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ABSTRACT
To take the first step beyond keyword-based search toward
entity-based search, suitable token spans (“spots”) on docu-
ments must be identified as references to real-world entities
from an entity catalog. Several systems have been proposed
to link spots on Web pages to entities in Wikipedia. They
are largely based on local compatibility between the text
around the spot and textual metadata associated with the
entity. Two recent systems exploit inter-label dependencies,
but in limited ways. We propose a general collective dis-
ambiguation approach. Our premise is that coherent docu-
ments refer to entities from one or a few related topics or do-
mains. We give formulations for the trade-off between local
spot-to-entity compatibility and measures of global coher-
ence between entities. Optimizing the overall entity assign-
ment is NP-hard. We investigate practical solutions based
on local hill-climbing, rounding integer linear programs, and
pre-clustering entities followed by local optimization within
clusters. In experiments involving over a hundred manually-
annotated Web pages and tens of thousands of spots, our
approaches significantly outperform recently-proposed algo-
rithms.
Categories and Subject Descriptors: H.3.3
[Information Search and Retrieval]: Information Systems –
Information Storage And Retrieval
General Terms: Algorithms, Experimentation
Keywords: Entity annotation/disambiguation, Wikipedia,
collective inference

1. INTRODUCTION
A critical step in bridging between unstructured Web text

and semistructured search and mining applications is to iden-
tify textual references (called “spots”) to named entities and
annotate the spots with unambiguous entity IDs (called “la-
bels”) from a catalog. These entity ID annotations enable
powerful join operations that can combine information across
pages and sites. Named entity recognition and tagging have
seen widespread success [17]. Here we are concerned with
the second step: entity disambiguation from a given catalog,
such as Wikipedia. (The availability of a catalog makes this
a supervised setting, unlike unsupervised coreference resolu-
tion.)

1.1 Entity catalogs
The success of semantic annotation is greatly determined

by widespread adoption of the entity catalog. For common
English words, WordNet [14] provides an authoritative lex-
ical network designed by linguists, and widely used for dis-
ambiguation of common words [1]. CYC and OpenCYC [12]
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are partly commercial efforts to maintain entity catalogs,
rules and reasoning engines. To understand and maintain
TAP [8], WordNet, or OpenCYC, substantial training is
needed in knowledge representation and linguistics.

In contrast, the “Web 2.0” trend is to throw open tagging
and cataloging of knowledge to the masses. Wikipedia is
a stunning example of the success of this strategy: it has
over 0.34 million categories and over 2.6 million cataloged
entities, and keeps up with world events on an hourly or
daily basis. The flip side is that Wikipedia lacks the rigorous
“knowledge base” quality of TAP or OpenCYC. There is
little by way of schema, quality of authorship is diverse, and
the category hierarchy is haphazard. The challenge of Web
mining systems is to harness the chaotic “wisdom” of the
crowds into relatively clean knowledge.

1.2 Prior work and limitations
Most existing systems annotate only salient entity refer-

ences. In some prototypes, only entities of specific recog-
nized types (most often people and locations) are disam-
biguated. The goal is to emulate Wikipedia’s restrained,
informative, editorial links on ordinary Web pages.

SemTag. The first Web-scale entity disambiguation system
was SemTag [5]. SemTag annotated about 250 million Web
pages with IDs from the Stanford TAP entity catalog [8].
The basic technique was to compare the surrounding con-
text of a spot s with text metadata associated with candi-
date entity γ in TAP. SemTag preferred high precision over
recall, proposing only about 450 million annotations, i.e.,
fewer than two annotations per page on average.

Wikify!. Wikify! [13] has two components. The first, key-
word extraction, decides if a phrase should be linked to Wiki-
pedia. This is based on how often a word or phrase is found
to be in the anchor text of some link internal to Wikipedia.
The second step is disambiguation. Wikify!, too, is conser-
vative in flagging keywords, so much so that even random
disambiguation results in an F1 score of 0.82. Suppose Wik-
ify! is considering linking spot s to entity γ. Wikipedia’s
page describing γ is explicitly referred from other Wikipedia
pages. The context of these known citations is compared
with the context of s to decide on a compatibility score.
This may be regarded as generalizing SemTag, where known
references to γ form part of the metadata of γ. Bunescu and
Pasca [3] further improved the compatibility function using
SVMs with tree kernels. However, none of these systems
attempt collective disambiguation across spots.

M&W. A limited form of collective disambiguation pro-
posed by Milne and Witten [15] yields considerable improve-
ment beyond Wikify!. M&W propose a relatedness score
r(γ, γ′) between two entities. From the set of all spots S0,
they identify the subset S! of so-called context spots that
can refer to exactly one entity each (let this entity set be
Γ!). They define a notion of coherence of a context spot



γ ∈ Γ! based on its relatedness to other context spots. For
an ambiguous spot s 6∈ S!, the score of a candidate entity
γ 6∈ Γ! is strongly influenced by its mention-independent
prior probability Pr0(γ|s), its relatedness to context entities
on the page, their coherence, and a measure of overall qual-
ity of context entities. M&W also propose a link detector
(a function similar to keyword extraction in Wikify!) that,
like SemTag and Wikify!, sacrifices recall for high precision.
For the spots picked by M&W for labeling, even random
disambiguation achieves an F1 score of 0.53.

