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Colloids with patchy metal coating under laser irradiation could act as local sources of heat due
to the absorption of light. While for asymmetric colloids this could induce self-propulsion, it also
leads to the generation of a slowly decaying temperature profile that other colloids could interact
with. The collective behavior of a dilute solution of such thermally active particles is studied using
a stochastic formulation. It is found that when the Soret coefficient is positive, the system could be
described in stationary-state by the nonlinear Poisson-Boltzmann equation and could adopt density
profiles with significant depletion in the middle region when confined. For colloids with negative
Soret coefficient, the system can be described as a dissipative equivalent of a gravitational system.
It is shown that in this case the thermally active colloidal solution could undergo an instability at
a critical laser intensity, which has similarities to supernova explosion.
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The motion of colloidal particles in a solution in the
presence of an externally applied temperature gradient,
which is known as thermophoresis or the Soret effect [1],
has been studied since the 19th century and observed
in a variety of systems [2]. Although its existence can
be well formulated in non-equilibrium thermodynamics
within linear response theory [3], many aspects of the mi-
croscopic nature of the phenomenon has remained a sub-
ject of investigation to date [4]. The effect has also been
shown to provide a powerful tool for manipulating macro-
molecules and colloids [5]. Since in the phoretic trans-
port mechanisms the colloids experience no net force,
it is possible to take advantage of them to design self-
propelled particles by incorporating a built-in mechanism
that provides asymmetric sources that could generate
and maintain the necessary gradient across them needed
for propulsion [6, 7]. Recently, Jiang et al. [8] have shown
that silica beads half-coated with gold when irradiated
with a defocused laser beam exhibit such a propulsion, as
the gold caps act as heat sources when they absorb light.
Moreover, even without the self-propulsion, laser-heated
gold-coated colloids have been shown to undergo sub-
stantially enhanced Brownian diffusion, which is related
to the modification of the temperature in the medium
and the resulting changes in the viscosity [9]. Since such
thermally active colloids would create temperature pro-
files around them that decay as 1/r, in addition to caus-
ing them to self-propel thermophoresis could provide a
mechanism for them to interact with one another in a
solution. The long-ranged nature of the inter-colloidal
thermophoretic interaction could lead to interesting col-
lective behaviors.

Here we construct a stochastic formulation to describe
the collective behavior of a number of thermally active
colloids. At the long time and large length scale limit
and for dilute solutions, the formulation simplifies to a
set of two nonlinear coupled differential equations for
the density and temperature profiles in the medium. In

stationary-state, we provide a number of examples for
which the equations could be solved exactly. They show
a depletion effect for the case of positive Soret coefficient,
and an instability at a finite laser intensity for negative
Soret coefficient.

We consider N colloidal particles of radius R that are
half-coated with a metal that absorbs the laser light with
an efficiency ǫ, thus creating a local source of heat of mag-
nitude ǫI, where I is the intensity of the laser (see Fig. 1).
We assume that the laser intensity is uniform through-
out the space, and thus ignore any optical confinement
effect. In an externally generated temperature gradient,
the colloids move with a drift velocity v = −DT∇T ,
where DT is the thermodiffusion coefficient. The asym-
metric heat generation around each colloid provides a
mechanism to create and maintain a local temperature
gradient that leads to propulsion via self-thermophoresis
[7]. For a Janus-sphere colloid, the propulsion veloc-
ity can be calculated as v0 = ǫIDT /(6κ), where κ is
the thermal conductivity of the medium [7, 8, 10]. The
stochastic motion of the i-th colloid is described by its

FIG. 1: (color online.) The metal-coated Janus-spheres under
irradiation could self-propel in the directions shown by the
(green) arrows and interact with one-another via the long-
ranged temperature profiles they generate. The interactions
are mutually repulsive when ST > 0 and attractive when
ST < 0.
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instantaneous position ri(t) and orientation ni(t) that
is a unit vector. They satisfy the Langevin equations
dri
dt = v0ni − DT∇T (ri) + ξi and dni

dt = ηi × ni, in
which ξi and ηi are Gaussian-distributed noise terms.
Since each colloid generates heat with an overall (surface-
average) rate of 1

2ǫI, the temperature profile at the loca-
tion of each colloid is affected by the heat generated by
all the other colloids. Since the temperature profile equi-
librates considerably faster than the colloids, we have

