
Collecting Semantics in the Wild: The Story Workbench

Mark Alan Finlayson
markaf@mit.edu

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

32 Vassar Street, Cambridge, MA 02139 USA

Abstract

Analogical reasoning is crucial to robust and flexible high-
level cognition. However, progress on computational mod-
els of analogy has been impeded by our inability to quickly
and accurately collect large numbers (100+) of semantically
annotated texts. The Story Workbench is a tool that facil-
itates such annotation by using natural language processing
techniques to make a guess at the annotation, followed by ap-
proval, correction, and elaboration of that guess by a human
annotator. Central to this approach is the use of a sophis-
ticated graphical user interface that can guide even an un-
trained annotator through the annotation process. I describe
five desiderata that govern the design of the Story Workbench,
and demonstrate how each principle was fulfilled in the cur-
rent implementation. The Story Workbench enables numer-
ous experiments that previously were prohibitively laborious,
of which I describe three currently underway in my lab.

Analogical reasoning underlies many important cogni-
tive processes, including learning, categorization, planning,
and natural language understanding (Gentner, Holyoak, and
Kokinov 2001). It is crucial to robust and flexible high-
level cognition. Despite great strides early in the compu-
tational understanding of analogical reasoning (Gick and
Holyoak 1980; Winston 1980; Gentner 1983; Falkenhainer,
Forbus, and Gentner 1989; Forbus, Gentner, and Law 1994),
recent progress has been slow. Most computational mod-
els of analogy require semantic knowledge as input, sup-
plied as semantically annotated texts. Historically, as the
models became more complex, vetting them required ever
larger sets of annotations, of greater detail and complex-
ity. It is the assembly of these sets that has become a ma-
jor bottleneck to progress. The sets should contain hundreds
of annotations of sufficient richness, must have high inter-
annotator agreement, and need to be collected quickly and
without prohibitive expense. Manual assembly of such sets
is costly, time-consuming, and error-prone. Automatic an-
notation systems also provide no relief: they lack coverage,
are often imprecise or inaccurate, and are in general unable
to provide the full scope of annotations required. This data-
collection bottleneck has seriously impaired progress in the
computational understanding of analogical reasoning, and a

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

solution is needed if progress is to resume at a reasonable
pace.

The Story Workbench

The Story Workbench is a tool that facilitates the collection
of semantic annotations of texts. It is similar in appearance
to a word processing program: it has an editor area where
one can enter and modify text, menus and buttons for per-
forming operations on that text, and a variety of side views
showing supplementary information. In great contrast to a
word processor, however, it allows the user (whom I will
refer to as the annotator) to specify what the text ‘means’
to them, i.e., to annotate it. (What ‘means’ means will be
treated in more detail in the next section.) This annotation
is not done from scratch. Rather, the Story Workbench uses
off-the-shelf natural language processing (NLP) technology
to make a best guess as to the annotations, presenting that
guess (if necessary) to the human annotator for approval,
correction, and elaboration. This is neither fully manual,
nor fully automatic, and thus will be called semi-automatic
annotation.

If semi-automatic annotation were all the Story Work-
bench provided, we would still be in a substantially im-
proved position in regard to the data collection bottleneck.
We could expect that training professional annotators would
be easier, and they would see significant improvements in
speed and agreement of their annotations. Nevertheless, the
Story Workbench as so far described does not take us all
the way to our goal, namely, the ability to collect seman-
tic annotations from untrained subjects. This ability cannot
be overemphasized, and is what separates the Story Work-
bench from other annotation tools. Collecting annotations
from untrained subjects realizes at least three important ben-
efits. First, the annotations are better insulated from the
charge that they have been tailored to produce the desired
experimental result – see (Chalmers, French, and Hofstadter
1992). Second, the work of creating the annotations is trans-
ferred from a few (the experimenters) to many (the untrained
subjects), and so large gains in throughput can be achieved
by merely adding more subjects, rather than engaging in ex-
pensive and time-consuming training. Finally, given only
the tool, annotations can be easily repeated by others, allow-
ing the experimental results to be examined for replicability.

Using a programmed tool to assist in annotation is not



a new idea, and it is worthwhile to briefly mention several
intellectual precursors to this work. The speech commu-
nity has long used annotation tools to assemble their cor-
pora (Bird and Harrington 2001). There are freely available
annotation tools such as GATE (Cunningham et al. 2002),
Ellogon (Petasis et al. 2002), and VisualText1 that allow
unrestricted text annotation. The most important difference
between these platforms and the Story Workbench is that
they are geared for researchers, and are not suitable for use
by untrained subjects. They are complicated tools that take
a significant amount of training and background knowledge
to use. The intent of the Story Workbench is to allow nearly
any subject to provide annotations, by hiding all the complex
machinery behind an intuitive and user-friendly GUI.

