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ARTICLE

Antibiotic collateral sensitivity is contingent
on the repeatability of evolution
Daniel Nichol1,2,12, Joseph Rutter3, Christopher Bryant4, Andrea M. Hujer3,4, Sai Lek5, Mark D. Adams5,

Peter Jeavons1, Alexander R.A. Anderson2, Robert A. Bonomo3,4,6,7,8,9 & Jacob G. Scott 7,10,11

Antibiotic resistance represents a growing health crisis that necessitates the immediate

discovery of novel treatment strategies. One such strategy is the identification of collateral

sensitivities, wherein evolution under a first drug induces susceptibility to a second. Here,

we report that sequential drug regimens derived from in vitro evolution experiments may

have overstated therapeutic benefit, predicting a collaterally sensitive response where cross-

resistance ultimately occurs. We quantify the likelihood of this phenomenon by use of a

mathematical model parametrised with combinatorially complete fitness landscapes for

Escherichia coli. Through experimental evolution we then verify that a second drug can indeed

stochastically exhibit either increased susceptibility or increased resistance when following

a first. Genetic divergence is confirmed as the driver of this differential response through

targeted and whole genome sequencing. Taken together, these results highlight that the

success of evolutionarily-informed therapies is predicated on a rigorous probabilistic

understanding of the contingencies that arise during the evolution of drug resistance.
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T
he emergence of drug resistance is governed by Darwinian
dynamics, wherein resistant mutants arise stochastically in
a population and expand under the selective pressure of

therapy1. These evolutionary principles underpin resistance to the
presently most effective therapies for bacterial infections2, can-
cers3, viral infections4 and disparate problems such as the man-
agement of invasive species and agricultural pests5. Biological
mechanisms of drug resistance often carry a fitness cost in the
absence of the drug and further, different resistance mechanisms
can interact with one another to produce non-additive fitness
effects, a phenomenon known as epistasis6. These trade-offs can
induce rugged fitness landscapes, potentially restricting the
number of accessible evolutionary trajectories to high fitness7,8 or
rendering evolution irreversible9.

Identifying evolutionary trade-offs forms the basis of an
emerging strategy for combating drug resistance; prescribing
sequences of drugs wherein the evolution of resistance to the first
induces susceptibility to the next10–13. Where this occurs, the first
drug is said to induce collateral sensitivity in the second. Con-
versely, where the first drug induces increased resistance in the
second, collateral (or cross) resistance has occurred. Recently,
in vitro evolution experiments have been performed, in both
bacteria10,14–18 and cancers19,20, to identify drug pairs or
sequences exhibiting collateral sensitivity. One common protocol
for these experiments proceeds by culturing a population in
increasing concentrations of a drug to induce resistance, and then
assaying the susceptibility of the resultant population to a panel of
potential second-line therapies. From these experiments,
sequences or cycles of drugs in which each induces collateral
sensitivity in the next have been suggested as potential ther-
apeutic strategies to extend the therapeutic efficacy of a limited
pool of drugs10,20. For some cancer therapies, which often have
severe side-effects and high toxicity, such sequential therapies
may be the only way to combine the use of multiple drugs.

Drug pairs that are identified as collaterally sensitive in a small
number of in vitro evolutionary replicates may not in fact induce
collateral sensitivity each time they are applied. This hypothesis
arises from the observation that evolution is not necessarily
repeatable; resistance to a drug can arise through multiple dif-
ferent mechanisms, as has been observed in cancers21 and bac-
teria22. Further, one mechanism may confer resistance to a
second drug, whilst another may induce increased susceptibility,
as was recently demonstrated in a drug screen of over
3000 strains of Staphylococcus aureus23. In previous experimental
evolution studies to identify collateral sensitivity this phenom-
enon has been directly observed. For example, Barbosa et al.24

observed contrasting collateral response in evolutionary replicates
of Pseudomonas aeruginosa. Oz et al.25 observed the same phe-
nomenon in E. coli wherein a pair of evolutionary replicates
was performed under exposure to the ribosomal (30S) inhibitor
tobramycin, resulting in one exhibiting increased sensitivity to
chloramphenicol and one exhibiting increased resistance. Similar
effects are evident in cancer studies. Zhao et al.19 observed that
the sensitivity of a BCR-ABL leukaemia cell line to cabozantinib
can both increase and decrease following exposure to bosutinib,
and identified a single-nucleotide variation responsible for this
differential collateral response.

