
I. Introduction

C
ollective behavior coordination in a network of
dynamic agents has attracted a lot of attention in
recent years, in particular, from physicists, biolo-

gists, mathematicians and social scientists. Investigation
of the fundamental mechanisms yielding collective behav-
iors is significant not only for bio-group of animals or
group activities of humans (e.g., riots, fashion and escap-
ing panic [1], etc.), but also for nanotechnology applica-
tions such as spontaneous magnetization [2]. A large
volume of literature has reported some research progress
in collectively migrating bacteria [3], insects or birds [4],
and in phenomena where groups of organisms or non-liv-
ing objects reach an ordered or synchronized state such
as the one corresponding to fireflies flashing in unison [5]
or people clapping in phase during rhythmic applause [6].

The motivation for these studies is to understand the
emergence of self-organized collective behaviors in groups

In natural flocks/swarms, it is very appealing that low-level
individual intelligence and communication can yield
advanced coordinated collective behaviors such as congre-
gation, synchronization and migration. In the past few
years, the discovery of collective flocking behaviors has
stimulated much interest in the study of the underlying
organizing principles of abundant natural groups, which
has led to dramatic advances in this emerging and active
research field. Inspired by previous investigations on the
predictive intelligence of animals, insects and microorgan-
isms, we seek in this article to understand the role of pre-
dictive mechanisms in the forming and evolving of
flocks/swarms by using both numerical simulations and
mathematical analyses. This article reviews some basic
concepts, important progresses, and significant results in
the current studies of collective predictive mechanisms,
with emphasis on their virtues concerning consensus
improvement and communication cost reduction. Due to
these advantages, such predictive mechanisms have great
potential to find their way in industrial applications.
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with inter-agent interactions. Indeed, such systems typi-
cally show interesting ordering phenomena as the indi-
viduals collectively change their behaviors to a common
pattern. Dynamical systems with collective behaviors
arise in biological networks at multiple levels of abstrac-
tion, from interactions among molecules and cells [7] to
the behavioral ecology of animal groups [8]. Flocks of
birds, schools of fishes and colonies of bacteria can trav-
el in formation and act as one unit, allowing these crea-
tures to exhibit complex collective behaviors such as
formation-keeping during migration, obstacle avoidance,
leader selection, and foraging [4].

During the last decades, many biologists, physicists,
social experts and interdisciplinary scientists have devot-
ed their work to investigating how flocks/swarms can
exhibit high-level globally coordinated collective-behav-
ior based on low-level distributed individual intelligence.
To fulfill such a task, the first step may be solving the con-
sensus problem [9], [10], where groups of agents asymp-
totically agree upon certain quantities of interest like
attitude, position, temperature, voltage, etc. Further-
more, exploring distributed computational methods for
solving consensus problems has direct applications to
real industrial systems such as sensor network data
fusion, load balancing, unmanned air vehicles (UAVs),
attitude alignment of satellite clusters, congestion control
of communication networks, multi-agent formation con-
trol, and rendezvous [11]–[13].

Among the previous works on consensus problems,
Fiedler [14] and Olfati-Saber and Murray [9] established
the theoretical foundations of general consensus prob-
lems by investigating the relation between the eigenvalue
distribution of the Laplacian matrix L associated with the
group topology and some important consensus proper-
ties such as the achieved consensus speed and the con-
sensus robustness to time-delays. It was also shown that
a network with high algebraic connectivity is robust to
both node-failures and edge-failures. To improve the
speed of convergence towards consensus for homoge-
neous networks, Olfati-Saber and Murray proposed a
method based on the addition of a few long links to a reg-
ular lattice, thus transforming it into a small-world net-
work [15], [16]. On the other hand, for heterogeneous
influence networks, Yang et al. [17] showed that, by
decreasing the scaling exponent in the associated power
law distribution of the influence radius of each node, the
ability of the network to reach direction consensus can be
significantly enhanced due to the leading roles played by
a few hub agents. In addition, if agents can adaptively

change their velocities appropriately, the convergence
speed can be remarkably improved [18]–[20].

Apart from investigating the consensus mechanisms
for biological flocks/swarms, more and more scientists
have become interested in the underlying interaction or
communication manners. A basic but popular flocking
simulation model can be traced back to Reynolds [21],
where three elementary rules are prescribed, (i) separa-
tion: steer to avoid crowding and collision; (ii) alignment:
steer towards the average heading; (iii) cohesion: steer to
move towards the average position. These rules have
been proven effective and are often used in the design of
bio-group dynamic models. In 2003, Gazi and Passino [22]
proposed an attractive/repulsive (A/R) swarm model in
which the motion of each individual is determined by two
factors: (i) attraction to the other individuals at long
inter-individual distances; (ii) repulsion from the other
individuals at short inter-individual distances. With this
model, they proved that the individuals typically form a
bounded cohesive swarm in finite time. They later gener-
alized their model into a social foraging swarm model
[23] by modifying the attractant/repellent profile, i.e., by
additionally considering attraction towards favorable
regions (or repulsion from unfavorable regions). Under
some suitable circumstances, this improved model guar-
antees convergence to the favorable regions of the forag-
ing profile. The A/R model of Gazi and Passino has been
widely adopted by physicists and biologists to mimic self-
driven particles and biological swarms as it provides con-
ditions for guaranteed cohesion of the swarm [24], [26].

A very popular alignment flock model is the Vicsek
model [27], where, at each step, every agent updates its
steering direction towards the average direction of its
neighbors. With the decreasing external noise or the
increasing density of the agents, the collective behavior of
the flock undergoes a phase transition from a disordered
movement to a coherent collective movement. In 2003,
Jadbabaie et al. provided mathematical convergence con-
ditions for the Vicsek model, i.e., all the individuals should
be linked at least during some time intervals [28]. In 2007,
as illustrated in Figure 1, Couzin designed a Three-Circle
model [25], [26] by inserting an orientation area governed
by the Vicsek model between the attraction and repulsion
areas of the A/R model. The corresponding Three-Circle
model yields three typical types of collective behaviors,
i.e., swarming, torus-shaped collective motion, and flock-
ing. More precisely, if the internal orientation area is inex-
istent, the model yields a swarming behavior; if a narrow
orientation area exists, a torus-shaped collective motion
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will occur; finally, if the orientation area is intensified to a
sufficiently large size, the collective behavior will trans-
form from a torus-shaped to a flocking motion. For its wide
collective behavior coverage, this novel model has the
potential to become one of the most general flocking
models in the near future.

Based solely on the currently available information of
the network, most of the previous model analyses on flock
dynamics have concentrated on properties such as con-
gregation, stabilization, cohesion, and quick consensus.
For several decades, biologists have, however, experimen-
tally shown that natural bio-groups possess advanced
intelligence, namely predictive intelligence which endows
each individual with the capability to predict the future
motion of its neighbors according to their past trajecto-
ries. As early as in 1959, Woods [29] provided experimen-
tal evidences for the existence of certain predictive
mechanisms in bee swarm formation. In 1995, Montague et
al. [30] proposed simple hebbian learning rules to explain
the predictive mechanisms in
bees’ foraging in uncertain envi-
ronments. Other researchers
focused on the predictive func-
tions of the optical and acoustical
apparatuses of bio-groups’ indi-
viduals, especially the retina and
the cortex [31]–[33]. Through
extensive bio-eyesight experi-
ments, they found that, when an
individual observer prepares to
eye-follow the displacement of a
visual stimulus, visual adaptation
is transferred from the current fix-
ation to the future gaze position.
These investigations support the
conjecture of the existence of pre-
dictive mechanisms inside abun-
dant bio-groups.