Cucerzan’s algorithm. To our knowledge, Cucerzan [4]
was the first to recognize general interdependence between
entity labels in the context of Wikipedia annotations. He
represents each entity γ as a high-dimensional feature vec-
tor g(γ), and expressed r(γ, γ′) as the inner product (or
cosine, if ‖g(γ)‖ are normalized) g(γ)>g(γ′), also written as
g(γ) · g(γ′). Let Γ0 be all possible entity disambiguations
for all spots on a page. He precomputes the average vec-
tor g(Γ0) =

P
γ∈Γ0

g(γ). The score of candidate γ for spot
s depends on two factors. The first, like SemTag or Wik-
ify!, is a local context compatibility score. The second is
g(γ)>g(Γ0 \ {γ}), reminiscent of leave-one-out cross valida-
tion. Cucerzan also annotates very sparingly: only about
4.5% of all tokens are annotated.

A problem with this approach is that Γ0 is contaminated
with all possible disambiguations of all spots, so this check
for “agreement with the majority” may be misleading. Note
that both M&W and Cucerzan avoid direct joint optimiza-
tion of all spot labels, which is precisely what we undertake.

The above line of work has some similarity to identify-
ing mentions of entities in databases (e.g. product catalogs)
amidst unstructured text (e.g., blogs) [2], but, in such appli-
cations, the “entity catalog” is a clean relational database,
and, to our knowledge, no collective labeling is employed.

1.3 Our goals and contributions
Our goal in this paper is aggressive open-domain annota-

tion of Web pages with entity IDs from an entity catalog
such as Wikipedia. We contrast this with a more restricted
disambiguation of entities which achieves high precision by
sacrificing recall. The central purpose of our annotation is
not direct human consumption, but downstream indexing,
search and mining.

For example, we may gather from one page that m is a
mathematician, and from another, that m plays the violin.
Such data can be aggregated to explore whether scientists
tend to play music significantly more or less often than other
people mentioned on the Web.

Our guiding premise is that documents largely refer to
topically coherent entities, and this “coherence prior” can
be exploited for disambiguation. While Michael Jordan and
Stuart Russell can refer to seven (basketball player, foot-
baller, actor, machine learning researcher, etc.) and three
(politician, AI researcher, DJ) persons respectively in Wiki-
pedia (as of early 2009), a page where both Michael Jordan
and Stuart Russell are mentioned is almost certainly about
computer science, disambiguating them completely.

We propose a collective optimization problem that pre-
cisely models the combination of evidence from local spot-to-
entity compatibility (“node potential”) and global page-level
topical coherence (“clique potential”) of the entities chosen
to disambiguate all spots. Our optimization is equivalent to

S0 All candidate spots in a Web page
S ⊆ S0 Arbitrary set of spots
s ∈ S One spot, including surrounding context
Γs Candidate entity labels for spot s
Γ0

S
s∈S0

Γs, all candidate labels for page
Γ ⊆ Γ0 An arbitrary set of entity labels
γ ∈ Γ An entity label value, here, a Wikipedia URN
na The “no attachment” decision
ρna The “reward” for setting ys = na

N0 ⊆ S0 Spots assigned na
A0 = S0 \N0 Spots assigned some γ 6= na

Sγ Spots that can disambiguate to γ
SΓ

S
γ∈Γ Sγ

Figure 1: Notation.

searching for the maximum probability annotation configu-
ration (inference) in a probabilistic graphical model where
each page is a clique. Inference is NP-hard. We propose
practical and effective heuristics based on local hill-climbing
and linear program relaxations. Our framework also applies
to word sense disambiguation [1], and therefore, may be of
independent interest.

We describe our experiments with two data sets. Cucerzan’s
ground-truth data [4] has annotations only for persons, places
and organization and is limited to only 700 spots on non-
Wikipedia data. While SemTag was run on 264 million
pages and produced 434 million annotations, human judge-
ment was collected on only about 1300 spot labelings (and
this data is not publicly available). We built a browser-
based annotation UI that six volunteers used to collect over
19,000 spot annotations on more than 100 pages; largest
among known prior work1. Experiments show that we can
significantly push the recall envelope without hurting pre-
cision. Our trained node potential alone can improve F1

accuracy considerably compared to all of Wikify!, Cucerzan
and M&W’s algorithms. Taking clique potentials into con-
sideration using LP rounding or greedy hill-climbing gives
further accuracy gains.

2. NOTATION AND PRELIMINARIES

2.1 Spots and entity labels
Because we process one page at a time, we will elide the

page in our notation. A spot s is a (short) token (sequence)
that is potentially a direct reference to an entity in Wiki-
pedia. We do not consider indirect references like pronouns,
but do aim to resolve imperfect matches such as Michael for
Michael I. Jordan. The context of s is the text in a suit-
able window around s. An entity is expressed as a URN in
Wikipedia, and denoted γ. na is a special label denoting
“no attachment”, i.e. an algorithm can avoid labeling a spot
to increase precision at the cost of recall. ρna ≥ 0 is a tuned
parameter to guide this tradeoff. See Figure 1.