The extent of the impact of differential collateral response on
the design of sequential drug therapies is not yet fully understood.
Here, we provide a clear evolutionary explanation for differential
patterns of collateral repsonse through a combination of mathe-
matical modelling and experimental evolution. Through mathe-
matical modelling we demonstrate the extent to which the
existence of multiple evolutionary trajectories to drug resistance
can render collateral sensitivities stochastic, and discuss the
implications for in vitro experimental evolution. We next

empirically demonstrate the existence of multiple trajectories in
the evolution of E. coli through in vitro experimental evolution.
Previous studies have explored the collateral repsonse by con-
sidering all pairs from a pool of antibiotics, each with a small
number of evolutionary replicates10,14,15,17. We instead perform
60 parallel evolutionary replicates of E. coli under cefotaxime to
demonstrate the extent of heterogeneity in second-line drug
sensitivity. Through genomic sequencing we confirm that dif-
ferent mutations (i.e., different evolutionary trajectories) are
responsible for this heterogeneity. Critically, we find that col-
lateral sensitivity is never universal, and is in fact rare. Finally, we
derive collateral sensitivity likelihoods which we argue are critical
statistical benchmarks for the clinical translation of sequential
drug therapies.

Results
Mathematical modelling of evolution. The potential impact of
divergent evolution can be conceptualised in the classical fitness
landscape model of Wright26, wherein genotypes are projected
onto the two dimensional x–y plane and fitness represented as the
height above this plane. Evolution can be viewed as a stochastic
‘up–hill’ walk in this landscape wherein divergence can occur at a
saddle. Figure 1 shows such a schematic fitness landscape anno-
tated to demonstrate the capacity for divergent evolution and the
potential effects on collateral sensitivity.

Previous studies have attempted to empirically determine the
structure of the fitness landscape for a number of organisms and
under different drugs27. In these studies, a small number of
mutations associated with resistance are first identified. Strains
are engineered corresponding to all possible combinations of
presence and absence of these mutations and the fitness of each
strain is measured by a proxy value, for example minimum
inhibitory concentration (MIC) of a drug or average growth rate
under a specific dose. These measurements are combined with the
known genotypes to form a fitness landscape. However, to derive
fitness landscapes through this method, the number of strains
that must be engineered grows exponentially with the number of
mutations of interest. Thus only small, combinatorially complete,
portions of the true fitness landscape can be measured, for
example, consisting of 2–5 alleles7,27,28. Nevertheless, these
restricted fitness landscapes can provide valuable insight into
the evolution of drug resistance.

Mira et al.29 derived fitness landscapes for E. coli with all
combinations of four fitness conferring mutations (M69L, E104K,
G238S and N276D) in the TEM gene and measured fitness under
15 different β-lactam antibiotics (See Supplementary Fig. 1,
Supplementary Table 1), using the average growth rate (over 12
replicates) as a proxy of fitness. Of these 15 landscapes, 14 were
identified as having multiple local optima of fitness, indicating
the potential for the divergence of evolutionary trajectories. We
utilised these landscapes, coupled with mathematical modelling12

(see Methods), to estimate the likelihood of the different
evolutionary trajectories from a wild-type genotype (denoted
0000) to each of the fitness optima. Using this model, we
performed in silico assays for collateral sensitivity, mirroring the
approach taken by Imamovic and Sommer10 (Fig. 2). For each
drug, we first stochastically simulated an evolutionary trajectory
from the wild-type genotype to a local fitness optimum genotype
and then, for all other landscapes, compared the fitness of this
local optimum genotype to that of the wild-type. A schematic of
this simulation is shown in Fig. 2a. Figure 2b shows an example
of two evolutionary trajectories that can arise stochastically in
this model under the fitness landscape for ampicillin.

We exhaustively enumerated all tables of collateral response
that can arise under this model (see Supplementary Figs. 2–10 for
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further details). Figure 2c shows the best case (most susceptible
following evolution), worst case (highest resistance following
evolution) and mostly likely collateral response tables that arose
in this analysis, along with the mean collateral response table
(expectation of collateral response for each pair). This analysis
suggests that there is remarkable variation in collateral response
arising solely from the stochastic nature of mutation that
ultimately drives evolution under a first drug. Indeed, we find a
total of 82,944 unique tables can arise, of which the most likely
occurs with probability 0.0023. Amongst the 225 ordered drug
pairs, only 28 show a guaranteed pattern of collateral sensitivity,
whilst a further 94 show a pattern of guaranteed cross-resistance.
For 88 pairs, the first drug can induce either collateral sensitivity
or cross-resistance in the second as a result of divergent evolution
under the first drug. Critically, if a collateral response table is
generated by stochastic in silico simulation, and a collaterally
sensitive drug pair chosen at random from this table, then the
expected probability that first of these two drugs will induce
cross-resistance in the second is 0.513 (determined from 106

simulations of this process).