Based on these previous exper-
imental results, it seems clear that
decisions on the next-step behav-
ior of each individual is not only
based on the currently available
state information but also on the
prediction of future states. This
type of behavioral decision based
on prediction is used, for example,
by a chameleon to capture a fly, by
a dog to catch a frisbee, or by a
football player to challenge for the
point of the first fall. This predic-
tive mechanism reduces the nega-
tive influence of information

transmission delays within flocks and facilitates the propa-
gation of the group objective or decision information
among the individuals of the group. Since nature has cho-
sen to utilize predictive mechanisms, it is reasonable to
conjecture that such mechanisms play a very important
role in the emergence and evolvement of the abundant bio-
logical flocks/swarms. Moreover, development of relevant
analysis methods for predictive mechanism can be critical
to thoroughly understand and break through the collective
performance bottlenecks of industrial multi-agent systems.

For all the reasons mentioned above, one fundamental
question that we propose to address in this article is:
What exact role is played by the predictive mechanisms
embedded in biological flocks/swarms? A physical pic-
ture illustrating the prediction-based collective motion
paradigm is given in Figure 2 and interpreted as follows:
In natural bio-groups, each individual’s next-step action is
based not only on the current state information (includ-
ing position, velocity, etc.) of the other (neighboring)

Repulsion

(a)

Orientation

Attraction

Motion
Direction

(b)

(c) (d)

Figure 1. (Color online) (a) Couzin’s Three-Circle model including repulsion, orientation
and attraction regions; (b) Swarms: individuals congregating, cohesively repelling and
attracting each other, without trying to orient themselves according to their neighbors’
direction of motion; (c) Toruses: individuals moving around an empty center; (d) Flocks:
individuals moving collectively in one direction.
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agents but also on their predicted future states. More
precisely, remembering a few past states of its neighbors
and itself, an agent can estimate their future states sever-
al steps ahead and then make a decision on its next action
to minimize the future state difference with its neighbors.

Meanwhile, collective predictive protocols are begin-
ning to find their way into engineering areas such as
autonomous robot formations, sensor networks, and
UAVs [11]–[13]. Each agent in these groups typically has
limited power to send messages, and thus communica-
tion in batch mode, rather than continuous mode, is
generally desirable to save energy. This is precisely one
of the advantages of predictive protocols. Indeed, as will
be shown in this article, predictive protocols typically
allow to sharply expand the range of feasible sampling
periods and to save costly long range communications.

The objective of this article is to reveal the important
role of the predictive mechanisms in the emergence of
collective behaviors and to design autonomous and reli-
able predictive protocols for industrial multi-agent sys-
tems. We will present some recently developed
theoretical and numerical tools for modeling, analyzing
and designing predictive motion protocols for
flocks/swarms, both with and without leaders. We will
pay special attention to the development of design
methodologies that provide industrial multi-agent sys-
tems with provably correct cooperative predictive strate-
gies, the characterization of the improvement of the
system’s collective behavior induced by the predictive
capability, and the effective economization of the com-
munication cost owing to such capability.

We will approach the problem in three stages. Firstly,
we emphasize the role of predictive mechanisms for some

specific types of flocks/swarms with leaders, namely the
A/R [22] and Vicsek [27] models. More specifically, a pre-
dictive protocol is designed based on the Wattz-Strogatz
(WS) small-world connection model [34]. This preliminary
study shows that the intelligent predictive capability not
only improves the cohesive and formative collective
behavior but also reduces the long-range communication
cost inside the flock. The power of predictive mechanisms
is thus initially demonstrated.

Secondly, in order to evaluate the capability of predic-
tive mechanisms in groups without leaders, we design a
predictive protocol for linear dynamic networks. This
investigation vividly demonstrates that the predictive
protocol can yield faster consensus speeds and remark-
ably reduce the required sampling frequencies. Moreover,
to better understand the collective predictive mecha-
nism, we also give the mathematical analysis to illustrate
the improvements endowed by it.

The third focus is the decentralized predictive mecha-
nisms in networks without leaders. In the second stage of
our exploration above, we have assumed that the global
network information of the flock (state of each individual
and topology of the network) is available to each node. In
this sense, this method is a centralized or nominal one.
Nevertheless, an individual typically lacks global knowl-
edge and, instead, can solely use the observable local infor-
mation to plan its next movement [4]. Therefore, a
decentralized predictive mechanism is more realistic and
preferred in practical applications. To develop a decentral-
ized predictive protocol, the question is essential whether
the information provided by the local neighbors of an indi-
vidual is enough to estimate their future states. The proof of
this result is established in the third part of the article, after
which we design a general decentralized predictive proto-
col based merely on local observations. As shown through
mathematical analyses and numerical simulations, this
decentralized protocol exhibits superiority in terms of con-
vergence speed and communication efficiency.

The rest of this article is organized as follows. Section II
discusses predictive mechanisms for flocks with leaders,
while Section III presents predictive mechanisms for
flocks without leaders. Section IV investigates decentral-
ized predictive mechanisms for flocks without leaders.
Conclusions are given in Section V.

II. Predictive Mechanisms for Flocks with Leaders

To make a rational analysis of the collective predictive
mechanisms of flocks with leaders, we consider a typi-
cal complex network model, i.e., the WS small-world
network model, and use it as the starting framework
for the design of such mechanisms. Then, to demon-
strate the remarkable improvements endowed by the
newly introduced predictive capability, both velocity

Prediction

Prediction

An Individual of the Flock

Estimated Future
Position of Neighbor II

Estimated Future
Position of Neighbor I

Current Position
of Neighbor I

Current Position
of Neighbor I

Figure 2. (Color online) Illustration of the predictive nature of
flocks.
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synchronization and position cohesion performances
are evaluated for two dominating flocking models, the
A/R and Vicsek models.

As shown in [34], for flocks with a single leader, it is
advantageous to consider a small-world-type network
obtained by randomly adding long-range connections
from the position of the leader predicted several steps
ahead to the current position of a few distant agents
called pseudo-leaders. Other non-special agents are called
followers. Thus, there are three different kinds of agents:
leader (L), pseudo-leaders (P), and followers (F).

A. Predictive Mechanisms
for Flocks Governed by A/R Model
In this scenario, the flock is assumed to move in an m-
dimensional space, the standard A/R function [9], [22]

G(dpL) = −dpL(a − b · exp(−‖dpL‖2
2
/c)) (1)

is added to govern the dynamics of the long-range
interaction from the leader (L) to each pseudo-leader
(P). a, b, c denote free parameters, dpL is an m-dimen-
sional vector pointing from the predicted location of
leader L to the current location of a pseudo-leader p,
and ‖dpL‖2 denotes the Euclidian distance between
them, here ‖y‖2 =

√
yTy. For simplicity, in our model,

the motion of the leader is known in advance, and will
not be affected by any other agent. Additionally, we
assume that each pseudo-leader is able to accurately
predict the leader’s position Hp steps ahead.

