Barro and Jin, we

choose transition probabilities such that the six exogenous shocks are i.i.d. The non-disaster

shocks, s = 4, 5, 6, are then calibrated such that their standard deviation matches “normal”

business cycle fluctuations with a standard deviation of 2 percent and an average growth

rate of 2.5 percent, which results in an overall average growth rate of about 2 percent. We

sometimes find it convenient to call shock s = 4 a “recession” since g(4) = 0.966 indicates

a moderate decrease in aggregate endowments. Table 1 provides the resulting growth rates

and probability distribution for the six exogenous shocks of the economy.

Shock s 1 2 3 4 5 6

g(s) 0.566 0.717 0.867 0.966 1.025 1.089

π(s) 0.005 0.005 0.024 0.065 0.836 0.065

Table 1: Growth rates and distribution of exogenous shocks

In our results sections below we report that collateral requirements have quantitatively

strong effects on equilibrium prices. Obviously, the question arises what portion of these

effects is due to the large magnitude of the disaster shocks. We address this issue in the

discussion of our results. In addition, Section 5 examines the equilibrium effects of collateral

requirements for an economy with less severe disaster shocks.

2.2.2 Endowments and dividends

There are H = 2 types of agents in the economy, the first type, h = 1, being less risk-averse

than the second. Each agent h receives a fixed share of aggregate endowments as individual

endowments, that is, eh(st) = ηhē(st). We assume that η1 = 0.092, η2 = 0.828. Agent

11



1 receives 10 percent of all individual endowments, and agent 2 receives the remaining 90

percent of all individual endowments. The remaining part of aggregate endowments enters

the economy as dividends of Lucas trees, that is, da(s
t) = δa(st)ē(s

t) and
∑

a δa(s) = 0.08

for all s ∈ S.

Several comments on the distribution of the aggregate endowment are in order. First, we

abstract from idiosyncratic income shocks because it is difficult to disentangle idiosyncratic

and aggregate shocks for a model with two types of agents. We conjecture that our effects

would likely be larger if we considered a model with a continuum of agents receiving i.i.d.

idiosyncratic shocks. Second, a dividend share of 8 percent may appear a little too low if

one interprets the tree as consisting of both the aggregate stock market as well as housing

wealth. However, this number is in line with Chien and Lustig (2009) who base their

calibration on NIPA data. We conduct some sensitivity analysis below and, in particular,

report results for the case
∑

a δa(s) = 0.15 and thus η1 = 0.085, η2 = 0.765. Third, for

simplicity we do not model trees’ and other assets’ dividends to have different stochastic

characteristics as aggregate consumption. Fourth, in Section 4 we examine an economy with

two Lucas trees. For such economies, we want to interpret the first tree as aggregate housing

and its dividends as housing services while we interpret the second tree as the aggregate

stock market. Following Cecchetti et al. (1993), we calibrate dividends to be 4 percent of

aggregate consumption which leaves housing services to be of the same size. In order to

focus on the effects of collateral and margin requirements, we assume that the two trees

have the exact same dividend payments, that is, in the absence of collateral constraints

these two trees would be identical assets. Therefore, this calibration allows for a careful

examination of the impact of different collateral properties of the two trees.

2.2.3 Utility parameters

The choice of an appropriate value for the IES is rather difficult. On the one hand, several

studies that rely on micro-data find values of about 0.2 – 0.8, see, for example, Attanasio

and Weber (1995). On the other hand, Vissing-Jorgensen and Attanasio (2003) use data

on stock owners only and conclude that the IES for such investors is likely to be above one.

Barro (2009) finds that for a successful calibration of a representative-agent asset-pricing

model the IES needs to be larger than one.

In our benchmark calibration both agents have identical IES of 1.5, that is, ρ1 = ρ2 =

1/3. In our sensitivity analysis we also consider the case of both agents having an IES of 0.5.

For this specification the quantitative results slightly change compared to the benchmark

calibration, but the qualitative insights remain intact.

Agent 1 has a risk aversion of 0.5 and so α1 = 0.5 while agent 2’s risk aversion is 6

and thus α2 = −5. Recall the weights for the two agents in the benchmark calibration,

η1 = 0.092 and η2 = 0.828. The majority of the population is therefore very risk-averse,

while 10 percent of households have low risk aversion. This heterogeneity of the risk aversion
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among the agents is the main driving force for volatility in the model. (Agent 1 wants to

hold the risky assets in the economy and leverages to do so. In a bad shock, his de-leveraging

leads to excess volatility.) In the equilibria of our model, the risky assets are mostly held

by agent 1, but there are extended periods of time where also agent 2 holds part of the

asset. Loosely speaking, we therefore choose the fraction of very risk-averse agents to match

observed stock-market participation.

Finally, we set βh = 0.95 for both h = 1, 2, which turns out to give us a good match for

the annual risk-free rate.

3 Economies with a single Lucas tree

We first consider economies with a single Lucas tree available as collateral. We show that

scarce collateral has a large effect on the price volatility of this tree and examine how the

magnitude of this effect depends on the specification of margin requirements. This section

sets the stage for our analysis of economies with two trees in Section 4.

3.1 Collateral and volatility with a single risk-free bond

The starting point of our analysis is an economy with a single Lucas tree and a single

bond. We assume that the collateral requirements on the single bond ensure that there

is no default in equilibrium and so the bond is risk-free. We calibrate this baseline model

according to the parameters presented above.

For an evaluation of the quantitative effects of scarce collateral, we benchmark our re-

sults against those for two much simpler models. The model B1: No bonds is an economy

with a single tree and no bond. Thus, agents in this economy cannot borrow. The model

B2: Unconstrained is an economy in which agents can use their entire endowment as col-

lateral. This model is equivalent to a model with natural borrowing constraints. Table 2

reports four statistics for each of the three economies. (See Appendix A for a description

of the estimation procedure.) Throughout the paper we measure tree-price volatility by

the average standard deviation of tree returns over a long horizon. Another meaningful

measure is the average one-period-ahead conditional price volatility. These two measures

are closely correlated for our models. In Table 2 we report both measures but omit the

second one in the remainder of the paper. We also report average interest rates and equity

premia. While our paper does not focus on an analysis of these measures, we do check them

because we want to ensure that our calibration delivers reasonable values for these measures.