Experimental evolution induces heterogeneous collateral
response. The mathematical model used above represents a
simplification of biological reality as the assumption of a mono-
morphic population need not hold and the parametrisation is
made using incomplete fitness landscapes. To experimentally
validate our predictions, we verified the existence of divergent
collateral response through experimental evolution. Mirroring
previous experimental approaches10,16,18–20, we performed
in vitro evolution of E. coli (strain DH10B carrying phagemid
pBC SK(−) 198, expressing the beta-lactamase gene SHV-1) in
the presence of the β-lactam antibiotic cefotaxime. Bacterial
populations were grown using the gradient plate method with
concentrations of cefotaxime varying between approximately 0.1
and 1000 μg ml−1 and 256 μg ml−1 over a course of 10 passages
lasting 24 h (see Fig. 3a and Methods for details). In total, 60
replicates of experimental evolution were performed. We denote
the resulting populations by X1–X60. For replicates X1–X12,
aliquots were taken following each second passage and the MIC
to a panel of second-line drugs assayed. A time-series for the MIC
of X1–X12 replicates under cefotaxime is shown in Fig. 3b.

As expected, the replicates exhibit increased resistance to cefo-
taxime over the ten passages, although with varying magnitude
and different trajectories.

For each of a panel of eight second-line antibiotics (Table 1),
the MIC for the replicates X1–X60 was determined following
passage ten, in addition to the MIC for the parental strain
(Supplementary Dataset 1, Methods). Figure 4 shows how the
MICs of X1–X60 differ from the parental line. As predicted, we
find that the collateral change in sensitivity is highly hetero-
geneous, and show that both collateral sensitivity and cross-
resistance can arise to the antibiotics piperacillin (PIP), ticarcillin/
clavulanate (TCC) and ampicillin/sulbactam (AMS).

Genomic profiling reveals divergent evolution. Differential
patterns of drug resistance could be driven by the different
replicates having experienced different numbers of sequential
mutations along a single trajectory wherein each induces a shift in
response (temporal collateral sensitivity19), by evolutionary
divergence at a branching point in the landscape or by non-
genetic mechanisms of resistance. To elucidate the underlying
mechanisms, we first performed targeted sequencing of the SHV
gene for each of the 10 passage time points for 12 evolutionary
replicates (X1–X12) (Fig. 3b). Through this analysis we identified
five variants of SHV-1 amongst the 12 replicates. X1, X5, X7–X9
and X11 all possess wild-type SHV-1, X2 possesses the substitu-
tion G242S, X3 possesses G238C, X4 and X6 both possess G238A,
and X10 and X12 both possess G238S. This analysis revealed no
evidence of double substitutions in SHV, indicating a minimum
of four fitness conferring substitutions that can occur in SHV-1
during exposure to cefotaxime, and confirming the existence of
a multi-dimensional evolutionary branching point in the fitness
landscape. Further, the sensitivity of the population to a second
drug appears to be (at least partially) dependent on which of these
substitutions occurs (Fig. 3, 4). For example, replicate X3 (har-
bouring G238C) exhibits a significant increase in susceptibility
to TIC, PIP and SAM, whilst those replicates found to harbour
wild-type SHV-1, or the other SNVs, exhibit either cross-
resistance or no significant change in susceptibility to these drugs.

Through targeted sequencing of SHV alone we cannot not
exclude the possibility that mutations in other genes, or large
scale genomic alterations such as insertions or deletions, drive
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Fig. 1 Evolutionary saddle points can drive divergent collateral response. a A schematic fitness landscape model in which divergent evolution can occur.