On the other hand, a weaker A/R function, governing
the dynamics of the short-range interaction between two
arbitrary neighboring agents i and j is given by:

g(dij) = −dij

(
ã − b̃ · exp(−‖dij‖

2
2
/c̃ )

)
, (2)

where dij is an m-dimensional vector pointing from the
individuals j to i, ‖dij‖2 =

√
dT

ij dij denotes the Euclidian
distance between them, and the parameters ã, b̃ and c̃
are typically much smaller than a, b, and c, respectively.
We denote by r the radius of the influence circle of each
agent (see Figure 3). Any two agents of the type F-F, P-P
and L-F which are within a distance r of each other are
connected by a link whose strength is characterized by
the A/R function in Eq. (2). Conversely, irrespective of
their relative distance, L-P agents are always connected
by a link whose strength is described by the A/R func-
tion in Eq. (1). Note that the leader is never influenced
by other agents. To decrease the prediction cost, pre-
diction is only allowed for the L-P interactions. Bearing
in mind the physical meaning of A/R functions [9], the
positions of a pseudo-leader xp and a follower xi is
determined by

xp(k + 1) = xp(k) + G(dpL(k + Hp))︸ ︷︷ ︸
long link to the leader

+
∑

j �=L,dpj(k)≤r

g(dpj(k))

︸ ︷︷ ︸
neighboring links

, (3)

and

xi(k + 1) = xi(k) +
∑

j,dij(k)≤r

g(dij(k))

︸ ︷︷ ︸
neighboring links

, (4)

respectively.
In these equations, k denotes the current discrete-time

instant, and dpL(k + Hp) represents the m-dimensional
vector pointing from the leader’s position Hp steps ahead
to the current position of a pseudo-leader. In this way,
unlike the routine flocking strategies proposed in
[21]–[23], [35], a small-world interaction dynamics incor-
porating a specific predictive mechanism is considered.
The discrete-time dynamical system (3), (4) is associated
with an interaction network, where each agent is consid-
ered as a node, and two agents are connected either if
their relative distance is smaller than a predefined radius
of influence or if there exists a direct long-range connec-
tion between the considered agent and the leader. Clearly,
the structure of this interaction network changes in time
since the position of each agent is varying over time. It,
however, always displays the small-world property due to
the existence of permanent long-range links between the
pseudo-leaders and the leader.

How can this predictive protocol, based on a few long-
range interactions, improve the flocking performance? The
answer lies in the way information flows in the network as
illustrated in Figure 4 [37]. The farthest agent i1 directly
communicating with agent i is among the ones at the rim of
the influence circle centered on agent i. Analogously, the far-
thest agent i2 directly influenced by i1 is also located at the
rim of the circle centered on agent i1, and so forth. Finally,

Hp Steps

2 Steps
1 StepCurrent

dij

r

Long Link

Follower (F )

Pseudo-Leader (P)

Leader (L)

Figure 3. Predictive mechanism in small-world networks.

5

ht
tp

://
do

c.
re

ro
.c

h



the information of agent i reaches agent j in Hp discrete-time
steps. Accordingly, if agent i acts as a pseudo-leader who can
accurately predict the behavior of the leader Hp steps
ahead, at time step k, agent j ’s motion is affected by the
exact current position of the leader xL(k). Thereby, agent j
can adhere to the leader more tightly, the flock’s formation
is more likely to be kept stable, and the coherence of the
whole flock is thus improved effectively. Note that the pre-
dictive mechanism is valid only if the leader’s motion is
accurately predictable (e.g., following a known continuous
trajectory without large fluctuation or some erratic move-
ment). Fortunately, in the real biological world, the flock
leader typically moves in some predictable pattern.

Now two important questions arise: How many pseu-
do-leaders are required to yield a satisfactory group
behavior? And how many steps should be predicted by
each pseudo-leader? In order to extract the role of the
prediction horizon Hp and the number of pseudo-leaders
Npl , we study their influences on the velocity synchro-
nization and position cohesion performance indexes Jv

and Jp which are respectively defined as:

Jv = 1
N − 1

N∑
i=1,i �=L

‖vi − vL‖2, (5)

Jp = 1
N − 1

N∑
i=1,i �=L

‖diL‖2. (6)

Jv measures the velocity synchronization or formation per-
formance of the flock, where vL and vi denote the velocity
vectors of the leader and the i th agent (F or P); Jp meas-
ures the cohesion performance of the flock, with diL denot-
ing the distance between agent i (F or P) and the leader.

In Figure 5(a), we consider Hp as a fixed parameter
and display the curves of Jv with increasing Npl , while
Figure 5(b), on the contrary, displays the curves of Jv

with increasing Hp and fixed Npl . It can be seen from
Figure 5(a) that the curves decrease sharply at the

beginning and reach a minimum N ∗
pl before increasing

more slowly. The presence of a minimum at low values
of Npl implies that adding just a few pseudo-leaders to
the system, which transforms the flock topology from a
strongly localized network into a small-world one, will
improve the flocking performance optimally in terms of
Npl . If more pseudo-leaders than the optimal value N ∗

pl
are added, the flock formation performance starts to
worsen as these extra pseudo-leaders become redun-
dant. On the other hand, we also see that increasing Hp

can help in reducing Jv in two ways: (i) it decreases Jv

for a fixed value of Npl ; (ii) it reduces the optimal value
N ∗

pl . Compared with Figure 5(a), the Jv curves in Figure
5(b) also possess a clear minimum. The presence of this
minimum implies that the flock formation performance
can be remarkably improved with proper predictive
capability. Nevertheless, too much vision into the
future, namely over-prediction, will worsen the flocking
performance as measured by Jv.

Next, we investigate the effects of Hp and Npl on the
other important flock performance index Jp. It can be seen
from Figure 5(c) that the curves fall sharply at the begin-
ning and asymptotically approach a stable value as
Npl/N → 1. Contrary to Figure 5(a), no clear minimum
exists in Figure 5(c). As illustrated in Figure 5(c), increas-
ing Hp yields smaller values of Jp. Compared with Figure
5(c), the curves of Figure 5(d) do possess a minimum,
which is reached at a fairly large Hp. As a consequence, the
compactness of the flock is clearly dependent on Hp and
over-prediction can be detrimental to it. Furthermore,
increasing the number of pseudo-leaders can improve the
cohesive flocking performance. Actually, when Npl

exceeds a certain value, Jp decreases so slowly that
almost no benefit can be gained by further increasing Npl.
In brief, suitable insight into the future and moderate num-
ber of pseudo-leaders are preferred.

The influence of pseudo-leaders extracted here can
easily find examples in nature. As shown in Figure 6, a few
informed individuals (or pseudo-leaders) of a fish school
or a bee swarm can guide the whole group towards the
target (or help the group follow the trajectory of the
leader) [24], [25], [36]. The role of pseudo-leaders has
also been investigated by Couzin [35], who showed that
the larger the group the smaller the proportion of
informed individuals needed to guide the group, and that
only a very small proportion of informed individuals is
required to achieve remarkable accuracy. Interestingly,
compared with Couzin’s results, we have shown through
the numerical simulations presented in Figure 5 that the
incorporation of predictive intelligence can even further
reduce the required number of pseudo-leaders.

More significantly, as shown in Figure 5, to achieve a
fixed flocking performance, larger predictive capability

Pseudo-Leader i

Follower j

Influences in
Hp Steps

r

Figure 4. (Color online) Information flow within a network
endowed with a small-world predictive mechanism. If the pseu-
do-leader i is able to accurately predict the state of the leader
Hp steps ahead, then the follower j, which is influenced by i after
Hp steps, will be affected by the current location of the leader.
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(larger values of Hp) can compen-
sate for the insufficiency of the
pseudo-leaders (Npl) and vice
versa. This rule is useful for indus-
trial applications since one can
optimize the performance of the
dynamic flock by evaluating the
costs of the increased predictive
capability and the addition of the
long-range connections.

B. Predictive Mechanisms
for Flocks Governed by the 
Vicsek Model
The role of predictive mechanisms
highlighted in Subsection II-A is not
merely confined to A/R flocks but
quite general. To verify this, we now
incorporate the predictive mecha-
nism proposed for small-world
interaction patterns in the previous
section into another well-accepted
flocking model, i.e., the Vicsek
model [27] and compare the syn-
chronization performance of the
predictive small-world Vicsek
model with the one of a classical
Vicsek model.

