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Abstract—We deployed 72 sensors of 10 modalities in 15
wireless and wired networked sensor systems in the environment,
in objects, and on the body to create a sensor-rich environment
for the machine recognition of human activities. We acquired
data from 12 subjects performing morning activities, yielding
over 25 hours of sensor data. We report the number of activity
occurrences observed during post-processing, and estimate that
over 13000 and 14000 object and environment interactions
occurred. We describe the networked sensor setup and the
methodology for data acquisition, synchronization and curation.
We report on the challenges and outline lessons learned and best
practice for similar large scale deployments of heterogeneous
networked sensor systems. We evaluate data acquisition quality
for on-body and object integrated wireless sensors; there is less
than 2.5% packet loss after tuning. We outline our use of the
dataset to develop new sensor network self-organization princi-
ples and machine learning techniques for activity recognition in
opportunistic sensor configurations. Eventually this dataset will
be made public.

I. INTRODUCTION

Sensor networks (integrated into objects, on body or in the

environment) allow to sense the physical world and persons

acting in it [1], [2]. In wearable and pervasive computing,

this allows to detect the user’s context and provide ambient

intelligence environments or smart assistance when and where

users need it, proactively with minimal interaction. Human

activities and gestures are important aspects of context. Ap-

plications include gesture-based human-computer interaction,

healthcare [3], or industrial workers [4], and is key to many

other intelligent environments [5].

A. Problem statement

The prevailing activity recognition approach is to deploy

application-specific sensors at well defined locations. This is

often not desirable or tedious. Users are at times in highly

instrumented environments and at other times in places with

little sensor infrastructure. Ensuring that sensors are placed on-

body at precise locations day in, day out is cumbersome. Users

already (or soon will) carry many sensor enabled devices,

such as mobile phones (e.g. with GPS and motion sensors),

headsets, or intelligent motion-sensing garments. As the user

changes location, leaves devices behind, picks up new ones

and changes her outfit, the sensing environment changes.

We envision activity recognition from opportunistically

discovered sensors (opportunistic sensor configurations). A

number of approaches exist for the coordinated emergence of

sensing networks [6], [7]. However, interpreting the sensor

data remains a challenge, as there is no a-priori knowledge

about number, kind or placement of discovered sensors. Thus,

the mapping between sensor signals and activities cannot be

learned at design time. Within the EU project OPPORTUNITY

we investigate how to address these challenges [8].

In order to characterize these methods, empirical validation

is necessary against a reference baseline. Thus, we set out to

acquire a large scale multimodal data set of naturalistic human

activities in a sensor rich environment. Various combinations

of opportunistic methods and/or available sensors (simulating

opportunistic sensor configurations) can then be benchmarked.

B. Paper contribution

We report on the acquisition of a dataset of naturalistic

human activities in a sensor rich environment: a room sim-

ulating a studio flat with kitchen, deckchair, and outdoor

access where subjects performed daily morning activities. 15

networked sensor systems were deployed, with 72 sensors of

10 modalities, integrated in the environment, in objects, and on

the body. It is an example of the deployment of a large number

of networked sensor systems of different origins (proprietary

and custom, from different manufacturers or universities) for

the application domain of activity recognition.

The main contributions are:

• A dataset of complex, interleaved and hierarchical nat-

uralistic activities, with a particularly large number of



atomic activities (more than 27’000), collected in a very

rich sensor environment, compared to other datasets. This

makes this dataset well suited to benchmark various

activity recognition approaches, and to investigate e.g.

multimodal data fusion, reasoning, or activity and sce-

nario modeling. This dataset will eventually be publicly

available with reference to the original paper (this article).

• A description of the approach, lessons learned, and

best practices for the deployment and data acquisition

from similar complex deployments of heterogeneous net-

worked sensor systems, with emphasis on the sensor

environment setup, and data management process (e.g.

synchronization, curation, distribution).

We present a first data quality evaluation for 12 on-body and

12 object integrated wireless motion sensors and we report on

the number of activity occurrences.

