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Collective and synchronous dynamics of photonic
spiking neurons
Takahiro Inagaki 1,5✉, Kensuke Inaba 1,5✉, Timothée Leleu2,3, Toshimori Honjo 1, Takuya Ikuta 1,

Koji Enbutsu4, Takeshi Umeki4, Ryoichi Kasahara4, Kazuyuki Aihara2,3 & Hiroki Takesue1

Nonlinear dynamics of spiking neural networks have recently attracted much interest as an

approach to understand possible information processing in the brain and apply it to artificial

intelligence. Since information can be processed by collective spiking dynamics of neurons,

the fine control of spiking dynamics is desirable for neuromorphic devices. Here we show that

photonic spiking neurons implemented with paired nonlinear optical oscillators can be con-

trolled to generate two modes of bio-realistic spiking dynamics by changing optical-pump

amplitude. When the photonic neurons are coupled in a network, the interaction between

them induces an effective change in the pump amplitude depending on the order parameter

that characterizes synchronization. The experimental results show that the effective change

causes spontaneous modification of the spiking modes and firing rates of clustered neurons,

and such collective dynamics can be utilized to realize efficient heuristics for solving NP-hard

combinatorial optimization problems.
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S
pecialized hardware that performs brain-inspired informa-
tion processing has achieved significant success in the fields
of machine learning and artificial intelligence1–4. To pro-

vide more biologically realistic functions with artificial systems5,6,
various neuromorphic devices based on spiking neural network
(SNN) models have been developed7–10. Neurons communicate
with nerve impulses, called spikes or action potentials, and syn-
chronization of the spikes can be useful for signal processing
performed in the brain11–14. The nonlinear properties of optical
oscillators have been expected to be suitable for fast and energy-
efficient implementations of spiking neurons15–22, however, the
photonic devices proposed so far have been generally limited in
terms of the diversity of their spiking dynamics. Since most
nervous systems are constructed with various types of neurons,
the collective dynamics of different spiking modes can be
important factors in building neuromorphic devices. Recently,
various nonlinear dynamics of coupled parametric oscillators,
which can be utilized for artificial spiking neurons, have been
proposed23,24, and an effect of collective dynamics on the syn-
chronization of the spikes has been demonstrated with an array of
vertical cavity surface emitting lasers25.

In the present study, we demonstrated that a photonic artificial
neuron can generate two different bio-realistic spiking modes that
are changed spontaneously as a result of the synchronization within
clusters of neurons. The artificial neuron was implemented with
anti-symmetrically coupled degenerate optical parametric oscillators
(DOPOs). The nonlinearity and phase bistability of the DOPOs
were used to generate two spiking modes of class-I (saddle-node
bifurcation) and class-II (Andronov-Hopf bifurcation) neurons that
had been originally classified by A.L. Hodgkin26 and characterized
in terms of different bifurcation structures27,28. Although it was
shown that some neuron models can generate both class-I and
class-II spiking modes depending on the values of the model
parameters27–32, the spiking modes of component neurons in
spiking neural networks are usually fixed in advance. The spiking
mode of our proposed photonic neuron, on the other hand, can
change due to collective and synchronous dynamics of the network
for spontaneous information processing because the spiking
dynamics can be controlled by tuning optical-pump amplitudes of
the DOPOs. Network experiments with 240 DOPO neurons
revealed that input signals from the correlating neurons can induce
an effective change in the pump amplitude. The effective change
depends on the increase in the order parameter of synchronization,
and it causes spontaneous changes in spiking modes and firing rates
of the networked neurons. The experimental results showed that the
self-tuning effect of collective spiking dynamics can be utilized for
solving combinatorial optimization problems by using methods
related to self-organized criticality.