T (r, t) = T0 + ǫIR2

2κ

∑

j
1

|r−rj(t)| , to the lowest order in

the multipole expansion of the heat source distribution.
While this approximation should be valid for sufficiently
dilute colloidal solutions, the contributions from higher
multipoles could readily be added to the above temper-
ature profile. To probe the colloidal activity at shorter
times than the rotational diffusion time, we need to in-
corporate the time dependence of heat diffusion, which
could lead to anomalous dynamics of the colloid [11].
The Fokker-Planck equation for the probability dis-

tribution P(r,n, t) ≡
〈

∑N
i=1 δ (r− ri(t)) δ (n− ni(t))

〉

,

can be constructed from the Langevin equations as

∂tP+∇·
[

v0nP−DT (∇T )P−D∇P
]

−DrR
2P = 0, (1)

where R ≡ n × ∂n. In Eq. (1), D and Dr are the
translational and rotational diffusion coefficients, respec-
tively, and represent the corresponding widths of the
Gaussian probability distributions for the noise terms ξi
and ηi in the Langevin equations. In a medium with
uniform temperature T , we have D = kBT/(6πηR) and
Dr = kBT/(8πηR

3), where η is the viscosity of water.
Equation (1) should be complemented with the heat dif-
fusion equation

−∇2T =
2πǫIR2

κ

∫

n

P(r,n), (2)

which describes how the temperature profile is affected
by the spatial distribution of the colloids due to their role
as motile heat sources. Equations (1) and (2) should be
self-consistently solved to obtained the probability distri-
bution of the colloids as well as the temperature profile
in the medium.
Let us define the density ρ(r) =

∫

n
P(r,n), the polar-

ization field p(r) =
∫

n
n P(r,n), and the nematic order

parameter Q(r) =
∫

n

[

nn− 1
3 I
]

P(r,n). Performing
∫

n

on Eq. (1), we can obtain an equation for the density

as ∂tρ + v0∇ · p − ∇ ·
[

DT (∇T )ρ + D∇ρ
]

= 0, which

is incomplete since it has a source term in the form of
−v0∇ · p, which is present due to the self-propulsion of
the colloids. Performing

∫

n
n× Eq. (1), we can obtain

an equation for the polarization field as

∂tp+ 2Drp+
v0
3
∇ρ+ v0∇ ·Q(r)

−∇ ·
[

DT (∇T )p+D∇p
]

= 0, (3)

where R2n = −2n is used. Equation (3) is also incom-
plete as it depends on Q, and this hierarchy will continue
for higher order cumulants.
To make further progress, we can seek to truncate the

hierarchy and simplify Eq. (3) in some approximation.
At time scales much longer than 1/Dr, the time deriva-
tive term in Eq. (3) is considerably smaller than 2Drp

and can thus be ignored. For sufficiently dilute solutions,
i.e. when ρR3 ≪ 1, and in the absence of any external
means that could induce polarization, such as external
magnetic field for particles with a magnetic dipole mo-
ment or gravity [12, 13], we can ignore the ∇·Q(r) term.
Since the time scale is much longer 1/Dr, any transient
or initial ordering would also have decayed. Finally, at
length scales much larger than R, the gradient terms in
Eq. (3) can be neglected, and the equation can be ap-
proximated as

p ≃ −
v0
6Dr

∇ρ. (4)

Using Eq. (4), we can estimate that Q ∼ ∇ρ∇ρ, ignor-
ing which is consistent with our assumption of a dilute
solution. Putting Eq. (4) back in the density equation,
we find

∂tρ−∇ ·
[

Deff∇ρ+DT (∇T ) ρ
]

= 0, (5)

whereDeff = D+v20/(6Dr) is the enhanced effective diffu-
sion coefficient for the self-propelled active colloid [6, 11],
which could also be rewritten asDeff = D

[

1 + 2
9Pe

2
]

(for
a sphere) in terms of the Peclet number Pe = v0R/D [12].
Equation (5) should be solved in conjunction with the

heat diffusion equation, which reads −∇2T = 2πǫIR2

κ ρ.
In stationary state, Eq. (5) is satisfied if Deff∇ρ +

DT (∇T )ρ = 0, which can be written as ∇ ln ρ =
− DT

Deff
∇T . If we ignore the temperature dependence in

Deff , and use the Soret coefficient ST = DT /D, this can
be integrated to yield

ρ(r) = ρ0 exp

{

−
ST

[

T (r)− T0

]