II. STATE OF THE ART

A. Activity recognition in multimodal sensor networks

Many sensors can be used for activity recognition (table

I). Sensor networks enabling node mobility allow to use a

combination of on-body, object, and ambient sensors. Multiple

sensors are usually beneficial: i) some modalities or sensor

placement may be more suitable for some activities [4]; ii)

fusing the decision of multiple sensor specific classifiers may

outperform a single classifier [9]. Usually machine learning is

used to interpret sensed data into activities. During a training

phase, the user(s) performs multiple times the activities of

interest. Then, toolboxes such as WEKA1 may be used to

train classifiers to recognize the signal templates of interest.

Network-oriented data processing toolboxes such as the CRN

Toolbox [10], TITAN [11] or SPINE [12] can then execute the

recognition algorithms.

B. Datasets for activity recognition

A few of the more known datasets are: the PlaceLab dataset,

focusing on ambient and object sensing [13]; Van Kasteren’s

dataset [14] with particularly long recordings (month-long)

but with fewer sensors, and the Darmstadt routine dataset

used for unsupervised activity pattern discovery [15], that is a

long recording from body activity collected by the Porcupine

system [16]. The TUM Kitchen data set was recorded for

video-based activity recognition [17]. It also contains RFID

and reed switch data, but it does not include on-body sensors.

Most of the existing datasets are not sufficiently rich to

investigate opportunistic activity recognition, where a high

number of sensors is required on the body, in objects and

in the environment, with a high number of activity instances.

C. Context recognition in opportunistic sensor configurations

Within the EU FP7 FET-Open project OPPORTUNITY,

we develop mobile systems to recognize human activity in

opportunistic sensor setups [8]. We envision developments

along self-organized sensing, opportunistic context recognition

methods and autonomous adaptation (see figure 1). We sum-

marize a few results below (further details in [8], especially

with respect to sensor self-organization).

1A machine learning toolbox available at www.cs.waikato.ac.nz/ml/weka.

Fig. 1. The OPPORTUNITY system: the user’s mobile device triggers
the sensor nodes self-organization. Each sensor node (a Context Cell) is an
autonomous unit capable of self-description and other self-* properties that
infers the user’s context from the sensor data. It can update its probabilistic
context representation (online learning) from neighbors’ inputs, share it
with the mobile device, and update it’s self-description, thus forming an
autonomously evolving and adapting sensor ecology.

In opportunistic activity recognition, there is not necessarily

a static signal pattern to activity mapping. Thus, classification

methods must be robust to possible signal variations. We

showed how activity recognition can be made resilient to

small changes in on-body sensor placement using unsuper-

vised techniques [18], principles of body mechanics [19],

or evolutionary techniques [20]. We showed that sensors

can autonomously recognize their on-body position [21] and

their symbolic location in the environment [22]. We showed

principles that allows one sensor node to autonomously learn

how to recognize user activity from another one, thus allowing

an activity recognition system to autonomously expand to new

resources discovered or introduced in the environment, without

Where Sensors Observation

EBO Microphone Speaker recognition, localization by ambient sounds,

activity detection, object self-localization

EBO Accelerometers

or gyroscopes

Body movement patterns, object use, ambient infras-

tructure

-BO Magnetometer Orientation of the body or objects

-BO Inertial sensor

(acc, rot, mag)

Absolute orientation, multiple sensors for body model

reconstruction

-B- Relative magnetic

sensing

Position of body parts w.r.t. a reference

E-- Camera Localization, body model reconstruction

E-O Reed switches Use of objects, ambient infrastructure

E-- UWB

localization

User localization

E-O RFID Use of objects, ambient infrastructure

E-- Proximity infra-

red

Movement detection, localization

-B- Pressure Vertical motion in elevator or staircase

-B- Light sensor (vis-

ible, IR, UV)

Localization of windows, lamps, light tubes, sunshine

-B- Skin temperature Health state (e.g. fever)

E-- Environment

temperature

Outdoor, indoor

-B- Humidity Physical activity

-B- Strain, stress User’s breathing (respiration belt), movement (strain

sensors in clothes)

-B- ECG Physical activity, health state

-B- EMG, EOG Muscle (EMG) and eye (EOG) activation

-B- EEG, fNIR Cognitive states

TABLE I
COMMON SENSOR MODALITIES FOR ACTIVITY RECOGNITION. ‘WHERE’

INDICATES BODY (B), OBJECTS (O), OR ENVIRONMENT (E) SENSORS. THE

SENSORS IN THE FIRST HALF OF THE TABLE WERE USED HERE.