2.2 Compatibility feature vector fs(ys)

ys is a variable denoting the entity label, taking a value
from Γ0∪{na}. y is the vector of all spot labels. fs(γ) ∈ Rd

is a feature vector whose elements express various measures
of compatibility between s and γ. The context of a spot is
a bag of words collected from a suitable window around the
candidate entity reference.

1The data is in the public domain, see http://soumen.cse.
iitb.ac.in/~soumen/doc/CSAW/ or http://www.cse.iitb.
ac.in/~soumen/doc/CSAW/



Wikipedia is preprocessed so that each page corresponding
to an entity γ is represented by four fields.
• Text from the first descriptive paragraph of γ.
• Text from the whole page for γ.
• Anchor text within Wikipedia for γ.
• Anchor text and five tokens around it.

Each field is turned into a bag (multiset) of words. Three
text match scores are computed between a field of γ and s:
• Dot-product between word count vectors.
• Cosine similarity in TFIDF vector space.
• Jaccard similarity between word sets.

So in all, we get 4× 3 = 12 features.

Sense probability prior. Some γ ∈ Γs are very obscure
and rare; i.e., Pr(γ|s) is very low. E.g., Intel is (also) a
fictional cartel in a 1961 BBC TV serial, but this sense is
much rarer than the semiconductor giant. We can easily
count from intra-Wikipedia links the fraction of times a link
with Intel in the anchor text points to every sense of Intel,
and use this as a prior estimate of Pr0(γ|s). The last el-
ement of fs(γ) is log Pr0(γ|s) (the log is explained below).
This feature is somewhat different from local compatibility
features, so we will often study its effect separately.

2.3 Compatibility score (node potential)
The local compatibility score between s and γ is modeled

as w>fs(γ) where w ∈ Rd is a model vector. For a locally
optimal choice, we would pick arg maxγ∈Γs w>fs(γ) as the
label for s. If we had to normalize this to a probability,
we would use a logistic model Pr(γ|s) = exp(w>fs(γ))/Zs

where Zs =
P

γ′∈Γs
exp(w>fs(γ

′)), is the partition function

(hence the log in the sense probability feature above). We
call exp(w>fs(·)) the node potential of s, using graphical
model [9] terminology.

We train w using a max-margin technique. Given ground
truth assignment γ∗s ∈ Γs, we want w>fs(γ

∗
s ) to be larger

than any other w>fs(γ), with a margin; this gives us the
usual SVM linear constraints (for spots with γ∗s 6= na only):

∀s, ∀γ 6= γ∗s ∈ Γs : w>fs(γ
∗
s )− w>fs(γ) ≥ 1− ξs

and we minimize over ξ ≥ ~0 and w the objective ‖w‖22 +
C
P

s ξs where C is the usual balancing parameter. Our
training data had tens of thousands of spots, and the Γs has
more than 10 elements, leading to ∼ 106 constraints. Rather
than use ‖w‖22 and a QP solver, we used ‖w‖1 which let us
use a more scalable LP solver (Mosek). More notation is
summarized in Figure 2.

2.4 Label embedding and relatedness
The last and most important piece in our model is an em-

bedding of labels γ in a suitable (usually high-dimensional)
feature space: g : Γ0 → Rc. This embedding is used to
define relatedness between two entities.

2.4.1 Cucerzan’s category-based g(γ) and r(γ, γ′)

The Wikipedia page for γ lists a set of categories that γ
belongs to. E.g., γ = Michael_jordan is a Sportspeople of
multiple sports while γ = Michael_I._Jordan is a Machine
learning researcher. If there are c categories in Wikipedia,
the categories that γ belongs to can be represented by a
c-long bit vector, which is designated as g(γ). Cucerzan

ys Variable denoting label assigned to spot s
y Vector of all label assignment for page
y∗ Vector of ground-truth labels
Γ∗ Set of ground-truth labels in y∗

fs(ys) ∈ Rd Compatibility feature vector between s and ys

w ∈ Rd Compatibility weight vector
NPs(ys) exp

`
w>fs(ys)

´
, spot-to-label compatibility

g(γ) ∈ Rc An embedding of γ in suitable space (see text)
r(γ, γ′) Topical relatedness between γ, γ′

CP(y) Topical coherence among all labels for page

Figure 2: More notation.

defined the relatedness between two entities γ, γ′ as

r(γ, γ′) =
g(γ)>g(γ′)p

g(γ)>g(γ)
p

g(γ′)>g(γ′)
,

a standard cosine measure.
Wikipedia’s categorization is organic and uncontrolled:

γ = Michael_I._Jordan also belongs to categories called
Living people and Year of birth missing, which are not topi-
cal. We tried to mitigate this with various weighting schemes,
but Cucerzan’s algorithm nevertheless performed worse than
each of our algorithms, which used the relatedness definition
described next.

