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Abstract

Modelling the displacement of thousands of cells that move in a collective way is required for the simulation and the
theoretical analysis of various biological processes. Here, we tackle this question in the controlled setting where the motion
of Madin-Darby Canine Kidney (MDCK) cells in a confluent epithelium is triggered by the unmasking of free surface. We
develop a simple model in which cells are described as point particles with a dynamic based on the two premises that, first,
cells move in a stochastic manner and, second, tend to adapt their motion to that of their neighbors. Detailed comparison
to experimental data show that the model provides a quantitatively accurate description of cell motion in the epithelium
bulk at early times. In addition, inclusion of model ‘‘leader’’ cells with modified characteristics, accounts for the digitated
shape of the interface which develops over the subsequent hours, providing that leader cells invade free surface more easily
than other cells and coordinate their motion with their followers. The previously-described progression of the epithelium
border is reproduced by the model and quantitatively explained.
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Introduction

Interactions between moving entities correlates their motions.

This takes place at all scales, from atoms and molecules, as

evidenced by the familiar experiences of wind and fluid vortices to

the astronomical scales of stars and galaxies. In the biological

realm, collective movements are observed from colonies of

bacteria [1] to herds of animals [2]. They underlie the fascinating

motions of bird flocks [3,4] and fish schools [5] as well as

pedestrian track patterns and traffic flows [6]. In these different

cases, the motion of the individual organism is very complex and

difficult to describe in a detailed way. However, simple models that

captures important features of the interaction have proven useful

for the description of collective movements. For instance, that car

drivers reduces their speed when car density increases is a key

property for traffic jam formation. At the level of cells, collective

motion is an important component of different biological processes

in multicellular organisms [7]. It is an integral part of development

[8], as illustrated for instance by dorsal closure in Drosophila

embryo, maintenance processes such as wound healing [9], and

disorders with cancer as a prime example [10]. It has been studied

in vivo, in model systems such as border cell migration in drosophila

oogenesis [11,12] or lateral line migration in zebrafish [13,14], as

well as in simpler and more controlled ex vivo experiments where

the motion of cells is simpler to record [15–21].

Many aspects of the migratory behavior of cells in two

dimensions have thus been studied by using the classical ‘‘wound

healing’’ scratch assay, in which a confluent epithelium is

scratched with a tool such as a pipette cone or a razor blade, so

as to mechanically remove a ‘‘strip of cells’’ from the monolayer.

The progression of the remaining cells during the ‘‘healing’’ of this

‘‘wound’’ is then observed under the microscope for up to a few

days. In previous works [17,19,22], we developed and studied a

very reproducible version of these experiments in which a portion

of the culture plate is masked by microfabricated stencils. Stencils

removal unmasks surfaces free of cells. This produces well-defined

‘‘wounds’’ with rectilinear edges and precisely controlled widths

and it triggers cell movements. In the subsequent hours, cells

invade the free surface under the apparent guidance of ‘‘leader’’

cells [15,17,22].

Our understanding of the mechanisms that coordinate the

behavior of multiple cells in these different processes is far from

complete. A model of collective cell motion should be useful to try

and precisely describe these diverse phenomena. It should also

allow to test and quantify the effect of different perturbations

[18,23]. A pioneeringly simple description of the collective
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behavior of self-propelled particles in general has been proposed

by Vicsek et al [24] based on interacting and stochastically moving

particles. Several authors have since carefully analyzed this model

[25–27] as well as related ones [28–30]. Coordinated motion of

active cells has been modelled along this line [31–34] or with more

extended cell descriptions [35,36] as well as with continuum

descriptions [37–39]. While these previous models provide insights

in coordinated cell motion, continuum models do not account for

the stochastic character of individual cell motion and simplifying

assumptions, such as the use of discrete time and/or velocities of

fixed-modulus, in other models [24,25,31,40], prevent detailed

comparisons to experimental data. Thus, our aim here is to obtain

a minimal model that quantitatively describes coordinated cell

motion. We compare the developed model to motion of cells

recorded in our experiments, as obtained from Particle-Image

Velocimetry (PIV). We find, using numerical simulations that the

model accounts quite precisely for the collective cell movements

studied at early times before the appearance of leader cells. We

further incorporate fast-moving leader cells and determine the

conditions under which they guide collective motion as in the

experiments.

Results

Model of collective cell motion
Our aim is to describe in the simplest quantitative fashion the

collective motion of cells in an actively moving epithelium. We

wish in particular to take into account that cells are actively motile

[16–18], that the motion of a cell is stochastic [16,41,42] and that

it is influenced by interactions with its neighbors. We also wish to

obtain a model of minimal computational complexity that can

provide a description of a large population of moving cells. A

particle-based model appears best suited to this task. We thus

propose and study a model of stochastically moving objects biased

by their interactions with their neighbors. Each cell is reduced to

its center point, the dynamics of which is described by a Langevin-

like equation in continuous-time. The velocity vi of the cell i is a

real two-dimensional vector which evolves as,

dvi

dt
~{aviz

X
j n:n:of i

½
b

Ni

(vj{vi)zf ij �zs(ri)gi: ð1Þ

where the summation on the right-hand-side (r. h. s.) is performed

on the Ni cells j that are the nearest neighbors of cell i. Thus, the

behavior of a cell in our model is only influenced by by its closest

neighbors, that is cells that are supposed to be in direct contact

with it. We describe here the model main characteristics (see

Methods for implementation details). We consider cells that are

actively motile and explore their environment in a random fashion

[16,41,42]. This is modelled in a classical way by a noisy drive

(sgi), here described as an Ornstein-Uhlenbeck process with

correlation time t. The noise amplitude is first taken to be a

constant, s~s0. It is then generalized to a decreasing function of

the local cell density ri to describe the dependence of the mean

cell speed on cell density. The linear damping term ({avi) is

meant to account in an effective way for dissipative processes

coming from rupture of adhesive contacts or friction with the

substrate or other cells. Finally, the motion of cell i is influenced by

its interaction with a neighbor in two ways. First, its velocity tends

to become equal to the velocity of the neighboring cell j [24,25]

with a strength determined by the coupling constant b. Second,

the fact that cells do not overlap and have a maximal extent is

taken into account by the force fij between neighbor cells i and j,

which is repulsive with a hard-core at short distances and

attractive at longer distances [40,43]. These interactions are

sketched in Figure S1.