Fig. 2. View of the room from top. Dashed line: typical user trajectory in
the drill run. In the ADL runs subjects moved with extreme variability.

user intervention [23]. We showed that adaptive methods can

lead to an autonomous system capable of self-improvement,

by using minimalist or even unconscious user feedback [24].

III. THE OPPORTUNITY DATASET SCENARIO

We designed the activity recognition environment and sce-

nario to generate many activity primitives, yet in a realistic

manner. We purposely did not record human behavior in daily

life. Other datasets exist for this purpose, and the need for

a highly multimodal setup is impractical for use over weeks,

and may lead to privacy concerns. Instead, our focus was to

maximize the number of activity instances that were collected,

while keeping their execution naturalistic. We achieved this by

relying on a high-level script and leaving free interpretation to

the users, and even encouraging them to perform as naturally

as possible with all the variations they were used to. Subjects

operated in a room simulating a studio flat with a deckchair, a

kitchen, doors giving access to the outside, a coffee machine,

a table and a chair (figure 2).

In order to simulate opportunistic sensor configurations,

the environment must be sensor-rich: i) all activities should

be sensed by multiple sensors; ii) multiple sensors in close

proximity allow to study robustness against sensor placement

variability; iii) sensors of different modalities but sensing

information related to a common activity allow to study

the dynamic replacement of one modality by another; iv)

multiple sensors of identical modalities but from different

systems allow to assess the effects of calibration, resolution,

or sample rate variations. Thus we deployed multiple wireless

and wired networked sensor systems from different origins in

close proximity. This leads to a challenging sensor setup with

respect to data acquisition, synchronization, and curation.

A. Scenario script

Each subject performed 5 times an activity of daily living

(ADL) ‘run’ and one ‘drill run’ designed to generate a large

number of activity instances. The ADL run consists of tem-

porally unfolding situations. In each situation (e.g. preparing
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Fig. 3. Temporal decomposition of activities. Level I is the highest
activity level available in the setup. Level II zooms in into one high level
activity, in this level the activities are not temporal ordered and depend
on the execution sequence of the subject. Logical, physiological and spatial
limitations distinguish the order of activities in Level III. Here the activities
are modes of locomotion and manipulative gestures. Level IV encapsulates
the atomic gestures forming the manipulative gestures of level III.

sandwich), composite activities (e.g. cutting bread) occur as

well as atomic activities (e.g. reach for bread, move to bread

cutter, operate bread cutter). This allows to look at activity

recognition at various abstraction levels. A video presentation

of the dataset is available at http://vimeo.com/8704668.

1) ADL run: ADL runs consist of this activity sequence:

1) Start: lying on the deckchair, get up
2) Groom: move in the room, check that all the objects are in the

right places in the drawers and on shelves
3) Relax: go outside and have a walk around the building
4) Prepare coffee: prepare a coffee with milk and sugar using the

coffee machine
5) Drink coffee: take coffee sips, act naturally in the environment
6) Prepare sandwich: include bread, cheese and salami, using the

bread cutter and various knifes and plates
7) Eat sandwich
8) Cleanup: put objects used to original place or dish washer,

cleanup the table

9) Break: lie on the deckchair

On a higher abstraction level, this sequence may be summa-

rized as ’get up’, ’coffee’, ’sandwich’, ’clean’ and ’break’.

On a finer level, a large number of gesture primitives can be

observed (see figure 3).

2) Drill run: Subjects performed 20 repetitions of the

following sequence to generate many activity instances:

1) Open and close the fridge
2) Open and close the dishwasher
3) Open and close 3 drawers (at different heights)
4) Open and close door 1
5) Open and close door 2
6) Turn on and off the lights
7) Clean table
8) Drink (standing)

9) Drink (sitting)

B. Sensor systems

Multiple sensor systems (table II) were deployed2 on body

(fig. 4), on objects (fig. 5) and in the environment (fig.

2). Wireless sensors included 24 custom Bluetooth wireless

acceleration and gyroscope sensors, 2 Sun SPOTs (802.15.4)

and 2 Intertiacube3 (custom 2.4GHz protocol). In addition, the

2A sensor system is a set of nodes forming a sensor network, together with
the corresponding software to acquire their data.

http://vimeo.com/8704668
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Fig. 4. Location of the body-worn sensors on the subject.