2.4.2 M&W’s inlink-based g(γ) and r(γ, γ′)

Cocitation has been used to detect relatedness for a long
time [11]. Milne and Witten [15] represented g(γ) as the set
of Wikipedia pages that link to γ, with size |g(γ)|. Let c
be the total number of Wikipedia pages. M&W defined a
relatedness measure (larger value implies more related) as:

r(γ, γ′) =
log |g(γ) ∩ g(γ′)| − log max{|g(γ)|, |g(γ′)|}

log c− log min{|g(γ)|, |g(γ′)|}

The numerator is a slight variation on Jaccard similarity,
and the denominator is inversely related to min{|g(γ)|, |g(γ′)|}.
Unless otherwise specified this is the measure we use.

2.5 Range compression
To robustly balance between local and global signals hav-

ing diverse dynamic ranges, we apply a range compressor
function R(·) to all elements of vectors fs(·) and g(·). Specif-
ically,

R(t) =

(
log(1 + t), t ≥ 0

− log(1− t), t < 0.

This limits the numeric output range without clipping it at
any value. Henceforth, when we write“fs(ys)”or“g(γ)>g(γ′)”,
we will mean R(fs(ys)) or R(g(γ))>R(g(γ′)) respectively.
To keep notation uncluttered, we will hide R and this pre-
processing step. Note that R(·) is not applied to ρna, the
reward for assigning label na to a spot.

3. THE DOMINANT TOPIC MODEL
We now describe our main model and inference approaches.

The key is to define, over and above node potentials, a col-
lective score based on pairwise topical coherence of all γs
used for labeling.

3.1 Coherence score (clique potential)
For the moment, disallow ys = na. Consider Figure 3. If

γ, γ′ are used as labels for s, s′, their agreement is defined
as r(γ, γ′). For the whole page, the overall agreement is



Document

s

s’

Spots

Γs

Γs’

γ′

γ

g(γ)

g(γ′)

Candidate labels

S
po

t-
to

-la
be

l
co

m
pa

tib
ili

ty

Inter-label topical
coherence

Figure 3: Labels γ ∈ Γs, γ
′ ∈ Γs′ have to be chosen

for spots s, s′ to maximize a combination of spot-to-
label compatibility scores NPs(γ), NPs′(γ′) as well as
topical similarity between γ and γ′, say, g(γ)>g(γ′).

aggregated as
P

s 6=s′∈S0
r(ys, ys′). In keeping with standard

graphical models style [9], we can turn this into a clique
potential

CP(y) = exp
“P

s 6=s′∈S0
r(ys, ys′)

”
, (1)

and the overall probability of a label assignment y is writ-
ten as Pr(y) = (1/Z)CP(y)

Q
s∈S0

NPs(ys), where Z =P
y′ CP(y′)

Q
s∈S0

NPs(y
′
s) is a scale factor that makes the

probabilities add up to 1 over all possible y.
Evaluating Z is difficult because an exponential number

of terms need to be added up. For predicting the most likely
label vector, finding Z is not needed; we just need

arg max
y

Pr(y) = arg max
y

CP(y)
Y

s

NPs(ys)

= arg max
y

log CP(y) +
X

s

log NPs(ys)

= arg max
y

X
s 6=s′∈S0

r(ys, ys′) +
X
s∈S0

w>fs(ys).

The two sums have different number of terms, which also
vary from page to page. To be able to use a single consis-
tent w across all pages, we need to scale the two parts to a
compatible magnitude. So our objective, barring nas, is

1`|S0|
2

´ X
s 6=s′∈S0

r(ys, ys′) +
1

|S0|
X
s∈S0

w>fs(ys).

3.2 Recall-precision balance
Almost a third of spots in our ground truth data are

marked “na” by volunteers, meaning that no suitable en-
tity was found in Wikipedia. This is a reality on the open-
domain Web, and many systems [13, 3, 15] can back off from
annotation (indeed, back off aggressively).

To implement a recall-precision balance, we use one tuned
parameter ρna ≥ 0, the reward for not assigning a spot any
label. Let N0 ⊆ S0 be the spots assigned na, and A0 =
S0 \N0 the remaining spots. We thus get our final objective:

max
y

1

|S0|

 X
s∈N0

ρna +
X

s∈A0

w>fs(ys)

!
(NP)

+
1`|S0|
2

´ X
s 6=s′∈A0

r(ys, ys′) (CP1)

The reader may demand that
`|S0|

2

´
be replaced by

`|A0|
2

´
in

(CP1). This creates difficulty for at least one of our infer-
ence approaches, because A0 depends on y and the resulting
optimization can no longer be written as an integer linear
program. One possible rationalization is that na has zero
topical coherence with any other label, including another
instance of na:

r(na, ·) = r(·,na) = r(na,na) = 0; (2)

therefore, the edge potential sum can be rewritten over s 6=
s′ ∈ S0, not s 6= s′ ∈ A0, so that the

`|S0|
2

´
denominator is

acceptable.
A reasonable way to tune ρna would be to first compute

the typical value of w>fs(ys) across all pages and spots in
the training set, then sweep ρna between 0.1× to 10× of that
typical value. We use this approach in our experiments.

