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The density of states of a Bose-condensed gas confined in a harmonic trap is investigated. The predictions

of Bogoliubov theory are compared with those of Hartree-Fock theory and of the hydrodynamic model. We

show that the Hartree-Fock scheme provides an excellent description of the excitation spectrum in a wide range

of energy, revealing a major role played by single-particle excitations in these confined systems. The crossover

from the hydrodynamic regime, holding at low energies, to the independent-particle regime is explicitly

explored by studying the frequency of the surface mode as a function of their angular momentum. The

applicability of the semiclassical approximation for the excited states is also discussed. We show that the

semiclassical approach provides simple and accurate formulas for the density of states and the quantum

depletion of the condensate. @S1050-2947~97!05111-1#

PACS number~s!: 03.75.Fi, 67.40.Db

I. INTRODUCTION

The collective modes of a Bose-condensed gas confined

by an external potential have been the object of extensive

work in the last months. The successful agreement between

experimental results @1,2# and theoretical predictions @3–8#
for the collective frequencies at low temperature has stimu-
lated intensive research activity. Though only the modes
with low multipolarity and frequency have been detected in
experiments, the excitations at higher energy and angular
momentum are also very important because they determine
the statistical behavior of the system, including thermody-
namics, transport phenomena, and superfluid effects.

The excited states at high energy are expected to have
single-particle nature. However, the transition from collec-
tive ~phononlike! to single-particle excitations in an inhomo-
geneous system can differ significantly from the case of a
uniform Bose gas. In fact, the presence of a surface allows
for the occurrence of single-particle states even at low en-
ergy ~lower than the chemical potential!. These states, of low
energy but high multipolarity, are localized near the surface,
where the condensate density becomes small. This behavior
represents a peculiar and interesting feature of these confined
systems; in a uniform Bose gas, in fact, only phonons are
present at low energy. In a recent paper @9# we have already
pointed out the effects of these single-particle states on the
thermodynamic properties of the trapped gases.

In the present work we solve the equations for the excited
states of a weakly interacting gas in a spherical trap at zero
temperature within Bogoliubov theory. The main purpose is
to investigate the collective ~phononlike! and single-particle
character of the elementary excitations. This is accomplished
by calculating key quantities, such as the density of states,
the frequency of the surface modes, and the quantum deple-
tion of the condensate, and by comparing the predictions of
Bogoliubov theory with the ones of different approxima-
tions, like Hartree-Fock theory and the hydrodynamic model.
Finally we check the accuracy of the semiclassical approxi-

mation and we show that it provides simple and useful for-
mulas for both the density of states and the quantum deple-
tion of the condensate.

II. BOGOLIUBOV THEORY

The elementary excitations of a degenerate Bose gas are
associated with the fluctuations of the condensate. At low
temperature they are described by the time-dependent Gross-
Pitaevskii ~GP! equation for the order parameter @10#:

i\
]

]t
C~r,t !5S 2

\2¹2

2m
1Vext~r!1guC~r,t !u2DC~r,t !,

~1!

where *druCu2
5N is the number of atoms in the conden-

sate. At zero temperature N coincides with the total number
of atoms, except for a very small difference dN!N due to
the quantum depletion of the condensate. The coupling con-
stant g is proportional to the s-wave scattering length a

through g54p\2a/m . In the present work we will discuss
the case of positive scattering length, a.0, as in the experi-
ments with rubidium and sodium, but the same formalism
can be also applied to systems with negative scattering
length. The trap is included through Vext , which is chosen
here in the form of an isotropic harmonic potential:

Vext(r)5(1/2)mvHO
2 r2. The harmonic trap provides also a

typical length scale for the system, aHO5(\/mvHO)1/2. Ac-
tually, the experimental traps have cylindrical symmetry,
with different radial and axial frequencies, but the choice of
a spherical trap, as we will discuss later, is not expected to
affect the main conclusions of the present work, while reduc-
ing greatly the numerical effort.