The model provides an accurate description of
experimental data at early times
Stencil removal in the experiments rapidly increases cell motility

in the whole epithelium. Complex displacement fields are

observed that can precisely be measured by PIV analysis as

described in previous works [17,19] and shown in Figure 1A. The

histogram of the velocity component normal to the epithelium

border vx is identical to the histogram of vy, the velocity

component parallel to the epithelium border as seen in Figure 2

A,B, showing that cell motion is isotropic at early times. After a

couple of hours, leader cells appear and guide cell invasion of the

free surface. Cell motion then becomes dissymmetric along the x

and y axes.

The model with a constant noise amplitude, s0, was simulated

with a number of model cells (N= 4000) comparable to the

number of cells in the experiments. Its parameters were adjusted to

the experimental data at early time (30 min after stencil removal)

by fitting correlation functions computed from model simulations

to experimental velocity fields provided from PIV analysis, as

described in Methods. With the obtained parameters, the simulated

and experimental velocity field appeared very similar as can be

seen in Figure 1. This was quantitatively assessed by comparing

different statistical quantities for the model and experimental data.

The vx and vy histograms closely match and are both well

described by the same gaussian (Figure 2 A, B and Figure S2 A, B

which displays the data plotted in log-linear coordinates, to better

show the histogram tails). Similarly, the distribution of the velocity

moduli is close to the corresponding Maxwellian distribution

(Figure 2 C and and Figure S2 C). The experimental equal-time

spatial velocity correlation (Figure 2 G, H and Figure S2 D, E) as

well as the velocity field auto-correlation (Figure 2 I, J and Figure

S2 F, G) are both well fitted by the model. The similarity of the

correlation of the x and y velocity components in these plots

makes further apparent the isotropy of the cell dynamics at early

times. The velocity correlation length is remarkably long of the

order of 150 mm or about ten cells, as noted previously [17,19,21].

The cell velocity auto-correlation decays with a time scale of about

one hour which quantifies the time during which cells maintain

their velocity. This time scale is comparable to the characteristic

organization time of microtubules [44] and to the 50 min that we

Author Summary

Living organisms, from bacteria to large mammals, move
not only as single entities but also in groups. This is true
for cells in multicellular organisms. The group or collective
motion of cells is an important component of develop-
ment as well as processes like cancer and wound healing.
To better understand this phenomenon, we have recorded
the displacement of cells as they move collectively on a
substrate and invade free space. The results can be
accurately described by modelling the motion of cells as
random but with a tendency to move at the same velocity
as their neighbors. This allows us to analyze conditions
under which the invasion of free space takes place, guided
by a few cells that have become different of the others, as
observed in the experiments. The developed model should
serve as a useful basis for the description of other
processes that involve collective cell motion.

Model of Collective Cell Motion
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previously measured [22] for the reorientation of the microtubule

organizing center relative to the nucleus.

The model provides a good description of the statistical structure

of the cell velocity field, while correctly accounting for the spatial

relations between neighboring cells (Figure 2 D, E, F). It reproduces

the correlation function of cell positions, that is the probability

density of finding a cell center at a distance r of another cell (Figure 2

D) as well as the distribution of distances between neighboring cells

(Figure 2 F). Finally, taking the center of a cell as origin, the rotation

angle between the positions of two of it successive neighbors is

shown in Figure 2 E. The average angle is 60o as it should, and the

whole angle distribution is seen to be very similar for the real and

model cells (Figure 2 E). In summary, we find that the interacting

particle model described by Eq. [1] with a constant noise amplitude

succeeds in capturing quite precisely cell dynamics in the epithelium

bulk. As shown in Figure S3, the model continues to describe well

the distribution and correlation of the cell velocity component vy
parallel to the band border in the epithelium bulk for a few hours.

However as time passes, the border motion influences more and

more the motion of cells in the epithelium bulk as shown by the

progressive departure of vx distributions and correlations from their

initial values (see Figure S3).

In spite of the model simplicity, it is difficult to obtain exact

expressions for the statistical quantities displayed in Figure 2. In

order to better understand the influence of the different

parameters, we considered the analytically solvable approximation

of the model obtained by computing the time evolution of cell

velocities as given by Eq. [1], but with the cell positions fixed at the

vertices of a triangular lattice, as described in Text S1. The

obtained expressions for the distribution of cell velocities and for

the velocity correlation functions approximate that of the full

model and describe their dependence on different parameters. As

shown in Text S1, the noise amplitude s determines the cell speed

scale but does not influence the shape of the cell speed distribution

or the normalized velocity correlation function. Figure S4

illustrates the influence of the parameters a,b and t on the

velocity correlation functions. An increase of a diminishes both the

spatial and temporal extent of the velocity correlations. An

increase of b increases correlation spatially but has almost no effect

on temporal correlations. On the contrary, an increase of t

increases correlations in time but has a very weak influence on

their spatial extent.