3.3 Complexity of inference
Figure 3, (NP) and (CP1) get to the heart of the collective

disambiguation problem, so it is of interest to understand
the complexity of inference.
Proposition 1. Inference problem maxy (NP) + (CP1) is
NP-hard, even when ρna = −∞ and therefore A0 = S0.

The reduction is from the maximal clique problem [7]. We
also note that other natural definitions of CP do not make
the problem easier.
Proposition 2. The inference problem remains NP-hard
with the following alternative definitions of CP:

CP(y) = exp

0@−X
i6=j

‖g(yi)− g(yj)‖22

1A (3)

CP(y) = exp

„
−max

i6=j
‖g(yi)− g(yj)‖∞

«
(4)

Hardness using (3) is shown using a reduction from exact
cover by 3-sets [7]. Hardness using (4) is shown using a
reduction from 3SAT. Proofs are omitted to save space.

3.4 LP rounding approach
Guided by approaches to Quadratic Assignment Problems
(QAPs) [16] we can turn our optimization into a 0/1 integer
linear program, and then relax it to an LP. First disallow
ys = na. The ILP is designed with up to |Γ0|+|Γ0|2 variables

zsγ = [[spot s is assigned label γ ∈ Γs]]

uγγ′ = [[both γ, γ′ assigned to spots]]

The node potential part is written as

1

|S0|
X
s∈S0

X
γ∈Γs

zsγw>fs(γ) (NP′)

and the clique potential part is written as

1`|S0|
2

´ X
s 6=s′∈S0

X
γ∈Γs,γ′∈Γs′

uγγ′r(γ, γ′) (CP1′)

where we assume (2). So the goal is to

max
{zsγ ,uγγ′}

(NP′) + (CP1′) s.t.

∀s, γ : zsγ ∈ {0, 1}, ∀γ, γ′ : uγγ′ ∈ {0, 1} (5)

∀s, γ, γ′ : uγγ′ ≤ zsγ and uγγ′ ≤ zsγ′ (6)

∀s :
P

γ zsγ = 1. (7)



Constraints (6) enforce what we need, because, if zsγ =
zsγ′ = 1, the objective will push uγγ′ = 1. The formulation
generalizes readily to the na case using one more variable
zsna per spot, changing constraint (7) to

∀s : zsna +
X

γ

zsγ = 1

and adding a term 1
|S0|

P
s∈S0

ρnazsna to the objective.

3.4.1 Integrality gap
The relaxed LPs replace constraints (5) with 0 ≤ zsγ ≤ 1

and 0 ≤ uγγ′ ≤ 1. The optimal LP objective will be an
upper bound on the optimal ILP objective. To understand
how loose the upper bound can be in the worst case, consider
the following “butterfly graph” example. (Disallow na using
ρna = −∞.) There are two spots s1, s2, with Γs1 = {γ1, γ2}
and Γs2 = {γ3, γ4}. Assume all node potentials are zero, and
all r(γ, γ′) = 1. The optimal integral solution can have at
most one uγγ′ = 1, leading to an objective value of 1/

`
2
2

´
=

1. The fractional solution will find it best to assign all zsγ =
uγ,γ′ = 1/2, with an objective of 4×0.5 = 2. The gap can be
increased arbitrarily by increasing the bipartite clique size,
i.e., |Γs|.

3.4.2 Rounding policy
In our experiments, we found about 70% of pages to give

completely integral (hence, optimal) solutions. The obvious
rounding strategy for fractional solutions is arg maxγ∈Γs∪na zsγ .
We found that this tended to label na as some γ 6= na. In-
sisting that zsγ > 1/2 was more reticent and gave slightly
better F1.

1: initialize some assignment y(0)

2: for k = 1, 2, . . . do
3: select a small spot set S∆

4: for each s ∈ S∆ do
5: find new γ that improves objective

6: change y
(k−1)
s to y

(k)
s = γ greedily

7: if objective could not be improved then
8: return latest solution y(k)

Figure 4: Dominant cluster hill-climbing (Hill1)

3.5 Hill-climbing approach
Another approach is to avoid math programming and de-

ploy a direct greedy hill-climbing approach. Hill climbing
has the advantage that it can be easily stopped and inter-
preted at any time, and may achieve acceptable accuracy
faster than solving and rounding an LP. The generic tem-
plate is shown in Figure 4. It remains to specify the initial-
ization, and how to make label modifications.

3.5.1 Initialization
Some initializations suggest themselves:
• Initialize all ys = na
• Initialize all ys 6= na as per node potential alone, i.e.,

arg maxγ∈Γs w>fs(γ) (we use this option)
In our experiments we did not find significant differences
between accuracies obtained using the above initializations.

