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Understanding the brain is important in the fields of science, medicine, and engineering. A promising 
approach to better understand the brain is through computing models. These models were adjusted 
to reproduce data collected from the brain. One of the most commonly used types of data in 
neuroscience comes from electroencephalography (EEG), which records the tiny voltages generated 
when neurons in the brain are activated. In this study, we propose a model based on complex 
networks of weakly connected dynamical systems (Hindmarsh–Rose neurons or Kuramoto oscillators), 
set to operate in a dynamic regime recognized as Collective Almost Synchronization (CAS). Our model 
not only successfully reproduces eeG data from both healthy and epileptic eeG signals, but it also 

predicts EEG features, the Hurst exponent, and the power spectrum. The proposed model is able 
to forecast EEG signals 5.76 s in the future. The average forecasting error was 9.22%. The random 
Kuramoto model produced the outstanding result for forecasting seizure EEG with an error of 11.21%.

One of the fundamental questions in neuroscience is about how individual neuronal activity represented by 
the action potential combines to generate the observed collective dynamics at the population level, which can 
be recorded by electroencephalography (EEG) measurements. At the macroscopic level, the neuronal networks 
of the cortex can be modeled as a spatially continuous  network1,2 that reproduces this same collective behavior 
but with a speci�ed spatial resolution. Understanding how the function at the cellular level translates into the 
function at the macroscopic level is clouded by an experimental limitation that impedes one from measuring the 
neuronal activities of thousands, millions, or even billions of  neurons3. �us, to �ll this gap between the micro 
and the macro states, mathematical modeling at the cellular level plays a critical role in describing neuronal 
 activities4–7.

EEG measurement is a powerful noninvasive tool for measuring brain macroscopic collective activity, with 
higher temporal resolution, and has been widely used to understand the electrophysiology of brain activity cor-
related with not only motor coordination but also cognitive functions. EEG signals are complex, and they have 
stochastic, nonlinear, and nonstationary characteristics, which makes the application of classical methods of 
time-series analysis  controversial8,9.

Fourier analysis (to obtain the power spectrum or to decompose the signal into its frequency components) 
is one such classical method that has been studied extensively in the  literature10. Other classical model-based 
(parametric) methods include the auto-regressive (AR), moving average (MA), auto-regressive moving average 
(ARMA), and auto-regressive fractional integrated moving average (ARFIMA)11–13. �ese methods focus on the 
analysis of the signal in the time domain. Recently, there has been a surge, owing to interest in machine learning 
methods, in attention in modeling EEG signals using neuronal  models14.

Fourier analysis has been widely applied to the treatment of EEG signals, which has led to the discovery of the 
so-called event-related desynchronization/synchronization15,16. �ese changes in intensity at a certain frequency 
range are known to be neuronal correlates of motor intention and cognitive  functions17,18.
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At the heart of Fourier analysis lies the concept of the Fourier series based on the assumption that a function 
that satis�es general Dirichlet conditions can be represented as a sum of trigonometric functions. �erefore, a 
signal in the time domain can be decomposed into its frequency modes, and as the number of modes increases, 
the quality of the signal that can be reconstructed improves. Nonlinear and nonstationary signals can also satisfy 
Dirichlet’s conditions; thus, it is plausible, at least from the mathematical perspective, to study EEG signals with 
Fourier decomposition. However, there has been a continuous discussion whether decomposing strong nonsta-
tionary signals such as EEG signals is  plausible19. Moreover, clearly, the EEG should not be created out of the sum 
of the never-changing periodic signals that oscillate with such a static distribution of Fourier frequency modes.

Our work considers that EEG signals can be modelled as a sum of the action potentials spanned by oscillators 
that model the action potentials of the biological neural cells. �erefore, to better understand the dynamical 
nature of EEG signals, we use a neuronal model-based approach.

Recent work has shown that EEG signals can be optimally modeled by a complex network of chaotic Hind-
marsh–Rose (HR) neurons that are weakly connected and behaving in the so-called collective almost syn-
chronization (CAS)  state20. �is modeling approach suggested that brain activities can be generated by weakly 
interacting chaotic neurons. �erefore, it proposes the idea that EEG signals can be successfully modeled or 
decomposed by a basis of chaotic signals generated by neurons that are weakly connected in a complex network.

In this study, we show that the optimal method to reconstruct EEG signals from a complex network of oscil-
lators is constructing an output function (a weighted average signal of the action potential of several neurons) 
that only considers orthogonal signals. Using this approach, we show that the orthogonal set of time series 
generated by complex networks of both HR and Kuramoto oscillators minimizes the error function to �t the 
EEG data under several conditions.

HR neural networks operating in the CAS regime have been previously shown to e�ective for modeling EEG 
 signals20. However, in this study, we show that the discrepancy between the real and estimated EEG signals in 
the model could be reduced substantially if the EEG model is not constructed from time series collected from 
randomly selected neurons of the neuron network, but by using a compressed set of independent vectors pro-
duced by the principal component analysis (PCA) from the entire series of data generated by the network. We 
also show that to model EEG data, one does not need to rely on networks of neuronal models, but can also use 
networks formed by coupled Kuramoto phase oscillators. In addition, our results corroborate those in Ref.20 by 
showing that the best models to predict the EEG signals are obtained when the oscillators are weakly connected, 
satisfying the conditions for the existence of the CAS regime.

We show that our model can reproduce and predict both healthy and epileptic EEG signals, as well as the 
characteristics of the EEG signals, Hurst exponent, and power spectrum of experimental EEG signals.