In the above-described experiments, cell density does not

strongly vary in the epithelium bulk at early time. The mean cell

speed however depends on the cell density [45] as shown by its

decrease as cells reach confluence before stencil removal (see

Figure 1A in ref. [19]), as well as by the observed correlation

between cell speed and cell density in migrating bands that exhibit

large density heterogeneities. In order to account for this effect, we

generalized the model to include a dependence of the noise

amplitude s on the local cell density (see Methods), as written in Eq.

[1], since s is the main model parameter that controls the mean

cell speed. As shown in Figure S5, the inclusion of this dependence

does not significantly change the agreement between model and

experimental data at early times. It plays however an important

role in the epithelium motion at later times, as described below.

Leader cells and fingers at the epithelium border
Since the proposed model described well the coordinated

motion of cells at early times, we investigated whether it could also

reproduce the behavior of the epithelium during the whole

duration of the experiments. After a couple of hours, leader cells

appear and are observed to guide MDCK cell motion at the

epithelium border in the form of ‘‘fingers’’ that invade free space,

as described in previous works [15,17,22] and shown in Figure 3.

Different suggestions have previously been made as to the origin of

fingers and leader cells. Proposed mechanisms include diffusion

and chemo-attraction [37,39] as well as an intrinsic instability [46]

of the cell border hypothesized to be driven by an increased border

speed in its outward curving parts [47]. Leader cells are about

three times larger than their followers, with a size of the order of

50 mm as compared to 15–25 mm for other cells. They also move

faster than other cells, do not divide and are often binucleated (see

Figure S6). Thus, we here take the more conservative viewpoint

that leader cells have acquired different characteristics from other

cells in the epithelium. We study whether the observed fingers and

Figure 1. Cell velocity fields at early times. The cell velocity field is displayed 30 min after removal of the stencil. (A) Experiment (B) Numerical
simulation of the model. Box size 1mm2. The parameters of the simulated model are a~1:42 h{1,b~60 h{1,t~1:39 h and s0~150mm=h2 (constant
amplitude noise).
doi:10.1371/journal.pcbi.1002944.g001

Model of Collective Cell Motion
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Figure 2. Statistical characterizations of the cell velocity field and positions at early time. Different statistical quantities are computed for
the velocity fields (30 min after stencil removal) in the experiments and model. Results of numerical simulations of the model are shown as solid black
curves (the simulation parameter values are the same as in Figure 1). The experimental data of 3 different experiments are shown as colored symbols.
(A) and (B) Distribution of the components vx and vy of the cell velocities, (C) Distribution of the cell velocity moduli, (D) Spatial correlation of the cell
centers, (E) Distribution of angle between two successive neighbors of a cell (see Methods), (F) Distribution of distance between the centers of two
neighboring cells, (G) and (H) spatial velocity correlation for the components vx and vy of the velocity respectively, (I) and (J) temporal velocity
correlation for the components vx and vy of the velocity respectively.
doi:10.1371/journal.pcbi.1002944.g002

Model of Collective Cell Motion
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border movement can be reproduced by introducing a few

modified cells in our model.

The dynamics of leader cells differ in several ways from those of

other cells. The velocities of leader cells are found to be constant in

modulus and direction to a good approximation (see Figure 7 in

ref. [17]) with velocity moduli peaked around 18+2:2 mm=h.
Contrary to other cells, leader cells display a very active

lamellipodium along their whole membrane in contact with the

free surface. They actively invade free surface while other cells do

not. This difference in explorative behaviors may stem from the

actin cable that follows the epithelium border [48,49] and is only

interrupted in leader cells. Finally, the motion of a leader cell is not

independent of that of other cells. Cutting a leader cell from the

following cells strongly perturbs its dynamics. Its motion becomes

erratic and it regains its characteristics only after re-adhesion to

the epithelium [22].

We introduced model leaders cell in our simulations that took

into account these different properties in a simple way (see Methods

for details). Leader cells were created as faster cells at the epithelium

border with a fixed outward predetermined velocity. The difference

in explorative behaviors between leader and other cells was

accounted for, in an effective manner, by a repellent force felt by

non-leader cells at the epithelium border upon exploration of free

surface. This repulsion disappeared as soon as the surface had been

explored by a leader or another non-leader cell (see Methods for

details). In addition, a leader cell was assumed to coordinate its

motion with the cells directly following it. Namely, a leader cell was

assumed to slow down when it was too fast for its followers.

Fingers produced with these prescriptions resemble those

observed in experiments as shown in Figure 3 A, B and in Figure

S7. In the observed experimental fingers, the cell density is lower

than in the epithelium bulk. It decreases continuously from the

finger bases to their leader cell tip, as quantified previously [22]

(Figure 3 C). A very similar trend is observed in the fingers

produced in the model as shown in Figure 3 D. The agreement

between the experimental and model finger densities is actually

surprisingly close given that the model only accounts for the

increased spreading on the surface of fast moving cells but does not

explicitly include more specific facts such as the more elongated

shapes of cells in the fingers.