(

1 + 2
9Pe

2
)

}

. (6)

Putting the above equation back in the heat diffusion
equation yields a single nonlinear equation for the tem-
perature profile as

−∇2T =
2πǫIR2ρ0

κ
exp

{

−
ST

[

T (r)− T0

]

(

1 + 2
9Pe

2
)

}

. (7)

Equation (7), which is reminiscent of the Poisson-
Boltzmann equation for electrolytes (see below), could
be solved for the temperature profile, which then yields
the stationary-state density profile of the colloids via Eq.
(6). Note that the Soret coefficient could be both positive
and negative.
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We can define an appropriate dimensionless temper-

ature as Ψ ≡ |ST |[T (r)−T0]

1+ 2

9
Pe2

, and a characteristic length

scale

ℓ ≡
ǫIR2|ST |

2κ
(

1 + 2
9Pe

2
) , (8)

which is reminiscent of the Bjerrum length in the elec-
trostatic analogy. We have

−∇2Ψ = k2e∓Ψ, (9)

where k2 = 4πℓρ0, and the sign choice is −sgn(ST ).
Equation (9) is subject to the constraint N = ρ0

∫

r
e∓Ψ.

We now discuss a number of interesting exact solutions
for the stationary-state described by Eq. (9). We con-
sider colloidal solutions that are confined in some region
in space and examine the effect of the dimensionality of
the confinement geometry as well as the nature and the
strength of the thermotactic coupling. The confinement
could in practice come from the trapping effect of nonuni-
form laser beams, which could provide a very powerful
tuning parameter. For simplicity, we model the confine-
ment by introducing sharp boundaries such as confining
walls.
When ST > 0, the electrostatic analogy is complete

as the colloidal particles mutually repel one another, and
the overall heat flux coming out of the solution through
the boundaries of the confining “cage” is reminiscent of
the electric field flux lines, which could be thought of as
an outer shell of opposite charges maintaining neutrality
and stability. We denote the ST > 0 case as thermo-

repulsive. This problem can be solved exactly for 1D
and 2D confinements, and numerically for the 3D case
[15]. When the colloidal solution is confined between
two plates of lateral size L and distance 2h, the density
profile of the colloids is given as

ρ(x) =
ρ0

[

1 + 2π2ℓ2

k2

(

N
L2

)2
]

cos2
(

kx√
2

) , (10)

where ρ0 is the concentration at the edge of confinement

(wall), and k satisfies
(

kh√
2

)

tan
(

kh√
2

)

= πℓh
(

N
L2

)

. The

profile of Eq. (10) describes an accumulation of the col-
loids near the confining boundary (that is reminiscent
to counterion condensation [14]) and a corresponding
depletion of the central region of the system. In the
strong coupling limit when Nℓh/L2 ≫ 1, we can find
an approximate solution to the transcendental equation

as kh ≃ π√
2

[

1− 1
π(Nℓh/L2)

]

. In this limit, the ratio be-

tween the density of the colloids in the middle and at the
edge can be found as ρm

ρ0
≃ 1

4 (Nℓh/L2)−2, which shows
a significant depletion effect. Note that the depletion be-
comes stronger as h is increased, when other parameters
are kept fixed. The length 1/[2πℓ(N/L2)] is equivalent
to the Gouy-Chapman length in the electrostatic analogy

1 2 3

1

2

3

4

ρm
ρ0

4πℓhN/L2

Unstable

FIG. 2: (color online.) The density of colloids in the middle
of the confined space relative to the density at the edge as
a function of the dimensionless thermophoretic coupling con-
stant for the thermo-attractive (ST < 0) case. The critical
density at the onset of instability is (ρm/ρ0)c = 3.29, which
occurs at (4πℓhN/L2)c = 2.