Fig. 5. The objects are instrumented with an acceleration and rate of turn
sensor node. Visible are also the bread slicer (right), an XSense measuring
table vibration (far right), and pressure sensors under some of the tableware.
Not visible: the identically instrumented bread and salami.

Ubisense localization system operates in the 5 GHZ frequency

band. The custom magnetic field sensor emits an EM field for

relative positioning. Close proximity between systems makes

this scenario challenging for the wireless nodes.

Data acquisition at a single point is challenging in an hetero-

geneous system. Commercial systems usually have proprietary

sensor network management softwares, that are difficult to

integrate in a larger framework; our custom systems were gen-

erally easier to integrate. Seven computers acquired the data

from specific sensor systems (table III). On-body sensors were

managed by a dedicated laptop in a backpack (local storage as

there is no WLAN outside of the room). Ambient and object

sensors were acquired by multiple computers according to the

bandwidth required (e.g. video and audio streams each on a

dedicated computer), the cabling possibilities (e.g. to deploy

an antenna), the distance to the wired ambient sensors, and

the need to minimize supplemental wireless transmissions to

minimize the risk of data loss.

C. Experimental protocol

The subject was instructed with the overall experimental

protocol. She then executed the 5 ADL runs, with a 10-20

minutes break between runs to copy data, check battery levels

and ensure correct system behavior. An instructor followed

the subject in the first run to indicate her the sequence of

activities. The subject acted alone in the following runs. A

run lasted 15-25 minutes. We placed little constraints in the

way users should perform during the runs. We instructed them

to follow the high-level action sequence (from getting up to

preparing the coffee, preparing a sandwich, etc) and to perform

naturally. Users were allowed to interleave their actions (e.g.

start the sandwich preparation while still taking sips from the

coffee cup). Later, the subject executed the drill run (20-35

minutes). Also here we encouraged users to perform naturally

(e.g. we told subjects not to hesitate to use different hands

when interacting with the environment/objects).

Batteries were regularly recharged or exchanged during

breaks if their operation time was too short (e.g. the Motion

Jacket batteries lasted about 2 hours, the Bluetooth sensors

operated for a full day). Room lighting (fluorescent tubes)

were always on to minimize differences due to external

lighting, and the blinds of the room side exposed to the sun

were closed.

ID Sensor system Location and observation

B1 Commercial wireless

microphones

Chest and dominant wrist. Senses user activity

B2 Custom wireless

Bluetooth

acceleration sensors

[25]

12 locations on the body. Senses limb movement

B3 Custom motion jacket

[4]

Jacket including 5 commercial RS485-networked

XSense inertial measurement units

B4 Custom magnetic rel-

ative positioning sen-

sor [26]

Emitter on shoulder, receiver on dominant wrist.

Senses distance of hand to body

B5 Commercial

InertiaCube3 inertial

sensor system

One per foot, on the shoe toe box. Senses modes

of locomotion

B6 Commercial Sun

SPOT acceleration

sensors

One per foot, right below the outer ankle. Senses

modes of locomotion

O1 Custom wireless

Bluetooth

acceleration and

rate of turn sensors

On 12 objects used in the scenario. Senses object

use

A1 Commercial wired

microphone array

4 at one room side. Senses ambient sound

A2 Commercial Ubisense

localization system

Corners of the room. Senses user location

A3 Axis network cameras 3 locations, for localization, documentation and

visual annotation

A4 XSense inertial sensor

[4]

On the table and chair. Senses vibration and use

A5 USB networked accel-

eration sensors [27]

8, on doors, drawers, shelves and lazy chair.

Sense usage

A6 Reed switches 13, on doors, drawers, shelves. Sense usage,

provides ground truth

A7 Custom power sensors Connected to coffee machine and bread cutter.

Senses usage

A8 Custom pressure sen-

sors

3 on the table, user placed plates and cups on

them. Senses usage

TABLE II
SENSOR SYSTEMS DEPLOYED IN THE EXPERIMENTAL SETUP.