Results
Artificial spiking neuron with coupled DOPOs. In this study, a
photonic spiking neuronal network was developed by utilizing a
network of DOPO pulses in a fiber-ring cavity, which has been
used for simulating an Ising spin network and solving combi-
natorial optimization problems33–37. The DOPO pulse is gener-
ated by a phase-sensitive amplifier (PSA) with a χ2 nonlinear
material in the cavity38–40. Because degenerate parametric
amplification is phase sensitive, the optical phase of each DOPO
pulse takes only 0 or π relative to the pump pulse above the
threshold of the cavity, and the optical amplitude of the bistable
phase states can represent the positive and negative membrane
potentials in the spiking neuron with sign-inversion symmetry;
namely, the change in the sign of optical amplitude does not
change the neuron properties. As shown in Fig. 1a, the spiking
dynamics of each neuron are implemented by using a pair of

coupled DOPO pulses (called v- and w-DOPOs) with respective
coupling coefficients Jvw and Jwv . The ith neuron in a DOPO
neural network is modelled as

dvi
dt

¼ ð�1þ piÞvi � v3i þ Jvwwi þ γ∑j J ijvj þ Iext ð1Þ

dwi

dt
¼ ð�1þ piÞwi � w3

i þ Jwvvi þ γ0∑j J ijwj
ð2Þ

where vi and wi represent in-phase components of DOPO
amplitudes, and pi and Iext are optical amplitude of the pump
pulse and an external-bias term, respectively. Quadrature
components of DOPOs become negligible above the threshold
due to the PSA41–43. Matrix Jij describes synaptic connections

between the ith and jth DOPO neurons, and γ (γ0) is a scaling
factor of coupling strength for the v- (w-) DOPOs (see
Supplementary Notes 1 and 2 for more details).

A schematic diagram of the networked DOPO neurons is
shown in Fig. 1b. A network of 512 DOPO pulses based on time-
domain multiplexing in a 1-km fiber cavity and opto-electronic
feedback system was developed35. A periodically poled lithium-
niobate (PPLN) waveguide module and an optical band-pass filter
were placed in the fiber cavity as a PSA. The continuous wave
from a laser with a wavelength of 1536 nm was modulated by a
lithium-niobate intensity modulator (IM1) into sequential pulses
with 60-ps width and 1-GHz repetition frequency. The sequential
pulses were amplified by erbium-doped fiber amplifiers and
converted into 768-nm pump pulses by second harmonic
generation (SHG) in the first PPLN waveguide (PPLN1). The
pump pulses were converted into signal and idler waves by
parametric down-conversion (PDC) in the second PPLN
waveguide (PPLN2) in the 1-km fiber ring cavity. An optical
band-pass filter with center wavelength of 1536 nm and passband
width of 13 GHz was set behind PPLN2 so that the transmitted
light could satisfy the degenerated condition of the signal and
idler waves. As a result of the interference of the degenerated
signal and idler waves, in which the 0 or π phase component
relative to the pump phase was amplified most efficiently44,
phase-sensitive amplification could be obtained. When pumping
of the PSA was started, quadrature squeezed noise pulses were
generated by spontaneous parametric down-conversion in the
PPLN waveguide. The noise pulses were amplified in each cavity
circulation by the PSA, and that amplification led to the
formation of time-domain multiplexed DOPO pulses. Since the
pump pulse interval was 1 ns and the round-trip time of the 1-km
fiber cavity was 5 μs, the cavity could accommodate more than
5000 DOPOs, 512 of which were used for this experiment.

Arbitrary all-to-all connectivity between the 512 DOPOs was
implemented by using a measurement-and-feedback (MFB)
scheme45. During each cavity circulation, a portion of each
DOPO pulse was extracted with a 9:1 coupler, and the in-phase
component was measured with a balanced homodyne detector
(BHD). The local oscillator for the BHD was supplied from the
continuous-wave laser, which was used for preparing the pump
pulse. The measured signals were then input into a field-
programmable gate array (FPGA) module. The feedback signal
for each DOPO pulse was calculated by using the input signals
and a 512 × 512 coupling matrix with 8-bit connection weight
resolution. The calculated feedback signals were imposed on the
optical pulses by using a push-pull modulator and injected into
the cavity at times synchronized with the target DOPO pulses. By
repeating this procedure, it was possible to connect the 512
DOPO pulses in different time slots arbitrarily. Thirty-two
DOPOs were used as header pulses to monitor experimental
conditions, and 480 DOPOs were assigned to simulate 240 DOPO
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neurons. The internal and external optical couplings of the 240
DOPO neurons could be controlled by changing the connection
weights stored with the coupling matrix in the FPGA module.