The effects of the different assumed properties was assessed by

relaxing or modifying some of them. Feedback on the leader cell

from its followers was found necessary to prevent detachment of

the leader cell from the epithelium bulk. Narrow finger-like

protrusions on the interface were only present when differences in

explorative behaviors between leader cells and other cells were

taken into account. Similarly, the noise amplitude dependence on

local cell density provided a mean for follower cells to

autonomously reach a high speed. In the model with a constant

noise amplitude, the leader cell was observed to slow down. It

adapted to the ‘‘unrestrained’’ border progression speed that

follower cells would adopt in absence of free surface repulsion

which is of the same order as cell speed in the bulk (i.e. about

5{6 mm=h). The increase of cell speed with decreasing cell density

greatly increased the unrestrained border progression speed, as

shown in Figure S8. This allowed leader cells to maintain a high

speed when coordinating their motion with follower cells. A high

border progression speed could in principle come from other

mechanisms. We noted for instance that with a density-indepen-

dent noise term, it could arise from the addition of cell division to

Figure 3. Finger shapes. Experiments (left : A, C) and simulations (right : B, D). In the simulated model, the noise amplitude depends on the density
(s0~150mm=h2,s1~300mm=h2 see Methods). Other parameters are the same as in Figure 1. (A) and (B) Examples of finger shapes. (C) and (D) Cell
density in fingers as a function of the position along the finger (scale bar : 100mm).
doi:10.1371/journal.pcbi.1002944.g003

Model of Collective Cell Motion
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the model which created an internal pressure in the epithelium. In

the experiments, this alternative mechanism is probably not

dominant since it is opposed by the fact that, in the epithelium

bulk at high density, dividing cells have smaller areas and undergo

contact inhibition [45].

Motion of the epithelium border
Having obtained a quantitative model of cell motion in the

epithelium bulk and of cell entrainment by a leader cell, we

investigated whether the appearance of a number of leader cells

would be sufficient to account for the motion of the whole

epithelium border. The rate of appearance of leader cells was

measured in time and space along the epithelium border, in the

experiments. It was found to be approximately constant in time

and uniform along the border with a value of 0:15 h{1 mm{1 in

the first 20 hours after stencil removal and a lower value of

0:05 h{1 mm{1 at later times (see Figure S9). It was also

approximately uniform in space except that the probability of a

leader cell appearance within a lateral distance of 100mm of

another leader cell was found to be very low.

Simulations of the cell model were thus performed with the

measured rate of leader cell creation (see Methods).The direction of

leader cell velocities was taken normal to the initial epithelium

border. The moduli of their velocities were drawn according to a

gaussian distribution with parameters determined by the measured

leader cell velocity distribution. With a fixed number of cells, the

epithelium border speed initially increased. However, the border

progression then slowed down and eventually stopped when cells

reached their maximal size (given in the model by the attractive

part of the cell-cell interaction potential). Cell division was thus

incorporated in the model. In order to avoid creating spurious

internal pressure in the epithelium, a potential division was

implemented only when it did not increase the cell density above

the initial one (see Methods).

As shown in Figure 4, the simulated border shapes and

movements closely resemble the experimentally observed ones (see

also Video S1 and Video S2). The mean border progression also

quantitively agrees with the experimentally measured ones as

shown in Figure 4. Both display an early regime in which the mean

border position grows as t2 where t is the time elapsed since the

unmasking of the free surface, as reported previously [17]. This is

followed by a later regime in which the epithelium border mean

position moves approximately linearly in time i.e. at a constant

speed. The previous results and model actually provide a simple

explanation of both regimes. Without leader cells, the epithelium

border invades the free surface at a low speed. Each new leader

cell that appears entrains at its higher progression speed a portion

of the border the lateral extent of which is of the order of the

velocity correlation length. Therefore, the mean speed of the

border progression increases with the appearance of each new

leader. This speed increase is linear in time for a constant rate a

leader cell appearance, resulting in the t2 time progression of the

border (see Text S1 for mathematical details). Crossover to the

second regime takes place when the leader cell creation rate

becomes low and the number of fingers increases much more

slowly (see Figure S9).

Finally, we computed the mean component SvxTx,t of the cell

velocity normal to free border, at different times t and at different

distances x from the mean border position. As shown in Figure 5,

the experimental and model velocity profiles SvxTx,t change as

time evolves but both sets are very similar both in amplitude and

scale over the whole time course of the experiment.

In summary, the developed model of cell motion in the

epithelium bulk reproduces well the epithelium motion over the

whole time course of our experiments, upon addition of leader

cells with suitable properties.

Discussion

Collective motion is a remarkable feature of the dynamics of

different organisms, and simple models that appear to capture the

essence of this phenomenon have attracted a lot of interest [24,26].

Data collection is actively pursued for various types of coordinated

movements (e. g. [3]) but detailed comparisons between models

and experiments [2,50] are still relatively scarce. We have

developed a simple model to try and describe collective cell

motion in an epithelium. The quantitative agreement between

simulations and the experimental data demonstrates that our

description based on the stochastic motion of interacting particules

is indeed able to accurately capture the coordinated movement of

cells. This agrees with a previously made analogy between cell

motion in an epithelium and the dynamics of a complex fluid [21].

We have furthermore shown that adding to these interacting cells,

model leader cells with suitable properties, reproduce the motion

of the epithelium and of its border over the whole duration of our

experiments. The results provide a simple explanation for the

previously-reported different regimes of border progression at

early and late times. The model should therefore prove helpful to

better analyze the consequences of interactions between cells and

of their perturbations in different contexts. It will hopefully also be

of some use in more complex in vivo situations in which cell motion

can be monitored [32,51,52].

Existing models of collective cell motion can be classified into

three broad categories : model that include an extended description

of the cell membrane, based for instance on a Potts model

description [35,36] or a vertex description [45], particle-based

models [31–33] as the one here studied, and finally continuum

descriptions [37–39] of tissue movement which do not explicitly

describe individual cells. These three levels of description are

complementary and each one has its own merits. Detailed cell

descriptions allow for a more easy inclusion of biochemical and

biophysical mechanisms while reduced ones are computationally

more efficient, usually make use of less parameters and are easier to

analyze mathematically. The model of interacting particles that we

have analyzed in the present work, shares several general features

with previously proposed models. The description is based as in refs.