The normal modes of the condensate can be found by
linearizing the GP equations, i.e., looking for solutions of the
form

PHYSICAL REVIEW A NOVEMBER 1997VOLUME 56, NUMBER 5

561050-2947/97/56~5!/3840~6!/$10.00 3840 © 1997 The American Physical Society



C~r,t !5e2imt/\@C0~r!1u~r!e2ivt
1v*~r!e ivt# , ~2!

where m is the chemical potential and functions u and v are
the ‘‘particle’’ and ‘‘hole’’ components characterizing the
Bogoliubov transformations. After inserting in Eq. ~1! and
retaining terms up to first order in u and v , one finds three
equations. The first one is the nonlinear equation for the
order parameter of the ground state @10#,

@H01gC0
2~r!#C0~r!5mC0~r!, ~3!

where H052(\2/2m)¹2
1Vext(r), while u(r) and v(r)

obey the following coupled equation:

\vu~r!5@H02m12gC0
2#u~r!1gC0

2
v~r!, ~4!

2\vv~r!5@H02m12gC0
2#v~r!1gC0

2u~r!. ~5!

Numerical solutions of these equations have been recently
found by different authors @4–8#. In the present work, we use
them to calculate the density of states, the frequency of the
surface modes, and the quantum depletion of the condensate,
in order to clarify the different roles played by excitations
having collective and single-particle character.

When the dimensionless parameter Na/aHO is large, the
kinetic energy term in the ground-state equation ~3! becomes
negligible with respect to the mean-field term and one gets
the Thomas-Fermi approximation:

C0
TF~r!5S mTF

2Vext~r!

g
D 1/2

, ~6!

with

mTF
5

\vHO

2
S 15

Na

aHO
D 2/5

. ~7!

In the same limit the equations of motion ~4! and ~5! coin-
cide with the equations of the hydrodynamics ~HD! of super-
fluids @3,11,12#. In the spherical case their eigenfrequencies
take the analytic form @3#

v~n ,l !5vHO~2n2
12nl 13n1l !1/2, ~8!

where l and n are the angular momentum quantum number
and the number of nodes in the radial solution, respectively.
The deviations from the predictions of the noninteracting
harmonic oscillator ~HO! model,

v~n ,l !5vHO~2n1l !, ~9!

point out the effects of two-body interactions. These are par-
ticularly important for the so-called ‘‘surface’’ modes
(n50), where the HO prediction v5l vHO is significantly

lowered to the hydrodynamic value v5Al vHO . In general
the HD prediction turns out to be very accurate for the low-
energy excitations of the system, while the ideal gas predic-
tion is expected to be valid in the opposite case of high
excitation energies. The exact solutions of Eqs. ~4! and ~5!
provide the correct interpolation between the two limiting
regimes.

A typical spectrum obtained from Eqs. ~4! and ~5! is
given in the upper part of Fig. 1 for a gas of N510 000

atoms of rubidium ~scattering length a5110a0 , where a0 is
the Bohr radius!. For the spherical trap we have chosen the
frequency vHO52pnHO52p187 Hz, which is the average
vHO5(vxvyvz)

1/3 of the axial and radial frequencies of Ref.
@1#. It corresponds to the oscillator length
aHO50.79131024 cm. Energy is given in units \vHO and
the chemical potential is 8.41 in these units. The vertical bars
have length (2l 11), so that the angular momentum of each
state can be inferred from the figure. One clearly sees that, at
energy much larger than the chemical potential, the excited
states tend to be grouped into levels \vHO apart, as in the
noninteracting HO model. Conversely, the energy of the
lowest modes is close to the prediction of the HD equations
@3#. For instance, the lowest l 52 and l 50 modes differ by

less than 3% from the hydrodynamic values & and A5,
respectively.

III. DENSITY OF STATES

Once the spectrum of excited states is calculated, one can
count the number of states below a given energy e :

N~e !5 (
\v,e

~2l 11 !. ~10!