Control of spiking dynamics. Spiking behavior of DOPO neu-
rons was controlled by changing pump amplitude. Time evolu-
tions of coupled v- and w-DOPOs (blue and gray lines,
respectively) were observed as shown in Fig. 2a. Constant pump
amplitudes and an external bias linearly increasing from a
negative value were applied to the DOPO neuron with antisym-
metric coupling (Jvw ¼ �Jwv). The following two parameters are

defined: P ¼ �1þ p
� �

and ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�JvwJwv

p
, where ω0 is natural

spiking frequency at P ¼ 0. Dimensionless notations are given as
eIext � Iext=ω

3=2
0 for bias and eX � X=ω0 with X ¼ P; γ; and so on.

For large eP (bottom panel of the figure), the interspike intervals
gradually decrease from a very large value, meaning that firing

rates gradually increase with increasing bias. For small eP (top
panel), the interspike intervals and firing rates hardly change,
while amplitude gradually increase with increasing bias. These
two kinds of behavior are very similar to those of the class-I and
class-II neurons26,28.

Spiking behavior of a single DOPO neuron was investigated by
tuning pump amplitude P and external bias Iext with both P and
Iext constant over time. Moreover, the model described by Eqs. (1)
and (2) was validated by comparing experimental results with
numerical simulations (see Supplementary Note 1). Change in

spiking frequency eω as a function of eP and eIext calculated by those
numerical simulations is plotted in Fig. 2b. As shown in Fig. 2c,
the spiking frequencies of DOPO neurons were experimentally
measured with different operating parameters along three lines
(A, B, and C) in Fig. 2b. Our experimental setup could simulate
up to 240 DOPO neurons simultaneously, and 80 neurons were
assigned for obtaining data points corresponding to each line.
Both the experimental measurements and simulations clearly
show a sudden rise and fall of ω for line (A) and gradual increase
and decrease of ω for line (B), characterizing the class-II and
class-I neurons, respectively. These results show that the spiking
mode can be switched between the classes II and I by tuning
pump amplitude P. These behaviors can be explained by the
saddle-node bifurcation on a limit cycle (SNLC) (corresponding
to class-I neuron) and the Andronov-Hopf (AH) bifurcation
(class-II neuron) (see Supplementary Note 2). The neuron classes
could be controlled by changing P with Iext ¼ 0 on line (C).
When P was changed from negative to positive, firing rate
increases suddenly (AH) and then gradually decreases to zero
(SNLC). Change in firing rate at Iext ¼ 0 is approximately
predicted as a function of P as

ω Pð Þ ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� P2

8ω2
0

s

; ð3Þ

where 0≤ eP ≤
ffiffiffi
8

p
(see Method). The experimental result agrees

well with the prediction of this function, and it was confirmed

th neuron

th neuron

Network of 240 artificial neurons
(Network of 480 DOPOs)

a 
one neuron = pair of DOPOs

b 

Fig. 1 Experimental setup of a DOPO neural network. a 240-node artificial neural network composed of 480 DOPOs with antisymmetric couplings

(Jvw ¼ �Jwv). b Schematic diagram based on time-domain multiplexing in a 1-km fiber-ring cavity. PPLN, periodically poled lithium-niobate; PMF,

polarization-maintaining fiber; IM, intensity modulator; EDFA, erbium-doped-fiber amplifier; FPGA, field-programmable gate array.
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that the spiking mode of the DOPO neuron can be seamlessly
controllable between the class-I and class-II excitability.