Following Wright26, the x–y plane represents the genotypes and the height of the landscape above this plane represents fitness. Two evolutionary

trajectories, both starting from a wild-type genotype (yellow circle), are shown. These trajectories diverge at an evolutionary saddle point (blue triangle)

and terminate at distinct local optima of fitness (purple pentagon, green star). As the saddle point exists, evolutionary trajectories need not be repeatable.

b Schematic landscapes for a potential follow-up drug are shown, the collateral response can be (from left to right): always cross-resistant, always

collaterally sensitive, or dependent on the evolutionary trajectory that occurs stochastically under the first drug. c A potential evolutionary branching point

in the TEM gene of E. coli identified in the fitness landscape for cefotaxime derived by Mira et al.29
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further divergence in collateral response. To explore whether
additional background mutations arose during selection, we
produced draft genome sequences for the replicates X1–X12
after passage 10 and looked for evidence of additional mutations.
This genomic data confirmed the SHV-1 mutations found by
sequencing of PCR products as described above. Nine of the
twelve replicates contained additional mutations that include
single-nucleotide variants (SNVs), large (>5 kb) deletions, and
replicate-specific sites for insertion of IS1D (Table 2). OmpC
encodes a membrane surface protein and envZ is responsible for
osmoregulation by regulation of the expression of OmpC and
other membrane proteins30. This suggests that drug resistance in
X8, X9, X10 and X11 may be driven by mutations that result in
restricted drug uptake at the cell membrane. Indeed, mutations

in envZ and cell surface proteins have been previously implicated
as drivers of antibiotic resistance31–33. Stress-regulation through
osmoregulation has been previously identified as inducing a
trade-off with nutritional competence34, suggesting that although
these replicates do not exhibit collateral sensitivity, the resistant
cells could face a fitness cost in the absence of drug. Similar
patterns of fitness trade-off have been exploited in cancer
treatments by using dose-modulation (adaptive) therapies that
extend survival by inducing competition between sensitive and
resistance cells35–37

We conclude that mutations in SHV-1 are the primary drivers
of cefotaxime resistance as they are associated with the most
substantial increases in MIC. For example, for replicate X12,
which exhibits the highest endpoint MIC, no additional
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Fig. 2 Mathematical modelling predicts highly variable collateral response. a A schematic of the model used to derive collateral response. Sequential

mutations are simulated to fix in the population until a local optimum genotype arises. The fitness of this resultant genotype is compared to the fitness of

the wild-type genotype for each of the panel of antibiotics. b The landscape for ampicillin derived by Mira et al.29 represented as a graph of genotypes.

Arrows indicate fitness conferring mutations between genotypes represented as nodes. Blue nodes indicate genotypes from which evolution can

stochastically diverge, grey nodes indicate genotypes from which there is only a single fitness conferring mutation. Squares indicate local optima of fitness

with colour indicating the ordering of fitness amongst these optima (darker red indicates higher fitness). Two divergent evolutionary trajectories, in the

sense of the model shown schematically in (a), are highlighted by coloured arrows. c–f The average, most likely, best case, and worst case tables of

collateral response derived through stochastic simulation. Columns indicate the drug landscape under which the simulation was performed and rows

indicate the follow-up drug under which the fold-change from wild-type susceptibility is calculated. Bar charts indicate, for each labelled first drug, the

number of follow-up drugs exhibiting collateral sensitivity (blue) or cross-resistance (red) in each case. CS - collaterally sensitive, CR - cross resistant
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Table 1 Antibiotic drugs used in this study

Antibiotic Abbreviation Antibiotic group Notes

Cefotaxime CTX Cephalosporin

Ciprofloxacin CIP Fluoroquinolone

Ampicillin/sulbactam SAM β-lactam combination 2:1 ratio of ampicillin to sulbactam

Gentamicin GNT Aminoglycoside

Ticarcillin/clavulanate TIC β-lactam combination 2 μg ml−1 clavulanate

Phosphomycin PMC Phosphomycin

Ceftolozane/tazobactam CFT β-lactam combination 2:1 ratio of ceftolozane to tazobactam

Piperacillin PIP Penicillin

Cefazolin CFZ Cephalosporin
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Fig. 3 Experimental evolution reveals divergent collateral response. a A schematic of the evolutionary experiment. E. coli were grown using the gradient

plate method and passaged every 24 h for a total of 10 passages. Sixty replicates of experimental evolution were performed. b The MIC for 12 replicates
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mutations were detected. In contrast, X1, X5, X8, X9 and X11 all
had genomic mutations, lacked SHV-1 variants and had the
lowest final cefotaxime MIC. We excluded the possibility of
amplifications of SHV-1 by consideration of read depth ratios.
The ratio of reads mapped to the gene and reads mapped to the
plasmid backbone was very similar across all samples. The ratio of
plasmid reads to chromosomal reads did differ across samples,
but the fraction of plasmid-derived reads did not correlate with
the MIC for cefotaxime (Supplementary Dataset 2) and is more
likely due to variation in extraction efficiency for chromosomal
versus plasmid DNA. We excluded the possibility of amplifica-
tions or deletions in chromosomal genes by consideration of read
depth ratios (Supplementary Fig. 11).