Motivating the Story Workbench
Let us look at some specific examples of semantic annota-
tions so we can better understand where the difficulty lies.
As previously stated, I strive for the assembly of a reason-
ably large (100+) set of semantically annotated texts, pro-
duced by untrained annotators. My use of the word anno-
tation is the same as in corpus linguistics, in that it covers
“any descriptive or analytic notations applied to raw lan-
guage data” (Bird and Liberman 2001). By semantically
annotated, I mean the following: Given a natural language
text, which is a specific sequence of characters, including
all symbols and whitespace, a semantic annotation will be
the assignment to a subset of those characters another string
of characters that conforms to a defined format.2 The for-
mat will be called the representation, and the second string
will be called the annotation or the description. Thus, the
semantic annotation of a text requires (1) the definition of
a set of representations (the aspects of the meaning we are
interested in annotating) along with (2) the creation of a set
of descriptions in those representations that are attached to
specific points in the text (the pieces of meaning).

Consider the following text:

John kissed Mary.

There are 17 characters, including two spaces and one pe-
riod. I refer to subsets of characters by referring to their
indices, starting at 0. The first letter, J, spans indices [0,1],
and the first word, John, spans indices [0,4].3 Consider a
few different aspects of this text that must be made explicit.
Each open class word can be annotated with the appropri-
ate definition from the WordNet electronic dictionary, using
the WordNet sense key to identify the definition (Fellbaum
1998). Thus the following string might be attached to the
word kissed spanning [5,11]:

1http://www.textanalysis.com
2It is tempting to think that annotations could be assigned to

subsets of tokens rather than subsets of characters. This, how-
ever, is problematic because tokens themselves are annotations,
and could potentially be ambiguous. Is the word don’t one token or
two? How about the proper noun New York City? Character subsets
are unambiguous, and thus form the foundation on which all other
annotations are built.

3Where [x,y] has the natural interpretation, namely, the span
of characters in the text that starts at index x and ends at index y.

kiss%2:35:00::

Each sentence in the text can have a Penn-Treebank-
style syntactic analysis(Marcus, Marcinkiewicz, and San-
torini 1993). Thus we might attach the following description
to the text span [0,17]:

(S (NP (NN John)) (VP (VBD kissed) (NN
Mary)) (. .))

For analogy research, we usually need a logical-form-like
annotation of the text, which marks events with their causal
and temporal relationships, along with the people, places,
and things involved. Figure 1 shows such an annotation, the
1979 Chinese invasion of Vietnam, written as a graph.4 An-
notations such as this can be instantiated in a set of strings
much like the syntactic parse tree above, using three dif-
ferent representations, one to list the the different entities
and where they appear in the text, one to list the events and
their participants, and one to list the causal relationships
between the events. From the size and complexity of this
graph, which was produced from a mere 13 sentences of
controlled English using a rule-based semantic parser, one
can begin to appreciate the scope of the problem when each
sentence is of a normal complexity, each text is hundreds of
sentences long, and the size of corpus runs into the hundreds
of texts. Manually annotating such a corpus, and doing it
well, is daunting to say the least.

Automatic Annotation

Automatically extracting meanings such as those illustrated
in Figure 1 is beyond the reach of the current state of the
art. Happily, the automatic extraction of certain specialized
aspects of meaning are significantly advanced. For exam-
ple, assigning a part of speech to each token in a text can
be done with extremely high accuracy by a statistical part
of speech tagger (Toutanova et al. 2003). Similarly, statis-
tical parsers can provide syntactic analyses of sentences at
a lesser, but still good, accuracy (Klein and Manning 2003).
And recently, there has been encouraging work on the use of
statistically-trained taggers to assign word senses to words
(Agirre and Edmonds 2007) and identify and assign argu-
ments to verbs (Pradhan et al. 2005).

The advantages of these automatic techniques are that
they are fast and consistent. Even the most complex sen-
tence can be parsed on a fast computer in a few seconds,
and almost all techniques are deterministic, in that the same
input produces the same output.5 They also excel at pro-
ducing well-formatted results (even if the results are not
well-formed). Unfortunately, they usually lack coverage, are
prone to significant error, and cannot produce all the sorts
of annotations needed.6 Furthermore, automatic techniques
currently do not allow us to investigate the variation of hu-
man understanding of the same text. Given a text on, say,

4See (Finlayson and Winston 2006) for full details.
5With caveats; see (Fong and Berwick 2008).
6For example, while there are wide-coverage, high-accuracy

syntactic parsers, available logical-form parsers have poor cover-
age and even worse accuracy.