Recall that in our calibration agents of type 1 are much less risk averse than type 2

agents. And, therefore, in the long run agent 1 holds the entire Lucas tree in model B1

with no borrowing and agent 2 effectively lives in autarchy. As a result the tree price is

determined entirely by the Euler equation of agent 1, and so the price volatility is as low as
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Model Std returns 1-period price vol. Risk-free rate EP

B1: No bonds 5.33 4.98 n/a n/a

B2: Unconstrained 5.38 5.05 5.88 0.55

Scarce Collateral 8.14 7.54 1.10 3.86

Table 2: Three Economies with a single tree (all figures in percent)

in the model with a representative agent whose preferences exhibit very low risk aversion.

The wealth distribution remains constant across all date-events. In the second benchmark

model B2 the less risk-averse agent 1 holds the entire tree during the vast majority of time

periods. A bad shock to the economy leads to shifts in the wealth distribution and a decrease

of the tree price. However, since in our calibration shocks are iid, these shifts in the wealth

distribution have generally small effects on prices (except in the very low-probability case of

several consecutive disaster shocks). The resulting price volatility in model B2 is of similar

magnitude as the volatility in B1. Moreover, in the model B2 the risk-free rate is high and

the equity premium is very low. Despite the presence of disaster shocks, the market price

of risk is low because it is borne almost entirely by agent 1 who has very low risk aversion.

Table 2 shows that both first and second moments show substantial differences when we

compare models without collateral requirements to a model with tight collateral constraints.

The perhaps most striking result reported in Table 2 is that volatility in our baseline

economy is about 50 percent larger than in the two benchmark models without borrowing

(B1: No bonds) and with natural borrowing constraints (B2: Unconstrained), respectively.

The standard deviation of returns is 8.14 percent in the baseline economy but only 5.33

percent and 5.38 percent for the benchmark models B1 and B2, respectively.3

Collateral constraints drastically increase the volatility in the standard incomplete mar-

kets model. Figure 1 shows the typical behavior of four variables in the long run during a

simulation for a time window of 200 periods. The first graph displays agent 1’s holding of

the Lucas tree. The second graph shows the normalized tree price, that is, the equilibrium

price of the tree divided by aggregate consumption in the economy. The last two graphs

show the price and agent 1’s holding of the risk-free bond, respectively. In the sample

displayed in Figure 1, the disaster shock s = 3 (smallest disaster with a drop of aggregate

3The stock return volatility in our baseline economy is considerably smaller than the volatility in U.S.

data. For comparison, Lettau and Uhlig (2002) report that the quarterly standard deviation of returns of

S&P-500 stocks in post-war US data is about 7.5 percent. Similarly, Fei et al. (2008) report an annual

volatility of about 14.8 percent for the period January 1987 to May 2008. However, it is important to note

that we want to interpret the aggregate tree as a mix of stocks and housing assets. The volatility of housing

prices is U.S. data is much lower. Fei et al. (2008) report an annual volatility of the Case/Shiller housing

price index of less than 3 percent (for January 1987 to May 2008). A similar comment applies to the equity

premium. While the average risk-free rate roughly matches U.S. data, the equity premium is substantially

lower than in the data. We discuss this point in more detail in Section 4 for an economy with two trees.

14



consumption of 13.3 percent) occurs in periods 71 and 155 while disaster shock 2 occurs in

period 168 and disaster shock 1 (worst disaster) hits the economy in period 50.
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Figure 1: Snapshot from a simulation of the baseline model

When a bad shock occurs, both the current dividend and the expected net present value

of all future dividends of the tree decrease. As a result the price of the tree drops, but in

the absence of further effects, the normalized price should remain the same since shocks are

iid. (That’s exactly what happens in the benchmark model B1.) In our baseline economy

with collateral constraints, however, additional effects occur in equilibrium. First, note

that agent 1 is typically leveraged, that is, when a bad shock occurs his beginning-of-period

financial wealth falls relative to the financial wealth of agent 2. This effect is the strongest

when the worst disaster shock 1 occurs. If agent 1 was fully leveraged in the previous

period then her wealth decreases to zero because shock 1 always determines the collateral

requirement kj
a(j).

High leverage leads to large changes in the wealth distribution when bad shocks occur.

The fact that collateral is scarce in our economy now implies that these changes in the

wealth distribution strongly affect equilibrium portfolios and prices. Since agent 1 cannot

borrow against her future labor income, she can only afford to buy a small portion of the

tree if her financial wealth is low. In equilibrium, therefore, the price has to be sufficiently

low to induce the much more risk-averse agent 2 to buy a substantial portion of the tree.

On top of that within-period effect, there is a dynamic effect at work. As agent 1 is poorer

15



today, she will also be poorer tomorrow (at least in shocks 2-6) implying that the price of the

tree tomorrow is depressed as well. This further reduces the price that agent 2 is willing to

pay for the tree today. Clearly, this dynamic effect is active not only for one but for several

periods ahead, which is displayed in Figure 1 by the slow recovery of the normalized price

of the tree after bad shocks. Figure 1 shows that the total impact of the above described

effects is very strong for shock s = 1 but also large for shock 2. Note that the prices are

normalized prices, so the drop of the actual tree price is much larger than displayed in the

figure. In disaster shock 1, agent 1 is forced to sell almost the entire tree and the normalized

price drops by almost 30 percent (the actual price drops by approximately 60 percent). In

shock 2 she sells less than half of the tree but the price effect is still substantial. In shock

3 the effect is still clearly visible, although the agent has to sell only very little of her tree.

While the effects of collateral and leverage on volatility are very large, it is important

to note that in the baseline specification of our model with a single tree and a single bond

there is no financial accelerator. Kiyotaki and Moore (1997), Aiyagari and Gertler (1999)

and others highlight the idea that in the presence of collateral constraint the fact that

the price of collateral decreases might make it more difficult for the borrower to maintain

his debt position because collateral requirements increase in anticipation of a value of the

collateral in the next period which is now lower than if the shock had not happend. In the

baseline case, this effect is absent for two reasons. First, whenever agent 1 is constrained,

the collateral requirement kj
a(j) is independent of today’s price of the collateral, it is in fact

constant. This is because the collateral requirement is determined by tomorrow’s tree price

(plus dividend) in case of the worst shock. If this shock occurs and agent 1 is constrained

today, he has to use his entire tree holding to repay his debt. Hence, no matter how large

agent 1’s tree holding is today, he ends up with zero financial wealth tomorrow. This

implies a specific price for the tree tomorrow in shock 1 which is independent of today’s

price (as long as agent 1 is constrained) and consequently a specific collateral requirement

today4. Second, an examination of the bond price in Figure 1 reveals an important general

equilibrium effect in our economy that counteracts an increase of the margin requirement.