In this model, the velocities vi of
the N agents composing the group
are determined simultaneously at
each discrete-time instant, and the position of the i th
agent is updated according to

xi(k + 1) = xi(k) + vi(k),

where vi(k) denotes the velocity vector of agent i at time
k. For each agent the velocity vector, vi(k), is character-
ized by a constant magnitude v and by a direction θi(k)
whose dynamics is given by

θi(k + 1) = 〈θi(k)〉r + �θi,

where 〈θi(k)〉r denotes the average direction of all the
agents’ velocity vectors within a circle of radius r cen-
tered on agent i, i.e.,

〈θi(k)〉r =

⎧⎪⎪⎨
⎪⎪⎩

arctan[〈sin(θi(k))〉r/〈cos(θi(k))〉r]
if 〈cos(θi(k))〉r ≥ 0;

arctan[〈sin(θi(k))〉r/〈cos(θi(k))〉r] + π

otherwise,

where 〈sin(θi(k))〉r and 〈cos(θi(k))〉r denote the average
sine and cosine values, and �θi represents a random
noise obeying a uniform distribution in the interval
[−η/2, η/2].

As shown in Figure 7(a) the particles are distributed in
a square of dimension [0, L] × [0, L], and the trajectory
of the leader is a circle centered at (L/2, L/2) with radius
R = L/6 so that the direction of the leader changes con-
stantly. The small-world predictive connection frame-
work shown in Figure 3 is used together with the Vicsek
model. Hence, there are always Npl individuals having
long-range predictive interactions with the predicted
motion of the leader Hp steps ahead. It is shown in Figure
7(b) that drastic improvement of the velocity
synchronization performance can be achieved with
moderate prediction horizons. Similar to the case of the
A/R model shown in Subsection II-A, one can also con-
clude that suitable insight into the future and moderate
number of pseudo-leaders is preferable.

To further verify the generality of these conclusions,
we have also applied the proposed predictive mecha-
nism to one of the most general flocking models—
Couzin’s three-circle model [25], [26]. The corresponding
results also strongly suggest that prediction is beneficial
to the flock performance. In summary, by designing a
predictive protocol within a small-world connection
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J v
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Hp

J p
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0.5

1

1.5

2
Npl=1
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Figure 5. (Color online) The roles of the pseudo-leaders’ number Npl (Figures (a) and
(c)) and prediction horizon Hp (Figures (b) and (d)) on a flock with a total of N = 50
agents. The leader and the pseudo-leaders are selected randomly among these N
agents. Each point is an average over 1000 independent runs. The parameters of the
A/R functions (1) and (2) are a = 8, b = 17.6, c = 0.4, and ã = 1, b̃ = 2.2, c̃ = 0.2,
respectively. The radius of the influence circle is r = 0.65. Each agent starts from a
position randomly selected in the square [0, 1] × [0, 1]. Without loss of generality, the
trajectory of the leader is set along the curve defined by x2 = √

x1, and the velocity of
the leader  is  vLx1(k) = 0.02,vLx2(k) =

√
0.02(k + 1) −

√
0.02k.
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framework, we have hereby given some new convincing
evidence for the existence of predictive intelligence in
bio-groups with leaders, and shed some light on the
important role of such predictive mechanisms for
the collective behavior coordination in natural
flocks/swarms.

III. Centralized Predictive Mechanisms

for Flocks Without Leaders

It is well-accepted by biologists that natural bio-groups do
not necessarily have leaders [38]. In the following two sec-
tions we design a predictive protocol for consensus net-
works without leaders. In particular, to reveal the role of

predictive mechanisms in consensus problems, we
focus our discussion on consensus optimization
using model predictive control (MPC). Unlike the
numerical simulation approach used in the previous
section, we will mainly use mathematical analysis to
carry out our work.

A. Preliminary Concepts
We represent a network of interacting agents by a
digraph G = (V, E, A), where V = {v1, . . . , vN } is the
set of nodes representing the agents, E ⊂ V × V is the
set of edges, and A is the N × N adjacency matrix with
aij ≥ 0 denoting the edge weight from node i to node
j . No self-cycle is allowed, hence aii = 0 for all i. The
Laplacian matrix L is defined as lii = ∑N

l �=i ail and
lij = −aij, ∀i �= j. We denote by dmax = maxi(lii) the
maximum out-degree of G. A digraph G is called bal-
anced if ∀i,

∑
j aij = ∑

j aji. If any two distinct nodes
can be connected via a path that follows the direction
of the edges of the digraph, this network is called
strongly connected. xi(t) ∈ R denotes the state of node
i, which could represent a certain physical quantity
such as attitude, position, temperature, voltage, and
so on. Generally, a network is said to have reached

0 5 10 15
0

5

10

15

x1

(a)

x 2

0

(b)

5
10

0

0.5

1
0

0.1

0.2

0.3

0.4

HpNpl/N

J v

Figure 7. (Color online) (a) Snapshot of the predictive Vicsek flock at the 12th running step. The red particle denotes the leader;
the green particles represent the pseudo-leaders and the blue particles denote followers. The centered black circle outlines the
trajectory of the leader. For these simulations, the prediction horizon is Hp = 4. (b) Velocity synchronization index Jv as a func-
tion of the parameters Hp and Npl. The parameters of this simulation have been chosen to be L = 15, η = 0.1, v = 0.15, N = 300,
R = L/6 and each point is an average over 100 independent runs.

(a) (b)

Figure 6. (Color online) Two examples of pseudo-leaders found in
nature, (a) A few informed individuals within a fish school are
known to be able to influence the ability of the school to navigate
towards a target; (b) Within a honeybee swarm, only about 5% of
the bees play a pseudo-leader role, which helps in guiding the
group to a new nest site [36].
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consensus (or agreement) if and only if xi = xj for all
i, j ∈ V . Whenever the nodes of a network are all in agree-
ment, their common value is called the group decision
value. If this value is x(0) = (

∑N
i=1 xi(0))/N , the network is

said to have reached the average-consensus.

B. Consensus Model Predictive Control 
for Agents with Integrator Dynamics
We consider the following discrete-time model for the
dynamics of agent i:

xi(k + 1) = xi(k) + εui(k), i = 1, . . . , N (7)

where ε and ui(k) denote the sampling period and the con-
trol input, respectively. For agents with such linear
dynamics, average-consensus is typically asymptotically
reached using the routine consensus protocol

ui(k) =
N∑

j=1

aij �xi, j (k), i = 1, . . . , N, (8)

where �xi, j (k) = xj (k) − xi (k) denotes the difference
between the state of the i th and the j th agents [9]. Using
the routine protocol, the corresponding network dynam-
ics is given by

x(k + 1) = Pεx(k) (9)

with Pε = IN − εL. If G is strongly connected and bal-
anced, and the sampling period ε ∈ (0, 1/dmax), then the
routine consensus protocol (8) ensures global asymptot-
ic convergence to consensus [9].

To integrate a predictive mechanism into the routine
protocol, we introduce an additional prediction term vi(k)
into Eq. (8):

ui(k) =
N∑

j=1

aij �xi, j (k) + vi (k). (10)

Accordingly, the network dynamics becomes

x(k + 1) = Pεx(k) + v(k) (11)

with v(k) = [v1(k), . . . , vN (k)]T . Using the above dynam-
ics, one can predict the future states of the network Hp

steps ahead as follows:

X (k + 1) = PX x(k) + PU U(k) (12)

with

X T (k + 1) = [xT (k + 1), . . . , xT (k + Hp)],

UT (k) = [vT (k), . . . , vT (k + Hp − 1)],

PX =
[

P T
ε , . . . ,

(
P

Hp
ε

)T
]T

and PU given in Appendix A.