ID Records sensor

systems

Nature and location Data acquisition

R1 B2, B3, B4 Laptop, on body in a backpack CRN Toolbox [10]

R2 A2, A4, A7 Desktop PC CRN Toolbox

R3 B1, A1 Laptop (static) Audio acq. software

R4 B5, B6 Laptop (carried by experi-

menter, following subject)

Commercial

proprietary software

R5 A3 Laptop (static) Axis proprietary

R6 A5 Laptop (static) Dedicated software

R7 O1, A6 Laptop (static) CRN Toolbox

TABLE III
DATA ACQUISITION INFRASTRUCTURE AND SOFTWARE.



IV. DATA MANAGEMENT

Following data acquisition, data must be prepared in an

adequate form to be analyzed (data curation).

A. Dataset curation repository

Multiple partners access the dataset for post-processing.

The large amount of raw data (>130GB) and the need for

read/write access led us to store the raw data on a backuped

system accessed using the synchronization tool unison
3.

Unison allows efficient bidirectional automatic synchroniza-

tion (i.e. local modified data are sent to the server, and server

modified data are sent locally) while minimizing network load

(only missing data is transferred). Unison ensures no data is

lost if multiple synchronization are done at the same time.

Once data curation is completed this repository will become

read-only. Small frequently modified working files (e.g. dataset

annotation, documentation) are shared via the subversion

version control system4 that keeps a history of changes.

B. Synchronization of data streams

Ideally, the nodes of a sensor network are synchronized

and data samples are flagged with the acquisition time to

simplify the reconstruction of a single synchronized data

stream, despite variable network delays. In heterogeneous

systems, the following problems arise: i) sensors may not flag

data with a timestamp during acquisition, ii) sensors may be

proprietary and cannot be modified to support timestamps;

iii) even with timestamps, the synchronization across sensor

network boundaries remains an issue.

Our approach is the following: i) we synchronize the data

from the sensor systems offline; ii) data are flagged with

the time of reception. In activity recognition synchronization

requirements (< 100ms) are defined by human dynamics. All

sensors on a given recording computer (table III) share the

same clock domain and can easily be synchronized. In wireless

networks, variable delays are common, e.g. due to wireless

retransmission in case of errors or the burst transmission of

data to make best use of the air interface. They translate

into irregular time intervals between received data packets.

However, all our sensors guarantee a regular sample rate and

transmit a data packet counter. Thus, we used a least-square

regression (LSQR) to compute a linear fit between data packet

number and reception time. We then redefined the time of

reception of the packets to ensure regular time interval between

packets. Over 10+ minutes of recording, the error in the LSQR

becomes negligible. Since data packets may be missing we

rely on the packet counter to compute the regression correctly

despite data loss (this approach is also discussed in [28]).

During postprocessing, we determined the time offset be-

tween the recording computers by signal inspection. For

instance, on-body acceleration is referenced to the video time;

then object acceleration is referenced to the video time (i.e.

when the user grasps an object there is a corresponding

acceleration signal); and eventually, video, body and object

acceleration are referred to the same time.

3http://www.cis.upenn.edu/ bcpierce/unison/
4subversion.tigris.org

# Min Len Max Len Mean Len Tot Time

Walk 1414 0.3 242.6 5.6 7900.5

Stand 1043 0.2 171.2 7.5 7770.9

Lie 56 0.9 166.6 21.8 1219.5

Sit 127 0.8 274.9 26.4 3349.5

TABLE IV
OVERALL INSTANCES OF MODES OF LOCOMOTION, ALONG WITH

MINIMUM, MAXIMUM, AVERAGE AND TOTAL DURATION (SECONDS).

# Min Len Max Len Mean Len Tot Time

Ambient 3426 0.2 6.3 1.0 3313.4

Objects 3709 0.2 64.5 2.0 7399.8

TABLE V
OVERALL INSTANCES OF HAND INTERACTIONS WITH THE OBJECTS AND

INFRASTRUCTURE (SECONDS).