When a bad shock occurs and the share of financial wealth of agent 1 decreases, then the

demand of the now relatively richer agent 2 for the risk-free asset increases the bond price

substantially. In fact, occasionally the interest rate even becomes negative. As a result

of the constant collateral requirement, the increase in the bond price and the decrease in

the tree price the equilibrium margin requirement actually decreases substantially in a bad

shock.

In sum, scarce collateral plays an important role for the volatility of the tree price

because it leads to large price drops in bad shocks since agent 1 cannot borrow against

future labor income. As we would expect, this effect depends on the amount of available

collateral in the economy. Figure 2 illustrates this point. The figure depicts the tree’s

4If we assume that the tree’s dividends cannot be used as collateral, this argument is no longer correct.

However, for our calibration the effects of this assumption are quantitatively negligable.
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average return volatility and the fraction of times the collateral constraint is binding for

agent 1 (i.e. the probability of constraint being binding) as a function of the dividend share

δ in the economy.
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Figure 2: Volatility as a function of the dividend share

For very small values of δ, there is only little collateral in the economy and so the

collateral constraint is almost always binding. However, the stock is so small that agent 1

does not have to sell the stock even if the economy is hit by an extremely bad aggregate

shock. The resulting return volatility is relatively small. As δ increases the probability of

the collateral constraint being binding decreases rapidly but the effects of it being binding

become larger. There is an interior maximum for the stock-return volatility around δ = 0.07.

Although the constraint is much less often binding than for a smaller tree, the trade-off

between agent 1 being forced to sell the tree and agent 1 getting into this situation leads

to maximal volatility. As δ increases further, the constraint becomes binding much less

frequently and eventually at δ = 1 the stock return volatility is very low, simply because the

collateral constraint never binds and so collateral plays no role. This situation is identical

to the case of natural borrowing constraints where a binding constraint would imply zero

consumption for the borrower.

3.2 Collateral and several bonds

In the economy with a single tree and a single bond, equilibrium margin requirements are

sufficiently high to ensure that there is no default. The bond is risk-free and always pays

its face value. We now examine whether the observed results are just a consequence of this
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restrictive assumption. In the enhanced model a menu of bonds is available for trade and

the accompanying collateral requirements are endogenously determined in equilibrium.

3.2.1 Full set of bonds without costly default

Our calibrated model with S = 6 exogenous states allows the analysis of economies with

five bonds. As explained above, these bonds are characterized by the shocks in which they

are on the ‘verge of default’ and so we call them no-default bond, 1-default bond, 2-default

bond, etc. Figure 3 shows the portfolio holdings of agent 1 as well as the normalized tree

price along the same simulated series of shocks as in Figure 1 above.

0 20 40 60 80 100 120 140 160 180 200
2

3

4

Normalized Price of Tree

0 20 40 60 80 100 120 140 160 180 200
0.8

1

1.2

Tree Holding of Agent 1

0 20 40 60 80 100 120 140 160 180 200
−2

−1

0

No−Default Bond Holding of Agent 1

0 20 40 60 80 100 120 140 160 180 200
−2

−1

0

1−Default Bond Holding of Agent 1

0 20 40 60 80 100 120 140 160 180 200
−2

−1

0

2−Default Bond Holding of Agent 1

0 20 40 60 80 100 120 140 160 180 200
−2

−1

0

3−Default Bond Holding of Agent 1

0 20 40 60 80 100 120 140 160 180 200
−2

−1

0

4−Default Bond Holding of Agent 1

Figure 3: Snapshot from a simulation of the model with 1 tree and 5 bonds

During “normal times” (that is, if the last disaster shock occurred sufficiently long ago)

only the no-default bond is traded in equilibrium. (There is a tiny amount of trade in the

1-default bond in recessions, shock 4, which is quantitatively negligible.) In normal times

the agents’ portfolios resemble those in an economy with a single risk-free bond. The risk-

averse agent 2 holds the risk-free bond while agent 1 holds the risky tree and is short in the

bond.
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Disaster shocks are the only reason for equilibrium trade in default bonds. In our

economy, the risk-averse agent 2 always seeks to buy an asset that insures him against bad

aggregate shocks — only the risk-free bond can play this role. However, the risky default

bonds play an important role once a disaster shock occurs. Agent 1 no longer needs to

sell the stock but is now able to raise additional funds by selling default bonds to agent

2. Such a trade shifts some of the tree’s risk to agent 2 who demands a high interest rate

for assuming such risk. But the default bonds are still less risky than the tree and thus

preferred by the risk-averse agent. In fact, the presence of the default bonds enables agent 1

to always hold the entire tree. Figure 3 shows that after an occurrence of the worst disaster

shock 1, which happens in period 50, agent 1 is able to hold on to the entire tree and to

sell the 4-default and the 3-default bond to agent 2. As the economy recovers, agent 1 sells

the 1-default bond to agent 2 and holds a short-position in this bond for approximately 10

periods until her wealth has recovered sufficiently so that she is able to leverage exclusively

in the default free bond.

Despite the fact that the leveraged agent 1 no longer has to sell the tree after bad

shocks, such shocks continue to have a strong impact on asset prices. Figure 3 shows that

the normalized tree price decreases in all three disaster shocks as well as in recessions, just

as in an economy with a single risk-free bond, see Figure 1. By selling the default bonds

to the risk-averse agent 2, agent 1 shifts the tree’s (tail) risk to agent 2. This circumstance

must be reflected in the equilibrium price. This reasoning becomes clear if we considered the

case of identical dividends in shocks 5 and 6. Under this scenario, the tree and the 4-default

bond have identical payoffs and hence it should be irrelevant for the price of the tree who

holds it, that is, whether agent 1 holds it financed by a short position in the 4-default bond

or agent 2 holds it directly.

Moreover, unlike in the previous model with one bond, the financial accelerator now

plays a role. A lower tree holding of agent 1 in this period reduces the price of the tree in

the next period in shocks 2-6 and hence makes it more difficult for agent 1 to hold default

bonds.