Accordingly, the future evolution of the network’s
state difference can be predicted as follows: 

�X (k + 1) =
[
�x(k + 1)T , . . . ,�x(k + Hp)

T
]T

= PX E x(k) + PU E U(k) (13)

with PX E = E PX , PU E = E PU , E = diag(e, . . . , e), e =
[eT

1,2, . . . , eT
1,N , eT

2,3, . . . , eT
2,N , . . . , eT

N−1,N ]T , ei, j = ei − ej,

ej = [0, . . . , 0, 1 jth, 0, . . . , 0], the state difference vector

�x(k + m) =
[
�xT

1,2(k + m), . . . ,�xT
1,N (k + m),

�xT
2,3(k + m), . . . ,�xT

2,N (k + m), . . . ,

�xT
N−1,N (k + m)

]T
,

and �xi, j(k + m) = xi(k + m) − xj(k + m) = ei, jx(k + m) .
In this setting, the problem is thus to design the addi-

tional term vi(k) in Eq. (10) in order to optimally (i.e., as
quickly as possible) reduce future disagreements among
individuals of the group. To solve this optimal consensus
problem, we first define the cost function as below:

J(k) = ‖�X (k + 1)‖2
Q + ‖U(k)‖2

R , (14)

where Q and R are compatible weighting matrices which
are generally set as Q = qIHp×N(N−1)/2(q > 0) and
R = IHp×N , and ‖M‖2

Q = MT QM . In Eq. (14), the first
term penalizes the disagreement in the network over the
future Hp steps, while the second term penalizes the
additional MPC energy v(k). To minimize the cost func-
tion J(k), we compute ∂ J(k)/∂U(k) = 0, which is a linear
function of x(k) and U(k), and consequently obtain the
optimal MPC action v(k) = PMPCx(k) with

PMPC = −[ IN , 0N , . . . , 0N ]
(

PT
U E QPU E + R

)−1
PT

U E QPX E .

(15)

A schema illustrating the proposed consensus MPC pro-
tocol is shown in Figure 8.

In particular, the global topology and state of the net-
work is utilized to predict the future state difference of
the network and to compute the future Hp control inputs
which are optimal with respect to the predicted cost
function (14). At the next discrete-time instant, only the
first control input is implemented, after which a new net-
work state measurement is taken and the whole process
is started again.

This new consensus algorithm is characterized by four
important properties:

1)   For symmetric (i.e., aij = aji) and strongly con-
nected networks, the state matrix Pε + PMPC is also
symmetric and has the same eigenvectors as Pε ;
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2)   For strongly connected and balanced networks,
the matrix PMPC is also balanced in the sense that
PMPC1 = PT

MPC1 = 0 with 1 = [1, . . . , 1]T
N×1 and

0 = 0 · 1;
3)   For strongly connected and balanced networks,

average-consensus will be achieved if and only if
the matrix Pε + PMPC has a simple eigenvalue at
1 and all its other eigenvalues inside the open
unit circle;

4)   For strongly connected and balanced networks, if
we denote each entry of Pε + PMPC by
βij(i, j = 1, . . . , N ), then average-consensus will be
achieved provided that βij ≥ 0(i �= j ) and
βii ∈ (0, 1].

The mathematical proofs of these properties, beyond
the scope of this article, are provided in an extended
paper [43].

This proposed MPC protocol yields the following two
improvements compared with the routine protocol:

C1: The feasible range of the sampling period ε is
remarkably expanded;

C2: For feasible values of ε, the convergence speed is
significantly increased.

To illustrate the advantages C1 and C2, we present
some numerical results comparing the convergence
speeds of the MPC and routine protocols for an all-to-all
network of 10 nodes. Since the objective is to reach aver-
age-consensus, the instantaneous disagreement index is
typically set as D(k) = ‖x(k) − 1x̄(0)‖2

2 (here
‖x‖2 = (xT x)1/2) and the consensus steps Tc(Dc) is defined
as the number of steps required for D(k) to reach a spe-
cific small threshold value, Dc. Based on these definitions,
1/Tc(Dc) gives a reasonable measurement of the consen-
sus speed. As shown in Figure 9(a), the addition of the pre-
dictive control term defined in (15) yields a drastic
increase in convergence speed towards consensus. In par-
ticular, for ε < 1/dmax = 1/9 (dmax = maxi(lii)), the con-
vergence speed is increased more than 20 times

(measured by the slope of the D(k) curve) by using the
proposed MPC protocol. Furthermore, even when the rou-
tine convergence condition is violated, i.e., ε > 1/dmax, it
is observed that the MPC protocol still allows asymptotic
convergence with high speed.

To study the effects of the predictive control mecha-
nism on the feasible convergence range of ε, we examine
in Figure 9(b) the average consensus steps Tc(0.01) of
these two strategies with different ε’s. In this plot, for
each value of ε, Tc denotes the average-consensus steps
over all the successful convergence runs. Compared with
the routine protocol, the MPC protocol allows for a sig-
nificant increase in the consensus speed T−1

c (by a factor
between 6 and 20 in our simulations), which further illus-
trates the improvement C2.

At this stage, one may ask how this kind of predictive
control protocol can improve the consensus performance
so remarkably. This can be explained in terms of the distri-
bution of the state matrix eigenvalues as illustrated in Fig-
ure 10. Indeed, since the eigenvalue cluster of Pε + PMPC is
typically much smaller and closer to the origin of the com-
plex plane than the one of Pε , the predictive control proto-
col generally exhibits faster consensus. When ε < 1/dmax

[see Figure 14(a)], the two eigenvalue clusters are both
kept inside the asymptotic stability region, i.e., the unit cir-
cle in the complex plane. On the contrary, when
ε > 1/dmax (see Figure 14(b)), some of the eigenvalues of
Pε start escaping the unit circle, making the disagreement
function diverge, whereas all the eigenvalues of Pε + PMPC

remain inside the unit circle, which guarantees its asymp-
totic convergence.

Furthermore, to verify the generality of these conclu-
sions, we have also applied the proposed MPC protocol
to partially linked networks. The corresponding results
for partially linked networks are qualitatively similar (C1
and C2 also hold in this case), except that the
performance improvements are slightly reduced due to
the increased information flow constraints imposed by

the network topology.
In summary, based on the accu-

rate predictive capability embed-
ded in each node, we have
designed a predictive control pro-
tocol for flocks without leader. We
presented analytical results as well
as numerical simulations to demon-
strate its main advantages, namely:

1)   Just a little vision into the
future leads to significant
increases in convergence
speeds;

2)   The feasible sampling peri-
od range can be sharply

Global Topology

k

x2
x2

x2

xNx1 xNx1 xNx1

k+1

Prediction Time

Additional MPC
Term v(k)

Global State
Difference

Moving Horizon Optimization

Δx(k) Δx(k+1) Δx(k+Hp)

k+Hp

Figure 8. Nominal MPC protocol.
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expanded using this predictive mechanism, giv-
ing the MPC consensus protocol the potential to
effectively save communication energy.

In other words, by introducing some predictive mecha-
nisms, it is possible either to significantly enhance the
consensus speed obtainable under the constraint of a fixed
communication energy or to decrease the communication
energy required to ensure a prescribed consensus speed.

For natural science, this observation plays an impor-
tant role as it implies that predictive mechanisms may

extensively exist in abundant natural bio-groups without
leaders. Moreover, it helps explain why individuals of bio-
logical swarms, such as fireflies and deep-sea fish, do not
communicate very frequently all along but just now and
then during the whole dynamic process. This may be
explained by the fact that predictive intelligence embed-
ded in each individual can compensate for the need of fre-
quent communication, which coincides with the flock’s
batch communication phenomena observed recently
[35], [39].