3.5.2 Label updates
We tried perturbing sets S∆ of sizes 1 and 2. The ratio-

nale for trying to perturb a pair of spots was that any single

spot perturbation may appear unattractive while at a local
optimum. However, |S∆| = 2 was already too slow to im-
prove upon LP speeds. So we concentrate on single moves.
If the label of s is changed from γ1 to γ2, node score (NP)
changes by

−


ρna (γ1 = na)
w>fs(γ1) (o.w.)

ff
+


ρna (γ2 = na)
w>fs(γ2) (o.w.)

ff
|S0|

and edge score (CP1) changes by

1`|S0|
2

´ X
s′ 6=s

`
r(ys′ , γ2)− r(ys′ , γ1)

´

4. EXPERIMENTS

4.1 Testbed

4.1.1 Preprocessing Wikipedia
We downloaded the August 2008 version of Wikipedia,

and prepared a dictionary of entity IDs, their labels and
mentions, as follows:
• A set of 5.15 million entity IDs, including titles, redi-

rections, disambiguations, and category names was first
collected from the dump.
• A subset of these entity IDs was filtered out. An entity

ID was filtered out either if it was composed purely
of verbs, adverbs, conjunctions or prepositions or if
it conformed to certain lexical patterns (e.g., fewer
than three characters). The former rules pruned about
15,000 entity IDs; the latter pruned about 16,100 (of
a total of 2.6 million).
• To enable efficient lookups of entity labels at runtime,

a trie (prefix tree) of the filtered Wikipedia entity IDs
was constructed using the Webgraph2 framework.
• Spots are identified by first tokenizing the document

(based on punctuation and white space as delimiters)
and then identifying token sequences that maximally
match an entity ID in the trie. Consequently, any can-
didate spot that happens to be a substring of another
candidate spot will be subsumed into the latter.
• For each identified spot indexed i, all entity IDs found

to have the same surface forms are associated with the
spot to yield a set Γi of its possible disambiguations.

4.1.2 Preparing corpora and annotations
Earlier work has used Wikipedia text itself as ground

truth annotations. This is not suited to our aggressive recall
target, so we looked for other data. SemTag collected only
about 1300 manually labeled spots for quality checking, and
these are not publicly available. Data used by Bunescu and
Pasca [3] was not publicly available. Cucerzan’s data [4]
(which we abbreviate to ‘CZ’) is available and we do use it,
but annotations are sparse and limited to a few entity types.
Several URN labels in CZ data no longer exist in Wikipedia.
Moreover, there is no na annotation.

Therefore we undertook to build a ground truth collection
(which we call“IITB”) using a browser-based annotation sys-
tem. Documents for manual annotation were collected from
the links within homepages of popular sites belonging to a

2http://webgraph.dsi.unimi.it/



Figure 5: Browser-based annotation GUI. For each s, trainers choose γ∗s from a pulldown menu showing Γs.

handful of domains that included sports, entertainment, sci-
ence and technology, and health (sources: http://news.go
ogle.com/ and http://www.espnstar.com/). Figure 6 sum-
marizes some important corpus statistics. The annotations
are available in the public domain. Both IITB and CZ data
have high average ambiguity. CZ’s is higher because the
spots are limited to common person and place names. Ob-
viously, random assignment would get very poor accuracy,
unlike M&W.

4.1.3 Browser-based annotation GUI
CZ data came pre-annotated, but for the IITB corpus,

we built a browser-based annotation tool. As illustrated in
Figure 5, candidate spots are highlighted to differentiate be-
tween pending and already annotated spots. Clicking on a
spot drops down a list of possible disambiguations. Hover-
ing on a specific Wikipedia label shows an excerpt from the
definition paragraph of the corresponding entity.

In the IITB data, we collected a total of about 19,000
annotations by 6 volunteers. Unlike in previous work, vol-
unteers were told to be as exhaustive as possible and tag all
possible segments, even if to mark them as na. The number
of distinct Wikipedia entities that were linked to was about
3,800. About 40% of the spots was labeled na, highlight-
ing the importance of backoffs. However, this also says that
60% of the spots were attached by volunteers, which by far
exceeds the token rate of attachment in earlier work. While
its absolute scale is impressive, SemTag produced only 434
million annotations from 264 million Web pages, or fewer
than two per page. From Figure 6, we see that the CZ data
identifies only about 15 spots per page. We thus highlight
that we are in a completely different recall regime.

The annotation module allows each document to be tagged
by two volunteers. Figure 7 summarizes some statistics on
inter-annotator agreement. Clearly, a considerable number
of disagreements are over na vs. “not-na”.

4.1.4 Evaluation measures

Accuracy. A simple option would be to count the fraction
of spots s (that have manually associated labels γ∗s ) which
get assigned ys = γ∗s , over N∗

0 and A∗
0 alike. However, typ-

ical applications will be asymmetric in how they react to
these labels. E.g., an indexing engine that incorporates ob-

ject IDs will simply ignore na labels. Therefore, we need to
also focus on A∗

0 separately.