Table 3 reports the tree-return volatility for economies with 1, 2, . . . , 5 bonds, respec-

tively. The presence of a bond that defaults only in shock 1 (when the economy shrinks

by 43.4 percent) leads to a decrease in the volatility of the tree price. A third bond that

defaults in shocks 1 and 2 leads to an additional small reduction of volatility. The impact

of additional bonds is negligible. This fact is not surprising since we observed that these

bonds are rarely traded.

One bond Two bonds Three bonds Four bonds All bonds

Std returns 8.14 7.87 7.84 7.84 7.84

Table 3: The effect of endogenous margins on return volatility
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Unfortunately, the fact that investors only trade bonds with a high probability of default

during bad times seems counterfactual. Several features of our model may lead to this result.

Clearly bad times are often persistent and not iid as in our calibration. More importantly,

default is typically costly. We next show that fairly small default costs eliminate trade in

default bonds.

3.2.2 Costly default

Until now our treatment of default is somewhat unsatisfactory since it neglects both private

and social costs of default. We now introduce default costs as described in Section 2.1

above. Table 4 shows how the trading volume of the default bonds changes as a function of

the cost parameter λ. The reported trading volume is the average absolute bond holding

of agent 1 (which is the same as that of agent 2) over the simulation path.

λ = 0 λ = 0.01 λ = 0.05 λ = 0.10 λ = 0.2 λ = 0.25

Std dev tree return 7.84 7.87 7.98 8.12 8.15 8.14

Total trading 1.260 1.236 1.183 1.161 1.126 1.123

No-default bond 1.110 1.099 1.076 1.076 1.099 1.123

1-default bond 0.084 0.080 0.075 0.085 0.027 0

2-default bond 0.034 0.034 0.032 0 0 0

3-default bond 0.026 0.023 0 0 0 0

4-default bond 0.006 0 0 0 0 0

Table 4: The effect of default costs on tree-return volatility and bond trading volume

In the absence of default costs (λ = 0), the average trading volume of all bonds is

nonzero. As we observed in the previous section, it is substantial for the no-default and

1-default bond and rather small for the remaining bonds. Proportional default cost of as

low as 10 percent (λ = 0.1) result in zero trade for the bonds defaulting in two or more

states. For default costs of 25 percent, trade in any type of default bond ceases to exist.

Only the risk-free bond is traded and the resulting equilibrium prices and allocations are

identical to our baseline economy above.

Recall from the description in Section 2.1 that the cost is proportional to the difference

of the face value of the bond and the value of the underlying collateral. Therefore, a propor-

tional cost of 25 percent means a much smaller cost as a fraction of the underlying collateral.

Campbell et al. (2010) find an average ‘foreclosure discount’ of 27 percent for foreclosures

in Massachusetts from 1988 until 2008. This discount is measured as a percentage of the

total value of the house. As a percentage of the difference between the house value and face

value of the debt this figure would be substantially larger. A value of λ = 0.25, therefore,

seems certainly realistic and is, if anything, too small when we compare it to figures from

the U.S. housing market.
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Table 4 also reveals that the trading volume of the 1-default bond remains stable up

to default costs of around 10 percent when other default bonds are no longer traded. The

1-default bond remains an attractive asset in this economy even for moderate default costs.

This bond enables agent 1 to insure against the worst disaster state. This shock happens

with very low probability, but when it occurs then the financial consequences for the tree

owner are severe.

Table 4 also shows that the volatility of the tree return increases as cost of default

increases, and for sufficiently high default cost the economy is the same as the baseline

economy with a single risk-free bond. It appears that an economy with default costs of

20 percent and trade in the 1-default bond exhibits slightly higher return volatility than

the baseline economy. This feature is due to the fact that default implies real losses in

our economy which make the economic impact of the worst disaster shock even worse since

default leads to a further drop in aggregate endowment.

3.3 Volatility with regulated margin requirements

As a final step in the analysis of economies with a single collateralizable tree, we consider

the case of regulated collateral requirements as described in Section 2.1. We assume that

there is a regulatory agency setting minimal margin requirements (just as in stock markets).

We first consider margin requirements that are constant across all shocks, so mj

a(j)(s
t) does

not depend on the current date-event st. As margin requirements become larger, we observe

two opposing effects. On the one hand, the amount of leverage decreases in equilibrium

which leads to less de-leveraging in disaster shocks which in turn leads to smaller price

changes. On the other hand, the collateral constraint is more likely to become binding in

equilibrium which increases the probability of de-leveraging episodes which in turn should

lead to a higher volatility of the tree return. The solid line in Figure 4 displays the resulting

tree return volatility.

Initially, volatility increases as margin requirements increase. At a margin level of

about 70 percent, the volatility reaches its maximum. A further tightening of margins then

decreases volatility substantially. Of course, as the margin level approaches one the economy

approaches the benchmark model (B1: No bonds) without borrowing and so volatility

becomes very small.

At a margin level of 60 percent, the implied collateral requirement uniformly exceeds the

corresponding varying levels for the no-default bond under the rule of endogenous collateral

requirements in our baseline economy analyzed above. Therefore, the regulated bond is

default-free for all possible values of mj

a(j) in Figure 4. Interestingly, for values of the

margin level between 60 and 80 percent, the regulated bond leads to higher tree return

volatility than the no-default bond under the rule of endogenous collateral requirements.

As a last exercise, we examine an economy in which margins are only regulated in booms

while in recessions and disasters they are left to the market. In particular, we assume that
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Figure 4: Volatility as a function of the margin requirement

in shocks 1 through 4 collateral requirements are endogenously determined at the level

of the risk-free bond as in our baseline economy, while a regulating agency sets margin

requirements in the shocks with positive growth. We assume that the margin levels are set

to the same level in both shocks 5 and 6. The dashed line in Figure 4 shows the resulting

tree return volatility.

It is readily apparent that limiting the regulation of margin requirements to boom times

reduces the tree return volatility substantially if margin levels are sufficiently high. For

example, boom-time margin levels of 80 percent lead to a return volatility of 6.5 percent

as compared to values exceeding 8 percent when collateral requirements are determined

endogenously or margin regulation is state-independent.