[31–33] on self-propelling particles that repel their neighbors when

they are too close and attract them when they become more distant.

The model includes a velocity alignment term as initially proposed

in ref. [24]. However, to match the statistical properties of cell

velocities in our experiment, the model departs from previous ones

in significant ways. The motion of particles is not deterministic [33]

but stochastic. Moreover, the model does not include a preferred

cell speed and without added nonlinearity, a symmetry broken

phase with spontaneously aligned velocities is precluded in our

model. In this respect, it qualitatively differs from the family of

models studied in ref. [24–27,29]. It remains to be seen whether

further nonlinearities will be needed to describe cell motion in

different biological conditions. Some directions studied in extended

cell models appear worth studying in extensions of the present

model. For instance, inclusion of a cell area variable in our particle

description would allow one to take advantage of the detailed model

of cell division and contact inhibition proposed in [45]. Similarly, it

has been found worth distinguishing cell velocities and cell

polarization in extended cell models [35,36]. Our model instead

includes a memory of past velocities as in some single cell models

[42]. A comparison of these two approaches should prove useful to

the understanding of cell behavior in collective migration modes.

Model of Collective Cell Motion
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Figure 4. Border progression. Experiments (left column: A,C,E,G) and numerical simulations (right column : B,D,F,H). The model parameters are
the same as in Figure 3. Pictures of the epithelium at t~0:h ((A), (B)), t~10 h ((C),(D)) and t~20 h ((E),(F)). In the experimental pictures (A,C,E) the cells
are shown. For the simulation, the positions of the particles are shown as black dots. (G) mean border progression in (n = 6) experiments shown as

colored triangles; the average progression is shown as a solid black line together with a quadratic fit at early times (0:23t2 mmh{2) and a linear fit at

late times (8:51tmmh{1
{93:75mm)(dashed light blue lines) (H) mean border progression in (n = 6) simulations shown as colored squares; the

Model of Collective Cell Motion
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Several other features of cell motion in the proposed model

deserve further attention. It should prove interesting to see how

the model effective parameters emerge from more basic properties

and, for instance, to elucidate whether the velocity alignment

between a cell and its neighbors arises from adhesion, repeated

encounters, signalling or a mix of these different processes. We

have found that fingers comparable to experiments are produced

when leader cells more actively invade free environment than

following cells and also regulate their motion according to their

contacts with following cells. The first property is reminiscent of

the known role of leader cancer cells in three-dimensional

geometry in degrading and remodelling the surrounding matrix

to generate tracks for their followers [53,54]. The second appears

to accord with photo-ablation experiments which show that

following cells provide important feedback for proper leader cell

motion [22]. However, both properties need to be further

investigated. We have introduced leader cells without specifying

what induces a cell to become a leader. Determining the role in

this transformation of chemical signalling and interface geometry

and mechanics would allow one to relate the present model to

previous proposals [37,46]. The frequent appearance of bi-

nucleated leader cells and the marked change of their creation

rate after 20 hrs also point toward a role of the cell cycle that needs

to be further investigated. Finally, experiments have started to

classify on a large scale how different genes affect collective motion

and to cluster them in different modules [18,23,55]. Further work

is needed to see how these correlate with the few parameters of a

simple model such as the one presented here.

Methods

Details of the model
The model describes a collection of N particles moving

according to Eq. [1] of the main text. The noise term gi that

drives the motion of cell i is taken to be an Ornstein-Uhlenbeck

process with correlation time t

t
dgi
dt

~{gizji, ð2Þ

with ji a delta-correlated white noise independently drawn in each

cell (Sji(t)jj(t’)T~dijd(t{t’)). The force exerted by cell j onto cell

i is taken under the form

f ij~{+iU(rij), ð3Þ

with rij~Dri{rj D and the potential U(r) chosen as the sum of a

repulsive short-range gaussian potential and an attractive part

acting at longer distances,

U(r)~U0 exp({(r=a0)
2)zU1(r{a1)

2H(r{a1) ð4Þ

with U0~2400 mm2=h,a0~8mm,U1~2mm2=h,a1~35 mm, and

H(x) the Heaviside function H(x)~1 for xw0 and H(x)~0

otherwise. In the simulations of cell motion in the epithelium bulk

(Figure 1 and 2), the attractive part of the potential played no role

and was omitted. In some exploratory simulations, the velocity

alignment coupling b was chosen to be a decreasing function of the

velocity difference between adjacent cells. However, this did not

bring significant improvement to the fit between model and data

and a constant coupling term was chosen, as described in Eq. [1].

Neighbors of a cell/particle needed to be defined to implement

Eq. [1]. For computational efficiency, this was done as follows.

The neighborhood of a particle i was split in 6 equal sectors (with

the x-axis taken as one of the sector boundaries). The particle

closest to particle i in each sector was taken to be a neighbor of

particle i if its distance to particle i was less than 100 mm. The

local density at cell i was computed as ri~1=½p(SdT=2)2�, with
SdT the average distance between a cell and its 6 neighbors (for

sectors without neighbors the cut-off distance of 100mm is taken).

The distribution of angle between neighbors of a cell in Figure 2E

was obtained by computing the absolute value of the angle

between the vectors (r2{r1) and (r3{r1) for each cell center

position r1, and every pair of center positions r2 and r3 of its

successive neighbors (i.e. neighbors of the chosen cell that are also

themselves neighbors).