Recall, precision, F1. Suppose, in ground truth, the set
of spots marked na is N∗

0 , and A∗
0 = S0 \ N∗

0 is the set of
spots marked some label other than na. We will be largely
concerned about the precision, recall, and F1 scores of spots
in A∗

0. The fate of such a spot can be one of the following:
A→ A: Correctly labeled
A 9 A: Algorithm picks wrong label γ 6= na

A 9 na: Algorithm picks γ = na

precision =
|{A→ A}|

|{A→ A}|+ |{A 9 A}|+ |{A 9 na}|

recall =
|{A→ A}|
|A∗

0|

Precision and recall are (macro-) averaged across documents
and overall F1 computed from average precision and recall.
Note that the presence of na makes these definitions differ-
ent from what Cucerzan and M&W measured as spot label-
ing accuracy after spot detection.

All parameters were tuned using 2-fold cross validation.

4.2 Local NP optimization
As a first step, we are interested in evaluating the effect

of training w, isolated from the influence of clique poten-
tials. For this, we ran a very simple system that we will
call Local. Local used the trained w to choose a label
for each spot independent of others, without any collective
information:

IITB CZ
Number of documents 107 19
Total number of spots 17,200 288
Spot per 100 tokens 30 4.48
Average ambiguity per Spot 5.3 18

Figure 6: Corpus statistics.

#Spots tagged by more than one person 1390
#na among these spots 524
#Spots with disagreement 278
#Spots with disagreement involving na 218

Figure 7: Inter-annotator agreement.



1: γ0 ← arg maxγ∈Γs w>fs(γ)
2: if w>fs(γ0) > ρna then return γ0 else return na

If fs(·) does not include the sense probability prior, we
call the above strategy Local, otherwise we call it Lo-
cal+Prior.

4.3 Effect of learning node potentials
M&W use two important signals, relatedness and com-

monness, in their disambiguator. In Figure 8 we present
ablation studies showing the relative effectiveness of various
features, together with the benefits of using all features with
a learnt model w.
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Figure 8: Training a model w is better than using
any single spot-label compatibility feature.

4.4 Comparison with earlier algorithms
Rather surprisingly, Local already produced significantly

better F1 scores than the two state-of-the-art annotations
systems by M&W and Cucerzan.

The M&W algorithm can be directly executed on any page
text using a Web service API3. The API includes a knob
to control the recall-precision balance. We implemented
Cucerzan’s algorithm locally. Cucerzan’s algorithm does not
have a recall-precision knob. In Local, we used ρna as the
knob.
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Figure 9: Even a non-collective Local approach that
only uses trained node potential dominates both
Cucerzan and M&W’s algorithms wrt both recall
and precision (IITB data).

Figure 9 shows recall-precision plots. Cucerzan’s algo-
rithm is shown by a single point. M&W’s precision is very
high, consistent with their claims. However, the R/P knob
cannot increase recall beyond 20%. Meanwhile, the ρna knob

3http://www.nzdl.org/pohutukawa/wikifier/index.jsp

in Local can be used to push it to 70% recall while remain-
ing comparable to M&W precision. If we dial down our re-
call to levels comparable with M&W, our precision becomes
visibly larger than M&W. Cucerzan’s recall and precision
are both dominated by Local, like M&W. Local+Prior
is substantially better than Local, and is a formidable F1

level to beat.
Cucerzan did not learn the node potential but hardwired

it. We gave Cucerzan’s algorithm the benefit of our learned
node potentials. The F1 score improved to 51.8%, which
was still short of Local and far short of Local+Prior.

4.5 Hill1 update trajectories
In Figure 10 we consider the trajectory of several doc-

uments (one line per document) as Hill1 optimizes their
labels. Specifically, we plot the objective minus the ρna con-
tribution on the x-axis, and correspondingly, the F1 score for
spots that are marked some non-na label in ground truth on
the y-axis. Although there are occasional expected setbacks
and oscillations, increasing the objective is generally good
for F1 too. This lends credibility to our basic dominant-
cluster model.
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Figure 10: As Hill1 improves our proposed objec-
tive, it usually improves F1 as well (IITB data).
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Figure 11: Hill1 can attain objectives comparable to
relaxed LP1 (IITB data).

4.6 Hill1 vs. LP1

For over 70% of the documents, LP1 gives fully integral
solutions, which are therefore optimal for our integer pro-
grams. Even otherwise, LP1 gives an efficiently computable,
yet reliable upper bound to the objective that Hill1 is trying
to attain. Figure 11 shows that in practice, the integrality
gap is small, that Hill1 gets reasonably close to the upper



bound, and that rounding makes LP1 slightly worse than
Hill1.
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Figure 12: Hill1 attains almost the same F1 score as
LP1; both are better than Local (IITB data).

More directly useful is Figure 12, which compares F1 scores
of Hill1 and LP1 (rounded). They are very close, but
Hill1 is slightly better at high recall levels of our inter-
est. Both Hill1 and LP1 are robust to ρna, whereas Local
suffers if ρna is chosen poorly.

Hill1 and LP1 scale mildly quadratically wrt |S0|, as
shown in Figure 13. For most documents, Hill1 takes about
2–3 seconds and LP1 takes around 4–6 seconds, much of
which is fixed overhead.
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Figure 13: Scalability of Hill1 and LP1, IITB data.