We note that X7 exhibits an increase in resistance to
cefotaxime without any associated genomic alterations. Similarly

X1, X5, X9 and X12 exhibit mutations, but none that are
known to be associated with antibiotic resistance. Thus, we can
infer that physiological adaptation or epigenetic adaptation may
also be driving resistance to cefotaxime.

Collateral sensitivity likelihoods. Our experimental results
demonstrate that the evolution of antibiotic resistance is non-
repeatable, and that the efficacy of a second-line drug can depend
on the specific evolutionary trajectory that occurs under a first. As
such, where a pair of drugs exhibit collateral sensitivity in a small
number of experimental replicates, it need not be the case that
collateral sensitivity always occurs. Rather than give up entirely
on the concept of collateral sensitivity between drugs, we propose
that collateral sensitivity likelihoods (CSLs) should be derived38.
By deriving the likelihood of collateral sensitivity between drugs,
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we can quantify the risk associated with different drug sequences.
Figure 5a shows an example table of collateral sensitivity like-
lihoods derived from the in silico evolution model. We note
that whilst there exist 28 drug pairs exhibiting guaranteed col-
lateral sensitivity (P= 1.0, right), there also 16 others with like-
lihood 1.0 > P > 0.75 of collateral sensitivity. Where collateral
sensitivity is assayed from a small number of experimental evo-
lution replicates, these drug pairs may appear to exhibit universal
collateral sensitivity and could thus unexpectedly fail stochasti-
cally. Conversely, if no universally collaterally sensitive drugs
were known, drug pairs exhibiting a high likelihood of collateral
sensitivity might represent the best option available.

Figure 5b shows the experimentally derived CSLs for antibiotics
administered following cefotaxime. We find that collateral
sensitivity is rare, with P ¼ 1

30
for TIC being the most likely. If

we also consider the likelihood that sensitivity of the second-line
drug is unchanged, then it is clear that PIP or gentamicin (GNT)
are the best second-line drugs following cefotaxime (amongst
those we have assayed). Conversely, cross-resistance is near
universal in cefazolin and ceftolozane/tazobactam. For puromycin
and ampicllin/sulbactam (SAM), we estimate that cross-resistance
occurs with probability P > 0.5, but that the probability of no
change or collateral sensitivity is still high (P > 0.3 in both cases).
Drugs such as these highlight the importance of deriving collateral
sensitivity likelihoods by means of multiple evolutionary repli-
cates, as a single evolutionary replicate may identify unchanged
sensitivity where cross-resistance is likely.

Discussion
We have demonstrated the existence of an evolutionary branching
point in the fitness landscape of E. coli under cefotaxime that can
induce divergent evolution and differential collateral response to
second-line antibiotics. By means of 60 replicates of experimental
evolution, we have estimated the likelihood of collateral sensitivity
in each of eight second-line therapies. Critically, we find that col-
lateral sensitivity is never universal, and is in fact rare. Furthermore,
by consideration of a mathematical model of evolution para-
metrised by small, combinatorially complete fitness landscapes, we
have highlighted the extent and importance of evolutionary diver-
gence. This modelling highlights that divergent collateral response is
likely common (occurring in 14/15 drugs for which empirical
landscapes were derived) and further, that even where collateral
sensitivity is reported from a small number of evolutionary repli-
cates, cross-resistance can still occur with high likelihood.

Taken together, our results indicate that we must take care
when interpreting collateral sensitivity arising in low-throughput
evolution experiments. To this end, we propose that collateral
sensitivity likelihoods should be evaluated by use of multiple
parallel evolutionary replicates to better capture the inherent
stochasticity of evolution. The high-throughput experimental
evolution necessary to accurately evaluate CSLs between many
drug pairs could be facilitated by automated cell culture systems,
such as the morbidostat developed by Toprak et al.39, which
incorporates automated optical density measurements and drug
delivery to track and manipulate evolution.