The density of states g(e) is simply the derivative
dN(e)/de . Note that the quantity N~e! is well defined even
for a discretized spectrum, while the density of states implies
averaging the number of states within small but finite energy
intervals.

In Fig. 2 we show the quantity N~e! obtained by counting
the levels in the spectrum of Fig. 1. For comparison the

FIG. 1. Excitation spectrum of 10 000 atoms of 87Rb in a

spherical trap with aHO50.79131024 cm. The vertical bars have

length (2l 11). The upper spectrum corresponds to the numerical

solution of Eqs. ~4! and ~5!; the lower one is the spectrum of the

Hartree-Fock Hamiltonian ~11!. Two energy scales are also shown

in the figure: the chemical potential m58.41, fixed by the solution

of Eq. ~3!, and the critical temperature for a noninteracting gas in

the same trap, kBTc520.26.
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results of the noninteracting harmonic oscillator ~9! and of
the hydrodynamic model ~8! are also shown. The effects of
the repulsive interatomic forces are clearly responsible for an
enhancement of the density of states with respect to the ideal
gas. However N~e! remains well below the HD approxima-
tion, the latter being soon inadequate as e increases. Indeed
hydrodynamic theory accounts for collective phenomena and
provides an excellent description of the low-lying elementary
excitations of the system @3,8#, but completely ignores
single-particle effects. This is exactly the opposite of what
Hartree-Fock ~HF! theory does. For this reason it is interest-
ing to compare the results of Bogoliubov theory with the
predictions of HF theory in which one determines the eigen-
states of the single-particle Hamiltonian @13,14#

HHF52~\2/2m !¹2
1Vext~r!2m12gC0

2~r!. ~11!

The lowest eigenstates of the HF Hamiltonian are expected
to be localized near the surface of the condensate. To under-
stand this point better, let us take the large-N limit. In this
case one can use the Thomas-Fermi approximation ~6! for
the ground-state density. The HF Hamiltonian then takes the
simple form

HHF52~\2/2m !¹2
1

1

2
mvHO

2 ur2
2R2u, ~12!

where R5@2mTF/(mvHO
2 )#1/2 is the classical radius of the

condensate. The HF potential has a pronounced minimum at
R . This potential well near the boundary persists in the HF
Hamiltonian even for smaller values of N .

It is worth stressing that, in general, Hartree-Fock theory
is expected to be correct for energies larger than the chemical
potential. For these trapped bosons, however, it accounts also
for the low-energy excitations close to the boundary, where
the density of the condensate is small. This can be seen in
Fig. 1, where the Hartree-Fock and Bogoliubov spectra are
compared. One notes that the two spectra are rather similar
even below the chemical potential ~m58.41 in this case!

except for the excitations having lowest angular momenta,
i.e., shortest bars in the figure. Those collective excitations
are instead correctly reproduced by the hydrodynamic
model. The corresponding Hartree-Fock prediction for the
quantity N~e! is also given in Fig. 2 as a solid line. The
agreement with the results of Eqs. ~4! and ~5! is remarkable
in the whole range of energy. The figure shows the case of
10 000 atoms but a similar agreement is found for all values
of N relevant for the experiments (N.103 – 107). The above
behavior represents a major difference with respect to the
case of a homogeneous Bose gas where phonons have a cru-
cial effect on the density of states.