4.7 Comparing Local, Hill1, LP1

Having established that Local alone can significantly im-
prove upon prior work, we investigate whether collective in-
ference gives additional accuracy gains compared to Local.
In Figures 14 and 15 we plot precision against recall for the
Local, Hill1, and LP1, for our two data sets.

In case of the IITB data set, we see that collective infer-
ence has distinct precision advantage (almost 9%), especially
as we push recall aggressively beyond 70–75%. Summa-
rized below are F1 scores obtained by 2-fold cross-validation
of ρna:

Local Hill1 LP1
no Prior 63.45% 64.87% 67.02%
+Prior 68.75% 67.46% 69.69%

From Figure 6, we see that the CZ data is much smaller,
sparse in ground truth annotations, but has more potential
ambiguity. Here LP1 led to more fractional solutions and
overall worse accuracy than Hill1, which still beat M&W’s
F1 = 63% with our score of 69%, although M&W attained
larger precision than us at lower recall.
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Figure 14: Recall/precision on IITB data.
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Figure 15: Recall/precision on Cucerzan’s data.

5. MULTI-CLUSTER MODELS
Our clique potentials (expressions 1, 3, 4) implicitly en-

courage a single cluster model, because the clique poten-
tials are largest when all g(γ) are close to each other. Let
Γ∗ =

S
s y∗s be the entity labels used on the optimal assign-

ment. Is it true that a clustering of Γ∗ in g(·)-space will
show one giant component cluster?

Figure 16 shows a dendrogram formed by agglomeratively
clustering Γ∗, the ground truth entities on a page. The
“single cluster hypothesis” is only somewhat true. There is
a cluster corresponding to the broad topic of the page, but
this typically covers fewer than a third of the spots. The
rest belong to smaller clusters, or are singletons, in which
case they bear no collective information.

Might our implicitly single-cluster model losing out on re-
call by not modeling and covering multiple clusters? Here is
how this could happen. Say Hill1 is considering changing ys

from na to γ, where s is a member of a non-dominant clus-
ter. Therefore, (1/

`|S0|
2

´
)
P

s′ 6=s r(ys′ , γ) may be too small

to overcome the ρna barrier. The large
`|S0|

2

´
denominator

could share the blame. The end result is that a small but
tight cluster of such spots cannot “secede” from the domi-
nant cluster.

Accordingly, we retained the node potential (NP), but
demanded that an inference algorithm produce not only a
label vector y but also a partitioning C = Γ1, . . . , ΓK of the
labels used. We modified the clique potential to

1

|C|
X

Γk∈C

1`
Γk

2

´ X
s,s′: ys,ys′∈Γk

r(ys, ys′). (CPK)

By using denominator
`
Γk

2

´
instead of

`
S0
2

´
, this objective

rewards smaller coherent clusters as desired, but it is no
longer possible to express a simple linear objective as in



Figure 16: Hierarchical clustering of Γ∗ using the g
embedding shows more than one clusters.

(CP1′), because |Γk| themselves depend on y and C.
We extended the LP1 framework to optimize (NP)+(CPK)

approximately. In experiments, (CPK) did not perform sig-
nificantly better than LP1, giving less than 0.5% F1 boost.
We conjecture that this is because of the extreme sparsity
of r(γ, γ′), which had only 5% fill. Basically, if r(γ, γ′) were
used as edges in a graph, the graph is easy to partition,
and LP1 finds it easy to make correct decisions within each
partition, even if the LP1 objective tries to account for cross-
cluster edges. However, this may change with denser sources
of relatedness information.

6. CONCLUSION AND OUTLOOK
We proposed new models and algorithms for a highly mo-

tivated problem: annotating unstructured (Web) text with
entity IDs from an entity catalog (Wikipedia). Unlike prior
work that is biased toward specific entity types like persons
and places, with low recall and high precision, our intention
is aggressive, high-recall open-domain annotation for index-
ing and mining tasks downstream.

Our main contribution is a formulation that captures a
tradeoff between local spot-to-label compatibility and a global,
document-level topical coherence between entity labels. In-
ference in this model is intractable in theory, but we show
that LP relaxations often give optimal integral solutions or
achieve close to the optimal objective. We also give a sim-
ple local hill-climbing algorithm that is comparable in speed
and quality to LP relaxation. Both these algorithms are
significantly better than two recently-proposed annotation
algorithms.

In continuing work, we are trying to cast the annotation
problem as special cases of quadratic assignment that can be
approximated well [6, 16] or show that even approximation
is difficult [10, 16]. We are trying to combine the generally
low-recall, high-precision nature of M&W’s r(γ, γ′) based on
inlinks with the converse properties of Cucerzan’s r(γ, γ′)

based on categories. This involves extending the training
process from NP to the whole objective. We are also in-
vestigating why the multi-cluster extensions of our model
obtained no significant accuracy gains. Finally, we are con-
sidering collective decisions beyond page boundaries.
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