It should be noted that although the evolution of pathological
bacteria within the clinic is most likely stochastic, it is unclear
whether the gradient plate system model used in the present study,
and others10, correctly captures this stochasticity. The gradient plate
method proceeds by serial replating of bacterial populations that
induces population bottlenecks and strong selection. This mode
of population dynamics clearly differs from that which E. coli
experience naturally. We note that our experimental results are
derived only for the gradient plate method and that other protocols
without serial passaging have also been explored13. Such experi-
mental designs may exhibit less stochastic dynamics and thus
permit the derivation of collateral sensitivity likelihoods with fewer
replicates. Alternatively, it may be the case that additional sto-
chasticity is introduced as evolutionary phenomena such as clonal
interference, wherein multiple fitter clones compete, do not occur.
To empirically determine collateral sensitivity likelihoods it may be
the case that we must employ novel in vitro experimental techni-
ques to more closely match in vivo dynamics. Here too, automated
culture systems such as the morbidostat could help, as automated
changes to the drug concentration can prevent the bacterial
population expanding too rapidly, mitigating the need for serial
replating and permitting high-throughput experiments.

The mathematical model we have presented does not capture
the full complexity of evolution. For example, we do not account
for deletions, insertions or duplications of genes such as SHV.
Nevertheless, this model still proves useful in providing intuition
about the extent to which stochasticity can drive differential
collateral response. We can expect the introduction of additional
mutational complexity to introduce further stochasticity. An
immediate improvement to our modelling would be to extend
the model to account for alternative population dynamics; for
example, permitting heterogeneous populations, variable popu-
lation sizes or drug pharmacodynamics. A further complication

Table 2 Mutations identified through whole-genome sequencing

Replicate SHV-1

SNVs

Chromosomal SNVs Deletions (ranges) IS1D insertions

Parental 2099555 T > C (intergenic yedK/yedL)

X1p10 4166399–4177327

X2p10 G242S

X3p10 G238C 3079240–3088253 IS1D at 2849873 interrupts CP4-57 prophage predicted

protein; 580 bp deletion adjacent

X4p10 G238A 3892703–3903946

2896300–2906979

X5p10 IS1D at 3506340 interrupts dusB

X6p10 G238A

X7p10

X8p10 2401329 T > A (ompC Q144V)

X9p10 IS1D at 2401801 (upstream of ompC)

X10p10 G238S 3630620 C > A (envZ R339L); 771931 C >

T (speF L115L)

4387943–4410705 IS1D at 4410705 interrupts rpiB; 14 kb deletion adjacent

X11p10 3630620 C > A (envZ R339L) 2896300–2906979 IS1D at 2906979 interrupts gshA; 12 kb deletion adjacent

X12p10 G238S

The single-nucleotide variants (SNVs), insertions and deletions identified through whole-genome sequencing of the replicates X1–X12 following passage 10 are listed
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is that drug resistance can arise by physiological adaptions in
addition to genetic mutation, which our mathematical modelling
does not take into account. We see evidence for physiological
adaption in the evolution of the replicate X7 which exhibits
increased resistance to cefotaxime without associated mutations.
Further, changes in sensitivity arising from such phenotypic
plasticity may be reversible over short time scales20. Ultimately,
by the use of extended mathematical models we may be able to
better simulate in vitro experiments in order to understand how
generalisable they are to in situ evolutionary dynamics40.

As an alternative to high-throughput evolutionary experiments,
we note that drug sequences are frequently prescribed in the
clinic. Thus, the distributed collection of matched pre- and post-
therapy drug sensitivity assays, potentially coupled with genomic
sequencing where this is feasible, could provide sufficient data to
determine CSLs. This approach is particularly appealing as the
CSLs derived would not be subject to the caveats regarding
experimentally derived measures of collateral sensitivities out-
lined above. Further, clinically derived CSLs would readily
account for non-genetic adaptations and inter-patient variabilities
in physiology that may impact drug sensitivities. A similar
approach has already been employed in the treatment of HIV to
monitor the evolution of drug resistance41,42.

Regardless of the approach taken to derive CSLs, what is clear is
that we must move beyond the present methodology of designing
drug sequences through low-replicate-number experimental evo-
lution, and towards an evolutionarily informed strategy that
explicitly accounts for the inherent stochasticity of evolution.