Spontaneous modification of collective dynamics. Synchroni-
zation phenomenon of networked DOPO neurons, which is an
essential factor in signal processing of a SNN, was investigated
next. Networks of 60 DOPO neurons were constructed as
depicted in Fig. 3a. In each network, 15 neurons form an all-to-all

connected cluster (like the Kuramoto model46,47; also see
Method), and four such clusters are sparsely connected. This
network structure was encoded into connections of both v- and
w-DOPOs (i.e., γ ¼ γ0 � Jk). Since 240 neurons could be imple-
mented in our experimental setup, four independent sets of such
ensembles, consisting of 60 DOPO neurons with different cou-

pling strengths (eJk = 0, 0.025, 0.05, and 0.075), were measured at
the same time under similar experimental conditions as shown in
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Fig. 2 Class-I and II spiking modes of a DOPO neuron. a Time evolutions of v- and w-DOPOs (blue and gray lines) with constant pump amplitudes (eP =
0.57 and 1.36) and an external bias increased linearly with time. b Phase diagram of the DOPO neuron in the parameter space of P and Iext. The color map

represents spiking frequencies calculated by numerical simulations. Red and blue dots obtained by linear stability analysis represent points where the

Andronov–Hopf (AH) bifurcation and saddle-node bifurcation on a limit cycle (SNLC) occur, so they characterize class-II and class-I neurons, respectively.

c Experimental results of tomographic measurement of spiking frequencies along lines A, B, and C in (b). The color map represents Fourier signals of time

evolutions of DOPO amplitudes. Cyan points are firing rates estimated by adding up the number of spikes.
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Supplementary Fig. 6. We set Iext ¼ 0 and used uniform i-inde-

pendent coupling jJvwj ¼ Jwv
�� ��. Then, i-dependence of the pump

amplitude Pi was tuned to control the distribution of ωi Pi

� �
, and

the Pi were assigned to four 15-neuron clusters labeled A to D in
descending order of firing rate. The distribution of firing rates of
the 60 DOPO neurons is shown in Fig. 3b. The distribution of

intrinsic firing rates was measured without coupling (eJk ¼ 0), and
the firing rates are widely spread according to applied Pi. With

weak coupling at eJk = 0.025, the distribution of firing rates is
shown as four uniform frequencies, suggesting that coupled
DOPO neurons reach obvious synchronization in each 15-neuron
cluster; however, the four clusters are unsynchronized. As Jk
increases, mean and variance of the firing rate decreases. Time

evolutions of DOPO neurons with coupling at eJk = 0.075 are
shown in Fig. 3c, where θi � arg vi þ iwi

� �
is a phase defined on

the v - w plane of amplitudes of paired DOPOs. Phase change 4θi
in each of the four cavity circulations is shown in Fig. 3d. Phases
of the sampled neurons in the four clusters are shown in Fig. 3e.

Order parameter r, defined as r ¼ 1
N
∑je

iθj

���
���, for each cluster (N =

15) and for all neurons (N = 60) was evaluated as shown in

Fig. 3f. By increasing coupling strength to eJk = 0.075, the four
clusters became intermittently synchronized, and the order
parameter occasionally reached r � 1. Additionally, a similar
experiment was performed when the 60 neurons form a single
cluster with all-to-all connection. As shown in Supplementary
Fig. 7, phase locking of all neurons was observed by increasing

coupling strength eJk while keeping the order parameter high value
r � 1.

The above-described behavior of the order parameter can be
understood by the Kuramoto model46,47. However, it should be
noted that firing rates are significantly decreased from their
original values as Jk increases as shown in Fig. 3b, and that
behavior differ from the standard behavior expressed by the
Kuramoto model. Further analysis suggests that the change in
firing rate is induced by an effective change in the spiking mode
of synchronized DOPO neurons as an ensemble. The dynamics of
the networked DOPO neurons defined by Eqs. (1) and (2) can be

rewritten with
ffiffiffiffiffi
Ri

p
eiθi � vi þ iwi as

dθi
dt

¼ ω0 � Jk∑j≠iεijsinðθi�θjÞ þ
Ri

4
sin4θi ð4Þ

dRi

dt
¼ 2PiRi þ 2JkRi∑j≠iεijcosðθi�θjÞ �

R2
i

2
cos4θi þ 3ð Þ; ð5Þ

where εij ¼
ffiffiffiffiffiffiffiffiffiffiffi
Rj=Ri

q
. The quadrature components of the DOPOs

are neglected here. Equation (4) is analogous to the standard
Kuramoto model (see Method). Near the limit of P ! þ0 where
Ri ! 0, Ri terms can be neglected, and a simple Kuramoto model