IV. SURFACE EXCITATIONS

In order to better understand the transition from the col-
lective to the single-particle regime, we have explored in
detail the evolution of the excitation energy for the surface
modes (n50) as a function of their angular momentum l ,
as predicted by the solution of Eqs. ~4! and ~5!. As already
mentioned, the effects of the interaction are particularly im-
portant for such modes and are responsible for a significant
lowering of their frequency. In Fig. 3 we plot the quantity
v l /l , in units vHO , for different numbers of atoms in the
same trap. This ratio has an important physical meaning be-
cause, according to Landau’s criterium for superfluidity, it
provides the rotational frequency at which the l th surface
excitation becomes unstable. The hydrodynamic prediction
~8! is shown as a dashed line, the curve going asymptotically
to zero for large l . The figure shows that the Bogoliubov
states first follow the HD curve, but, rather soon, they devi-
ate from it, approaching asymptotically the noninteracting
value v l /l 5vHO . The deviation from HD takes place at
larger values of l if N is increased, revealing that the HD
approximation becomes applicable to a larger number of
states in this limit.

A simple estimate of the typical value of l at which the
HD picture starts failing, one can take @15# l c.Rpc where
R is the radius of the condensate, proportional to N1/5, and

FIG. 2. Number of states N~e! vs energy. The Bogoliubov

~points! and Hartree-Fock ~solid line! predictions, obtained by

counting the states in Fig. 1, are compared with the ones of the

noninteracting harmonic oscillator ~dashed line! and of hydrody-

namic equations ~dot-dashed line!.

FIG. 3. Frequency ~in units of vHO! of the n50 excited states as

a function of their angular momentum l for N atoms of 87Rb in a

spherical trap with aHO50.79131024 cm. The hydrodynamic pre-

diction is shown as a dashed line.
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pc is of the order of the inverse of the surface thickness

d5@aHO
4 /(2R)#1/3 @16–18#. For larger values of l , the wave-

length of the excitations becomes shorter than d and one
explores microscopic details of the boundary that cannot be
described by the Thomas-Fermi approximation ~6! and by
the HD equations. This yields lc}(R/aHO)4/3}N4/15, corre-
sponding to an excitation energy \v}N2/15, smaller than the
chemical potential, which instead behaves as N2/5. This ex-
plains why the crossover from the HD to the single-particle
regime takes place at energies smaller than m.

For each value of N , the curves in Fig. 3 exhibit minima
and one can define a critical frequency as Vc5min(vl /l ).
For rotational frequencies larger than Vc the surface excita-
tions become unstable. It is interesting to compare this value
with the critical frequency needed to generate a vortex @19#.
This is done in Fig. 4 where we compare the two critical
frequencies as a function of N . We find that the lowest in-
stability is always associated with the creation of a vortex.
Note, however, that in order to generate a vortex one needs
to transfer to the system a huge angular momentum ~equal to
N\!, which is much higher than the value l required to
create a surface excitation.

V. SEMICLASSICAL APPROXIMATION

AND SCALING BEHAVIOR

A good approximation for the density of states can be
obtained by solving Eqs. ~4! and ~5! in the semiclassical
approximation @9,20,21#. In this approximation, which is ex-
pected to hold for excitation energies much larger than the
oscillator energy \vHO , the quantity N~e! is a continuous
function of e defined by

N~e !5E
0

e

de8E drdp

~2p\ !3 d„e82e~r,p!…, ~13!

where

e~r,p!5F S p2

2m
1Vext~r!2m12gn0~r! D 2

2g2n0
2~r!G1/2

~14!

corresponds to the semiclassical dispersion law. Here the

quantity n0(r)5C0
2(r) is the condensate density. In Fig. 5~a!

we compare the semiclassical result for N(e)/N ~solid line!
with the one obtained from Eqs. ~4! and ~5! ~squares! for 104

atoms of rubidium in the same trap of Fig. 2. Here the energy
is given in units kBTc5\vHO@N/z(3)#1/3, which is the criti-
cal temperature for an ideal Bose gas in a harmonic trap; the
value for 104 atoms is kBTc520.26\vHO as shown also in
Fig. 1. The accuracy of the semiclassical approximation
turns out to be very high also for relatively low values of e.