Chinese-Invasion-of-Vietnam-1979

Causes
Causes

Causes
CausesCausesCauses

Causes Causes

Khmer Army Vietnamese ArmyVietnam ChinaKhmer Rouge Cambodia

Event Event Event Event Event Event Event Event Event Event EventEvent

Control Dislike Attack Dislike Attack Larger Defeat Oust Impede LeaveInvade

Event Event Event

Invade Not-Want

Figure 1: Graphical interpretation of a Logical-Form-like Semantic Annotation of the Chinese-Vietnamese War of 1979. Events
are ordered in temporal sequence from left to right.

the ecology of a forest, suppose we want to annotate the un-
derstanding of a trained Ecologist, a layman, and perhaps a
Native American living on a nearby reservation? Automatic
techniques currently have no purchase on this problem.

Manual Annotation

Manual annotation, in contrast, relies on highly-trained hu-
man annotators’ own natural intuition to understand a text.
The benefit is that humans can create annotations that we
cannot yet create automatically. But highly-trained hu-
man annotators have numerous problems. They are expen-
sive. Training is time-consuming and complicated: they
must understand the representations they will be annotat-
ing and the constraints those representations obey, and they
must be trained to recognize and handle edge-cases. They
must translate their understanding into the formal structures
needed by the computer, a task at which people are notori-
ously bad.7 Finally, if we restrict ourselves to highly-trained
annotators, we significantly reduce our subject pool and po-
tentially introduce significant biases into our data.

Semi-Automatic Annotation

The Story Workbench’s semi-automatic approach combines
the best features of both manual and automatic annotation.
It uses automatic techniques where they are available. If the
techniques have high-accuracy, these can be used with little
to no supervision; otherwise, their results can be presented to
the human annotator for correction. Elsewhere, automation
is used to tackle the tasks that are hard for people but easy
for computers: checking long lists of formatting constraints,
or generating possible answers by searching large solution
spaces. Where the computer has absolutely no purchase on a
problem, the human can take over completely, using special
editors to specify the meaning.

Central to this approach is a sophisticated graphical user
interface that gives annotators the right information at the

7Take, for example, generating a syntactic analysis in the Penn-
Treebank format considered above. Now imagine writing down
using your favorite text editor, a syntactic analysis in that format
for this whole page of text. For those who haven’t done it before
it would, no doubt, take a long time, and the answers, compared
across multiple informants, would almost certainly not match well.

right times and does so in an intuitive and clear manner.
Careful engineering is required to get the right “impedance
match” between annotators and the computer. Many users
of the modern computer are familiar with the devices that
constitute a user-friendly graphical interface: a wide range
of graphical modalities for conveying information, such as
color, highlighting, movement, shape, and size; evocative
icons; automatic correction of formats and well-known er-
rors; quick feedback loops that show errors and warnings
as they occur; wizards and dialogs that guide and constrain
repetitive or formulaic tasks; solutions to common problems
encapsulated in their own functions and offered for execu-
tion at the appropriate times. With such a tool, we could
collect data from untrained subjects. With little more than
literacy and the most basic of computer skills, almost any-
one can give us the data we need.

Case Studies

For those still not convinced of the utility of the Story Work-
bench, I briefly review three research programs that would
have benefited from such a tool, or suffered for lack of it.
The first is drawn from the computational study of analogy,
the second is an example of how to design a representation,
and third concerns the process of constructing a corpus for
computational linguistics. These examples are not meant as
criticisms, but rather illustrations of how, if these researchers
had had access to a tool like the Story Workbench, certain
aspects of the work could have been improved.

Karla the Hawk Studies In the 1980’s and early 90’s,
Gentner, Forbus, and co-workers conducted a series of stud-
ies using the so-called Karla the Hawk story set (Gen-
tner and Landers 1985; Rattermann and Gentner 1987;
Forbus, Gentner, and Law 1994). These studies examined
people’s ability to do analogical retrieval, that is, retrieve
from long-term memory an analogically-related precedent
to a given problem or story. The studies had both human
experiments and computational models. Study participants
read a set of simple stories, the Karla the Hawk stories, writ-
ten by the experimenters and constructed to have specific
story-to-story relationships. Subsequent computer models,
including the Structure Mapping Engine and the MAC/FAC
retrieval module, used propositional-logic-like semantic an-



notations of the stories. The main concern with the modeling
experiments is that the representations of the stories were
created by the experimenters themselves. Did these repre-
sentations really reflect how people understood the stories?
Did the experimenters inadvertently code the answer into the
stimuli? See (Chalmers, French, and Hofstadter 1992) for a
discussion of exactly this. Ideally, the subjects themselves
would have constructed the semantic annotations. If the
Story Workbench had been available such a method would
have been possible.