As described in the text and supplementary material, simulations

were performed either with a constant noise amplitude s or with a

noise amplitude that increased with decrease in local cell density

s(ri)~s0z(s1{s0)(1{ri=r0) where r0~4:0|10{3 mm{2 is

the initial cell density in the band.

Epithelium border, leader cells and cell interaction with
free surface
After free surface unmasking, the epithelium border was straight

and parallel to the y-coordinate axis. The epithelium border was

defined in the simulations at later times, by taking the particle with

the largest x-coordinate in successive bands of 50mm width in the

y direction, covering the simulation space. Leader cells were

introduced in the simulations, by randomly transforming into a

leader cell a particle within 50 mm of the epithelium border and

the y-coordinate of which was not within 100 mm of an already

average progression is shown as a solid black line together with a quadratic fit at early times (0:22t2 mmh{2) and a linear fit at late times

(8:45tmmh{1
{86:48mm) (dashed light blue lines). In the simulations, cell division was implemented, as described in Methods.

doi:10.1371/journal.pcbi.1002944.g004

Figure 5. Average cell velocity profile around the epithelium
border. The average component of the cell velocity (vx) normal to the
epithelium border in experiments (dashed lines) and simulations (solid
lines) is plotted as a function of the distance to the mean position of the
border at different times after free surface unmasking : 0 h (blue lines),
10 h (red lines) and 20 h (dark lines) (the line shown corresponds to
average of n~4 data sets (bands with 1.5 mm initial interface length
were used in experiments). The average was performed as follows: for a
given simulation or experiment, the mean border position was
computed at the above times. At each of these times, the data of
different experiments or simulations were first translated along the x-
axis such that the mean border position coincided was positioned at
x~0. The average over different experiment was then performed
(spatial bin size 50mm.
doi:10.1371/journal.pcbi.1002944.g005
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created leader cell. The leader cells were created along the border

length at an otherwise uniform rate in space and time of

0:15 h{1 mm{1 during the first 20 hours and 0:05 h{1 mm{1 at

later times. The leader cell velocity was chosen parallel to the x-

axis (i.e. normal to the epithelium initial border) with a modulus

drawn according to a gaussian distribution of mean 18 mm/h with

a standard deviation of 2:2 mm=h. The velocity of a created leader

cell was maintained constant at its initial velocity as long as it had 4

neighbors or more. Otherwise, it was given the mean velocity of its

neighbors (with a maximum speed of 20 mm=h) until the threshold
number of 4 neighbors was reattained.

As described in the text, normal cell explore free surface less easily

than leader cells. This was modelled by introducing a repulsive force

exerted on normal cells upon invasion of unexplored surface, as

follows. The unexplored surface was covered byNs surface particles

with a repulsive force fsij between pairs of particles (representing

cells) and surface particles, closer than rs~50mm. This force was

added to the r. h. s. of Eq. [1] for the cell particles. The surface

particles were assumed to disappear upon exploration of free surface

by a particle associated to a leader or another cell. This was

implemented as follows. A scalar ‘damage’ variable qi was

associated to the surface particle i. It was chosen to obey

n
dqi

dt
~

X
j: rj[Si

Dfsij D, ð5Þ

with n~7h{1. The summation on the r.h.s. of Eq. [5] was over the

forces applied on the surface particle i by the cells in its

neighborhood Si, namely cells at a distance of the surface particle

i smaller than rs~50mm. A surface particle was chosen to

disappear when its damage variable reached the threshold value

qi~h with h~30mm.

The surface particle-normal cell interaction was modeled by

fsij~{+iU
s(rij) ð6Þ

where U s(r) was taken to be of gaussian form

U s(r)~As exp({(r=as)
2) with values of parameters As~2400

and as~8 mm. The same form was used for the force exerted by

leader cells upon surface particles but with as~18 mm and a much

larger amplitude As~6:5 107 such that surface particles were

quickly damaged by leader cells. Note that as the dynamics of

leader cells was prescribed, there was no need to consider the force

exerted by upon them by surface particles.

In the simulations with free-surface, cell division was imple-

mented with a cell doubling time of 24 h. However, in order to

avoid creating overpressure in the epithelium, a cell division was

accepted only if it did not increase the local cell density ri above

the initial cell density r0. This resulted in modest increases in the

number of cells N during the course of the simulations. For

instance in the simulation displayed in Figure 4 B, D, F the

number of cells was initially N~4000, N~4093 at t~10h and

finally, N~4350 at t~20h.

Simulations
Simulations were performed with custom computer codes. For

parameter fitting and early time simulations, N~4000 particles

were used on a 1mm|1mm square with periodic boundary

conditions, so that the cell density matched that of the

experiments. For leader cells and border progression, N~4000

particles were used on a 1mm|2mm rectangle with periodic

condition in the short y-direction.

Parameter fits
In order to determine the parameters that best fitted the

experimental data at early time (t~30min after mask removal;

Figure 1 and 2), simulations served to compute, for given model

parameters, both the equal time spatial velocity correlation

function C(Dr{r’D)~Sv(r,t)v(r’,t)TN and the particle velocity

autocorrelation Ap(t{t’)~Sv(r,t)v(r,t’)TN normalized by their

value at 0 (as indicated by the subscript N). This was compared to

the experimental data for the normalized cell equal-time velocity

correlation Cexp(Dr{r’D) and for the normalized autocorrelation of

the cell velocity field Af ;exp(t) as provided by PIV (see below) by

computing the mismatch M.