Related work
Various models of neuronal activity that can be used to understand and reproduce EEG signals exist. Some stud-
ies have considered a stochastic limit cycle oscillator to model EEG  signals21–23. �ey can also be modeled using 
networks of stochastic coupled nonlinear oscillators, with the dynamic unit described by the Du�ng  oscillator24 
or by Jansen’s single-column  model25. It was shown that a stochastic Du�ng–van der Pol oscillator network model 
could capture the key characteristics of EEG signals, such as its time-varying power spectrum, Shannon entropy, 
and sample entropy of healthy controls and patients with a brain disorder. Recently, the phenomenon of CAS was 
introduced to model how spatial and temporal patterns can appear from complex networks in which neurons 
interact with each other with small coupling  strengths26. �e CAS phenomenon emerges when a certain number 
of individual neurons experience an approximately constant local mean �eld from other connected neurons. In 
the work of Ref.20, it was shown that networks of HR neurons could produce data that would best �t EEG signals 
when the network was set to operate in the CAS regime.

A�er a model for the EEG signal is proposed, one should attempt to validate it for future  forecasts27. EEG 
signals are known to be high-dimensional, noisy, and di�cult to forecast even for short time intervals. How-
ever, recent research approaches have shown promising results in the forecasting of these signals, as described 
in Table 1.

Our model follows the ideas outlined in the work of Ref.20. Similarly, we consider networks of nonlinear (HR 
neurons and Kuramoto phase oscillators) oscillators weakly connected to operate in the CAS regime. However, 
our output function to model the EEG uses a time series constructed to be independent of the dynamical units. 
Moreover, we show that the signals generated by our model reproduce the main features of experimental EEG 
signals, such as the Fourier spectrum and Hurst exponent.

Using our proposed model, we also aim to understand how �elds generated as a sum of action potentials of 
neurons can predict complex macroscopic signals such as an EEG signal. �e �rst step in our modeling approach 

Table 1.  Related work on the modeling and prediction of EEG signals.

Works Sampling rate (Hz) Period of prediction (ms) Valuation

Autoregression  model11 500 100 Phase locking value

Autoregression  model12 64 500 Pearson correlation, mean square error

Arti�cial neural network and the combina-
tion of temporal and frequency of  EEG28 512 500 Error measurement

Generalized linear  model29 50 5 Number of spikes count prediction
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is to train an output measurement of the network of nonlinear elements to �t an initial training set of EEG data 
and, then, to validate the model by �nding optimal con�gurations of the network to best predict a new set of 
EEG signals (not considered in the training set). Characteristic variables that allow us to change the network 
con�gurations to better predict EEG signals are the following: (i) the strength of interactions among the dynami-
cal units forming the networks, (ii) the types of dynamical units (either HR neurons or phase oscillators), and 
(iii) the topology of the network (random and small-world network). In this study, we considered a set of EEG 
signals with �ve di�erent characteristics.

�rough a systematic study of di�erent strengths of interactions among the di�erent dynamical units in the 
networks, we were able to demonstrate the generality of the CAS regime, being independent of the dynamical 
units. As optimal models of EEG signals were obtained for all network con�gurations that were set in the CAS 
regime, we corroborate the idea that CAS is the de facto relevant feature to allow a network of dynamical units 
to be used by a mean �eld to model EEG signals.

Results
Our model was constructed by considering both EEG signals from healthy subjects and subjects with epilep-
tic conditions. According to a previous  work20, the output function constructed from an average of weighted 
(“trained”) time series collected from randomly selected neurons in a network operating in the CAS regime can 
well reproduce EEG signals. Certain neurons in a network operating in the CAS regime behave as if they are 
weakly correlated. �erefore, the time series collected from a random selection of neurons in such a network 
would likely create a set of time series that are roughly independent (“orthogonal”). Our novel approach is to 
propose a new strategy to select neurons to construct the weighted output function, partially based on this prin-
ciple. In this study, we used PCA to determine an orthogonal set of neuronal activities as a function of time (see 
the details in the Methodology section). PCA is a well-known tool that can reduce the dimension of a dataset 
consisting of variables that are correlated while retaining most of the  information30,31.

Summary of methodology. Our model for the EEG was developed on a trained output from an autono-
mous dynamical complex network, set to operate in the CAS regime. We consider two topologies, random and 
small-world, and two systems for the node dynamical behavior: HR neurons and phase oscillators. We assume 
that this network has N nodes. �e HR networks are described by the system of ordinary di�erential equations 
(ODEs) in Eq. (6), and the Kuramoto-like phase oscillator networks are described by Eq. (8). Neurons in the 
HR network were coupled electrically with a strength given by σ , and each node in the Kuramoto-like network 
experiences a coupling strength of r̃i , describing its dynamics coupled to the mean �eld.

Our networks have N = 1000 nodes, and we collect a time series from each node with m = 3000 data points. 
With these time series, we construct the matrix X∗

∈ R
m×N , where each column is a time series of length m from 

a node. �e dimensionality of this matrix is reduced using singular value decomposition (SVD) to produce a 
matrix X ∈ R

m×n ( n < N ) with n orthogonal columns and still contains 99% of the total variation of the original 
matrix, preserving 99% of all the information of the original matrix. Here, n is the number of retained principal 
components of X∗ . �is is accomplished using Eq. (21). �is percentage of the total information was selected by 
optimizing the quality of our model.