Development of Rhetorical Structure Theory Dis-
course coherence is the phenomenon that pieces of a text
‘hold together’ into structures larger than an individual sen-
tence. In a coherent text sentences may ‘follow’ from pre-
vious sentences, or ‘lead to’ later sentences. One sentence,
for example, may be a consequence of another; another may
be a quotation ascribed to some aforementioned entity. In
the 1980’s Mann & Thompson (1987) developed a repre-
sentation scheme, Rhetorical Structure Theory (RST), that,
with 23 types of relationships, claimed to account for all the
different sorts of discourse coherence. How did they arrive
at this representation? They started with a proposal for a
small number of relationship types that they thought suffi-
cient, and then examined texts to see if that proposal really
‘fit’ with the data, and then iterated back and forth. If the
Story Workbench had been used, this procedure could have
been supplemented with actual annotation of texts. Initial
constraints and forms of the representations could be inte-
grated into the tool. As they uncovered different relation-
ships, and found the need for tweaks of the representation
scheme, the tool’s programming could have been modified.
There would have been several advantages to this approach.
First, during the development stage, they could have contin-
uously monitored inter-annotator agreement to determine if
the representation ‘made sense’ to the annotators. It would
have revealed instances of incompatible interpretations, and
places where the theory needed to be tightened up. A con-
verging inter-annotator agreement would also give a sense
as to when the representation was ‘finished’. Second, such
an approach would have produced an implementable speci-
fication of the representation, something that few represen-
tations actually have. Third, at the end of the development
they would have had at least a small body of annotated text,
and the tools with which anyone could repeat that annota-
tion.

Annotation of PropBank The Proposition Bank, or
PropBank (Palmer, Kingsbury, and Gildea 2005), is a dataset
of approximately 112,000 verbs annotated for their semantic
arguments that has been recently used to great effect to train
statistical semantic role labeling systems. The Story Work-
bench could have been of great use in constructing such a
corpus. First, the annotators began annotating only after sig-
nificant training and under the guidance of a training man-
ual. The training manuals give conventions that should be
followed, the required format, and how to recognize and
handle edge cases. All of these could have been instanti-
ated inside the Story Workbench programmatically, and so
aided both teaching of and adherence to the rules. Second,
what if someone wants to replicate the PropBank, or con-

struct a PropBank-style annotation on another set of texts?
If the Story Workbench had been used, the tool would have
been immediately available for such a replication.

Each of these three examples are specific instances of a
more general class of endeavors that would see improve-
ment with the Story Workbench. Studies similar to the
Karla the Hawk studies were carried out by Thagard et al.
on Aesop’s fables (Thagard et al. 1990). Hundreds of
representations have been developed for use in computa-
tional models across Cognitive Science and Artificial Intel-
ligence, and many could have benefitted in the same way as
Rhetorical Structure Theory (Markman 1999). The Proposi-
tion Bank could be replaced in the above example, with no
loss of generality, by WordNet, Semcor (Fellbaum 1998),
the Penn Treebank (Marcus, Marcinkiewicz, and Santorini
1993), or the Berkeley FrameNet (Fillmore, Johnson, and
Petruck 2003), to name only a select few.

Design Principles, Desiderata and

Implementation

What principles and desiderata have guided the design and
implementation of the Story Workbench? When possible, I
have followed three principles:

1. Build on top of popular tools with large user and devel-
oper communities

2. Use open-source and freely-available programming li-
braries

3. Adopt widely-used and well-documented standards

In application design things change quickly. Today’s hot
new tool or language is tomorrow’s ancient history. All three
principles help buffer us from the inexorable advances in the
state of the art. The more we adhere to these principles, the
more likely our tools or languages are to evolve to the next
stage, rather than be thrown out and replaced in toto. Sim-
ilarly, standards usually have precise specifications and the
backing of some independent organization; they are unlikely
to suddenly disappear forever. If the tools and libraries are
freely modifiable, then users need not be constrained by the
features provided in the initial implementation, but can im-
plement their own. This is especially important if the tool
becomes popular. Finally, a benefit of all three principles is
that the more popular a tool, library, or standard, the more
resources (such as reference books or tutorials) are available
to help users and developers.