can be obtained with
dθi
dt

¼ ω Pið Þ � Jk∑j≠isinðθi�θjÞ. Here, each

class-II DOPO neuron is a simple oscillator with angle frequency
ω Pð Þ that slightly depends on Pi as given in Eq. (3) around P ¼ 0.
Away from P � 0; the term Risin4θi in Eq. (5) suggests the class
change of neurons from the class-II to the class-I. Indeed, each

oscillator obeys the simple SNLC type equation dθ
dt
¼

ω0 þ Pffiffi
8

p �1þ 8θ2
� �

near the saddle point at around θ ¼ 1
4
ðπ
2
þ

2nπÞ with R ffi
ffiffiffi
2

p
P in the case without interaction (eJk ¼ 0) (see

Supplementary Note 2). By taking account of the finite
interactions effectively, Eq. (5) indicates that the pump term
should be renormalized as P0

i ¼ Pi þ Jk∑j≠iεij cosðθi�θjÞ, and the

second term on the right-hand side can be reduced to rðN � 1ÞJk
under the approximation εij � 1. This result suggests that the

synchronization with a large order parameter ðr � 1Þ increases
the pump term effectively and causes the spontaneous change in
the spiking mode from class-II to class-I.

The initial part of the dynamics in Fig. 3e shows characteristics
of the class-II neuron, a linearly increasing θi at a gradient of
dθi=dt � ω0, where Fig. 3f shows the order parameter is not yet
increased (r < 1). On the other hand, the latter part of the
dynamics, where r � 1, shows the features of a class-I neuron;
e.g., the latter part of Fig. 3e shows stepwise structures indicating
that the neuron repeatedly stays on near unstable stationary
points ðdθi=dt � 0Þ and escapes from those points. Note that the
timing of the escape is flexibly tuned (see Fig. 3d, in which the
width of the blue areas with 4θi � 0 frequently changes). It is
also shown in Fig. 3e that during a long escape time from the
neighborhood of unstable stationary points, the order parameter r
tends to increase up to 1, as shown in Fig. 3f, suggesting that the
timing of the spikes is tuned spontaneously to increase the order
parameter. For the unsynchronized ensemble, on the other hand,
the effective change in the pump term is suppressed with small r,
and the spiking mode reverts to class-II. Since the spiking
dynamics of the class-II neuron has no stationary point, the
tuning of the spike timing is suppressed. Consequently, the self-
tuning effect of collective spiking dynamics of clustered neurons
assists the overall synchronization, even though each cluster has
significantly different firing rates.

Combinatorial optimization using self-tuning dynamics. To
understand the effect of the above-described spontaneous change
in firing rates of local clusters on the whole network dynamics, an
analogy with a complex frustrated spin system, namely, the Ising
model48, is considered as follows. The state of the Ising model is
described in terms of Ising energy given by EIsing ¼ �∑i<jJ ijσ iσ j,

where σ i ¼ f�1;þ1g denotes the ith Ising spin state, and J ij is a

matrix representing symmetric spin–spin interaction between the
ith and jth spins. The Ising spin state can be represented by the
binary phase state of the v-DOPO. Spin–spin interaction J ij is

implemented only for synaptic connections between v-DOPOs
(γ ¼ �Jk; γ

0 ¼ 0). External bias Iext is set to zero. Of particular
interest is relaxation of the DOPO SNN to configurations with
lower Ising energy, which can be used to solve many combina-
torial optimization problems. As the first benchmark problem,
the following instance was solved: a highly frustrated network of
150 Ising spins coupled by symmetric connections with edge
density of 50%. This instance has been investigated by using
various algorithms, such as the one used in a spin-glass server49,
and physical systems based on networked DOPOs, such as a
coherent Ising machine (CIM)50. The best-known solution of the
instance has EIsing of �700. Note that the probability of reaching

the best-known solution by using the CIM was 0.8% with com-
putation time of 5 ms (1000 cavity circulations), and we con-
firmed that the instance is not an easy instance based on the
optimisation simplicity criterion (OSC) proposed by Kalinin,
et al.51. The time-dependent and node-independent pump
amplitude Pi ¼ P0ðtÞ was applied to the DOPOs, and the
amplitude linearly increased with time. Time evolution of mea-

sured v-DOPO amplitudes with coupling strength eJk = 0.250 is
shown in Fig. 4a. As a reference, the dynamics of uncoupled
DOPO neurons are shown in the top panel. This figure suggests
that the firing rate gradually decreases with time, and the spiking
dynamics terminate at the end of calculation because P0ðtÞ finally
reaches a value exceeding the spiking region. When the network
is connected (see lower panel), DOPO neurons show highly
irregular and complex spiking behavior. Time evolutions of the