2 4
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Figure 9. (Color online) (a) Time-evolution of the instantaneous disagreement D(k) of the routine (black) and MPC (blue) protocols on
an all-to-all, symmetric, strongly connected network of N = 10 nodes; (b) Average-consensus steps (Tc(0.01)). For these simulations,
500 independent runs are considered for each value of ε, Hp = 4, q = 2, Dc = 0.01, entries lij(i �= j) of L are selected randomly in
[−1, 0) such that the resulting network is strongly connected and balanced, and xi(0)(i = 1, . . . ,N) is selected randomly in [0, 15]. The
associated values of dmax lie in [4.5, 6.2]. The vertical dotted lines correspond to the minimum and maximum values of 1/dmax.
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Figure 10. (Color online) Eigenvalue distributions for different ε. Blue (©) and red (+) represent the eigenvalues of Pε and
Pε + PMPC over 100 runs, respectively. The black circle denotes the unit circle in the complex plane. Here, Hp = 4, q = 2, and each
entry lij(j �= i) of L is chosen randomly in [−1, 0) such that the resulting network is strongly connected and balanced. The associ-
at ed values of dmax lie in [4.5, 6.2].
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IV. Decentralized Predictive Mechanism 

for Flocks Without Leaders

Generally, collective behaviours emerge despite the fact
that each individual lacks global knowledge of the net-
work state and network topology. Typically, individuals
solely have access to some local information provided by
their neighbors to plan their motion [4]. In Section III,
however, it has been assumed that the global state and
topology of the flock is available to every individual of the
group. In this sense, the MPC protocol proposed in
Section III is a nominal or centralized control one. In this
section, we instead design a decentralized predictive pro-
tocol, in which each individual can merely estimate a
“local” dynamic model of interaction by using the neigh-
boring information it observes and thereby make predic-
tions about its neighbors’ future states.

A. Prediction Based on Local Information
To design a decentralized MPC protocol, an accurate local
model, derived and iterated independently by each individ-
ual, is required. Thus, the first question is determining
whether sole knowledge of local neighbors information by
each individual is enough to obtain an accurate dynamical

local model. To be shown next, the answer is affirmative pro-
vided that the individuals keep record of sufficiently long
past state sequences of themselves and their neighbors.

Similar to Section III, we consider the linear discrete-
time network model (9), based on which the m-step-ahead
future state of an individual i can easily be derived:

xi(k + m) = eiP
m
ε x(k), (16)

where ei = [0, · · · , 0, 1ith, 0, · · · , 0]. It seems that the glob-
al information of the network including the state matrix
Pε and the current state x(k) are required to predict the
future states of an arbitrary individual of the network. In
the following paragraphs, however, we show that, even if
such global information is unavailable to each node of the
network (which is typically the case in natural bio-groups
and engineering multi-agent systems), each individual
may still be capable of estimating its own and its neigh-
bors’ future states by using the present and past informa-
tion it collects from its neighbors.

More precisely, let Zi(k) = [zT
1,i(k), · · · , zT

N,i(k)]
T

denote the historical state sequence of length N for the i th
individual with zl,i(k) � xi(k + 1 − l), l = 1, · · · , N . Using
(9), it is easy to show that the following relations exist

x(k − N) = 	−1
i Zi(k), (17)

and

xj(k + 1) = Bj,iZi(k), j = 1, . . . , N (18)

with

	i �
[(

eiP
N
ε

)T
, . . . , (eiPε)

T
]T

(19)

and

Bj,i � ejP
N+1
ε 	−1

i , (20)

provided that 	i is invertible.
Analogously, the future dynamics of individual i and its

neighbors j ∈ N (i )1 can be iterated as follows

Zi(k + m) = Am
i Zi(k), (21)

xj(k + m) = Bj,i A
m−1
i Zi(k), (22)

where

Ai �
[

Bi,i

IN−1 0(N−1)×1

]
(23)

j ∈ N (i) ∪ i; m = 1, . . . , Hp,

and Hp is the prediction horizon. Therefore, for an arbi-
trary individual i, provided that the constant parameters
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Figure 11. (Color online) The network topology is switched
from (a) to (b) at the 47th running step; (c) gives the instan-
taneous prediction error ep,i(k). Here, ε = 0.35, aij = 1 if
(i, j) ∈ E , and aij = 0 otherwise, the initial state of each node
is selected randomly in the range [0, 150],and each point is
an average over 100 independent runs.

1N (i ) denotes the set of neighbors of i. More precisely, we say that a node
j is a neighbor of a node i, denoted by j ∈ N (i ) if, and only if, the corre-
sponding element of the associated adjacency matrix aij �= 0.
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Bj,i( j ∈ N (i) ∪ i) (see Eqs. (20) and (23)) can be appropri-
ately estimated, the future states of itself and its neighbors
can be effectively predicted solely using the historical
local state sequences Zj(k)( j ∈ N (i) ∪ i) observable by
individual i.

Comparing Eq. (22) with Eq. (16), we note that “current
global information” including Pε and x(k) is no longer
required for future state prediction as this information can
be recovered from “historical local observations” once the
local correlation information Bj,i has been satisfactorily
estimated. In this sense, ‘historical local information is
equivalent to current global information’.

Estimation of Bj,i can be realized provided that each
individual possesses a memory of sufficient capacity,
allowing it to store the length-N historical state
sequences of xi(k) and xj(k). More precisely, since at time
step k, individual i has already stored xj(k − n) and
Zi(k − n − 1)( j ∈ N (i) ∪ i,n = 0, 1, . . . , N − 1) into its
memory, we can use

xj(k − n) = Bj,iZi(k − n − 1), (24)

and perform a least square estimation (LSE) [45] to
obtain the estimates B̂j,i of the row vectors Bj,i.

Furthermore, in natural flocks/swarms, it frequently
happens that some individuals escape the neighborhood
of an individual and enter the neighborhood of others, or
that some new individuals join the group while some oth-
ers leave it, making the network topology change continu-
ously. Fortunately, if the topology modification rate is not
too high, the proposed decentralized prediction remains
feasible. Indeed, since the prediction is based on the his-
torical information sequence of the last 2N steps before
current time k (see Eq. (24)), and is aimed at the prediction
of the future Hp steps (see Eq. (22)), the decentralized pre-
dictive protocol (24) remains valid provided that the
topology remains constant during 2N + Hp steps. Thus,
the upper bound of the topology changing rate is
1/(2N + Hp).

The decentralized predictive protocol (24) is illustrat-
ed on the 5-node network shown in Figure 11, in which
the topology is changed from Figure 11(a) to Figure 11(b)
at the 47th step. Numerical simulations show that, before
the topology switch the prediction error ep,i(k) remains
small (less than 10−7). Note that the prediction error of
node i is defined as ep,i(k + m) = ‖xi(k + m) − x̂i(k + m)‖2

(m = 1, . . . , Hp) with x̂i(k + m) = ei Âm
i Zi(k) and Âi being

the least square estimation of Ai given in Eq. (23). When
the topology switches, the prediction error ep,i(k) rises
sharply to approach 0.1 and then begins to oscillate as a
result of the transient adaptive process of the prediction.
After less than N steps, ep,i(k) settles down to a level lower
than 10−7. In this way, both the prediction accuracy and

the adaptive capability for topology variations have been
illustrated through simulation.

B. Decentralized Predictive Protocol
Since we have established that future state prediction
can be obtained from historical local observations, we
can introduce a decentralized predictive consensus pro-
tocol for general networks. For concision, we ignore the
identification error in the following context and deem
that B̂j,i = Bj,i( j ∈ N (i) ∪ i).