In addition to the three principles, there are at least five
desiderata:

1. The storage format should be human-readable and tool-
independent

2. The storage format should be modular and extensible

3. The tool framework should be highly functional, modular,
and extensible

4. The tool should not commit to a specific operating system

5. The tool should not commit to specific NLP technologies



<?xml version="1.0" encoding="UTF-8" ?> 

<story>

  <rep id="edu.mit.story.char">

    <desc id="0" len="31" off="0">John kissed Mary. She blushed.</desc> 

  </rep>

  <rep id="edu.mit.parsing.token">

    <desc id="19" len="4" off="0">John</desc> 

    <desc id="47" len="6" off="5">kissed</desc> 

    <desc id="61" len="4" off="12">Mary</desc> 

    <desc id="71" len="1" off="16">.</desc> 

    <desc id="92" len="3" off="19">She</desc> 

    <desc id="120" len="7" off="23">blushed</desc> 

    <desc id="121" len="1" off="30">.</desc> 

  </rep>

  <rep id="edu.mit.parsing.sentence">

    <desc id="94" len="17" off="0" /> 

    <desc id="122" len="12" off="19" /> 

  </rep>

  <rep id="edu.mit.parsing.parse">

    <desc id="70" len="17" off="0">(S (NP (NNP John)))(VP (VBD kissed))(NP (NNP Mary))))(. (.)))</desc> 

    <desc id="125" len="12" off="19">(S (NP (PRP She)))(VP (VBD blushed)))(. .)))</desc> 

  </rep>

</story>

Figure 2: Example Story Data File in XML Format

Data Format

The storage format should be human-readable and tool-
independent Perhaps the most important design decision is
the format of the data that will be produced by the Story
Workbench. This data, if useful at all, will long outlive
any implementation. Thus it is extremely important that
the data format be based on a well-documented and easily-
understood standard. It is also imperative that the specifi-
cation of the format be independent of any implementation.
Years later a user needs to be able to understand the data
without the benefit of software, and, in principle, recreate an
interface to it from scratch.

The data should also be human-readable and, thus, in
principle, editable using only a text editor. In the course
of research small tweaks need to be made and data needs to
be reviewed at a glance. Sometimes a working tool is not
available to look at the data. This rules out binary formats
and restricts us to something based on a standard character
set.

To satisfy this desideratum, I use the eXtensible Markup
Language (XML) (Bray et al. 2006) as the base format for
the files. XML satisfies both of the above properties: it is a
widely-supported, easily-understood international standard,
and it is human readable and editable by text editor alone.
XML includes in its definition the XML Schema Defini-
tion (XSD) language, for formally describing the elements
of XML files. One can check to see if a particular XML file
is well-formatted with respect to a particular XSD file. The
XSD files included standardized places for including docu-
mentation and descriptions of the meaning and function of
different pieces of the XML document. By choosing XML,
the product of our tool, the data, will consist of a number
of XML files (the corpus), plus one (or a small number) of
XSD files that describe and document the format of the data.
This collection of files is then suitable for archiving.

The storage format should be modular and extensible
The second important constraint on the data format is that it

must admit to additions of as-yet-unforeseen pieces, in other
words, it must be extensible. I discussed above how there are
many different aspects of meaning to a particular text. It is
not possible to code them all at once, especially at our cur-
rent level of knowledge. We should be able to annotate what
we need right now, and then, if our needs reveal another as-
pect of meaning that needs to be layered on top of what has
already been done, the format should be able to accommo-
date this. This holds true, also, for end-users: if they want
to take the tool and annotate a new aspect of meaning, they
should be able to do this without redesigning the whole for-
mat.

Figure 2 is a concrete example of an actual data file, with
some of the less important aspects trimmed for ease of ex-
position. The topmost tag has a number of representation
blocks as children. The first representation block is the text
itself, and is the single required representation. The follow-
ing representation blocks are the different layers of meaning
that have been annotated for this text. The second repre-
sentation block is the sentence representation, indicating the
extent of each sentence, the next block gives a syntactic anal-
ysis of each sentence in a Penn Treebank style format, and
the final block is the WordNet word sense, where the data
string is the sense key of the referenced synset. Each rep-
resentation block has zero or more description children that
each contain an atomic piece of data. Each description has
a number of different XML attributes, the three most im-
portant of which are illustrated in the figure. The first is a
unique identification number that can be used to refer to that
description by other descriptions elsewhere in the document.
The second and third are the offset and length of the descrip-
tion, and indicate the span of character indices the descrip-
tion covers. Between the opening and closing description
tags is a string of characters, or no characters at all, that rep-
resent the data for that description. The format of this string
is specific to each representation. This format is modular in
that blocks (either whole representations, or individual de-



scriptions) can be added or deleted without modifying other
blocks.