Using b0 to represent the experimental EEG time series, our network CAS-based EEG model of this experi-
mental signal is denoted by Y, which is calculated using Eq. (13), where Y ∈ R

(tm−t1)×1 constructed for the 
sample interval [t1, tf ] and X ∈ R

(tm−t1)×n represents the reduced matrix obtained by Eq. (21). a0 represents the 
vector of the coe�cients trained by Eq. (12) and used to produce the output function of the network modeling 
the EEG signal. �e sample interval [t1, tm] is an EEG time-series interval [1, 3000], and [t1, tf ] is the trained 
interval [1, 2000].

�e proposed model was applied to predict the EEG signals of �ve datasets. �e model was evaluated by 
comparing the experimental EEG signal for the “test data” time windows (the last 1000 data points) with the 
predicted EEG from the model. �e regression model was used to forecasting the EEG, this process is an alge-
braic one. Each EEG signal is only predicted using its own information. �e problem is how to choose the 
time-interval of the initial or ‘training’ data. Regarding the used data set, 2000 time points for calculating the 
coe�cient is enough to avoid the over-�tting and give the stable results. To further evaluate the performance of 
our model, we compared the Hurst exponent (related to the long-range correlation) and the power spectrum 
of the experimental EEG dataset with that obtained from our model, considering four con�gurations: random 
HR, small-world HR, random Kuramoto, and small-world Kuramoto models.

Random networks were generated by the Gilbert random graph  approach32, denoted by G(1000; 0.01), in 
which every possible edge occurs independently with a probability of p = 0.01 . For the small-world networks, 
we used the Watts–Strogatz network generation  approach33 with a rewiring probability equal to p = 0.01 . Both 
networks have a mean degree of 10. Examples of values for the network characteristics small worldness, average 
path length, and clustering coe�cient for the considered networks are (0.0304, 3.2632, 0.0098) for a random 
network and (8.0536, 19.3226, 0.6622) for a small-world network, respectively.

Figure 1 depicts a scheme of the methodology adopted in this study. �e le� panel shows network con�gura-
tions with snapshot plots of their behavior. �e top part shows examples of the two network topologies being 
considered: random and small-world networks. Each node has dynamics that can be described by either HR 
neurons or Kuramoto phase oscillators. �e networks were simulated with coupling strengths σ ∈ [0, 1.2] . �e 
bottom shows three snapshots, each for di�erent coupling strengths for networks with N = 1000 nodes and for 
3000 simulated trajectory points. Coherent patterns emerge for higher coupling strengths, and for the purpose 
of modeling performance, these con�gurations should be avoided.
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�e right panel in Fig. 1 represents how we constructed our model and used it to predict EEG data. In the 
top �gures, the dashed boxes mark the time windows considered for the training data, comprising the �rst 2000 
points of the experimental EEG data (b), and the testing data, comprising the last 1000 points and that is not 
used in the training phase of the model. Both the EEG signals and X generated by the dynamical networks were 
split into training data and test data. Prior to the application of the prediction methods, the measured signals 
of the dynamical networks were reduced by SVD. �e upper blue inset box illustrates the calculation of the a0 
coe�cients (Eq. (12)), and the lower inset blue box shows how we generated the predicted EEG signal using this 
trained vector of coe�cients (Eq. (13)). �e bottom two �gures show the test data of the EEG and the predicted 
EEG signal (generated by Eq. (13)).

comparison of methods to generate X. �e local mean �eld of the neuron depends on the coupling 
strength σ . �erefore, the value of σ was tuned from 0 to 1.2 to �nd the CAS regime. In this regime, we found that 
σ ≤ σ

CAS , where σCAS ∼
= 0.001 for all HR and Kuramoto models. �e CAS phenomenon exists when a node 

has an approximately constant local mean �eld. If the equation for the CAS pattern presents the coexistence of 
attractors, nodes are still in a CAS state if the CAS condition is satis�ed. Figure 2a shows the variances of the 
local mean �eld at every time point. In particular, the variance of the local mean �eld of neuron i at time point 
t is calculated as follows:

Figure 1.  Overview of our method. Le�: Dynamical networks with two types of topology: random and small-
world networks. HR neurons or Kuramoto phase oscillators were used as a dynamical model. �e coupling 
strength was selected to be [0, 1.2]. Data generated by the network were dimension reduced by singular value 
decomposition (SVD) analysis. Right: Datasets were divided into training data and test data. �en, the coupling 
strengths of the networks that produced the smallest �tting error were selected to generate the matrix X from 
which we calculated the predicted EEG signal (Y).
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where {x̄i}t is the vector of the local mean �eld from the starting time point to time point t. As time increases, the 
blue lines show that the variance values of the nodes of the weakly coupled network converge to 0 (criterion 1). 
�e variances of the nodes of the strongly coupled network are still high (gray lines). For the coupling strength 
in [0.2 : 1.2], the variances also converge to 0 (the red lines). However, Fig. 2c shows these neurons are not a 
stable periodic orbit. In Fig. 2b, the CAS pattern of coupling strength σ = 0.001 described a stable periodic orbit 
(criterion 2).

Our proposed method to generate the matrix X is based on reduction using PCA. We considered the matrix 
X ∈ R

m×N for the entire network simulated considering all m = 1000 nodes. �en, we reduced it to X ∈ R
m×n 

using PCA. �e new matrices contained the n principal components, which were constructed as mixtures of the 
initial networks. �ese principal components are uncorrelated.

Understanding how the coupling strength changes behavior in the network and how this a�ects the ability 
of PCA is important to reduce the dimension. Figure 3 shows the relation between the coupling strength value 
and the number of retained principal components for all network models to maintain 99% of the total variance.