C. Data annotation
A dedicated open source tool was developed by the Uni-

versity of Passau to browse synchronously through the 3

video streams and the sensor data and mark the occurrence of

relevant events (e.g. gestures, activities). The annotations are

done on four ‘tracks’. One track contains modes of locomotion

(e.g. sitting, standing, walking). Two other tracks indicate the

actions of the left and right hand (e.g. reach, grasp, release),

with an attribute indicating to which object they apply (e.g.

milk, switch, door). The fourth track indicates the high level

activities (e.g. prepare sandwich). This level of annotation is

sufficient for most applications, and allows to derive coarser

annotations if needed. Annotation is executed by students.

A 30-minutes video footage requires about 7-10 hours to be

annotated.

V. EVALUATION OF THE DATASET ACQUISITION

A. Evaluation of activity instances

We annotated the activity occurrences from the video

footage after the recording. Currently, 16 out of 60 ADL runs

and 3 out of 12 drill runs are annotated.

In table IV we present statistics on the occurrences of modes

of locomotion and table V shows statistics on the occurrences

of hand interactions with the environment and objects (an

interaction is one of reach, open, grasp, etc). These are overall

results for the 19 annotated runs. Extrapolating from this to the

whole dataset, over 13000 interactions with objects and 14000

interactions with the environment may have been recorded. In

table V we break down the hand interactions with objects in

the 16 annotated ADL runs. In table VII we break down the

right hand interactions during the 3 drill runs. As expected,

activities occur roughly in multiples of 20 instances (subjects

repeated 20 times the drill sequence).

By extrapolating from the currently labeled sessions, we

estimate that the activity runs total 25 hours of recorded

data. The cumulative length of all the annotations on all

tracks represents approximately 57 hours of labels. These

include posture/locomotion labels which are always present

and hand interactions that often occur in overlapping fashion

and including multiple objects, thus giving us a very label-

intensive recording.

B. Evaluation of wireless data acquisition performance

A first assessment of the quality of the dataset is obtained

through statistical measures of the amount of data that were



reach move release stir sip bite cut spread

Cup 24/103 26/171 19/91 0/4 4/67 0/0 5/11 8/31

Glass 12/64 17/103 11/57 0/11 1/39 0/0 0/1 0/0

Spoon 2/14 4/27 3/15 0/9 0/0 0/0 11/28 13/47

Sugar 16/19 22/19 19/13 0/0 0/0 0/0 15/17 21/22

Knife1 8/28 8/29 5/22 0/0 0/0 0/0 4/6 3/3

Knife2 10/29 13/37 9/24 0/0 0/0 0/0 3/22 0/7

Salami 24/40 37/43 22/36 0/0 0/0 0/0 2/26 0/0

Bottle 11/13 12/26 9/12 0/1 0/0 0/0 7/14 12/17

Plate 16/23 19/27 15/19 0/0 0/0 0/0 5/13 0/0

Cheese 26/25 38/26 23/20 0/0 0/0 0/0 42/16 0/6

Bread 62/68 105/125 53/56 0/0 0/0 25/36 13/47 15/72

Milk 24/36 21/33 15/24 0/0 0/0 0/2 4/9 5/20

TABLE VI
NUMBER OF INTERACTIONS OF THE LEFT/RIGHT HAND WITH OBJECTS.

reach open close lock unlock

Fridge 84 43 43 0 0

Dishwasher 97 50 46 0 0

Drawer1 (top) 113 60 61 0 0

Drawer2 (middle) 108 59 62 0 0

Drawer3 (lower) 91 52 51 0 0

Door1 119 61 63 59 53

Door2 121 59 64 61 57

Switch 122 0 0 0 0

Table 61 0 0 0 0

Chair 3 0 0 0 1

TABLE VII
NUMBER OF RIGHT HAND INTERACTIONS WITH THE ENVIRONMENT

(DOORS, DRAWERS ETC) IN THE DRILL RUN.

lost during the acquisition process. During setup, we tuned

the parameters of the wireless sensors. In particular for the

Bluetooth motion sensors, we started from the highest sample

rate (64 Hz) and transmission of all sensor channels (nodes

can locally convert raw acceleration into calibrated values),

and we progressively reduced the sample rate and eliminated

information that could be recovered during post-processing

(table VIII). Eventually, stage 3 settings correspond to the

available bandwidth with DM1 ACL packets (max throughput

108.8kbps), not accounting for RFCOMM retransmissions.

All 24 Bluetooth sensors streamed data simultaneously to 6

dongles connected to the recording computers.