Ising energy with various coupling strength (eJk = 0.083, 0.167,
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and 0.250) are shown in Fig. 4b. Lower-energy solutions are

found with higher coupling strengths at eJk ¼ 0.250, and the best-
known solution is obtained with success probability of 11% and
computation time of 17.5 ms (3500 cavity circulations). In terms
of the time-to-solution, the performance of the DOPO spiking
neural network is better than that of the CIM for this instance
(see Supplementary Note 7 for more details). To understand the
dependence of the spiking dynamics on coupling strength, the
relationship between the total firing count of each DOPO neuron
and local energy Eloc;i of the final solution is shown in Fig. 4c.

Local energy is defined as Eloc;i ¼ �∑jJ ijσ iσ j, which is related to

Ising energy by EIsing ¼ 1
2
∑iEloc;i. With increasing coupling

strength, a positive correlation between firing count and local
energy appears. As clarified in the above discussion, synchroni-
zation of DOPO neurons causes firing rates to change. The order
parameter can be related to local energy Eloc;i by using certain

approximations (see Supplementary Note 7); thus, renormalized
pump amplitude can be rewritten as Pi ¼ P0ðtÞ � 1

2
JkEloc;iðtÞ.

This result means that DOPO neurons with higher Eloc;i (ener-

getically unstable nodes) show higher firing rates and those with
lower Eloc;i (energetically stable nodes) show lower firing rates.

Consequently, the DOPO neural network spontaneously tries
frequently to flip Ising spins primarily on energetically unstable
nodes, and such a selective spin-flip mechanism should be a key
factor in accelerating the relaxation to lower energy states. The
dependence of the spin-flip frequency with corresponding local
energy is reminiscent of the state-of-the-art algorithms for
combinatorial optimization such as extremal optimization52 and
methods related to self-organized criticality53.

Discussion
It was confirmed that the spiking dynamics of the DOPO neurons
can be controlled from class-II to class-I neuronal mode by
increasing optical-pump amplitude, and firing rate can be
modulated dynamically by the crossover of different spiking
modes. This flexible controllability of spiking modes induces a
self-tuning effect in the collective dynamics of the DOPO neu-
rons. Because the pump amplitudes of clustered DOPO neurons
can be approximately renormalized as P0

i ¼ Pi þ rðN � 1ÞJk, the

pump amplitude can be effectively increased as the order para-
meter r of synchronization is increased. Our experimental results
show that the firing rate of neuron is modulated according to the
order parameter. Such spontaneous modification of the collective
dynamics assisted the synchronization even though neurons have
significantly different firing rates. Additionally, the self-tuning
effect of firing rate was utilized to improve the optimization
process of the Ising spin network. Since the renormalized pump
amplitude can be rewritten as P0

i ¼ Pi � 1
2
JkEloc;i in the case of the

antiferromagnetic spin network, the firing rate of neuron is
modulated according to local energy Eloc;i. Firing-rate selectivity
for the local energy might be an effective way to find global lower-
energy solutions of the Ising model. The present DOPO neural
network inherently includes such a dynamical optimization
process thanks to the self-tuning effect of the collective spiking
dynamics.