�e coupling strengths of networks that produced the smallest �tting error were selected to generate the 
matrix X from which we calculated the predicted EEG signal. �ese values of σ are smaller than 0.001 for both 
the HR model and the random Kuramoto model.

To justify the novelty of the proposed approach, we compare it with the method proposed in Ref.20, in which 
the nodes of the HR network considered to construct the reduced matrix X ∈ R

m×n are selected randomly.

(1)Variancei(t) = Var({x̄i}t)

(a)

(b) (c)

Figure 2.  Results validating the two criteria for the HR neurons to exhibit the CAS pattern. (a) Variance values 
of the local mean �eld of a randomly selected node for all values of coupling strength. (b) CAS pattern for two 
neurons with coupling strength σ = 0.001 . (c) CAS pattern for two neurons with coupling strength σ = 1.
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�e value of σ was chosen by minimizing the value of the mean absolute error (MAE) in Eq. (14); thus, it is 
the coupling that creates behavior such that our model �ts the best EEG signals. �e values of σ obtained for all 
our network models were within the interval determined in which the CAS phenomenon existed, so σ ≤ σ

CAS.
For comparison, the MAEs of the two methods were compared using 100 channels of dataset A (healthy 

individuals with closed eyes). �e results are shown in Fig. 4. Both methods �t the EEG signals well. However, 
as demonstrated by the distribution of the error in Fig. 4c, our proposed method can �t EEG signals with more 
than twice the accuracy (Wilcoxon test, two-tailed p-value < 0.01).

Validation of the two different neuronal models. �is study used an open-source database from 
Bonn  University34: A (closed eyes, healthy records), B (opened eyes, healthy records), C and D (seizure-free 
interval, epileptic records), and E (during seizure activity, epileptic records). From the �ve participants for each 

Figure 3.  Number of principal components n that were retained as a function of the coupling strength σ to 
maintain 99% of the total variance, as in Eq. (20).

(a)

(b) (c)

Figure 4.  Comparison of the e�ciency to model the EEG signals between the method being proposed in this 
work and that in Ref.20 to model EEG signals. (a) �e red line shows the modeled EEG signal and the blue line 
shows the actual EEG signal, for the method  of20. (b) �e red line shows the modeled EEG signal and the blue 
line shows the actual EEG signal for our proposed method. (c) Error distributions between the EEG signals and 
modeled curves for the “Ren et al.” method presented in Ref.20 (in violet) and the proposed method (in blue). 
�e error analysis was carried out using 100 channels (100 EEG signals) of set A (healthy individuals with closed 
eyes).
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set, the EEG recordings were obtained using the 10–20 international electrode positioning system. Each set 
consisted of 100 single-channel EEGs under a sampling rate of 173.61 Hz. �e datasets were band-pass �ltered 
(0.5–30 Hz, EEGLAB embedded Fourier infrared (FIR) �lter). In this study, 3000 sampling points collected over 
approximately 17.28 s were used. �e �rst 2000 points were training data and the last 1000 points were predicted 
data.

A sequence of network con�gurations was considered, with coupling strength varying within the range of 
σ ∈ [0, 1.2] . For a given 2000 sampling points over approximately 11.52 s for a single channel, the weighted 
parameters of the proposed model were calculated using Eq. (11). �en, MAE values between the EEG signals 
and the reconstructed EEG signals based on our proposed model approach were calculated using Eq. (14). �e 
predicted signal shown is generated be considering a network whose coupling strength σ minimizes the MAE 
function.

Figure 5 shows several representative single-trial predictions that are used as a typical example from datasets 
of four models, considering di�erent network con�gurations, particularly di�erent topologies, with various 
dynamical units and for a range of values for σ . �ese trials demonstrate that random and small-world HR net-
works (Fig. 5A–C) and the random Kuramoto network (Fig. 5D,E) allow for a predictive signal that can accurately 
capture the general underlying trend of the data. In particular, the reconstructed EEG signal for the random 
Kuramoto network can capture prominent peaks in the power spectra (Fig. 5E). �e EEG reconstructions that 
use the small-world Kuramoto networks had the worst modeling performance; that is, they could not capture 
the general trend and the frequency spectral component of the EEG signal (Fig. 5E).

In addition to conducting an error analysis of our predicted EEG signal, we evaluated our modeling approach 
by checking whether the generated EEG signals in the predicting regime could reproduce the characteristic 
features of the power spectrum (comparing similarities with the EEG signals in the frequency domain) and the 
Hurst exponent (comparing similarities with the EEG signals in the long-term correlations).

Error analysis of the predicted EEG signal. �e average error scores computed using the MAE quantity in Eq. 
(14) for the di�erent prediction models are presented in Table 2. Owing to the di�erences in range between the 
�ve datasets, the MAE was divided by the range of EEG signal to obtain the ratio. We found that the MAE ratio 
values obtained from the di�erent datasets do not di�er much for the EEG signals predicted by our four network 
models.