Application Framework

The tool framework should be highly functional, modu-
lar, and extensible Along with modularity of the data for-
mat should come modularity of the Story Workbench itself.
Since the XML data format outlined above allows anyone
to define their own representations, the application frame-
work on which the Story Workbench is based should support
the creation of the infrastructure for producing guesses and
checking constraints for that representation, as well as any
special graphical user interface widgets that are required.
These parts should be wrapped in a module that can be dis-
tributed by itself, and can be added to any other instance of
the Story Workbench with minimal trouble.

The tool should not commit to a specific operating sys-
tem The Story Workbench should also run the application
on many different platforms. There are many popular op-
erating systems in use today, and if the tool is to be widely
adopted, it has to run on as many of those as possible.

I have satisfied these two desiderata by choosing the Java
programming language (Gosling et al. 2005) and the Eclipse
Application Development Framework (Gamma and Beck
2004) as the fundamental building blocks of the Story Work-
bench. Java is an inherently cross-platform language, and
runs on almost every known operating system. It is open-
source, freely-available, and in extremely wide use. There
are numerous libraries and utilities available for Java, not
just for natural language processing, but for other tasks as
well. The Eclipse platform satisfies our demands for both
functionality and modularity. Eclipse is open-source, freely-
available, implemented almost entirely in Java, and has a
large base of users and developers who are constantly at
work to improve the tool. It brings ready implementations of
the many aspects vitally important to a modern graphical ap-
plication. It is built out of a set of plugins, modules that form
a coherent piece of code that add a specific functionality on
top of the base program. In the context of the Story Work-
bench, if an end-user wants to add a new representation or
a suite of related representations, they would program their
code against the Eclipse API and then package it as a plugin,
which can then be distributed to and installed by any user of
the Story Workbench. Indeed, the Story Workbench itself is
only a collection of plugins that can be distributed to and run
by any user of the Eclipse platform.

NLP Technologies

The tool should not commit to specific NLP technolo-
gies The Story Workbench makes a commitment to the
semi-automatic annotation method. It does not commit to
any particular type or implementation of the NLP tech-
nology it uses to perform guesses for the annotations. In
this regard, the tool is technology-agnostic. To be sure,
the default distribution provides implementations of specific
tools. But the architecture of the tool is such that end-
users can easily introduce new or different tools, just as
they can introduce new representations, and when construct-
ing a text can choose between all the different methods on

hand. Currently the Story Workbench uses the Stanford Nat-
ural Language Group’s Java tools (Toutanova et al. 2003;
Klein and Manning 2003) to do the heavy lifting for low-
level syntactic analysis. I plan to add other freely available
NLP tools, such as the OpenNLP library and the various
tools that back the GATE system (Cunningham et al. 2002).

A screenshot of the Story Workbench is shown in Fig-
ure 3. The text is shown in the center editor. In this example,
the Workbench is rightly unable to determine with certainty
the attachment of preposition phrase in the the sentence The
boy saw the man with the telescope. In the configuration
shown, every prepositional phrase that could potentially be
attached elsewhere in the parse tree is flagged. This is dis-
played as a warning the Problems view, and shows the anno-
tator that there is a Quick Fix, namely, a routine correction
to this condition. In this case, selecting the Quick Fix will
show a dialog that allows the annotator to choose the correct
attachment of the phrase.

Experiments Planned or Underway
The Story Workbench enables a number of experiments that
previously were conceivable, but too laborious to actually
conduct. I outline three experiments that are currently un-
derway in my lab. As an aside, it is important to note that
once subjects start to use the Story Workbench, the tool it-
self becomes a part of the experiment. Thus we have to care-
fully measure how it performs: how quickly, precisely, and
accurately subjects can annotate text with the tool. All of
the following experiments are predicated on a thorough un-
derstanding of the characteristics of the tool with respect to
these measures. We are currently conducting studies to mea-
sure these factors for specific representations and graphical
user interface elements; for example, we are measuring how
well subjects can disambiguate word senses using a wizard
specifically designed for the purpose. As each layer of repre-
sentation, and their concomitant tools, are added to the Story
Workbench, they must be tested and benchmarked.

