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We investigate key principles underlying individual, and collective, visual

detection of stimuli, and how this relates to the internal structure of

groups. While the individual and collective detection principles are gener-

ally applicable, we employ a model experimental system of schooling

golden shiner fish (Notemigonus crysoleucas) to relate theory directly to

empirical data, using computational reconstruction of the visual fields of

all individuals. This reveals how the external visual information available

to each group member depends on the number of individuals in the

group, the position within the group, and the location of the external visu-

ally detectable stimulus. We find that in small groups, individuals have

detection capability in nearly all directions, while in large groups, occlusion

by neighbours causes detection capability to vary with position within the

group. To understand the principles that drive detection in groups, we for-

mulate a simple, and generally applicable, model that captures how visual

detection properties emerge due to geometric scaling of the space occupied

by the group and occlusion caused by neighbours. We employ these insights

to discuss principles that extend beyond our specific system, such as how

collective detection depends on individual body shape, and the size and

structure of the group.

1. Introduction
Being part of a group is an effective strategy for avoiding predation threats [1–4]

and locating promising resources [5,6]. Enhanced detection of external objects

(for example a predator, or a source of food) is a key aspect of being part of

a group, with the benefits referred to as the ‘many eyes’ effect [7,8]. The struc-

ture within a group influences how individuals interact with one another and

the surrounding environment. For example, groups tend to have more individ-

uals and an increased density under heightened predation risk [9–15] (but see

[16,17]). An individual’s position within the group can determine both its poss-

ible risk to predation [18], as well as the extent of its social interactions [19,20].

Despite the importance of social grouping for gathering information about the

external environment [21,22], there has been little quantification of how within-

group structure and the size of the group influence the group’s interactions

with their environment.

Many species that form coordinated, mobile groups employ vision as a pri-

mary modality for mediating social interactions [23–25]. It is important to

consider the actual visual sensory information available to each individual in

order to make realistic predictions [26]. Visual connectivity among individuals

can predict how a social contagion spreads through a group, such as when
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‘informed’ individuals detect and move towards a cue associ-

ated with food, and are followed by other naive group

members [19,27], or when a startle response propagates

across a group [14,20]. As groups get larger, occlusion due to

neighbours means that individuals differ in the visual infor-

mation they have available to them. The available visual

information determines whether individuals will respond to

other group members [19,20], as well as if any individuals in

the group will have the ability to detect cryptic stimuli, such

as a predator [7,8]. Simulations demonstrate that effects of

visual occlusion increase with the number of individuals,

and in particular for very large groups, visual occlusion can

even drive fluctuations in internal structure [28].

Here, we examine how the visual information available to

individuals in a group depends on both the number of group

members and on how individuals are positioned within the

group (i.e. the group’s internal structure). We first analyse,

quantitatively via computational visual field reconstruction

[14,19,20], the visual information available to all individuals

within groups of golden shiner fish, whose social behaviour

is predominantly mediated by vision [20]. The experiments

include groups of different numbers of fish, ranging from

10 to 151 in number. We examine how the detection coverage,

which is the angular fraction of the external visual area that

an individual can see, depends on the number of group mem-

bers and an individual’s position within the group. To

understand the general principles of collective detection, we

formulate a simple model that demonstrates how the observed

detection abilities of different groups arise fromgeometric prin-

ciples. The model generalizes to show how detection scales

when a group contains more individuals and we use these

results to discuss the implications and generalizations to

other animal groups.

2. Results
We filmed free-schooling groups of 10, 30, 70 and 151 golden

shiner fish (Notemigonus crysoleucas) in the laboratory and used

a combination of automated andmanual tracking to extract pos-

itions and orientations while maintaining individual identities

over the course of each trial (see Methods). Golden shiners are

awidespread species of freshwater fish [29] that are surface fee-

ders and thus swim close to the surface of the water [30]. We

estimated the external visual detection capabilities of each indi-

vidual using a procedure where a neighbouring individual can

block the external vision of a focal individual in a certain direc-

tion (figure 1a,b). This method estimates detection capability by

considering visual blockage due to neighbours; thus, the detec-

tion capability is a general descriptive measure that reflects the

individual and group properties, and is not a representation of

a distinct virtual stimulus (see Methods). Individuals tend to

have a ‘blind angle’ to the rear, which for this species has been

determined tobe25� [31], andwe include this in thevisualdetec-

tion procedure (figure 1c). In addition, we note while

individuals form a relatively planar group structure, near the

surface, the arrangement is not perfectly two dimensional.