To further evaluate the e�cacy of our predicted EEG signal in modeling real EEG signals, we considered 
standard deviations of the MAE ratio values. �e results are listed in the MAE part of Table 2. Set A was best 
modeled by the small-world Kuramoto network ( 10.97 ± 40.05% ), set B by the random HR ( 7.82 ± 15.90% ) 
and small-world Kuramoto ( 7.95 ± 15.98% ) networks, set C by the random HR network ( 7.95 ± 6.69% ), set D 
by the small-world HR network ( 8.17 ± 7.48% ), and set E by the random Kuramoto network ( 11.21 ± 23.89% ). 
We note that the epileptic EEG signals (sets C and D, 7.95% and 8.17% , respectively) have smaller prediction 
errors than the healthy EEG signals (set A, 10.97% ) with closed eyes and comparable performance with healthy 
subjects with closed eyes. Data from subjects during epileptic seizure were only well modeled by the Kuramoto 
networks; this suggests that the epileptic brain becomes highly coherent, something captured by the Kuramoto 
phase oscillator network.

In addition, to ensure that our best �t models are obtained when the networks are set in the weak coupling 
regime responsible for the presence of the CAS phenomenon, we calculated the cumulative total error of our 
model as a function of time for each network model and di�erent coupling strengths using the following formula:

which is simply the MAE multiplied by the time interval, where Y de�nes the predicted EEG signal and e is the 
actual EEG signal.

From Fig. 6, we can conclude that, independent of the types of oscillatory node dynamics and the types of 
network topology (excluding results from the small-world Kuramoto network), small σ values that produce the 
CAS phenomenon can lead to the smaller errors between the EEG signals and the regenerated EEG signals, i.e., 
better prediction of the EEG signals a�er the weights were trained using the EEG dataset (training session). �e 
results of datasets B, C, D, and E are shown in Supplementary Fig. A.

Hurst exponent. �e Hurst exponent is a measure of the long-range correlation of a  signal35, and it is broadly 
used to analyze EEG signals from healthy control subjects and epileptic  patients36,37. In clinical applications, the 
Hurst exponent was used to identify seizure-free EEG signals from seizure interval  subjects38 and distinguish 
between healthy individuals and patients su�ering from  epilepsy39.

�e datasets contained healthy (A, B), seizure-free (C, D), and seizure (E) EEG signals. �e Hurst exponent 
was calculated for all 100 single-channel EEG signals from each dataset for several sigma values. �is exponent is 
calculated by rescaled range (R/S)  analysis40 in a time window of 1000 time points corresponding 5.76s (Details 
are provided in the “Methodology” section).

We calculated the mean error and standard deviation of the di�erence between the Hurst exponent calculated 
from the predicted signal and the Hurst exponent of the experimentally obtained EEG signal. �e results are 
listed in Table 2. In general, the random Kuramoto network model produced the smallest errors for the Hurst 
exponents.

(2)Totalerror(t) =

t∑

i=tf +1

|Yi − ei|,
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Power spectrum. Spectral analysis is a standard method for the quanti�cation of EEG  signals41–43. �e power 
spectrum re�ects the frequency content of the signal or the distribution of the signal power over frequency. An 
important application is the measurement of event-related desynchronization (ERD)/event-related synchroni-

(a)

(b)

(c)

(d)

(e)

Figure 5.  EEG data obtained experimentally, training and prediction of �ve datasets: A, B, C, D, and E. �e 
black lines show the actual EEG signals. �e blue lines show the results from networks of HR neurons, whereas 
the red lines show the results for the networks of Kuramoto oscillators. �e random and small-world network 
topologies are represented by the solid and dashed lines.
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(a) (b)

(c) (d)

Figure 6.  Total error of prediction from channel 4 of �ve subjects in dataset A. (a) Results from the random HR 
network model. (b) Results from the small-world HR network model. (c) Results from the random Kuramoto 
network model. (d) Results from the small-world Kuramoto model. �e colors represent the results obtained for 
di�erent coupling strength values σ.

Table 2.  Key values for this table are the dataset (�rst column) and the network topologies considered: 
random HR (second column), small-world HR (second column), random Kuramoto (third column), and 
small-world Kuramoto (fourth column). �ere are three di�erent sets of rows, reporting the MAE values, 
Hurst exponents, and power spectrum mean error, for the �ve datasets. Bold values represents the best result 
in each row.

Data Random HR Small-world HR Random Kuramoto Small-world Kuramoto

MAE of prediction ( %)

Set A 11.28 ± 40.79 13.43 ± 58.88 12.35 ± 47.34 10.97 ± 40.05

Set B 7.82 ± 15.90 11.58 ± 50.44 9.35 ± 20.26 7.95 ± 15.98

Set C 7.95 ± 6.69 8.27 ± 9.11 9.09 ± 98.54 7.39 ± 10.49

Set D 9.40 ± 10.50 8.17 ± 7.48 9.91 ± 9.32 9.41 ± 12.31

Set E 45.84 ± 352.61 73.73 ± 649.34 11.21 ± 23.89 34.56 ± 268.48

Hurst exponent prediction mean error

Set A 0.09 ± 0.06 0.19 ± 0.11 0.08 ± 0.05 0.17 ± 0.11

Set B 0.08 ± 0.07 0.07 ± 0.06 0.08 ± 0.05 0.20 ± 0.13

Set C 0.11 ± 0.07 0.13 ± 0.07 0.08 ± 0.05 0.16 ± 0.09

Set D 0.06 ± 0.06 0.09 ± 0.07 0.07 ± 0.06 0.14 ± 0.10

Set E 0.18 ± 0.10 0.15 ± 0.11 0.10 ± 0.07 0.17 ± 0.11

Power spectrum prediction mean error

Set A 2.53 ± 1.60 2.64 ± 1.76 2.20 ± 1.37 2.13 ± 1.65

Set B 3.88 ± 4.57 4.30 ± 6.19 3.38 ± 4.89 3.34 ± 4.87

Set C 4.68 ± 3.91 4.83 ± 4.19 4.30 ± 3.42 3.30 ± 2.44

Set D 6.03 ± 12.84 6.14 ± 12.56 5.86 ± 11.01 5.09 ± 15.31

Set E 4.64 ± 5.48 5.76 ± 13.29 5.02 ± 17.35 4.58 ± 9.67
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zation (ERS), which is widely used in brain–computer interface applications. ERD/ERS is related to the power 
spectrum changes at speci�c frequency bands during physical motor execution and mental motor  imagery15,44.