Why is state-dependent regulation so much better in reducing volatility? As with state-

independent margins, agent 1 holds less leverage in good times, which leaves him with more

financial wealth if a bad shock hits. In addition, collateral constraints are now looser in

case of a bad shock and agent 1 may retain an even larger portion of the tree. In the

extreme, if margin requirements in booms are well above 80 percent, agent 1 even increases

its tree holding in case of a bad shock. This increases the relative price of the tree and thus

dampens the drop in the absolute price. All in all, setting conservative margins in good

times turns out to be a powerful tool to dampen the negative impact of bad shocks.
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4 Two trees

Up to this point our analysis focused on an economy with a single tree representing aggregate

collateralizable wealth in the economy. However, households trade in various assets and

durable goods. Some of them, e.g. houses, can be used as collateral very easily and at

comparatively low interest rates, others assets, e.g. stocks, can only be used as collateral

for loans with high margin requirements and typically very high interest rates (see Willen

and Kubler, 2006), and still others, like works of art, cannot be used as collateral at all.

These observations motivate us to examine a model with two Lucas trees. For simplicity,

we assume that the two trees have identical cash-flows and distinguish themselves only by

the extent to which they can be used as collateral. This model feature allows for a clean

analysis of the effect of collateral. We consider two different cases. First, we assume that

tree 1 can be used as collateral with endogenous margin requirements, while tree 2 cannot

be used as collateral. We then allow the second tree to serve as collateral, but we assume

that the collateral requirements on loans backed by tree 2 are exogenously regulated. In

both cases we find that the two assets’ price dynamics are substantially different, despite the

fact that they have identical cash-flows. Furthermore, we show that tightening the margin

requirements on the regulated tree has a strong impact on the return volatility of the non-

regulated tree. This effect proves to be quantitatively important. Our analysis suggests

that this effect should be carefully considered in any policy discussion on the regulation of

margin requirements.

4.1 Only one tree can be used as collateral

We first consider the case where the second tree cannot be used as collateral. As before in

an economy with a single tree, default costs of λ = 0.25 suffice to shut down all trade in

default bonds. We therefore restrict attention to an economy in which only the no-default

bond is traded. We conclude the analysis in this section below with a brief discussion of an

economy with costless default and argue that it produces similar quantitative results.

Std returns EP agg Std returns agg Risk-free rate Equity-premium

Tree 1 6.64 3.69
7.04 0.38 4.50

Tree 2 8.05 6.31

Table 5: Moments of trees’ returns (only tree 1 collateralizable)

Table 5 reports moments of the two trees’ returns as well as the interest rate and ag-

gregate moments. Observe that the two trees exhibit substantially different returns despite

the fact that the two trees have identical cash-flows. The tree that can be used as collat-

eral, tree 1, now exhibits much lower return volatility and a slightly lower expected excess

return than the single tree in the baseline economy in Section 3. The standard deviation of
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returns of the second tree is much higher than that of tree 1. In fact, it is comparable to

the corresponding value (8.14) of the single tree in the baseline economy. Turning to equity

premia, the excess return of tree 2 — the tree that cannot be used as collateral — is now

almost twice as large as it is for the single tree in the baseline economy and is similar to

figures observed in the data.

To understand the price dynamics of the two trees, we consider the analogue of Figure 1.

Figure 5 shows the time series of eight variables along ‘our’ sample path. The first two graphs

show the (normalized) price and the first agent’s holding of tree 1, respectively. The next

two graphs display the corresponding values for tree 2. The fifth and sixth graph show the

corresponding values for the no-default bond. The price and holding graphs reveal three

features of the equilibrium. First, the price volatility of tree 1 is much lower than that of

the single tree in the baseline economy. Secondly, the price volatility for tree 2 is larger than

for tree 1 and its average price is much smaller. Lastly, agent 1 holds tree 1 the entire time

(except for a tiny blip in disaster shock 1) but frequently sells tree 2. The second-to-last

graph in the figure shows the endogenous margin requirement and the last graph depicts the

collateral premium for tree 1. This quantity is the difference between the actual price of the

tree and next period’s payoff, normalized with agent 1’s marginal utilities. Whenever agent

1 is unconstrained then this value is zero. However, when agent 1 becomes constrained, the

collateral premium is significant.

Our observations lead us to a simple explanation of the first moments for the two tree

prices. Tree 1 is more valuable to agent 1 because of its collateral value — when agent 1 is

fully leveraged the value of the tree exceeds next period’s discounted (with agent 1’s state

prices) cash-flows since it provides value for agent 1 as collateral. Since both trees have

identical cash-flows, an agent can only be induced to hold tree 2 if it pays a higher average

return. The specific magnitude of the difference between the two tree prices is, of course,

a quantitative issue. In our calibration with a reasonable market price of risk, the effect

is indeed large — the average excess return of the second tree is now comparable to that

observed in U.S. stock market data.

There are several key factors that play a role for asset price volatility in the two-tree

economy. For a discussion of these factors it is helpful to consider the policy and price

functions in Figure 6. When faced with financial difficulties after a bad shock, agent 1

holds on to tree 1 for as long as possible, because this tree allows her to hold a short-

position in the bond. (In fact, as the bond-holding function of agent 1 in Figure 6 shows,

agent 2 never goes short in the bond. Therefore, the collateral value is one of the reasons

why tree 1 is much more valuable to agent 1.) So, after suffering a reduction in financial

wealth, agent 1 first sells tree 2. In fact, in our calibration agent 1 only sells a portion of

tree 1 after she sold off the entire tree 2. In our sample path this happens only after the

worst disaster shock in period 50. (Of course, the policy functions in Figure 6 show that

it would happen in a more pronounced way after two or more consecutive disaster shocks

but such a sequence has extremely low probability.) Whenever agent 1 sells a portion of a
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Figure 5: Snapshot from a simulation of the model with 2 trees and 5 bonds

risky tree to agent 2 its price must fall, just as in the single-tree baseline economy. And so

one key factor contributing to the different volatility levels of the two trees is that tree 2 is

traded much more often and in larger quantities than tree 1.

Furthermore, since tree 2 is not collateralizable, only half of the aggregate tree can be

used as collateral. This constraint limits the ability of agent 1 to leverage and consequently

makes her less vulnerable to negative aggregate shocks. This factor reduces the return

volatility of both trees.

If agent 1 holds both trees and then becomes poorer after a bad shock, the prices of

both trees fall. But since the agent first sells tree 2, the price of tree 2 falls much faster

than the price of tree 1. In fact, the price drop for tree 1 is dampened by the onset of the

collateral premium. This effect also contributes to the difference in the return volatilities

of the two trees.

Finally, there is another key effect that was not present in the one-tree baseline economy.