Similar to the modification proposed in Eq. (10), we
add a prediction control input to the routine dynamics
given in (21) for m = 1:

Zi(k + 1) = AiZi(k) + eT
1 vi(k), (25)

xi(k + 1) = e1 AiZi(k) + vi(k), (26)

xj(k + 1) = Bj,iZi(k), (27)

where vi(k) is an additional term representing the MPC
action. Using the predictive protocol (25)–(27), the future
states of agent i can be predicted based on the currently
available historical state sequence Zi(k) as follows:

Xi(k + 1) = PZi Zi(k) + PUi Ui(k), (28)

Xj(k + 1) = PZj Zi(k) + PUj Ui(k) (29)

with

Xi(k + 1) = [xi(k + 1), . . . , xi(k + Hp)]T , Xj(k + 1)

= [xj(k + 1), . . . , xj(k + Hp)]T , Ui(k)

= [vi(k), . . . , vi(k + Hu − 1)]T ,

PZi =
[(

e1 Ai
)T

, . . . ,
(
e1 A

Hp

i

)T
]T

Hp×N
,

PZj =
[

BT
j,i, (Bj,i Ai)

T , . . . ,
(

Bj,i A
Hp−1
i

)T
]T

Hp×N
,

PUi and PUj given in Appendix B. Here, Hu ≤ Hp denotes
the control horizon, i.e., the length of the predicted con-
trol sequence.

As illustrated in Figure 12, the natural interpretation of
the present decentralized MPC protocol can be described
as follows. Compared with the centralized predictive pro-
tocol given in Figure 8, each individual observes and
stores the past trajectories of itself and its neighbors,
based on which it computes least square estimates of its
neighbors’ dynamics (B̂i, j and Âi). Upon obtaining these
estimations, each individual predicts the future states of
its neighbors using Eqs. (28) and (29). Finally, it computes
some control signal aiming at minimizing the state differ-
ence (or disagreement) in its neighborhood over the
interval [k + 1,k + Hp].
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Bearing such a picture in mind, we represent the state
difference between individual i and its neighbors by a
vector �Xi(k + 1) = row{�Xr,s(k + 1)|r, s ∈ N (i) ∪ i and
r > s} where �Xr,s(k + 1) = Xr(k + 1) − Xs(k + 1) and the
notation y = row{yi}(i = 1, . . . ,n) means that y is com-
posed of rows of yi, i.e., y = row{yi} ⇔ y = [yT

1 , . . . , yT
n ]T .

For instance, as shown in Figure 11(b), individual 2 has
two neighbors (numbered 1 and 3), therefore
�X2(k + 1) = [( X2(k + 1) − X1(k + 1))T , (X3(k + 1) − X2

(k + 1))T , (X3(k + 1) − X1(k + 1))T ]T .
It then follows from Eqs. (28) and (29) that

�Xi(k + 1) = P Zi Zi(k) + P Ui Ui(k) (30)

with r, s ∈ N (i) ∪ iandr > s, PZi = row{PZr − PZs} and
PUi = row{PUr − PUs}.

To solve the consensus problem, we first set the mov-
ing horizon optimization index that defines the decentral-
ized MPC consensus problem as follows:

Ji(k) = ‖�Xi(k + 1)‖2
Qi

+ ‖Ui(k)‖2
Ri

, (31)

where Qi and Ri are compatible real, symmetric, positive
definite weighting matrices. In general, the weighting
matrices can be set as

Qi = qIHpNi(Ni+1)/2(q > 0) and Ri = IHu , (32)

where Ni is the number of neighbors of individual i. In the
optimization index (31), the first term penalizes the
disagreement among the neighborhood of agent i over
the future Hp steps, while the second penalizes the addi-
tional MPC control energy Ui(k). In order to minimize (31),
we compute ∂ Ji(k)/∂Ui(k) = 0, and consequently obtain
the optimal MPC action as:

vi(k) = PM PC ,iZi(k) (33)

with

PM PC ,i = −[1, 0, . . . , 0]1×Hu

·
(

PT
Ui

QiPUi + Ri

)−1
PT

Ui
QiPZi . (34)

Note that, in this decentralized MPC, the control law
vi(k) is calculated and implemented by each individual,
which is totally different from the centralized MPC given
by Eq. (15).

Substituting Eq. (33) into Eq. (25) yields

Z (k + 1) = W Z (k) (35)

with W = diag{Ai + eT
1 PMPC,i}i=1,... ,N and Z (k) =

[Z1(k)T , . . . , ZN (k)T ]T .

Based on the above discussion, the decentralized MPC
algorithm can be divided into two stages:

Stage 1 (Pure identification stage): In the first 2N
steps, the LSE method (24) is implemented to yield initial
estimates Âi and B̂j,i of the neighbors’ dynamics;

Stage 2 (identification and control stage): From the
2N + 1th step, the MPC is kicked off. At each step k, the
matrices PMPC,i are calculated according to Eq. (34) using
the estimates Âi, B̂j,i. The MPC term v(k) is then comput-
ed according to Eq. (33) and introduced into each node as
shown in Eq. (26). Finally, the LSE method (24) is iterated
to yield the updated estimates Âi and B̂j,i.

To support the above proposed decentralized MPC, it
is necessary to give some sufficient conditions guaran-
teeing convergence towards average-consensus. To this
end, we first provide a lemma on average-consensus.

Lemma 1: [44] For any matrix W ∈ RM×M , the
equation

lim
k→∞

Wk = 1M1T
M/M (36)

with 1M = [1, . . . , 1]T
M×1 holds if and only if assumptions

A1 and A2 hold:
A1: The following holds for W

W1M = W T 1M = 1M ; (37)

A2: The matrix W has a simple eigenvalue at 1 and all
its other eigenvalues inside the open unit circle.

Based on Lemma 1, we give hereafter the necessary and
sufficient conditions guaranteeing average-consensus for
the proposed decentralized MPC protocol.

Theorem 1: For an N-node balanced network with dynam-
ics determined by (35), provided that 	i, i = 1, . . . , N (see
Eq. (19)) are invertible and B̂j,i = Bj,i (see Eq. (20)), then
the system state x(k) asymptotically converges to the aver-
age-consensus value x̄(0)1N with x̄(0) � 1/N

∑N
i=1 xi(0)

if and only if assumptions A3 and A2 hold
A3: The following equality holds

1T
N ·

(
Ai + eT

1 PMPC,i

)
= 1T

N (i = 1, . . . , N). (38)

The assumption A3 can be interpreted as that the
internal prediction-related effects are counteracted. It can
be numerically checked that in the 3-dimensional space
spanned by the parameters Hu, Hp, and q, there is a fairly
large region in which A3 is fulfilled (such as the region
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corresponding to the common parameter settings
Hu ∈ [1, 10], Hp ∈ [Hu, 10] and q ∈ [0.01, 10]).

Furthermore, similar to the nominal MPC’s performance
shown in Figure 10, the eigenvalues distribution of W (see
Eq. (35)) is always much smaller and closer to the origin
than the one of Pε , which explains the overall higher con-
sensus speed of the decentralized MPC protocol. More sig-
nificantly, when ε is increased beyond the threshold
1/dmax (see Figure 14(b) where ε = 2), some of the eigen-
values of Pε start escaping the unit circle, making the dis-
agreement function diverge, whereas all the eigenvalues of
W remain inside the unit circle (except one that is always
located at 1), which ensures its
convergence. Clearly, from the
mathematical point of view, the
effect of predictive mechanism is
to drive the escaping eigenvalues
towards the origin. One may
notice that, compared with nomi-
nal MPC, the eigenvalue distribu-
tion of decentralized MPC is less
compact around the origin. This
is due to the parameter estima-
tion error which inevitably leads
to slight inaccuracies in the state
predictions.