Neighbouring individuals that are not in the same plane may

not block detection in a certain direction. Since our tracking is

only in two dimensions, we investigate how detection results

maybe sensitive to out-of-plane effects byusinganapproximate

procedure, where we randomly choose certain neighbours as

out of theplaneofvisual detection, andas therefore not blocking

detection in associated directions (figure 1d).

Figure 1 shows examples to illustrate a single individual’s

detection coverage outside of the group. Applying the detec-

tion algorithm to each individual in the school and

overlaying the results illustrates the overall external detection

abilities of the group (figure 2) [32].

2.1. Individual detection coverage
We first examine individual detection coverage, which ranges

from 0 to 1 and represents the fraction of the external visual

space that an individual can see, and then following this, in

§2.2, examine the total number of group members with detec-

tion capability in a certain direction at a moment in time. For

small groups of 10, all individuals have a large detection cov-

erage and can see nearly the full range around the group, i.e.

in directions to the front, back, and side of the group, regard-

less of their position within the group. As the number in the

group increases, however, the average detection coverage

decreases due to occlusion caused by neighbours. Addition-

ally, the variance of individual external visual coverage in

external
detection

blocked
vision

focal individual

full blockage - full field

(a) (b) (c) (d)

full blockage - blind angle
out-of-plane effects -
blind angle

blind 
angle

extra
detect.

dirs.

Figure 1. External visual detection of individuals. (a) A focal individual has external detection in a given direction if neighbours do not block vision in that direction.

Computationally, this is implemented by considering a set of discrete locations outside of the group, which are located far away and thus represent detection in a

certain direction (figure 10). (b–d ) External visual detection coverage over all possible directions of a single individual located at the centre of a school of 70 fish.

Shown is the detection coverage determined using different parameters. Directions where the left eye has external detection capability are shown in blue, and that

for the right eye in red. (b) Full visual blockage and a full 360° field of view. (c) Including a blind angle where fish cannot see behind themselves, with otherwise

full blockage from neighbours. The blind angle area is highlighted by the dotted lines, and detection directions omitted due to the blind angle are shown in grey.

(d ) Blind angle along with out-of-plane effects, where neighbours considered as out-of-plane (shown in grey) do not block the external view in a certain direction.

Because tracking is in two dimensions, we approximate this effect by randomly choosing neighbours to designate as out-of-plane, here using a 25% probability that

a neighbour will be out-of-plane. Additional detection directions due to out of plane effects are shown in darker colours (compare with c).
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the group increases with the number of individuals, reflecting

an increased heterogeneity in visual access resulting from

individuals of the group having their visual field increasingly

dominated by others, thus occluding their view of areas

external to the group (figure 3). Considering a blind angle

decreases the instantaneous detection coverage, with the lar-

gest effect for the group of 10. This is because in small groups,

the rearward area, in the absence of a blind angle, would be

visible, while in large groups, it is likely that vision to the rear

is already blocked by a neighbour.

Although we determine detection using the instantaneous

positions of individuals in a given frame, actual motion

decisions do not occur instantaneously, but rather use infor-

mation that has been accumulated over a finite amount of
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Figure 2. Collective detection capabilities of the group. Illustration of the external visual field of the entire group at a single frame. Each heatmap shows detection

capability obtained by summing the overlapping regions of the external visual fields of all individuals, using results with a blind angle and out-of-plane effects (25%

out-of-plane probability). Results are displayed by scaling to show either (a) absolute detection capability in terms of the number of individuals with detection

capability or (b) the fraction of the maximum possible total detection capability among group members.
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Figure 3. Individual detection coverage. The detection coverage is the fraction of the external visual field that an individual can see. (a) Example snapshot of the

external detection coverage for groups with different numbers of individuals. (b) Distributions of individual detection coverage for the different groups, combining all

individuals during a trial, calculated using different settings: full blockage–full field (dashed line), full blockage–blind angle (dotted line), full blockage–blind angle

with detection capability any time over a 1/3 second time window (dashed-dotted line), and out-of-plane effects (25% out-of-plane probability)–blind angle.