First, I am conducting an experiment on analogical re-
trieval. I am collecting a large number of structured anno-
tations of texts from the domain of political science to test
my theory of intermediate features in retrieval, which treats
the differences in the way experts and novices retrieve items
from memory. The initial experiments I conducted in this
domain exposed to me the problem of doing semantic an-
notation and led directly to the current work on the Story
Workbench (Finlayson and Winston 2006). At the time, I an-
notated 14 stories using a simple rule-based semantic parser
that ran on controlled English input. While the results of
the study were intriguing, they were not convincing, mainly
because we did not have enough data to test our hypothesis.
Now that the tool is operational, I will return to collecting
a sufficient amount of data to test the theory of intermediate
features as it is applied to analogical retrieval.

Second, I am conducting experiments on how culture af-
fects thought. With the Story Workbench, differences in
people’s interpretations of various texts can be captured, and
can be correlated with aspects of their culture of origin. I are
currently investigating whether differences in causal attribu-
tion along the individualist vs. collectivist divide (Triandis



Figure 3: Story Workbench Screenshot

2001) can be detected using data collected from subjects us-
ing the Story Workbench.

Finally, I am pursuing, with collaborators in Psycholin-
guistics, investigation into discourse structure representa-
tions. We are annotating a large corpus with which we hope
to test falsifiable claims made by certain discourse structure
theories about the constraints that apply to certain classes of
discourse relationships. See (Wolf and Gibson 2005) for an
example. I have designed a number of representations and
graphical interfaces for the Story Workbench that allow the
annotation of discourse structure; without these tools, the
assembly of the discourse annotations would have been in-
surmountably difficult.

Contributions

The computational understanding of analogical reasoning
has been hampered for some time by our inability to quickly
and accurately collect large numbers of semantic annota-
tions. I have outlined the manual and automatic approaches
and their attendant problems, and have described the semi-
automatic approach as an alternate solution. I have proposed
that the design of a tool employing the semi-automatic ap-
proach should be governed by at least three principles: (1)
Build on top of popular tools with large user and developer
communities, (2) Use open-source and freely-available pro-
gramming libraries, and (3) Adopt widely-used and well-
documented standards. The desiderata for such a tool are
that (1) the storage format should be human-readable and
tool-independent, (2) the storage format should be modu-
lar and extensible, (3) the tool framework should be highly
functional, modular, and extensible, (4) the tool should not
commit to a specific operating system, and (5) the tool
should not commit to specific NLP technologies. I have
demonstrated an implementation of such a tool, called the
Story Workbench, that provides the infrastructure that al-
lows us to quickly and accurately collect semantically anno-
tated text. I have outlined several of its key properties, and

showed how it satisfies the stated principles and desiderata.
Finally, I have described a number of experiments enabled
by this tool that are now underway in my lab that, without
a tool such as the Story Workbench, would be prohibitively
laborious.

Acknowledgements
This work is supported in part by the National Science Foun-
dation under grant number IIS-0413206 and the Air Force
Office of Scientific Research under grant number A9550-
05-1-0321. Many thanks to Patrick Winston, Whitman
Richards, Eliza Chang, Caleb Hug, Michael Klein, and Mac
Schwager for their helpful comments during the preparation
of this paper.

References
Agirre, E., and Edmonds, P., eds. 2007.Word Sense Disam-
biguation. Text, Speech, and Language Technology. Dor-
drecht, The Netherlands: Springer.

Bird, S., and Harrington, J. 2001. Special issue: Speech
annotation and corpus tools. Speech Communication 33:1–
174.

Bird, S., and Liberman, M. 2001. A formal framework for
linguistic annotation. Speech Communication 33:23–60.

Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.; Maler, E.;
and Yergeau, F. 2006. Extensible Markup Language (XML)
1.0 (Fourth Edition). World Wide Web Consortium (W3C).

Chalmers, D.; French, R.; and Hofstadter, D. 1992. High-
level perception, representation, and analogy: a critique of
Artificial Intelligence methodology. Journal of Experimen-
tal and Theoretical Artificial Intelligence 4:185–211.

Cunningham, H.; Maynard, D.; Bontcheva, K.; and Tablan,
V. 2002. GATE: A framework and graphical development
environment for robust NLP tools and applications. In Pro-
ceedings of the Fortieth Annual Meeting of the ACL, 168–
175.



Falkenhainer, B.; Forbus, K. D.; and Gentner, D. 1989.
The Structure-Mapping Engine: Algorithm and examples.
Artificial Intelligence 43:1–63.