M~

ðL0
0

dr

L0

½C(r){Cexp(r)�
2
z

ðT0
0

dt

T0

½Ap(t){Af ;exp(t)�
2 ð7Þ

with L0~500 mm and T0~5 h i.e. time and space intervals over

which the experimental correlations significantly differed from

zero. The minimization was performed with the Nelder-Mead

simplex Amoeba algorithm [56]. The starting parameters were

obtained from fitting in the same way the analytical expressions

obtained for the model approximation with fixed particle positions

(SI text section I). In this approximate model, noise amplitude does

not influence the normalized correlations and it was determined

from the mean cell speed after the determination of the other

parameters. In the full model, the starting noise amplitude was

taken equal to the one determined in the approximate model. It

was recomputed to fit the mean cell speed after the determination

of the other parameters by the Amoeba algorithm. The procedure

was iterated until convergence. We compared the cell-velocity

auto-correlation in the model to the auto-correlation of the

velocity field in the experiment because the first is the most natural

quantity for the model and the second a direct output of the PIV

analysis of the experiment. In principle, these two quantities can

differ since the first one corresponds to following a given cell and

the second one to measure cell velocity at successive times at a

fixed time of space (i.e. the first is a Lagrangian quantity whereas

the second is an Eulerian one). To check that they were not

significantly different in the present case, we computed the velocity

field in the simulation by assigning to the center of each square of a

space-covering grid (50 mm|50 mm or 100mm|100mm, the

mean velocity of particles in the considered square. As shown in

Figure S10, for the two grids, the model velocity field auto-

correlation was not found to be significantly different from the

particle velocity auto-correlation. We also computed the cell

velocity auto-correlation in the experiment by tracking individual

cells after stencil removal. The obtained cell auto-correlation was

also not found to significantly differ from the velocity field auto-

correlation (Figure S11).

Cell culture
MDCK cells [57] were cultured in Dulbecco’s modified Eagle’s

medium supplemented with 10% FBS (Sigma), 2 mM L-glutamin

solution (Gibco) and 1% antibiotic solution (penicillin (10,000

units/mL), streptomycin (10 mg/mL)). Cells were seeded and

maintained at 37oC, 5%CO2 and 90% humidity throughout the

experiments.

Microfabrication of the stencils and model wound
Microstencils were made of PDMS elastomer (Sylgard 184,

Dow Corning) and prepared by classical microlithography as

described elsewhere [17]. Experiments were performed in plastic

six-well plates on the bottom of which microstencils were
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previously deposited. Cells were plated on the microstencils and

cultured in the incubator until they reached confluence. At this

time, the microstencils were peeled off.

Time lapse microscopy
Time lapse acquisitions were performed on an automated

inverted microscope (Olympus IX71) equipped with temperature,

humidity and CO2 regulation. Displacements of the stage (Prior

Scientific), and image acquisition (CCD camera (Retiga 400,

QImaging), shutter (Uniblitz)) were computer-controlled through

Metamorph (Universal Imaging). The delay between two succes-

sive frames was 5 min or 15 min. Experiments were performed for

typically 40 hours.

Image processing and velocity field measurement
The images were processed with ImageJ [Rasband W.S. 2007.

ImageJ (National Institutes of Health, Bethesda), available at

http://rsb.info.nih.gov/ij/] using a watershed plugin (available at

http://bigwww.epfl.ch/sage/soft/watershed/index.html) to ex-

tract the contours when needed. The velocity field in the

monolayer was mapped by PIV analysis using the MatPIV [58]

software package version 1.4 for MatLab (MathWorks Inc.)

[Matpiv is a GNU public license software (www.math.uio.no/

jks/matpiv/)] as previously described in [19]. The data in Figure 1

and Figure 2 were obtained from squares of 1mm|1mm in the

center of bands of cells of 1:3mm|2:7mm.

Supporting Information

Figure S1 Sketch of the model. In the model each particle (here

depicted by a small disk or a circle) has its own velocity (thin solid

arrow). A given particle (denoted here by a solid black circle)

interacts with its nearest neighbors (solid red disks). It moves under

the action of three forces (large open arrows) which modify the

particle velocity: one stochastic force Fst and two interaction forces,

an alignment force between velocities Fv and a force generated by a

potential Fpot. The chosen potential is such that Fpot is repulsive at

short distance (here represented by the dark grey disk), vanishes in

an intermediate range of distances (white annulus) and is attractive

in a still larger-range of distances (lighter annulus). Note that a

particle interacts only with its nearest neighbors and not with

particles that are farther from it (denoted here by open red circles).

(TIF)

Figure S2 Statistical characterization of the cell velocity field,

tails of the distribution functions. Data shown in Figure 2 of the

main text are replotted in log-linear plots to better display the tails

of the cell speed distribution functions and of the velocity-velocity

correlations. The model results are depicted by solid black lines

and the results of 3 experiments are depicted colored triangles and

lines. (A, B, C) Probability distributions of the components of the

velocity and of the velocity modulus. They are well-approximated

respectively by Gaussian and Lorentzian distributions. (D,E) Equal

time correlations of the velocity components as a function of

distance. The experimental data show large relative fluctuations at

long distances and the correlations become small. In this region,

experimental data can take negative values and the corresponding

colored lines are interrupted since the data cannot be plotted in log

coordinate. (F,G) Temporal auto-correlations of the velocity

components are close to exponential both in the model and in

the experiments.