Methods
Mathematical modelling of evolution. The probabilities for evolutionary trajec-
tories through the empirically derived fitness landscapes were calculated from a
previously published mathematical model12. Briefly, the population is assumed to
be isogenic and subject to strong selection weak mutation evolutionary dynamics.
Thus, the population genotype (taken from domain {0, 1}4) is modelled as
periodically replaced by a fitter (as determined by the landscape) neighbouring
genotype (defined as any genotype whose Hamming distance from the population
genotype is equal to one). This process is stochastic and the likelihood of a
genotype, j, replacing the present population genotype, i, is given by

Pði ! jÞ ¼

ðf ðjÞ�f ðiÞÞr
P

g 2 f0; 1gN ;Hamði; gÞ ¼ 1

f ðgÞ � f ðiÞ>0

ðf ðgÞ�f ðiÞÞr
if f ðjÞ>f ðiÞ andHam ði; jÞ ¼ 1

0 otherwise:

0

B

B

B

B

@

ð1Þ

Where no such fitter neighbour exists, the process is terminated. The value of r
determines the extent to which the fitness benefit of a mutation biases the
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Fig. 5 Collateral sensitivity likelihoods. a (Left) The table of collateral sensitivity likelihoods (CSLs) derived from the mathematical model. Each entry
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P= 1.0 (top) and P > 0.75 (bottom) probability of inducing collateral sensitivity. b The estimated likelihoods for collateral sensitivity, cross-resistance or no

change in sensitivity derived from the 60 replicates of experimental evolution
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likelihood that it becomes the next population genotype. We take r= 0, corre-
sponding to fixation of the first arising resistance conferring mutation, but our
results are robust to changes in r (see Supplementary Note 1 for details).

For the simulations of in vitro evolutionary experiments, we assume an initial
genotype of g0= 0000 and determine the final population genotype by sampling
from the model until termination at a local optimum of fitness, say g*. Simulated
collateral response was calculated as the fold difference between g0 and g* in a
second fitness landscape. Collateral response outcomes for all drug pairs are shown
in Supplementary Figs. 2–10.

Experimental adaptation to cefotaxime. All 60 evolutionary replicates were
derived from E. coli DH10B carrying phagemid pBC SK(−) expressing the β-
lactamase gene SHV-143. The SHV-1 β-lactamase gene was subcloned into pBC SK
(−) (Stratagene) from a clinical strain of Klebsiella pneumoniae 15571. In brief, a
1384 bp ScaI-ClaI DNA fragment containing the upstream flanking sequence,
promoter, ribosomal binding site and intact open reading frame was cloned into
pBC SK(−) at the EcoRV-ClaI sites. This clone was transformed into E. coli
DH10B (ElectroMAX, Invitrogen).

Using a spiral plater, cefotaxime solutions were applied to Mueller Hinton
(MH) agar plates in a continuous, logarithmic dilution to achieve a radial
concentration gradient of antibiotic from approximately 0.1–1000 μg ml−1. E. coli
DH10B pBCSK(−) blaSHV-1 colonies were suspended to a concentration of
7log10 CFUml−1 in MH broth. Antibiotic plates were then swabbed along the
antibiotic gradient with the bacterial suspension. Plates were incubated overnight at
37 °C. The most resistant colonies, as measured by the distance of growth along the
gradient, were resuspended and used to swab a freshly prepared gradient plate. The
process was repeated for a total of ten passages. The entire experiment was
completed 60 times using the same parental strain to generate the cefotaxime
resistance replicates X1–X60.

Determination of minimum inhibitory concentration. The minimum inhibitory
concentration of each antibiotic was determined for both the parent strain and the
cefotaxime resistant replicates according to guidelines outlined by the Clinical and
314 Laboratory Standards Institute44. Briefly, bacterial strains were grown 18–20 h
in MH broth in a shaking incubator at 37 °C. Cultures were diluted and an
inoculum replicator used was to deliver 104CFU to the surface of MH agar plates
containing antibiotic. Plates were incubated at 37 °C for 16–20 h. The MIC was
taken as the lowest concentration of antibiotic that completely inhibited growth.
MICs were assayed in triplicate as series of twofold dilutions. Where the MIC
exceeded the maximum concentration considered, 4096 μg ml−1, the precise value
was not determined and a lower bound MIC of ≥8192 μg ml−1 was taken.