�e “actual” spectrum calculated directly from the EEG signal and the “predicted” spectrum calculated from 
the modeled signal in the predicting regime for the representative channel Fp1 from dataset A are presented in 
Fig. 7 with red and blue colors, respectively. �e rows of this �gure represent the power spectra (“actual” and 
“predicted”) for several values of σ increasing from top to bottom. �e “actual” spectra in a row are the same.

For the HR network models and the random Kuramoto network model, the di�erence between the predicted 
and original power spectra increases as σ > 10

−2 . It is worth recalling that the CAS phenomenon exists in the 
networks when σ � 0.001 , which exactly matches the range for which the power spectrum can be well repro-
duced. �e results of datasets B, C, D, and E are shown in Supplementary Fig. B.

Discussion
HR neural networks operating in the CAS regime have been shown previously to reproduce EEG  signals20, but, 
in this study, we reduced the �tting error of the model (Fig. 4) by using a compressed set of independent vectors 
produced by the PCA from the entire data generated by the network in the model instead of time series collected 
from randomly selected neurons. We also show that to reproduce the EEG data, one can also use dynamical 
networks formed by Kuramoto phase oscillators rather than coupled neuron models.

A challenge in neuroscience is to discover an oscillatory regime in which the brain  functions4. In this study, 
we provide further evidence (to that provided in Ref.20) that the brain can operate at least locally in the CAS 
regime because for every type of nonlinear network studied, the best models of EEG signals are obtained with 
data generated from those networks that operate in the CAS regime, as shown by the results in Fig. 6. Networks 
in the CAS regime are characterized by small-scale clusters of neurons that are weakly coupled and behave as if 
they are almost synchronous neurons.

�ere is growing empirical support for the idea that network topology plays a crucial role in understanding 
brain functions. �is study tests two di�erent topological models, random and small world, for networks as well 
as two types of neurons, HR neurons and Kuramoto phase oscillators. Error analysis of the distance between 
the experimental and modeled EEG signals as well as the average di�erences between the feature quantities, 
Hurst exponent, and power spectrum are listed in Table 2. �e results showed that set A was best modeled by 
considering the small-world Kuramoto network, set B by the random HR and small-world Kuramoto, set C by 
the random HR, set D by small-world HR, and set E by the random Kuramoto. We also note that the epileptic 
EEG signals (sets C and D) have smaller prediction errors than the healthy EEG signals (set A) with closed eyes 
and comparable performance with healthy subjects with closed eyes. Data from subjects during epileptic seizure 
were only well modeled by the Kuramoto networks; this suggests that the epileptic brain becomes highly coher-
ent, captured by the Kuramoto phase oscillator network.

In fact, several studies reported that networks of Kuramoto phase oscillators are important for understanding 
seizure activity, as shown in the paper by Yan and  Li45. �ese authors have inferred human brain networks from 
di�usion-magnetic resonance imaging in healthy controls. �us, a computational model utilizing a delayed ver-
sion of the Kuramoto model connected in a network as that inferred served as the basis for the authors postulates 
that frontal hubs could drive seizure activity. Another study has shown that the emergence of hypersynchrony 
analogous to the generation of seizures develops in a network of Kuramoto phase oscillators as a consequence 
of the network  topology46.

Using other neuronal dynamical descriptions such as the Hodgkin–Huxley (HH) and the integrate-and-
�re models could be considered as dynamical units of networks used for the proposed unsupervised learning 
approach proposed. �e only requirement is that the network should be set into the CAS regime. We have con-
sidered the HH model and the networks of phase oscillators in this work because a previous  work26 has revealed 
the set of parameters for which CAS exists in networks of HH and phase oscillators.

Our study used a network with N = 1000 nodes, and we collected from each node a time series with m = 3000 
data points. Corresponding to a data frequency of 173.61 Hz, the EEG signals for 17.28 s were analyzed. �is 
period is su�cient for classifying epilepsy seizure detection and several analyses during a short period as motor 
imagery classi�cation. In the future, the data time points and the number of neurons will be increased to explore 
the possibility of clinical analyses. �e performance of the model with other types of data such as ECG should 
also be studied and would depend on the type of the dynamics forming the network. Given that modi�ed Van 
der Pol oscillators are a good basis for modeling ECG, they could be considered as the dynamical unit of the 
proposed networks.

conclusions
�is study has shown that nonlinear networks that were set to operate in a weakly coupled regime called CAS 
can be used to feed data to a machine-learning-like model that can be trained by an unsupervised approach. 
Importantly, the output from the CAS model can reproduce EEG signals of both healthy and epileptic conditions 
in the predicting regime and reproduce the characteristics of the EEG signals in terms of the Hurst exponent 
and the power spectrum.