The use of the semiclassical approximation allows one to
carry out the analysis of the density of states in a systematic
way and to exploit the dependence on the relevant param-
eters of the system. In fact, when the number of atoms in the
condensate is large enough to make the Thomas-Fermi ap-
proximation ~6! accurate, the statistical properties of the sys-
tem can be expressed in terms of a single scaling parameter
h given by the ratio @22#

FIG. 4. Critical rotational frequency ~in units of vHO! for pro-

ducing a quantized vortex ~solid line! or surface states ~dashed line!

as a function of the number of rubidium atoms in the spherical trap.

FIG. 5. Ratio N(e)/N vs e, in units kBTc . In ~a!, the squares

correspond to counting the states in the Bogoliubov spectrum of

Fig. 1, while the solid line is the corresponding semiclassical ap-

proximation ~13!. The latter is indistinguishable from the formula

~16!, valid in the scaling regime Na/aHO@1. In ~b!, the semiclas-

sical prediction ~16! is given for different values of the scaling

parameter h.
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h5

mTF

kBTc

51.57S N1/6a

aHO
D 2/5

~15!

between the chemical potential ~7!, calculated at zero tem-
perature in the Thomas-Fermi approximation, and the critical
temperature kBTc . The ratio h depends on the deformation
of the trap only through the geometrical average of the os-

cillator frequencies vHO5(vxvyvz)
1/3. The parameters used

in the calculation of Fig. 5~a! correspond to a spherical trap
with h50.407. As pointed out in Ref. @22#, quite different
experimental conditions ~shape of the trap, value of N , etc.!
can correspond to very similar values of h. In terms of the
scaling parameter h and the dimensionless energy
ẽ5e/(kBTc), the number of states N( ẽ) predicted by the
Bogoliubov semiclassical theory becomes

N~ ẽ !

N
5E

0

ẽ
d ẽ 8

4

pz~3 !
E

0

1

dxA12x F ẽ 8h
A@x2

1~ ẽ 8!2/h2#1/2
2x

Ax2
1~ ẽ 8!2/h2

1~ ẽ 8!2Ax1h/ ẽ 8G . ~16!

This result has been obtained by using the Thomas-Fermi
approximation ~6! for the condensate density in Eqs. ~13!
and ~14!; this allows one to split the space integral into an
inside region ~first term in the square bracket! and an outside

region ~second term!. It is worth stressing that Eq. ~16!,
which is expected to hold in the scaling regime Na/aHO@1,
provides a very good estimate of the semiclassical expres-
sion ~13! even for relatively small N . For instance, the two
predictions are indistinguishable in Fig. 5~a!, being repre-
sented by the same solid line. In Fig. 5~b! we show the pre-
dictions for the density of states given by the semiclassical
approximation ~16! for three different values of h. The pa-
rameters of the recent experiments at Jila @1# and MIT @2#,
using very different traps, correspond to h ranging from 0.39
to 0.45.

Expression ~16! can be also expanded at low energy,
e!kBTc , still compatible with the assumption e@\vHO .
One finds the law N(e)/N}e5/2. This differs from the usual
e3 law typical of the phonon regime, revealing the different
behavior exhibited by these systems with respect to the ho-
mogeneous Bose gas.

VI. QUANTUM DEPLETION

In the last part of the paper we calculate the quantum
depletion of the condensate, which, according to Bogoliubov
theory, is given by

dN

N
5

1

N (
j
E druv j~r!u2, ~17!

The ‘‘hole’’ components v j can be obtained by solving Eqs.
~4! and ~5!. In the semiclassical approximation @9# one re-
places the sum over all the discrete states with the integral
over p of the function

v
2~p,r!5

1

2e~p,r!
S p2

2m
1Vext~r!2m12gn0~r!1e~p,r! D ,

~18!

where e~p,r! is the single-particle energy ~14!. In a uniform
gas this expression yields the most famous result
dN/N5(8/3)(n0a3/p)1/2. In the trapped gas and in the limit

Na/aHO@1, where the TF approximation holds, the semi-
classical approximation provides the simple analytic law @9#

dN

N
5

h3

6&z~3 !
50.098h3, ~19!