The MIC was determined from the replicates by maximum likelihood
estimation using a statistical model outlined by Weinreich et al.7. Briefly, we
assume that the jth log2 transformed MIC measurement for the ith evolutionary
replicate, under the drug d, denoted xdi;j , is determined as

xdi;j ¼ md
i þ ϵi;j;d ; ð2Þ

where ϵi;j;d ¼ þ1; 0;�1 with probability e/2, 1− e, e/2, respectively. Here, each md
i

denotes the true MIC for the ith replicate (with i= 0 denoting the parental line)
and e denotes the likelihood of measurement error. We assume e is fixed across
technical replicates, evolutionary replicates and drugs. Note the assumption that we
never erroneously take a measurement that differs from the true MIC by greater
than a factor of two. This is justified by noting that in no instance do the maximum
and minimum MICs measured in our analysis differ by greater than 4× (see
Supplementary Dataset 1).

Maximum likelihood estimates (mle) for md
i are used as the MICs in our

analysis. The likelihood function is given by

L x10;1 ¼ x960;3jm
1
1 ¼m9

60; e
� �

¼
Q

9

d¼1

Q

60

i¼0

Q

3

j¼1

ð1� eÞδxdi;j ;md
i

�

þ e
2
δxd

i;j
;md
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e
2
δxd

i;j
;md

i
�1

�

;

ð3Þ

where δ denotes the Kronecker delta function. By observation, the mle for each md
i

is given by the median of xdi;1 , x
d
i;2 and xdi;3 , except in the case that two of these

values are precisely 4× or 1/4× the other, in which case the mle is the mid-point
between the maximum and minimum. Letting r denote the number of replicate/
drug combinations in which all three measurements equal the mle, s denote the
number in which 2/3 measurements equal the mle, t the number in which 1/3 equal
the mle and u the number in which 0/3 equal the mle. Then the mle for e is
given by

e ¼
sþ 2t þ 3u

3ðr þ sþ t þ uÞ
: ð4Þ

This identity can be verified by first principles (by taking the derivative of the
likelihood function) but is also quite intuitive—it is simply the proportion of
measurements that differ from the inferred mle for the MIC. In our experiment,
r= 338, s= 196, t= 11 and u= 4, which yields an mle for the measurement error
rate of e= 0.14.

Collateral sensitivity analysis and significance testing. To determine collateral
sensitivity (or cross-resistance) we determined which evolutionary replicates
exhibited a significantly different MIC from the parental line via a likelihood ratio
test. In total, 60 comparisons were performed for each of the 9 drugs, yielding a
total of 540 comparisons. A Bonferroni correction was used to account for multiple
hypothesis testing. For those replicates exhibiting a significant (p < 0.05/540)
change in MIC, the collateral response was determined as

CR ¼ md
i �md

0 : ð5Þ

Otherwise, we set CR= 0.

Targeted sequencing of SHV. Plasmid DNA was isolated using the Wizard Plus
Minipreps DNA purification systems (Promega). Sequencing of the SHV gene was
performed using M13 primers (MCLab, Harbor Way, CA).

Whole-genome sequencing. For genome sequencing, total DNA was prepared
using MasterPure Complete DNA Purification Kit (Epicentre; Madison, Wiscon-
sin). NexteraXT libraries were prepared and sequenced on an Illumina NextSeq
500 at the Genomics Core at Case Western Reserve University. Paired sequence
reads were mapped using bwa-mem to the DH10B genome (accession
CP000948.1), the pBC SK(−) plasmid (https://www.novoprolabs.com/vector/
V12548), and the SHV-1 gene (accession JX268740.1). Reads were also assembled
into contigs using velvet45. Three approaches were used to identify de novo
mutations. First, SNVs were called using the mapped reads using the Genome
Analysis Toolkit (GATK)46. Second, large deletions were identified using a com-
bination of detection of low-coverage regions of the reference based on read
mapping results and BLAST searches between the DH10B reference sequence and
the contigs. Insertion sequence (IS) elements present in the DH10B genome were
identified using ISfinder47 and locations for IS elements were mapped in the
contigs using ISseeker48.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All MIC measurements are available in Supplementary Dataset 1. All sequencing
data are deposited to the NCBI sequence read archive under accession code
PRJNA515080. The Python code used in the mathematical modelling and statistical
analyses are available at: https://github.com/Daniel-Nichol/
CollateralSensitivityRepeatability.
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