Now the financial accelerator plays an important role! In ‘normal times’ agent 1 holds both

trees but is fully leveraged. In a bad shock, agent 1 must sell part of tree 2 which makes
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Figure 6: Price and policy functions of the model with 2 trees and 5 bonds

him poorer in the subsequent period. This in turn increases the collateral requirement

this period, leading to an increase in the margin requirement despite the fact that the

interest rate decreases. This effect is clearly visible in the second-to-last graph of Figure 5.

Whenever a bad shock occurs the margin requirement increases.

In sum, the fact that only 4 percent of aggregate output are collateralizable in this

economy leads to a decrease in leverage and to much smaller movements in the wealth

distribution than in the baseline economy. This effect reduces the return volatility of tree

1. For tree 2 such a reduction effect is strongly counteracted through two channels. First,

the price of tree 2 is not stabilized by a collateral premium since this tree cannot be used as

collateral. Secondly, a decrease in the holdings of tree 2 leads to an increase in the margin

requirements for loans on tree 1 which in terms forces agent 1 to sell more of tree 2 (recall

that initially he does not sell tree 1, since only this tree can be used as collateral).

While we do not want to push the interpretation of our results too far, it is worthwhile

to note that a natural interpretation of the two trees is the aggregate stock market versus

the aggregate housing market. As Willen and Kubler (2006) report, it is often very difficult

to use stocks as collateral. It is clear that volatility in the stock-market is much higher than

in the housing market. This interpretation clearly should be taken with some caution, since

we do not really have a good model of the housing market — such a model would need

to include transaction costs, non-divisibilities, and certainly different cash-flow dynamics.
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But it is interesting to point out that the equity premium for tree 2 is similar to what can

be observed in the data for stock returns. Moreover, volatility of housing returns is much

smaller than that of stock returns.

We complete our discussion of the economy in which the second tree cannot be used as

collateral with a robustness check and consider the case of costless default, λ = 0. Just as

in the economy with a single tree, the default bonds are traded if the economy experiences

a disaster shock. However, trade in these bonds is typically much smaller because agent 1’s

financial wealth remains larger, as we discussed above. Overall, zero default costs lead to

very small changes in the first and second moments. Without default costs, the standard

deviation of tree 1’s return drops from 6.64% to 6.56% while the standard deviation of tree

2’s return drops from 8.05% to 7.98%.

4.2 One tree is regulated

Clearly our above assumption that tree 2 cannot be used as collateral at all is unrealistic.

Stocks can be used as collateral, however, margins are regulated and large, and interest

rates are much higher than mortgage rates. We therefore assume now that margins for tree

2 are set exogenously while collateral requirements for tree 1 are endogenous. Throughout

this section, we assume default costs of λ = 0.25 which suffices to shut down all trade in

default bonds.

4.2.1 State-independent regulation of tree 2

As in Section 3, we first consider margin requirements that are constant across states.

Clearly, if margins for tree 2 are set very high, we are back to the above case where this

tree cannot be used as collateral at all. On the other hand, if both trees are unregulated

we are back in our baseline case from Section 3 - both trees have identical volatility and

average returns. In Figure 7 we now plot the volatility of both trees’ returns as a function

of the margin set for tree 2.

Figure 7 reveals a surprising effect. In the figure, we start off with a margin requirement

of tree 2 set to 60 percent – in most states this is clearly above the unregulated margin

requirement, so the volatility of tree 2 is already higher than that of tree 1. If margin re-

quirements on tree 2 are now increased, the volatility of this tree’s return initially increases,

while the volatility of the freely collateralizable tree substantially decreases. The volatility

of tree 2 is largest when it can be used as collateral but when exogenous margin require-

ments are quite high (about 75 percent). After this, also the volatility of tree 2 decreases

until we are at margins of 100 percent which means that tree 2 cannot be used as collateral

at all and we are back to the case above.

The quantitatively most interesting case is clearly a regulated margin requirement of 75

percent. At this point, the volatility of tree 2 is above 8.6 percent while the volatility of
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Figure 7: Volatility of tree 1 and 2 as a function of the margin requirement on tree 2

tree 2 is below 7.5 percent. Overall volatility is still high, but the regulation of tree 2 has

substantial effects on its own volatility as well as on the volatility of the other, unregulated

tree.

The interpretation is clear. As tree 2 becomes more unattractive as collateral, i.e. as

margin requirements on this tree increase, agent 1 sells tree 1 less and less often and tree

2 more and more often. Tree 1’s return volatility decreases as agent 1’s ability to leverage

becomes smaller. As we saw in Section 3 above, if the total size of the tree decreases, its

volatility decreases since agent 1 can hold on to the tree even in bad shocks – this is what

happens here. The opposite is true for tree 2. Naively, one might conclude that tree 2’s

volatility increases monotonically in its margin requirement. But obviously, as the total

amount of collateral in the economy goes down, there is less leverage and fewer fire sales.

This is then true both for tree 1 and for tree 2 – as the margin requirements for tree 2

become sufficiently high, this tree is sold less and less often by agent 1.

Moreover, as the margin requirement on tree 2 becomes large, price-effects of fire sales

on this tree become smaller; With low margins, tree 2 is not only more attractive to agent

1 because of its risky payout, it is also more attractive because of its collateral premium.

Since agent 2 does not use any tree as collateral, a sale of tree 2 to agent 2 causes large

price movements.

Related to this point, it is also interesting to consider the excess returns of the two trees

as a function of the margin requirement on tree 2. Figure 8 shows that in this case the

relation is monotone for tree 2.
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Figure 8: Excess returns

As its margin requirement increases, the collateral premium and the price of the tree

decrease and the average return therefore goes up. For tree 1 average excess returns remain

more or less constant. They initially decrease slightly, then increase slightly. Aggregate

excess returns increase, but clearly the quantitatively striking effect is on the returns of tree

2. Collateral constraints and regulated margins clearly have a quantitatively huge effects

on asset prices in this economy.