(TIF)

Figure S3 Statistical characterization of the cell velocity as in

Figure 2 of the main text but at later times after stencil removal:

1 h (A1, B1, C1, D1), 2 h (A2, B2, C2, D2) and 3 h

(A3,B3,C3,D3). As in Figure 2, experimental data (colored

symbols) are taken from the motions of cell in a center square of

1mm|1mm in 3 experiments with initial bands of cells of size

1300 mm|3700 mm. The solid lines show the corresponding

model fits 30 min after stencil removal as in Figure 2. Panels (A)

and (B) display vx and vy velocity component distributions. Panels

(C) and (D) show correlations of vx and vy velocity components as

a function of cell distances.The vy distributions and vvyvyw

correlations remain in good agreement with the model fit. As time

passes, the vx distributions and correlations depart from the early

fits and from the corresponding vy functions since border motion

starts to influence cell motion in the center of the band.

(TIF)

Figure S4 Analytical approximations of correlation functions

with cell centers fixed on a triangular lattice showing the

dependence of the correlation functions on different parameters.

Panels (A),(C),(E) show the normalized spatial velocity correlations

as a function of distance and Panels (B),(D),(F) the normalized

velocity autocorrelations as a function of time. The parameter a is

varied in (A) and (B). The parameter b is varied in (C) and (D).

The parameter t is varied in (E) and (F). The solid black lines are

drawn for the values of a,b,t given in Figure 1 of the main

manuscript, the dashed black lines for a two times larger value of

the varied parameter and the dotted lines for a half as large value.

Experimental data are shown by colored symbols for reference.

One can note in (B),(D),(F) that the time velocity autocorrelation

decays more slowly in the approximation that in the model with

moving cells (compare with Figure 2 I in the main text).

(TIF)

Figure S5 Statistical characterizations of the cell velocity field

and positions at early time (30 min after stencil removal). Same as

Figure 1 and Figure 2 of the main text for a model with noise

amplitude varying with density s0~150 mm=h2,s1~300 mm=h2

see Methods). Other parameters are the same as in Figure 1 and

Figure 2 of the main text. Results of numerical simulations of the

model are shown as solid black curves. The experimental data of 3

different experiments are shown as colored symbols for compar-

ison. (A) Example of velocity field in the experiment and (B) in the

simulation. (C) Distribution of the cell velocity moduli, (D) spatial

correlation of the cell centers, (E) distribution of the angle between

two successive neighbors of a cell (see text), (F) distribution of the

distance between the centers of two neighboring cells, (G) and (H)

spatial velocity correlation for the components vx and vy of the

velocity respectively, (I) and (J) temporal velocity correlation for

the components vx and vy of the velocity respectively.

(TIF)

Figure S6 Picture of a leader cell and a finger. Cells were fixed

and stained for nuclei with DAPI (blue) and for F-actin with

alexa488-conjugated phalloidin (bar: 30mm). It is clearly seen that

the leader cell is bi-nucleated and that it displays a well-developed

lamellipodium.

(TIF)

Figure S7 (A, B, C, D) Some simulated fingers with the free-

surface repellent particles shown in red. The free-surface particles

were used to draw the solid line which was considered as the finger

contour. This contour was used to measure the finger density as a

function of position, as shown in Figure 3 D of the manuscript.

(TIF)

Figure S8 Border progression without the addition of leader

cells and restrained by free -surface repulsion (left column

A,C,E,G) or ‘‘unrestrained’’ i. e. without surface repulsion (right
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column, B,D,F,H). Images of two simulations at different times t

after free-surface unmasking (A & B, t~1 h; C & D, t~15 h; E &

F, t~30 h). G & H: Border progression in (n~6) simulations

(colored symbols) together with their average (solid black line) and

linear fits (dashed light blue line which give a mean border

progression speed of 3 mm=h (G) in the restrained case and of

8:8 mm=h (H) in the unrestrained case.

(TIF)

Figure S9 Experimental data on leader appearance along the

epithelium border. (A) Total number of leader cells as a function of

time in different experiments corresponding to a cumulated

epithelium border length of 17 mm. (B) Same data showing the

number of leader cells appearing during different time intervals

(time bin : 5 h).

(TIF)

Figure S10 Comparison of the velocity auto-correlation function

for the particles and for the velocity field in the model with

constant noise amplitude. The cell velocity autocorrelation is

shown as a continuous curve. The velocity field was defined by

attributing to the center of each square of a square-grid the mean

velocity of the particles that it contained. Two different squares

grids were used of step size D~50mm and D~100 mm (dashed

and dotted curves). The corresponding auto-correlation are shown

as dashed (D~50mm) and dotted (D~100 mm) curves. The

different curves are very close. To gauge the difference in

parameter estimates, the model velocity field auto-correlations

were used to fit the PIV velocity field. The obtained values of the

parameters did not significantly differ from those used in Figure 1

and Figure 2 (the obtained (a,b,t) were (1.43, 38, 1.40) for the

continuous curve, (1.42, 38,1.41) for the dashed curve; and (1.42,

38, 1.40) for the dotted curve).

(TIF)

Figure S11 Comparison of the cell velocity auto-correlation

functions (circles, n~2 experiments) to velocity field auto

correlation (triangles; n~3 experiments) in the experiments. (A)

Autocorrelation of the vx velocity component. (B) autocorrelation

of the vy velocity component.

(TIF)

Text S1 Velocity correlation functions in an analytically solvable

approximation of the model and some simple estimates on border

progression resulting from leader cell creation.

(PDF)

Video S1 Movie showing the cell motions and the epithelium

border progression in one experiment.

(AVI)

Video S2 Movie of one simulation showing the motions of the

moving particles (black dots) as well as the surface particles (red

dots) which cover the free surface.

(AVI)
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