(c) Detection coverage, comparing individual differences to the combined distribution. Results use out-of-plane effects (25% out-of-plane probability)–blind

angle. The mean and standard deviation of the combined distribution from B are shown as the large point and error bars for each group size. The mean individual

detection coverages during a trial are the small points, and individual standard deviations are the shaded bars. Note that 3 trials were performed for N = (10, 30,

70), while only 1 trial was performed for N = 151. The individual points are spaced on the x-axis for display purposes. The dashed line shows the contribution from

‘consistent individual differences’ (the variance of individual means) to the overall distribution, while the dotted line shows the contribution of ‘individuals differing

during a trial’ (the mean of individual variances; see Methods, equation (4.5)).
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time [33]. We therefore ask how small positional changes over

a short time interval could affect the detection coverage over

time. To represent this, we say an individual has detection

capability in a certain direction at time t if there was visual

access in that direction at any time within the previous T

seconds, i.e. within the time window of t− T to t. Because

this representation uses an OR function to determine coverage

(detection capability in a certain direction at time t, OR time

t + 1, etc.), it increases the average detection coverage, with

the largest effect on the most numerous group (N = 151). For

all groups, the results using a blind angle and a time

window of T = 1/3 s yield average detection coverage values

that are near to or greater than that without using a blind

angle. This demonstrates that considering small positional

changes over a short time could effectively ‘mitigate’ the

decrease in detection coverage caused by having a blind angle.

As expected, considering out-of-plane effects increases an

individual’s detection coverage, with the largest shift for the

most numerous group (N= 151). Figure 3 shows results with

an out-of plane probability of 25%; this represents the prob-

ability that a given neighbour is not in the dominant plane of

the group, and therefore does not block external detection.

Using other values causes the coverage to progressively increase

as the probability of neighbours being out of plane increases.

Despite the shifts in distributions when considering a blind

angle, time-window averaging, or out-of-plane blockage, we

see the same main trends: individual detection coverage

decreases and the variance of the distribution of individual

detection coverage increases when there are more individuals

in the group (figure 3). We do not know precisely how individ-

uals use information over a finite timewindow, but we do know

that real groups do have out-of-plane effects, and that individ-

uals have a blind angle. Because of this, in the following we

focus in detail on the instantaneous detection results using a

blind angle and out-of-plane effects. While tracking three-

dimensional positions could give precise information to relate

out-of-plane effects to detection in actual group configurations,

figure 3 suggests that general detection trends would be similar,

and that an increase in relative out-of-plane positioning predo-

minantly leads to an increase in detection capability on the

dominant plane of the group. Although we do not have an

exact value of what the effective out-of-plane probability is,

we use the intermediate value of 25% as a reasonable value

andproceed by focusing on this case, noting that the general fea-

tures of the results do not depend on the exact value.

The distributions in figure 3b combine all individuals over

each trial. Are there consistent differences in detection cover-

age among particular individuals during a trial? We can

quantify the contribution of consistent individual differences

versus changes over time to the overall variance of detection

coverage by calculating the variance of individual mean detec-

tion coverage (see Methods, equation (4.5)). This yields that

consistent individual differences explain on average only 8%

of the total variance, and therefore most of the variance in

detection coverage is driven by individuals changing their

position within the group over the course of a trial (figure 3c).

2.2. Collective detection capability
Instead of examining detection coverage of individuals, we can

instead ask about the total number of group members with

external detection capability in a certain direction at a moment

in time (figure 2). This can depend on the group state and

group area, e.g. whether the group is swimming in a polarized,

milling, swarm, or other configuration (figure 4a) [34], as well

as on the external direction with respect to the group travel

direction. We first examine the former. To define the group

states of polarized, milling, swarm or other, we use the group
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Figure 4. Group states and detection dependence. (a) Example snapshots of a group of 70 in different configurations: polarized, milling and swarm states. (b) The

fraction of time each group was observed in the different states. (c) The total number of possible detections for all individuals in the group, for groups with different

values of N, showing results for all group states compared to polarized, milling, swarm and other states. Points show the median, and error bars show the lower and

upper quartiles of the total number of possible detections among all group members in a certain direction at an instant in time. (d ) The distribution of spatial area

occupied by the group, for different states, showing the median (points) and inter-quartile range (error bars). The high upper quartile values for the group of 151 in

the swarm state are due to instances where the group is not a single cohesive unit.
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polarization and rotation order parameters, with the same defi-