with h given in Eq. ~15!. Since the available experiment
corresponds to h.0.4, the quantum depletion turns out to be
less than 1%, as already pointed out in Refs. @5,7#. In Fig. 6
we show the quantum depletion for 10 000 and 50 000 atoms
of rubidium obtained by summing over the Bogoliubov spec-
trum up to a given energy e ~solid lines!. We compare it with
the prediction of the semiclassical expression ~18! ~dashed
lines!, while the arrows indicate the asymptotic values ~19!,
holding in the scaling limit. An important result emerging
from the numerical calculation is the very slow convergence
of the sum ~17!. This is not a surprise, since also in a homo-
geneous gas the convergence is slow due to the 1/p4 tail in

FIG. 6. Quantum depletion for 10 000 ~two lower curves! and

50 000 ~two upper curves! atoms of 87Rb in a spherical trap with

aHO50.79131024 cm. The depletion is plotted as a function of the

maximum energy considered in the sum ~17!. Solid lines: uvu2 from

the solution of Eqs. ~4! and ~5!; dashed lines: from the semiclassical

approximation ~18!. Arrows: asymptotic scaling values ~19!.
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the momentum distribution at high momenta and one has to
go up to e5100m in order to saturate 90% of the sum ~17!.

The agreement between the quantum depletion obtained
from the discretized sum ~17! over the Bogoliubov states and
from the semiclassical approximation ~18! is satisfying and
was not obvious a priori. Figure 6 shows a discrepancy of
the order of 5% between the two predictions for N510 000,
while for larger N the two curves tend to coincide. It is worth
noticing that the two solid lines in Fig. 6 require the summa-
tion of *druv j(r)u2 over up to 15 000 different values of
(n ,l ) in the Bogoliubov spectrum; the calculation is then
much heavier than the semiclassical one. The good accuracy
of the semiclassical approach makes it useful in practical
situations. This is especially true for the simple formula ~19!,
which includes the case of anisotropic traps through the av-
eraged frequency vHO5(vxvyvz)

1/3 entering the Thomas-
Fermi chemical potential mTF and, hence, the scaling param-
eter h.

Finally, the large N semiclassical formula ~19! shows the
rather strong dependence of the depletion on the scattering
length parameter a . If the magnetic tuning of the scattering
length will become available, it will be possible in the future
to increase significantly the value of h and consequently ex-
plore Bose gases where the quantum depletion is much
larger.

VII. SUMMARY

We have investigated the elementary excitations of a di-
lute Bose gas in harmonic trap by solving the equations of
Bogoliubov theory. Different from the case of a uniform gas,
where phonons dominate the system at energies of the order
of or lower than the chemical potential, the spectrum of the

trapped gas shows an important particlelike behavior even at
low energy. This fact has been here explored in detail. We
have compared the results of Bogoliubov theory for the den-
sity of states with the ones of Hartree-Fock theory, finding a
very good agreement on a wide range of energy. We have
studied the behavior of surface modes, emphasizing the
crossover from the low-energy regime, well described by the
hydrodynamic model, to the single-particle regime. This
crossover provides also a critical frequency associated with a
rotational instability and we have compared this frequency
with the one needed to create a quantized vortex. Another
important result emerging from our analysis is the high ac-
curacy exhibited by the semiclassical approximation for the
excited states. Finally, we have calculated the quantum
depletion of the condensate by summing the ‘‘hole’’ compo-
nent *druv(r)u2 over all the states in the excitation spectrum
of Bogoliubov theory. The convergence of the sum turns out
to be very slow, as expected by the analogy with the case of
the uniform gas. Again we find excellent agreement with the
predictions of the semiclassical approximation. In the limit
Na/aHO@1, the latter provides the simple and useful formula
dN/N50.098h3, in terms of the scaling parameter
h51.57(N1/6a/aHO)2/5.
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