[14]. For a colloidal solution trapped in a cylindrical cage
of length L and width 2h, the density profile reads

ρ(r) =
ρ0

[

1 + 1
2

(

Nℓ
L

)]2 [
1− 1

8k
2r2

]2
, (11)

where kh =
√

8(Nℓ/L)
2+(Nℓ/L) . The strong coupling limit in

this geometry corresponds to Nℓ/L ≫ 1, in which case
we have ρm

ρ0
≃ 4 (Nℓ/L)−2. Note that the magnitude

of depletion is independent of the confinement size in
this geometry. The ratio ℓN/L is analogous to the so-
called Manning-Oosawa parameter for highly charged
rodlike polyelectrolytes [14]. A similar profile can be
found when the colloidal solution is confined to a spher-
ical cage of diameter 2h, where in the strong coupling
limit that corresponds to Nℓ/h ≫ 1 in this case, we have
ρm

ρ0
≃ 21.4 (Nℓ/h)−2. Here, the depletion is inversely re-

lated to the size of the cage, namely it decreases for larger
confinement sizes.
When ST < 0, the colloids attract each other and the

problem is analogous to a gravitational system. We thus
denote this case as thermo-attractive. Let us go back to
the 1D confinement geometry, where the relevant ther-
mophoretic coupling constant is Nℓh/L2 as discussed
above. In this case, Eq. (9) (with the positive sign
choice) can be integrated in closed form and the den-
sity profile can be calculated. The stationary-state den-
sity profile (not presented here for brevity) shows that
the particles will accumulate towards the center of the
confined area. Figure 2 shows that the ratio between
the density in the middle and at the edge of the con-
finement region increases as the thermophoretic coupling
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constant increases, up to a critical point beyond which
a stable (stationary-state) solution no longer exists. The
onset of instability occurs at (4πℓhN/L2)c = 2, at which
(ρm/ρ0)c = 3.29. Similar instabilities exist in the 2D and
3D confinement cases [16], where Nℓ/L and Nℓ/h play
the role of the thermophoretic coupling constant, respec-
tively.

The instability occurs because the particles that act
as heat sources attract each other and could result in
a suspension that becomes increasingly denser and hot-
ter. In this case, the heat flux at the outer boundary of
the system cannot balance the heat generated inside the
confined region, which leads to an uncontrolled buildup
of thermal energy. In molecular systems, an equation of
the form of Eq. (7) (with ST < 0) is used to describe
exothermic combustion reactions that could lead to ther-
mal explosion [16]. It is not possible to predict what
happens in our colloidal system above the onset of this
instability using the present formulation, as the approxi-
mations used in its derivation are no longer valid. Within
our handwaving analogy to a gravitational system, this
explosion would have similarities to a type I supernova
for a white dwarf, for which accreted material from the
surroundings accelerates exothermic nuclear reaction to
the point that the system becomes unstable [17]. This
analogy is very rough, however, as the colloidal system
operates in the dissipative regime as opposed to the iner-
tial and conserved dynamics of the gravitational system.

We can estimate the length scale ℓ that characterizes
the strength of thermophoretic interactions from the ex-
periment of Ref. [8]. For R = 1 µm, we can estimate
that for a fully coated bead that is not self-propelled due
to lack of asymmetry (Pe = 0), ℓ ∼ 10 µm, while for
the self-propelled colloids we could have a reduction by
two orders of magnitude, namely, ℓ ∼ 0.1 µm. Consider-
ing the confinement length to be h ∼ 10 − 100 µm, we
find that it is very easy to realize a sufficiently dilute ex-
perimental system, which is in the strong coupling limit.
While the laser intensity provides a continuous tuning pa-
rameter, the presence or absence of self-propulsion could
move the system much faster in the parameter space. We
note that Eq. (5) could be used to study the time depen-
dence of the nonlinear dynamics of the colloids as in the
analogous electrokinetic system [18].

The are a number of effects that we have not considered
in the present analysis. We have neglected the temper-
ature dependence of Deff in the calculation that led to
Eq. (6), which could introduce corrections of the order
of ∆T/T to the argument of the exponential. Moreover,
hydrodynamic interactions have been shown to lead to
nonlocal relations between the temperature profile and
the diffusion coefficient of tracer particles [19]. However,
we do not expect these effects to change the qualitative
behavior of the system. We have also neglected the hy-
drodynamic interaction between the colloidal particles
themselves. This is justified, as self-thermophoretic col-

loids are effectively source dipoles and lead to velocity
fields that decay as 1/r3, which is faster than the ther-
mophoretic interaction that decays as 1/r2.
In conclusion, we have studied the collective behavior

of active colloids that act as mobile heat sources, and
found that thermo-repulsive colloids could organize into
hollow bands, tubes, or shells, depending on the geom-
etry, while thermo-attractive colloids could go unstable.
We note that similar equations could be used to study
collective chemotaxis of diffusiophoretically active parti-
cles using the analogy of nonequilibrium phoretic phe-
nomena [7].
This work was supported by EPSRC.
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