To vividly illustrate the virtues
of the decentralized predictive
consensus protocol, we present
some simulation results compar-
ing the convergence speeds
obtained using the routine proto-
col given in Eq. (9) and the pro-
posed predictive protocol given in
Eq. (35) on the 10-node network
given in Figure 13(a). Once again,
since the objective is to reach
average-consensus, the instantaneous disagreement index
is set as D(k) = ‖x(k) − 1N x̄(0)‖2

2.
In the convergent case of the routine protocol, e.g., for

ε ≤ 1/dmax, the decentralized MPC consensus protocol
(35) yields an increase in the convergence speed towards
average-consensus (by a factor of 3 approximately), as
shown in Figure 15(a). Furthermore, even when the
routine convergence conditions are violated, e.g.,
ε > 1/dmax, it is observed in Figures 15(b) and 15(c) that
the decentralized MPC consensus protocol still allows
asymptotic convergence to average-consensus. Thus, the
range of sampling period ε leading to asymptotic conver-
gence towards consensus is expanded using the decen-
tralized predictive mechanism. Interestingly, one may
notice the slight oscillations of the MPC consensus proto-
col’s D(k) curve in Figures 15(a) and (b), which root in the

online identification and adaptation processes performed
by each node.

Finally, to demonstrate the decentralized MPC’s superi-
ority in handling network topology switches, we compare
the consensus performances of the MPC and routine pro-
tocols in Figure 16, when the topology is switched from
Figure 13(a) to Figure 13(b) at the 43rd running step. For
the routine protocol, since {0.48, 0.49} ∈ [1/3, 1/2] (1/2
and 1/3 are the 1/dmax values of the topologies consid-
ered in Figure 11(a) and (b), respectively), the average-
consensus tendency is broken shortly after the network
topology switch. On the contrary, the average-consensus

tendency holds all along for the decentralized MPC con-
sensus protocol since it can adapt to the topology
changes and use the additional MPC term (see Eq. (26)) to
steer each node towards its neighbors.

V. Conclusion

To extract the role of predictive mechanisms that may
extensively exist in abundant natural bio-groups, we
surveyed some recent investigations on collective group
behaviors, and designed three predictive mechanisms
both in centralized and decentralized manners for flocks
with or without leaders. By using mathematical analysis
and numerical simulations, we illustrated the advantages
of such predictive protocols for both the exploration of
emergent behaviors and the design of autonomous and
reliable consensus networks.
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of Individual N

vN (k)

v1(k)

x1

x1
x1

x2 x2 x2

xN
xN

xN
ZN(k)

vN(k)
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v2(k)

Z1(k)

v1(k)

Moving Horizon Optimization
of Individual 1

Neighboring
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ΔX1(k+1)
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Time
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ΔX1(k+HP)
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Figure 12. Decentralized MPC protocol.
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For flocks with leaders, we designed a small-world pre-
dictive protocol for two mainstream models, namely the
A/R and Vicsek models. In this scenario, the predictive
capability is incorporated into the long-range connections
from the leader to the pseudo-leaders. Simulation results
led to the following conclusions: 1) owing to the predictive
capability of the pseudo-leaders, the group becomes more
cohesive to the leader and the flock formation is more sta-
ble; 2) predictive capability can compensate for the need
of costly long-range connections.

For flocks without leaders, which is a more general
case in nature, we incorporated a predictive term into
the routine consensus law, with the aim of minimizing

the future state difference between any pair of individu-
als. Both numerical simulations and mathematical
analysis were provided to show the advantages of such
centralized MPC protocols. In particular, we showed
that 1) even short-term predition leads to a significant
increase in convergence speed; 2) the sampling period
range guaranteeing convergence can be sharply
increased, giving the MPC protocol the potential to
effectively save communication energy.

In nature, each individual typically lacks global knowledge
of the network state and topology and can merely plan its
motion based on observable local information. In the third
part, we designed a decentralized MPC protocol, for which
computation is distributed to each individual. To guarantee
the feasibility of such a decentralized protocol, we proved
that each individual can estimate the future states of its
neighbors by solely using the historical observable local
information sequence. In this sense, ‘historical local’ is equiv-
alent to ‘current global.’ Once the neighbors’ states have
been predicted, an MPC consensus protocol similar to the
centralized one can be easily designed. Both numerical sim-
ulations and mathematical analysis showed that, compared
with the above centralized predictive protocol, the perform-
ance improvements in the decentralized scenario are slight-
ly reduced while the above-mentioned two virtues of
predictive mechanism still hold. More significantly, this
decentralized predictive protocol is more realistic and clear-
ly more useful in the design of industrial applications.

For natural science, the contribution of this work lies in
its ability to explain why individuals of biological
flocks/swarms like fireflies and deep-sea fish do not
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Figure 14. (Color online) Eigenvalue distributions for different ε. Blue (©) and red (+) represent the eigenvalues of Pε and W (see
Eq. (35)) over 100 runs, respectively. The simulations are implemented on the balanced network with topology given in Figure
13(c). The eigenvalue distribution of W correspond to snapshots at the 50th running step. The black circle denotes the unit cir-
cle in the complex plane. Here, Hp = 7, Hu = 1, q = 0.015, and each entry lij(j �= i, and (i, j) ∈ E) is chosen randomly in [−1, 0) such
that the resulting network is balanced. The associated values of dmax lie in [0.9, 2.7].
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Figure 13. Network topologies used.
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communicate very frequently all along but just now and
then during the whole dynamic process. From the indus-
trial application point of view, the value of this work is two-
fold. The consensus performance is significantly enhanced
while the communication energy or cost is effectively
reduced. All these virtues are only at the cost of giving the
agents the capabilities of storing past states and making
predictions. This work is just a first attempt to reveal the
role of collective predictive mechanism for natural
flocks/swarms and thereby improving the performances of
industrial multi-agent systems’ collective behaviors. We
believe that numerous research issues remain open in the
ongoing efforts to design predictive protocols that are effi-
cient, robust and scalable to large-sized systems. We also
expect the coming years to embrace an intensive develop-
ment about the collective behavior coordination via pre-
dictive mechanism and the relevant applications in
multi-agent industrial systems.
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Appendix

A. Prediction matrix for centralized MPC

PU =

⎡
⎢⎢⎢⎣

IN
Pε IN
...

...
. . .

P
Hp−1
ε P

Hp−2
ε . . . IN

⎤
⎥⎥⎥⎦

B. Prediction matrices for decentralized MPC

PUi =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
e1 AieT

1 1
...

. . .

e1 AHu−1
i eT

1 · · · · · · 1

e1 AHu
i eT

1 · · · e1 A2
i eT

1 e1 AieT
1 + 1

...
...

...

e1 A
Hp−1
i eT

1 · · · e1 A
Hp−Hu+1
i eT

1

e1 A
Hp−Hu

i eT
1

+e1 A
Hp−Hu−1
i eT

1
+ · · · + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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0
Bj,ieT

1 0
...

. . .

Bj,i A
Hu−2
i eT

1 · · · · · · 0

Bj,i A
Hu−1
i eT

1 · · · Bj,i AieT
1 Bj,ieT

1
...

...
...

Bj,i A
Hp−2
i eT

1 · · · Bj,i A
Hp−Hu

i eT
1

Bj,i A
Hp−Hu−1
i eT

1

+Bj,i A
Hp−Hu−2
i eT

1
+· · · + Bj,ieT

1

⎤
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