nitions as in [34]. While the polarized state is the most common

configuration—the groups of 10 and 30 do not spend significant

time in particular in the milling state—the groups of 70 and 151

do spend time indifferent states (figure 4b). Thegroups of 70 and

151 spend large fractions of time in the other state, which is

characterized by intermediate values of the polarization and

rotation order coefficients; we note that this may be partially

due to boundary and confinement effects which impact this

large group more so than the other values of N (figure 8). We

use the different group states to ask how these configurations

impact external detection—see [34] for a detailed analysis of

transitions between different collective states and how this is

affected by the number of individuals in the group as well as

the arena boundary. Here, we see that while the total number

of possible external detections among all group members in

any direction increases with N, it does not strongly depend on

the group state (figure 4c).

In addition to swimming in different configurations, the

density of the group can differ, for example with a dense

versus tightly packed group configuration. Naturally,

groups with more individuals occupy a larger spatial area.

For the different group states, the median area occupied by

the group is slightly less in the swarm states compared to

other states; for the group of 151, the instances of very

large area in the swarm state represent times when the

group is not a single cohesive unit (figure 4d ). The range of

values of the spatial area occupied is larger for groups with

more individuals (figures 4d and 5a).

The median spatial area per individual slightly decreases

for larger N, reflecting that although the distributions were

overlapping, individuals tend to pack slightly more tightly

when there are more individuals in the group (figure 5b).

For a group with a given number of individuals, the

number of possible external detections is higher when the

group occupies a larger area; this is because when individuals

are spaced further apart, each neighbour subtends a smaller

angle on the visual field of others and therefore blocks less

of the external view (figure 5c). Overall, these results demon-

strate that although detection capability does not depend

strongly on group state (figure 4c), it has a clear dependence

on group area (figure 5c).

2.3. Angular dependence of detection
The number of individuals with detection capability in a cer-

tain direction also depends on the angle with respect to the

group travel direction. Note that if the group is not moving,

then there is no ‘group travel direction’, and no front or back

of the group. However, if the group is moving cohesively in

a polarized configuration (e.g. figure 4a), then there is a clear

travel direction and a difference between individuals at the

front versus the rear of the group. Because of this, we consider

only movement when in a polarized state to examine the

angular dependence of detection [34]. For fish, which like

many animals have elongated body shapes, detection capabili-

ties are higher to the front of the group than to the side of the

group. Due to the blind angle, detection capabilities are lowest

to the rear of the group (figure 6a) [32].

We next examine how detection capability to the front or

the side of the group depends on an individual’s in-group

position. In-group position is represented by defining the

‘edge’ of the group as the individual furthest away from

the centroid in that direction, and then calculating an individ-

ual’s distance from either the front or side edge of the group

(figure 6b). An individual located at a certain edge always has

detection capability in the corresponding direction, and

therefore average detection capability is 1 at a distance of

zero from the edge. Detection capability then decreases

with distance from the edge. However, the decrease in detec-

tion capability with distance from the edge depends on both

the angle with respect to the group travel direction and the

number of individuals in the group. In the smallest group

(N = 10), nearly all individuals have detection capabilities to

the front of the group, and the detection capability shows

only a small decrease with distance from the front edge.

The steepness of decay of detection capability with distance

from the front edge of the group increases with the number

of individuals in the group (figure 6c).

By contrast, the detection capability with respect to

the distance from the side edge of the group shows a

similar initial decay for all group sizes, but extends ‘further’

for the larger groups because they take up a larger area

(figure 6d ). This difference between front versus side detec-

tion is due to the elongated body shapes of fish as well as

the alignment of individuals when swimming as a polarized

group. While an individual’s vision to a region to the side of

the group may be completely blocked by a single nearby

aligned neighbour, visual blockage to a region to the front

is more likely to depend on the positions and orientations

of several neighbours [32].

Although the presence of tank boundaries has some effect

on the distribution of individuals in the group, we expect the

same trends regarding differences in front versus side
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detection (figure 6c,d ) to hold for groups that are moving in

an open area. Overall, while we see a weak dependence of

detection capability on the group motion state (figure 4c),

we see a stronger dependence on the overall area occupied

by the group (figure 5c). This suggests that if the group

takes on a different configuration due to the presence or

not of a boundary, or if the configuration changes in response

to a threat [14], that overall area occupied is a primary driver

of collective detection trends, while the specific positioning of

individuals has a secondary effect. This agrees with a pre-

vious investigation that found that randomizing individual

positions within a group to only have a small effect on

detection capability [32].