We have tested the performance of the CAS model based on various neuron and network types using the 
modeled data from healthy and epileptic subjects. Interestingly, the prediction errors between the EEG dataset 
and the CAS produced signals indicate that critical to better predicting the EEG signals is that arti�cial neurons 
should weakly interact with each other to ensure that the CAS can be generated. �us, this suggests the generality 
of the CAS model, a weakly coupled chaotic system, in representing brain dynamics independent of the neuronal 
dynamics and types of the networks.
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However, some limitations need to be addressed to improve this model in the future. Our model is based on 
a linear regression that provides a good approximation of the experimental EEG signal, but with a unique set 
of constant weight coe�cients, a network with invariant topology, and constant coupling strength connecting 
the nodes. However, EEG signals are nonstationary in nature. �erefore, for long-term predictions, our model 

Figure 7.  Experimental and predicted power spectrum for dataset A. �e columns show the results for the 
random HR, small-world HR, random Kuramoto, and small-world Kuramoto models. �e rows show the results 
for di�erent values of coupling strength, σ.
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should incorporate some time-varying con�gurations tuned to adapt to the varying nature of the experimental 
signal being modeled.

Standard approaches to model EEG rely on auto-regression11,12 or arti�cial neural  networks28. �ese methods, 
although successful in reproducing the characteristics of EEG signals, can only successfully predict the EEG 
signals for time intervals shorter than 1 s. �e di�culty in predicting EEG signals is due to the nonstationary 
nature of the EEG signals. �e proposed method, fundamentally based on a nonlinear network that has nodes set 
to operate in a CAS regime (that e�ectively makes their trajectories wander along a large set of periodic orbits), 
can lead to a successful prediction of time intervals of the order of 5.76 s.

Methodology
CAS phenomenon in network. Consider a network of N nodes, as described by

where xi ∈ R
d is a d-dimensional vector describing the state variables of node i, Fi is the d-dimensional vector 

function representing the dynamical system of node i, Kij is the adjacent connection matrix, and E is the coupling 
function. Here, H is an arbitrary di�erential transformation. Assume in the HR model that H(xj) = xj − xi . For 
the Kuramoto model, H(xj) = sin(xj − xi) is a nonlinear function, which is an extension of the analysis. If the 
xi is the variable of neuron i, the local mean �eld of node i is de�ned as

Complete synchronization appears when xi = xj = x̄i for all times when isolated from the network. For hetero-
geneity, one expects to �nd other weaker forms of synchronization behavior. CAS is a phenomenon that appears 
in a complex network that produces a weaker form of  synchronization26. In this phenomenon, nodes are in 
weak interaction (weak coupling strength) and behave independently. �e local cluster of neurons has roughly 
constant local mean �elds. �e CAS pattern is a solution of a simpli�ed set of equations describing the network 
when x̄i = Ci . �e expected value of the local mean �eld is de�ned as

�e following are the two criteria for node i to present the CAS phenomenon:

• Criterion 1. �e central limit theorem can be applied. �erefore, the larger the degree of a node, the smaller 
the variation in the local mean �eld.

• Criterion 2. �e CAS pattern describes a stable periodic orbit.

In this study, the HR neurons and Kuramoto oscillator were used to model the EEG signal.

CAS phenomenon in HR network. �e HR neuron model is a well-known model for describing the patterned 
activity seen in neurons. �e electrical synapses can be considered as follows:

where 
(

xi , yi , zi
)

∈ R
3 are the state variables of the neuron i, i = 1 : N . Here, N is the number of neurons in the 

network. �e parameters were selected as a = 1 , b = 3 , c = 1 , d = 5 , s = 4 , r = 0.005 , x0 = 1.618 , and Iext = 3.25 , 
yield the HR neurons model to exhibit a multi-time-scale chaotic behavior characterized by spiking bursting. 
We use σ to denote the electrical coupling strength. Simulations were performed using Matlab Simulink. �e 
CAS patterns of node i are described by

where Ri = pi , Qi = piCi , pi = σki and Ci ≈ (1/ki)
∑N

j=1
Kijxj . To illustrate the presence of the CAS phenom-

enon, we considered a random network formed by N = 1000 neurons.

CAS phenomenon in Kuramoto oscillators. �e Kuramoto model was used to simulate brain interactions through 
synchrony on the basis of structural and functional implications of the organization of brain  connectivity47. �e 
dynamics of node i are described by

(3)ẋi = Fi(xi) + σ

N
∑

j=1

KijE
[

H
(

xj − xi
)]

,

(4)x̄i(t) =
1

ki

∑

j

Kijxj .

(5)Ci = lim
t→∞

∫
x̄i(t)dt.

(6)







ẋi = yi − ax3i + bx2i − zi + Iext + σ
�N

j=1 KijH
�

xj
�

ẏi = c − dx2i − yi
żi = −rzi + sr(xi + x0),

(7)







�̇xi = �yi − a�3
xi

+ b�2
xi

− �zi − R�xi + Qi

�̇yi = c − d�
2
xi

− �yi

�̇zi = −r�zi + sr
�

�xi + x0
�

,

(8)θ̇i = ωi + pi r̃i sin
(

θ̄i − θi

)

,
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where p = 0.01 is the probability that each two nodes are connected and ωi is the natural frequency of node 
i selected randomly from [−π ,π] . Here, r̃i is the coupling strength of node i. �e CAS patterns of node i are 
described by

Equation (9) describes a periodic orbit regardless of the values of parameters ω, pi and r̃ because it is an autono-
mous two-dimensional system; chaos cannot  exist26. �erefore, criterion 2 is always satis�ed in Kuramoto 
oscillators.