4.2.2 Optimal regulation of tree 2

The above analysis shows that it is difficult to keep volatility low for both assets, if regu-

lation is state-independent and targets only one tree. With moderate margin, a change in

requirements always reduces volatility of one asset at the expense of the other. We now

analyze whether a state-dependent regulation of the second tree can solve this dilemma. Fig-

ure 9 shows that the volatilities of both assets are monotonically decreasing in the margin

requirement imposed on the regulated tree in good times (that is, in shocks 5 and 6). Hence,

increasing margins now reduces the volatilities of both assets, and it does reduce aggregate

asset market volatility much more. For instance, it drops by 4.5%, if state-dependent mar-

gin requirements are increased from 0.6 to 0.7, while such an increase would bring about a

reduction of only 2% in case of state-independent regulation. Thus, concerning regulation,

the upshot from the single tree economy is strongly confirmed by the two tree analysis:

regulation is much more efficient, if it is state-dependent.
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Figure 9: Volatility as a function of the margin requirement on tree 2 in booms

5 Sensitivity analysis and extensions

As in any quantitative study our results above hinge crucially on the parametrization of

the economy. In this section, we first discuss how our results change with other preference

parameters. Then we highlight the important role of the disaster shocks for our quantitative

results. Finally, we present an example which has less severe disaster shocks but nevertheless

exhibits strong quantitative effects of collateral constraints.

5.1 Preferences

As a robustness check for the results in our baseline model (with one tree and one bond)

from Section 3, we consider different specifications for the IES, the risk aversion and for the

discount factor, β. Obviously, changes in the IES and in the risk aversion have effects on the

risk-free rate. For these cases, we choose β so that the risk free rates remain comparable.

Recall that in our baseline model, we took (IES,RA, β) = ((1.5, 1.5), (0.5, 6), (0.95, 0.95)).

Table 6 reports asset pricing moments for various different combinations of these parameters.

For each of these specifications, we also report the standard deviation of returns for the

benchmark case B1: No bonds.

The table shows that in (P2), where the IES of both agents is set to 0.5, the volatility is

substantially lower than in the baseline case (P1). However, it is still clearly much higher

than in an economy with the same preferences but without borrowing (see column B1 of

(P2)). It seems accurate to say that for a lower IES, effects are similar, but quantitatively

less important. For low IES, there is an additional unwanted effect that as one agent holds
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(IES1, IES2), (RA1, RA2), (β1, β2) Std returns Risk-free rate EP Std in B1

(P1): (1.5,1.5),(0.5,6),(0.95,0.95) 8.14 1.10 3.86 5.33

(P2): (0.5,0.5),(0.5,6),(0.95,0.95) 7.20 1.75 4.18 5.33

(P3): (1.5,1.5),(0.5,6),(0.92,0.92) 7.70 4.07 3.77 5.51

(P4): (1.5,1.5),(0.5,6),(0.98,0.98) 8.57 -1.17 3.95 5.23

(P5): (1.5,1.5),(0.5,10),(0.95,0.95) 10.79 -8.58 12.55 5.34

(P6): (1.5,1.5),(0.5,10),(0.81,0.81) 8.50 1.25 13.36 6.24

(P7): (1.5,1.5),(0.5,4),(0.95,0.95) 6.58 1.59 4.22 5.34

(P8): (1.5,1.5),(0.5,4),(0.98,0.98) 6.97 1.18 1.73 5.22

Table 6: Sensitivity analysis for preferences

most of the wealth (i.e. the other becomes poor) asset prices increase because of the desire

of the rich agent to save. This effect is absent when the IES is set to 1.5 which we will do

for the remainder of our analysis.

Next we consider a change in the discount factor β. While one might think that this

mainly has an effect on the interest rate and only a small effect on return volatility, this turns

out to be incorrect. For the benchmark case B1 a higher β decreases return volatility simply

because it decreases levels and we report absolute volatility as opposed to the coefficient of

variation. On the other hand, return volatility in our baseline case increases substantially as

β increases, e.g. as β increases from 0.95 in (P1) to 0.98 in (P4) return volatility increases

from 8.14 to 8.47. The reason for this is simple. As β increases and the stock becomes more

expensive, it is more difficult for agent 1 to buy a significant portion of the stock when he is

in financial difficulties. This depresses the price of the stock when agent 1 is poor. Changes

in the wealth distribution which are large because agent 1 is still fully leveraged now lead

to very large swings in the tree price.

Given our intuition in Section 3 above, it seems clear that an increase in the risk aversion

of agent 2 leads to a higher price volatility and to a higher equity premium. This is strongly

confirmed by the comparison of (P1) and (P5) – however, it also leads to a collapse in

the interest rate to unrealistically low levels. In (P6) we recalibrate the model to obtain a

positive interest rate and we find that the above described effect of a small β dampens the

impact of a higher risk aversion. But still, overall volatility goes up substantially once the

risk aversion and β are changed simultaneously: For risk aversion of 4, 6, and 10 the return

volatility is 6.97, 8.14, and 8.50 respectively.

5.2 Endowments

As explained above, it is clear that without disaster shocks, our model cannot produce

realistic asset pricing moments. However, it is interesting to observe that qualitatively our

results remain similar even if shocks are less severe.
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One can imagine two ways to conduct sensitivity analysis for our shock process. First, we

will hold the magnitude of the disaster shocks constant, but reduce the overall probability

of a disaster by 50 percent, i.e. instead of setting the probabilities of shocks 1,2 and 3 to

be 0.005, 0.005 and 0.024 we put them to be 0.0025, 0.0025 and 0.012, and to make up for

that reduction we increase the probability of shock 5. We refer to this as case (E1).

Secondly, one can imagine to leave the probabilities of shocks the same but simply shift

their support. In particular, we consider the case where growth rates in shocks 1,2 and 3

are not 0.566, 0.717 and 0.867 as above but instead 0.783, 0.8585 and 0.9335. We refer to

this as case (E2). Table 7 shows the analogue of Table 6 for these two cases.

Std returns Risk-free rate Equity-premium Std in B1

Case (E1) 5.95 3.44 2.17 4.15

Case (E2) 3.92 5.97 0.36 3.51

Table 7: Sensitivity analysis for endowments

The table shows that a decrease in the probability of disaster has a relatively small effect

on volatility while a change in the support has quite a large effect. As we explained above,

the disaster states play two roles in our model. First, they lead to high excess returns of the

tree, in particular in the case where it has to be held by the risk-averse agent 2. Secondly,

they lead to endogenously high margin requirements. As one decreases the probability of

disaster, the second effect remains unchanged. In contrast, the change in the support of the

disaster shocks mitigates both effects above.