2.4. Model of external detection
To understand the general geometric principles that drive col-

lective detection, we formulate a simple model of the external

visual detection capability of a group of individuals. Previous

work using an agent-based representation found that because

individuals change positions over time, the individual prop-

erties of body shape and size along with overall group

configuration affect inter-individual connectivity and detec-

tion more so than the precise relative positions of

individuals in the group [32]. Building on this, we represent

these aspects as key input parameters—i.e. the probability

of visual blockage by a neighbour, and the density of the

group—and construct the simplest possible minimal model

that is able to capture how visual detection capability

changes when there are more individuals in the group.

Because of the simplicity of this approach, the model is not

specific to our study system of fish, and can be generally

used to describe detection capability of any group in a

planar configuration.

In the model, a group of N individuals occupies a circular

area with radius R, within which there is a constant visual

blockage probability of λ. At a distance r from the centre,

the probability of having detection capability at an angle of

θ is proportional to the blockage probability multiplied by

g(r, θ), which is the distance to the edge of the group in

that direction (figure 7a; see Methods). For a group with N

individuals, we specify that the visual blocking probability

scales according to

l ¼ l0N
q, (2:1)

where λ0 is a baseline blocking probability and q is a scaling

exponent. We fit the values of λ0 and q by comparing individ-

ual mean detection probabilities from the model to the data

(figure 7b).

We furthermore include the effect that a group may

change the spatial area it occupies by using a parameter σ

for the standard deviation of the radius of group. Since a

mean number of individuals with detection capability
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direction. Results are calculated using instances when the group is moving aligned in a polarized state. Lines show the mean number of individuals with detection
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given group occupying a larger area has a higher average

number of possible detections (figure 5c), spatial area

changes increase the standard deviation of the total number

of possible detections of group members in a given configur-

ation. We therefore fit the parameter σ to the standard

deviation of the number of possible detections for the differ-

ent group sizes (figure 7c). Note that all model predictions,

for all possible values of N, are defined by the three

parameters of λ0, q and σ.

An approximate solution for the average detection coverage

is obtained using a series expansion (see Methods), yielding

�v � e�l 1þ
Xkmax

k¼1

ckl
k

 !

, (2:2)

where �v is the average detection coverage, λ is specified in

equation (2.1), and the numerical values of the coefficients ci
are listed in Methods from an expansion to sixth-order

terms. Equation (2.2) shows that to leading order, average

detection decays exponentially in λ. From this, we clearly see

that increases in both the scaling exponent (q) or the baseline

blocking probability (λ0) both decrease the average detection

capability. However, these two parameters affect the shape

of the decrease differently, with q having more of an effect

on the shape of the exponential decay with increasing N

(figure 7d,e).

Overall, the model demonstrates how our experimental

findings for detection results are explained by the geometry

of how neighbouring individuals occlude an external view;

even with fairly drastic simplifying assumptions (a circular

shape of the group and a constant blockage probability),

the model captures the main experimental trends for how

detection scales with N (figure 7b,c). In particular, the

model can replicate the experimental observations that aver-

age individual detection decreases with N (due to an

increased probability of occlusion from neighbours), and

that the variance of the number of possible detections in

the group increases with N (due to the variance in the spatial

area occupied by the group). Because of the simplicity of the

model, we can use it to describe general expected trends of

detection for planar groups at different densities, with differ-

ent scaling properties with N, or where individuals have

different sizes. A higher value of the baseline blocking prob-

ability λ0 could represent larger individuals, or a higher

average density for a given value of N. The parameter σ rep-

resents the standard deviation of the spatial area that the

group occupies about the average; since density affects detec-

tion coverage, a higher value of σ means a higher variance in

the number of possible detections in the group. The par-

ameter q represents how individual detection coverage

changes with the number of individuals in the group (N);

in particular, a higher value of q could represent groups

that show a sharper decrease in the area per individual

with N than we observed experimentally.