Stage

(runs)

Sample

rate

[Hz]

Data Packet

size

[Byte]

Total BT

Byte/sec

%

loss

1(7) 64 8-bit packet counter,

Raw+calibrated acc.,

raw+amplified rate of turn

17, 27 33’792 6.2

2(36) 32 (same as above) 17, 27 16’896 8.8

3(31) 32 16-bit packet counter, Raw

acc., raw+amplified rate of turn

12, 22 13’056 2.5

TABLE VIII
BLUETOOTH MOTION SENSOR PARAMETERS DURING THE STAGED LINK

OPTIMIZATION. PACKET SIZES FOR BODY AND OBJECT NODES.

Some of the objects were stored for part of the recording in

the fridge or in drawers, as well as on metal shelves. Despite

these unfavorable conditions and the large amount of wireless

devices, the overall packet loss was quite low after tuning. In

particular, packet loss dropped to an average of 2.5% in stage

3 (table VIII), which is the most mature and stable. In stage

2 and part of stage 3 we systematically switched off some

unused sensors during the drill sessions. For simplification

reasons, we count this here as packet loss, meaning that the

numbers we report are worst-case figures. This can also be

seen in the left diagram in figure 6, where we can see that the

sensors were streaming with little packet loss and only some
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samples). Disconnection length values have been saturated to 1000 to improve
the plot clarity. In the scripted runs, some sensors have been switched off
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time all sensors were present all together.

sporadic exceptions occurred. In most of the cases the average

length of data losses was below 30 samples (right plot).

For a reference dataset it is important that more sensing

modalities are present at the same time. In figure 7 (derived

from the stage 3 setup) we present the time fraction in which

the body and object sensors were present at the same time.

The vertical axis represents the stage 3 runs. The horizontal

axis represents the maximum number of sensors missing at the



same time. Thus, not only the overall packet loss was small,

but it is also distributed in a way that, for a large part of our

recordings, nearly all the sensors streamed data at the same

time. For example, for run number 23 and K = 3, we see that

for 95% of the time, there were at least 22 sensors running at

the same time.

Further characterization may include higher-order statistics.

Another characterization of this dataset for activity recognition

may be the information content present in each sensor channel,

thus allowing to quantify the contribution of each sensor to

discriminate a set of activities.

VI. LESSON’S LEARNED AND BEST PRACTICES

Our experience with using unison and subversion for

managing our dataset internally is satisfactory. It is important

to ensure regular backups of the unison repository (done

server-side with no network overhead) as multiple users are

accessing the same repository. It is important to give clear

instructions and procedures to the users to avoid inadvertent

errors (e.g. file deletion - which did not happen so far).

The scenario described here differs substantially from typ-

ical homogeneous WSN and tends to require dedicated solu-

tions, e.g. here the data synchronization was done during post

processing. Eventually, protocols such as 6LoWPAN may offer

a uniform end to end access to sensors.

We did not find existing tools for synchronized exploration

and annotation of our dataset. Some were only partially

applicable (e.g. limited to a single camera view). It has been

worthwhile to invest time to develop custom tools in-house.

The effort for labeling can now be reduced as the tools are

well integrated and allow us to hire students this purpose.

During a long recording in a complex setup it is likely

that faults occur. We experienced expected sporadic wireless

data loss (e.g. due to body occlusion) and in a few cases

battery failures. Finally, mechanical connectors may fail (oc-

curred once). Continuous monitoring of the sensor systems

during acquisition as well as sporadic checks (e.g. once

per day/subject/run) can find these problems. Upon problem

detection, one of the following actions can be taken: continue

the recording; fix the problem and resume the recording; fix

the problem and restart the recording. The choice is a trade

off between: i) time the subject spends in a recording; ii)

how often data is checked for validity; iii) the seriousness

of the problem. In our scenario, subjects performed for 4 to

7 hours. More thorough checks would make this even longer

and not feasible anymore. Less thorough checks however may

lead to undetected corrupt recordings. We chose to perform

rapid checks between the runs and more thorough checks after

each subject. Rapid checks consisted of monitoring file sizes,

which are roughly similar for identical sensors from run to

run and subject to subject. More thorough checks (packet loss

analysis) were performed after each subject and at the end of

the day. Some simple problems that were identified as they

occurred (e.g. a sensor that detaches from the clothing) were

fixed on the fly and the recording resumed. Improvements in

monitoring tools obviously reduce the time required for data

checks, however the trade off indicated above remains.