5.3 Large effects with smaller shocks

The results for the case (E2) above show that the quantitative impact of collateral con-

straints heavily depends on the size the disaster shocks. However, we now demonstrate

that even with halved disaster shocks as in (E2), there are still substantial effects. For this

purpose, we consider the case of two trees where tree 1 is collateralizable and tree 2 is not,

and assume that agent 1’s risk aversion is 10. We recalibrate beta to be 0.98, which results

in a risk free rate of 1.94. Table 8 shows that aggregate volatility with collateral constraints

is now 48% higher than in the benchmark B1. This increase is of similar magnitude as in

the baseline model. The high aggregate volatility is mostly driven by the volatility of tree

2, which increases by 95% compared to this benchmark.

Std returns EP Std returns agg Risk-free rate EP agg Std in B1

Tree 1 4.41 0.77
5.05 1.94 1.02 3.42

Tree 2 6.68 1.65

Table 8: Moments of trees’ returns (tree 1 collateralizable, tree 2 not)
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6 Conclusion

In this paper we show that collateral and margin requirements play a quantitatively im-

portant role for prices of long-lived assets. This is true even for assets that cannot be

used as collateral. In fact, somewhat surprisingly, we show that the presence of collateral

constraints has a larger effect on the volatility of non-collateralizable assets than on the

underlying collateral.

The recent financial crisis has lead researchers to suggest that central banks should

regulate collateral requirements (see e.g. Ashcroft et al. (2010) or Geanakoplos (2010)).

We show that tightening margins uniformly over the business cycle can increase the price-

volatility of the underlying collateral, but typically decreases price-volatility of other long-

lived assets in the economy that are not directly affected by the regulation. The only way

to achieve a decrease of the price volatility of all assets is to tighten margins only in booms

but leave them to market forces in recessions or crises.

Our calibration assumes the presence of disaster shocks as in Barro (2009). We provide

alternative parameterizations of preferences and endowments under which our main results

continue to hold.

Appendix

A Details on Computations

A.1 Time iteration algorithm

The algorithm used to solve all versions of the model is based on Brumm and Grill (2010).

Equilibrium policy functions are computed by iterating on the per-period equilibrium con-

ditions, which are transformed into a system of equations. We use KNITRO to solve this

system of equations for each grid point. Policy functions are approximated by piecewise

linear functions. By using fractions of financial wealth as the endogenous state variables,

the dimension of the state space is equal to the number of agents minus one. Hence with

two agents, the model has an endogenous state space of one dimension only. This makes

computations much easier than in Brumm and Grill (2010), where two and three dimen-

sional problems are solved. In particular, in one dimension reasonable accuracy may be

achieved without adapting the grid to the kinks. For the reported results we used 320 or

640 grid points depending on the complexity of the version of the model, which results

in average (relative) Euler errors with order of magnitude 10−4, while maximal errors are

about ten times higher. If the number of gridpoints is increased to a few thousands, then

Euler errors fall about one order of magnitude. However, the considered moments only

change by about 0.1 percent. Hence, using 320 or 640 points provides a solution which is

precise enough for our purposes. Compared to other models the ratio of Euler errors to

the number of grid points used might seem large. However, note that due to the number
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of assets and inequality constraints our model is numerically much harder to handle than

standard models. For example, in the version with one tree and five bonds, eleven assets

are needed (as long and short positions in bonds have to the treated as separate assets) and

we have to impose eleven inequality constraints per agent.

A.2 Simulations

The moments reported in the paper are averages of 50 different simulations with a length

of 10.000 periods each (of which the first 100 are dropped). This is enough to let the law

of large numbers do its job even for the rare disasters.

A.3 Equilibrium conditions

We state the equilibrium equations as we implemented them in Matlab for economies with

a single tree and a single bond. For our computation of financial markets equilibria we

normalized all variables by the aggregate endowment ē. To simplify the notation, we drop

the dependence on the date-event st and, in an abuse of notation, denote the normalized

parameters and variables by et, dt and ct, qt, pt, rt, ft, respectively. Similarly, we normal-

ize both the objective function and the budget constraint of agents’ utility maximization

problem. The resulting maximization problem is then as follows (index h is dropped).

max ut(ct) =
{

(ct)
ρ + β [E (ut+1gt+1)

α]
ρ

α

}
1

ρ

s.t. 0 = ct + φtpt + θtqt − et − [φt−1]
+ rt
gt

+ [φt−1]
− ft
gt

− θt−1 (qt + dt)

0 ≤ θt + kt[φt−1]
−, 0 ≤ [φt−1]

+, 0 ≤ [φt−1]
−,

The latter two inequalities are imposed because, for the computations, we treat the long

and short position in the bond, [φt−1]
+ and [φt−1]

−, as separate assets.

Let λt denote the Lagrange multiplier on the budget constraint. The first-order condition

with respect to ct is as follows,

0 = (ut)
1−ρ(ct)

ρ−1 − λt.

Next we state the first-order condition with respect to ct+1.

0 = βu1−ρ
t [E (ut+1gt+1)

α]
ρ−α

α (ut+1gt+1)
α−1 gt+1(ut+1)

1−ρ(ct+1)
ρ−1 − λt+1.

Below we need the ratio of the Lagrange multipliers,

λt+1

λt
= β [E (ut+1gt+1)

α]
ρ−α

α (ut+1)
α−ρ(gt+1)

α

(

ct+1

ct

)ρ−1

Let µt denote the multiplier for the collateral constraint and let µ̂t =
µt

λt
. We divide the

first-order condition with respect to θt,

0 = −λtqt + µt + E (λt+1 (qt+1 + dt+1))
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by λt and obtain the equation

0 = −qt + µ̂t + β [E (ut+1gt+1)
α]

ρ−α

α E

(

(ut+1)
α−ρ(gt+1)

α

(

ct+1

ct

)ρ−1

(qt+1 + dt+1)

)

Similarly, the first-order conditions for [φt−1]
+ and [φt−1]

− are as follows,

0 = −pt + ν+ + β [E (ut+1gt+1)
α]

ρ−α

α E

(

(ut+1)
α−ρ(gt+1)

α

(

ct+1

ct

)ρ−1(rt+1

gt+1

)

)

0 = −pt + µ̂tkt + ν− + β [E (ut+1gt+1)
α]

ρ−α

α E

(

(ut+1)
α−ρ(gt+1)

α

(

ct+1

ct

)ρ−1(ft+1

gt+1

)

)

,

where ν+ and ν− denote the multipliers on 0 ≤ [φt−1]
+ and 0 ≤ [φt−1]

−.
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