3. Discussion
In general, in small groups individuals have detection

capability in nearly any direction, while in large groups indi-

viduals can differ substantially from one another in their

visual information due to occlusion from neighbours. For

constant visual blocking
probability, l = l
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our study system (golden shiner fish), we thus find that

meaningful distinctions in available visual information

emerge when groups contain between 30 and 70 fish; at

these sizes and larger, some individuals may detect an

object while others do not. While previous work has used

position-based metrics to define, for example, ‘peripheral’

versus ‘central’ locations within a group (e.g. [18,22,35]), we

note that these distinctions are only meaningful with respect

to detection for groups with sufficiently many individuals.

The density of a group affects visual detection abilities

(figure 5c). What functional aspects may lead a group to

adopt a certain density? Previous work has suggested that

up to a certain point, higher group density is associated

with an increased ability to spread information among

group members; or in other words, denser groups tend to

be more ‘tightly connected’ [19,20]. The reason for this,

as has been found for animals from fish [20] to humans

[36–38], is that the spreading of social behaviour is best

described by a fractional contagion process, whereby an indi-

vidual’s probability of response depends on the fraction of

their neighbours that have responded [39]. In denser

groups, the closer packing means that close neighbours

occupy a large field of view, and therefore individuals will

see fewer other group members. Visual access to others was

shown to be the best predictor of individual response [19].

In denser groups, each individual has fewer visual neigh-

bours, and thus a contagion is more likely to spread [19,20].

This is further supported by what happens when fish are

exposed to schreckstoff, a chemical that is typically released

to signal that a predator is nearby. In this case, individuals

move closer together, which facilitates an increase in their

ability to spread behavioural change, and thus exhibit a

greater responsiveness to external threats [14]. While trans-

mission of behavioural change among group members may

be enhanced at higher density, our results show that external

detection is enhanced at lower density (figure 5c). This is

because at lower density, neighbours subtend a smaller

angle in the visual field of others. In the model, an overall

lowering of the density of the group can be represented by

a lower value of λ0. The ‘trade-off’ between external detection

and internal communication may be a driver of the optimal

group density, and can explain why the overall spatial area

of the group does not predict how quickly a group will

respond [40]. At an individual level, a low external detection

capability to the side of the group tends to be compensated

by stronger visual connectivity to neighbours [32].

With more individuals, the overall detection capability of

the group increases, due to both having a full coverage of the

surrounding area as well as having multiple overlapping

visual areas for detection redundancy. However, blockage

effects cause this trend to be sub-linear with respect to the

number of individuals in the group (figure 7c). This demon-

strates that one of the benefits of being part of a group—the

‘many eyes’ effect [7,8]—has a decreasing marginal utility as

group size continues to increase. To explore possible func-

tional consequences of this, consider that individuals in a

group need to not only detect an object, but also respond

to the detection. While a predator may elicit a sudden startle

response [20], movement towards a potential food source is

more likely to be gradual. Previous work has shown that

only a small fraction of ‘informed’ group members (e.g.

group members that can detect the food source) are needed

in order to successfully guide the group towards the target

[19,27,41]. Here, we note that although the fraction of

informed individuals needed to lead the group decreases

with N, the average detection capability of each individual

also decreases with N. Therefore, we can not generalize to

say whether small or large groups are expected to have a

better ability to both detect and move towards a promising

food source, since the scaling of detection capability with N

depends on the characteristics of individuals and the con-

figuration of the group.

In our calculations, we considered that an individual can

detect an outside point in a given direction if they have a

clear view in that direction. However, this does not take into

account differences in detection capability for near versus far

away objects that arise due to visual projection, angular differ-

ences when the object is close to the group, and contrast

effects. Real objects have a finite size and thus the total angle

subtended by the object decreases with distance. An object

located close to the group thus projects onto a larger range

of angular directions compared to the same object located

farther away. This naturally results in a lower overall detection

capability if an object is located farther away. For distant

objects, the relative angular position of the object with respect

to each individual is nearly the same for all group members,

regardless of their position within the group. Position within

the group, however, strongly affects an individual’s relative

angular position to a nearby object. For example, for a group

swimming in a polarized configuration, an object located at

90° with respect to the group travel direction will be located

greater than 90� from the travel directions of individuals at

the front of the group, and less than 90� with respect to the

travel directions of individuals at the rear of the group.

While these angular differences are negligible for objects

located far away from the group, they will be significant

when the object is located only several centimetres away

from the front, back, or side of the group. While such finite

group size effects impact the quantitative values of the

visual detection capability, they do not affect the general detec-

tion trends we analysed in this study, because the general

trends are driven by visual blockage due to neighbours.