In our experimental setup, the v-w coupling and network of
DOPO neurons were implemented with the measurement-and-
feedback scheme based on the FPGA module and thus the
computation speed can be limited by the matrix calculation
performed by the FPGA module (see Supplementary Note 7). We
expect that the time scale of spiking frequency ω0 has the
potential to become shorter by relying on 10-GHz-repetition rate
lasers and replacing the v-w coupling based on the FPGA module
by direct optical coupling with an integrated photonics platform.
Fortunately, flexible optical couplings using integrated inter-
ferometers in a waveguide module54,55 and spatial light
modulators56,57 have been proposed for advanced photonic Ising
machines58,59. These activities can greatly support faster photonic
implementation of the artificial spiking neuron with coupled
DOPOs. On the other hand, the current scheme using the FPGA
module is very effective for implementing dense networks like the
Kuramoto model since the optical coupling can suffer from
limitation of connectivity due to spatial restriction and resolution
of the physical system. Thus, our final goal will be to explore the
best balance of the combination of photonic neuromorphic ele-
ments and the measurement-and-feedback scheme, mimicking
the combination of neurons and synapse connections in a real
neural system.
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Method
Analysis of linear stability. Hereafter, the bifurcation of a single neuron is dis-
cussed without consideration of interneuron couplings and external fields
(γ ¼ γ0 ¼ Iext ¼ 0). It is assumed that the i-dependence can be neglected in the
notations. Analysis of linear stability based on Eqs. (1) and (2) explains what kinds

of bifurcations appear. A linearized form around an equilibrium point
v
w

� �
¼

ve
we

� �
is given by d

dt

v
w

� �
¼ M

v
w

� �
with M ¼ P � 3v2e � ω0ω0 P � 3w2

e

� �
. For

small Pð>0Þ, equilibrium found at
ve
we

� �
¼ 0

0

� �
has eigenvalues of M given by

λ ¼ P ± iω0 , suggesting an AH bifurcation. For large P, equilibriums can be found

at the tangency points of nullclines around
ve
we

� �
� ±

ffiffiffiffiffiffiffiffi
P=3

p

�2P
ffiffiffi
P

p
=3ω0

� �
. Around

such equilibriums, two of λ can be real and positive values that characterize the
SNLC bifurcation. Numerical calculations can precisely estimate equilibriums and
corresponding c, and the sets where AH or SNLC bifurcations occur can then be
evaluated, as shown in Fig. 2b. In addition, by simulating the spiking dynamics
based on Eqs. (1) and (2), it is also possible to calculate spiking frequency. These
two kinds of calculations are consistent with each other. See Supplementary Note 1
and 2 for more mathematical explanations.

Spiking frequency. From Eqs. (4) and (5) (in which Jk ¼ 0 is set and i-dependence
is neglected), spiking frequency ω Pð Þ can be approximately obtained. R can be

roughly evaluated under the condition dR
dt
¼ 0 as R � 2P

π

R
π

�π

dθ
3þcos4θ ¼

ffiffiffi
2

p
P,

meaning that the number of photons (/ R ¼ v2 þ w2) increases linearly with

pump amplitude. From this relation dθ
dt
¼ ω0 þ Pffiffi

8
p sin4θ is obtained, and the period

of the oscillator can be approximately evaluated as T ¼
R
π

�π

dθ
ω0þ Pffiffi

8
p sin4θ

¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0�P2=8

p .

Finally, ω Pð Þ in Eq. (3) is obtained. See Supplementary Note 3 for more detail about
this calculation.

Kuramoto model. The Kuramoto model, which provides a paradigm for under-
standing the mechanism of synchronization phenomena of coupled nonlinear
oscillators46,47, is briefly introduced hereafter. The Kuramoto model for N non-
linear oscillators with all-to-all coupling with strength Jk is given as

dθi
dt

¼ ωi � Jk∑jsinðθi�θjÞ ð6Þ

where θi and ωi are the phase and natural angular frequency of the ith
nonlinear oscillator for i = 1, 2, …, N. Synchronization of coupled oscillators can
be understood as a kind of phase transition characterized by order parameter r

defined as r ¼ 1
N
∑je

iθj . Under the assumption that ωi has a distribution with

variance σω, r is zero for small Jk=σω and becomes finite for large Jk=σω (also see
Supplementary Note 4). In our experiments, the distribution of ωi was introduced
by controlling pump amplitude Pi through Eq. (3).

Data availability
The data that support the plots within this paper and other findings of this study are

available from the corresponding authors upon reasonable request.

Code availability
The modeling is described in the Supplementary information and the code is available

from the corresponding authors upon reasonable request.
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