Fellbaum, C., ed. 1998. Wordnet: An Electronic Lexical
Database. Cambridge, MA: MIT Press.

Fillmore, C. J.; Johnson, C. R.; and Petruck, M. R. L. 2003.
Background to Framenet. International Journal of Lexi-
cography 16:359–361.

Finlayson, M. A., and Winston, P. H. 2006. Analogical
retrieval via intermediate features: The goldilocks hypoth-
esis. Technical Report MIT-CSAIL-TR-2006-071, MIT
Computer Science and Artificial Intelligence Laboratory.

Fong, S., and Berwick, R. C. 2008. Treebank parsing and
knowledge of language: A cognitive perspective. In Love,
B. C.; McRae, K.; and Sloutsky, V., eds., Proceedings of
the Thirtieth Annual Meeting of the Cognitive Science So-
ciety, 539–544.

Forbus, K. D.; Gentner, D.; and Law, K. 1994. MAC/FAC:
A model of similarity-based retrieval. Cognitive Science
19:141–205.

Gamma, E., and Beck, K. 2004. Contributing to Eclipse:
Principles, Patterns, and Plug-ins. Boston: Addison-
Wesley.

Gentner, D., and Landers, R. 1985. Analogical reminding:
A good match is hard to find. In Proceedings of the In-
ternational Conference on Systems, Man and Cybernetics,
607–613.

Gentner, D.; Holyoak, K. J.; and Kokinov, B. N., eds.
2001. The Analogical Mind: Perspectives from Cognitive
Science. Cambridge, MA: MIT Press.

Gentner, D. 1983. Structure-mapping: A theoretical frame-
work for analogy. Cognitive Science 7:155–170.

Gick, M. L., and Holyoak, K. J. 1980. Analogical problem
solving. Cognitive Psychology 12:306–355.

Gosling, J.; Joy, B.; Steele, G.; and Bracha, G. 2005. The
Java Language Specification (Third Edition). Upper Sad-
dle River, NJ: Addison-Wesley.

Klein, D., and Manning, C. D. 2003. Accurate unlexical-
ized parsing. In Proceedings of the Forty-first Meeting of
the ACL, 423–430.

Mann, W. C., and Thompson, S. A. 1987. Rhetorical struc-
ture theory: A theory of text organization. Technical Re-
port ISI/RS-87-190, University of Southern California, In-
formation Sciences Institute (ISI).

Marcus, M. P.; Marcinkiewicz, M. A.; and Santorini, B.
1993. Building a large annotated corpus of English: the
Penn Treebank. Computational Linguistics 19:313–330.

Markman, A. B. 1999. Knowledge Representation. Mah-
wah, NJ: Lawrence Erlbaum Associates.

Palmer, M.; Kingsbury, P.; and Gildea, D. 2005. The
Proposition Bank: An annotated corpus of semantic roles.
Computational Linguistics 31:71–105.

Petasis, G.; Karkaletsis, V.; Paliouras, G.; Androutsopou-
los, I.; and Spyropoulos, C. D. 2002. Ellogon: A new text

engineering platform. In Proceedings of the Third Interna-
tional Conference on Language Resources and Evaluation,
72–78.

Pradhan, S.; Hacioglu, K.; Krugler, V.; Ward, W.; Mar-
tin, J. H.; and Jurafsky, D. 2005. Support vector learning
for semantic argument classification. Machine Learning
60:11–39.

Rattermann, M. J., and Gentner, D. 1987. Analogy and
similarity: Determinants of accessibility and inferential
soundness. In Proceedings of the Ninth Annual Meeting of
the Cognitive Science Society, 23–35. Lawrence Erlbaum
Associates.

Thagard, P.; Holyoak, K. J.; Nelson, G.; and Gochfeld, D.
1990. Analog retrieval by constraint satisfaction. Artificial
Intelligence 46:259–310.

Toutanova, K.; Klein, D.; Manning, C. D.; and Singer, Y.
2003. Feature-rich part-of-speech tagging with a cyclic
dependency network. In Proceedings of the HLT-NAACL,
252–259.

Triandis, H. C. 2001. Individualism and collectivism: Past,
present, and future. In Matsumoto, D., ed., The Hand-
book of Culture and Psychology. Oxford: Oxford Univer-
sity Press. 35–50.

Winston, P. H. 1980. Learning and reasoning by analogy.
Communications of the ACM 23:689–703.

Wolf, F., and Gibson, E. 2005. Representing discourse co-
herence: A corpus-based study. Computational Linguistics
31:249–287.