In order to minimize data loss, we designed the data acquisi-

tion softwares and the recording architecture so that individual

sensor failures did not have a catastrophic effect on the other

ones. In particular, when a wireless sensor (typically the

Bluetooth sensors) lost connection the system automatically

attempted to reconnect to that sensor. This allowed us to

minimize the amount of data loss, as disconnections were not

uncommon, but usually the connection resumed after just a

few seconds.

When integrating many wireless systems, it is difficult to

predict the overall behavior even when individual systems

are well characterized. For instance, the Sun SPOT system

performed well in isolation. When including the Bluetooth

sensors the performance of both systems deteriorated until we

adjusted their parameters (packet size and sample rate). Thus,

enough time must be reserved for integration tests. Ideally,

they should be performed on the experiment site to be as

realistic as possible, and e.g. determine the best placement

for antennas.

The motion jacket was effective to easily deploy inertial

sensors on the body. The remaining sensors were attached

to the body individually, which took most of the setup time

(tot. about 30mn). While arguably being far from comfortable,

users nevertheless kept their freedom of movement despite

the large number of installed sensors. They could execute

fine motor activities (e.g. spreading cheese on the bread) and

took many postures indicating the system did not hamper

them much (e.g. kneeling down to reach objects in the fridge,

stretching arms and body to reach a cup high on a shelf,

sitting, lying). The motion jacket helped in this respect, and

we avoided blocking limb joints with the additional attached

sensors. A garment with slots for all the sensors should be

systematically considered for recordings of this scale as it

decreases set-up time, and improves wearability.

The logistical aspects should not be underestimated (e.g.

renting a kitchen-equipped room for 11 days in a University).

Here, the set-up of the ambient infrastructure took 3 days

and integration tests and optimization of the wireless networks

parameters took 2 additional days.

Sensing body motion using streaming sensors tends to

stress the wireless infrastructure, leading to packet losses.

In order to acquire a reference data set, local node storage

should be considered, with the wireless links reserved for

synchronization, system status monitoring, and post-hoc data

download. This would reduce or eliminate data loss. On the

other hand, our recording allowed us to collect information

about the typical failure modes of our sensors when deployed

in large numbers.

VII. CONCLUSION

We described the aquisition of a dataset of human activity

from 72 sensors of 10 different modalities and grouped in 15

different wireless and wired sensor network systems (propri-

etary and custom) integrated in the environment, in objects,

and on the body. Overall, 28 wireless sensors operating in

the 2.4GHz band were deployed in close proximity. This



heterogeneous sensor network architecture highly multimodal

and sensor rich and geared toward activity recognition is a

specificity of our work.

Twelve subjects executed activities of daily living in this

environment, yielding an average of 2 hours of effective data

per subject, for a total of 25 hours of sensor data. We have

annotated 19 runs out of 72. The overall length of the label

track is 2.3 times the effective length of the runs, and we

estimate that over 13000 and over 14000 interaction primitives

respectively with objects and the environment were recorded.

Thus, this dataset is highly rich in gesture instances and

annotations. To the authors’ knowledge, this dataset is the

largest to date for multimodal activity recognition.

The complexity of the integration led us to address many

issues which we documented here in the form of lessons

learned and best practices. We presented the first results of

the evaluation of wireless sensor data acquisition. After pa-

rameter tuning, packet losses were 2.5% for the 24 streaming

Bluetooth wireless sensors and we achieved a high sensor co-

presence index. Given the complexity of the wireless network

deployment, this is very satisfactory for the purpose of activity

recognition.

Ongoing work includes the annotation of the rest of the

dataset and the technical evaluation of other sensor modalities.

We will use this dataset to validate methods we have developed

to date for activity recognition in opportunistic sensor setups.

This activity dataset is also well suited e.g. to investi-

gate sensor fusion methods, to benchmark activity recogni-

tion methods or to do ontology-based reasoning. We invite

members of the community to contact the OPPORTUNITY

consortium to discuss an early access to this dataset.
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