Simulation of the neuronal networks to predict a given series of EEG signals. As an overall �ow, HR neurons or 
Kuramoto oscillators were implemented in each node, and random or small-world networks were generated 
for neuronal networks. To test this hypothesis, we veri�ed the types of neurons and network structures in the 
predicting regime (Fig. 1). �e connectivity matrix K de�nes the weightings of the synaptic connections between 
neurons, de�ned by the electrical coupling strength σ . �e neuron networks are obtained with σ in the range 
from 0 to 1.2. �e connections K are generated with random and small-world 1000-node networks. �e median 
node degree is 10. A total of 3000 neurons were simulated using the Brain Dynamics  Toolbox48 for HR neurons 
and Kuramoto oscillators. �en, the local mean �eld C of each node is calculated using Eq. (4), and C are plugged 
into the di�erential equation to obtain the CAS pattern. For the HR model, we used X = {xi}i∈1:1000 as a matrix 
composed of membrane potentials of the simulated neurons. For the Kuramoto model, we used the matrix 
X = {θi}i∈1:1000 as a combination of neuron oscillations. Finally, using the matrix X(t) de�ned in Eq. (10), each 
3000 × 1000 neuron network is reduced by using the PCA method. �e dimensionally reduced matrix maintains 
99% of the information of the original matrix. Training datasets of the EEG signals were used to determine the 
weight values of the individual neurons to �t the EEG signals as a function of time.

CAS‑network‑based model for EEG signals. To model the EEG signals, we used the property of linear 
algebra. Given an unknown vector a ∈ R

n×1 of trained coe�cients, a known matrix X ∈ R
m×n obtained using 

the methods to be further explained but are a function of measurements obtained from the dynamical network 
(where m denotes the number of measurements obtained or the discrete time interval), and a known vector 
b ∈ R

m×1 (which is set to be equal to an EEG signal), the following equation

has a unique solution by using least square  method49

Here, X+
∈ R

n×m is the Moore–Penrose pseudoinverse of matrix X.
Given a training set of data from the EEG signals, denoted by b0 , we calculated the trained coe�cients a0 using

Our CAS-network-based model for the EEG whose training set is b0 is thus expressed as follows:

where Y ∈ R
(tm−t1)×1 is our EEG model for a time interval of tm − t1 , X ∈ R

(tm−t1)×n is a matrix constructed 
from the dynamical network by taking (tm − t1) observations, and a0 the vector of coe�cients trained by Eq. (12).

To validate our model, we calculated the MAE function, which measures the averaged di�erence between 
the modeled EEG signal and the actual EEG signal denoted by e ∈ R

(tm−t1)×1:

Dimension reduction of X∗
∈ R

m×N by PCA. De�ne X∗
∈ R

m×N as the matrix that contains full infor-
mation about the dynamical network operating in the CAS regime. Every row is a time series of values obtained 
from a node of the network, and the entire network is set with a total of N nodes.

�e matrix X∗ can be factorized using SVD

where K ≤ {m,N} is the rank of matrix X∗ and σ1 ≥ σ2 ≥ · · · ≥ σK , with σi = �ii are the singular values of 
X

∗ . Here, � ∈ R
m×N . U ∈ R

m×m is the le� singular vector, and V ∈ R
N×N is the right singular vector of X∗.

�e eigenvector with the highest eigenvalue is the principal component of X∗ . In fact, the eigenvector with 
the largest eigenvalue represents the most signi�cant relationship between the dimensions. An approximate 
compact matrix can be constructed with a speci�c rank k such that k < K , whose singular values only contain 
the k largest singular values of X∗ . Using this approach, the matrix X∗ can be approximated by

Matrix Uk ∈ R
m×k , �k ∈ R

k×k , and VT

k
∈ R

k×N . Making the de�nition

(9)�̇i = ωi + pi r̃i sin (Ci − �i).

(10)Xa = b,

(11)a = X
+
b.

(12)a0 = X
+
b0.

(13)Y = Xa0,

(14)MAE =

∑tm
t=tf +1

|et − Yt |

(tm − tf )
.

(15)X
∗

= U�V
T
,

(16)X
∗

≈ Xk = Uk�k(Vk)
T
.
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we can write that

�e standard measure of the quality of Xk is the proportion of total variance, which is de�ned by the Frobenius 
norm of the di�erence between two matrices:

�us, the proportion of the total variance is higher if k is larger. �is is an important theorem that helps determine 
the matrix approximation based on the amount of information required. �erefore, we want to maintain at least 
99% of the information of X∗ and selected the smallest k such that

Suppose that n is the value of k such that the proportion of total variance is equal to 99% . �e truncated m × n 
of matrix X can be obtained by considering only the �rst n largest singular values and their singular  vectors50,51:

where VN×n is the n �rst columns of V. �ese n vectors in Xm×n are called the principal components that are 
linearly uncorrelated and have 99% variance with X∗.

Hurst exponent. Let a single EEG signal to be represented by e ∈ R

(

tm−tf
)

×1 , with e = {e1, e2, . . . , en} , with 
n = tm − tf = 1000 , which is the time interval considered in our study. �e average value of e is denoted by E(e).

De�ning the adjusted range as

where for each k ∈ [1 : n], wk =
∑k

j=1

(

ej − kE(e)
)

 , then the Hurst exponent is de�ned by �nding the scaling 
that �ts to

with S(n) representing the standard deviation of e. An estimation of the Hurst exponent adopted in this work 
can be calculated by using a rescaled range  formula35: R(n)

S(n)
∼

(

2
(2H−1)

− 1
)

n
H.
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