Specific relationships that could be important to certain exper-

iments, such as contrast effects, finite group size effects, and

decreases in visibility due to turbidity, could be examined in

the relevant context using extensions of our method to esti-

mate detection capability. Nonetheless, since a basic driving

factor in detection is the capability to see outside the group,

the same qualitative trends with respect to how individual

detection scales with group size (figures 3 and 7), depends

on group configuration and spatial area (figures 4 and 5),

and depends on within-group position and object location

(figure 6), are applicable in any context where individuals

move in groups in planar configuration.

The contrast an object appears at with respect to the back-

ground decreases with distance due to the effects of light

scattering and absorption. This can have a significant effect

in attenuating media such as water, and can be particularly

strong in conditions of poor visibility (e.g. in turbid, or

‘cloudy’, water—see [42,43]). A decrease in contrast with dis-

tance could have two effects on detection ability. First, it

would lower the effective detection capability for each indi-

vidual in the group. In the model, this is represented by

increasing the effective baseline visual blocking probability

λ0 (figure 7e). Second, because visual detection only occurs

if an object appears above a certain contrast threshold [43],
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individuals may be able to detect an object if they are close to

it (i.e. located on the side of the group where the object is

located), but individuals on the other side of the group

may not have sufficient contrast to detect the object. Since

such mechanisms represent individuals as imperfect sensors,

they affect the many eyes abilities of the group: while a group

with a small number of individuals could be certain to detect

an object in a condition of clear visibility, the same group may

not have any individuals that detect the object in conditions

of poor visibility. In a group with a larger number of individ-

uals, the pure increase in numbers makes it more likely at

least some individuals are able to detect an object even in

conditions of poor visibility. This is similar to the ‘pool-of-

competence’ effect, whereby larger groups effectively act as

better problem solvers because it is more likely they contain

an individual that has the knowledge needed to solve the

problem [44,45]. Applying this to the case of visual detection,

a larger group is more likely to contain an individual that can

detect the object.

While we obtained data from freely moving groups

of fish, we note that the effective transition point from

homogeneous to heterogeneous visual information available

among individuals will be different for groups of different

animals. Based on our results, we would expect differences

due to the shape of the animal, the spacing between individ-

uals in the group, and the overall space that the group

occupies. For example, while we studied fish moving in a

planar configuration in shallow water, and approximated

out-of-plane effects using probabilistic visual blockage, we

expect that fish moving in a fully three-dimensional (non-

planar) shape would have overall a smaller fraction of their

vision blocked by neighbours, for a group containing the

same number of individuals. However, experiments also

show that fish schools in open water often adopt planar struc-

tures, in particular in response to a nearby predator [46], and

that using two-dimensional motion coordinates yields the

same results for leader–follower dynamics as considering

full three-dimensional motion [47]. Other animals that form

non-planar groups [48], such as midges or birds, can differ

in the effective visual blockage due to neighbours. In a

midge swarm, where the inter-individual spacing relative to

body size is larger than that for fish [49], we would expect

relatively low visual blockage. Different from fish, we

would also expect minimal directional dependence, due to

the body shape of midges. In contrast to midges, birds have

elongated body shapes, and therefore we could expect similar

direction-dependent detection trends for birds as we found

for the fish schools studied here; in addition, although

birds move in three dimensions, data from starlings have

shown that flocks are generally thinnest in the direction of

gravity and therefore also have planar characteristics [50].

Ungulates moving in a herd, such as zebra, gazelles, caribou

or wildebeest (e.g. [51,52]), have both elongated body shapes

and move on a two-dimensional surface, and thus may have

directly comparable trends for visual detection as fish

moving in shallow water.

We used a minimal model to show how individual and

collective detection capabilities scale with the number of indi-

viduals in the group. Because of the simplicity in our model,

we expect it to describe the general scaling trends of detection

for any group in a planar configuration for the different

animal groups in all of these cases. However, our modelling

approach does not capture specific differences, that for

example may be due to the shape of the group (e.g. elongated

or more circular groups), or direction dependencies related to

the shape of individuals (e.g. the differences in front versus

side detection seen in figure 6). As a complementary

approach, agent-based modelling can be used to understand

specific differences due to such effects (e.g. [32]).

In summary, we used fish as a model system to examine

the visual information available to individuals in the group,

and formulated a simple model to show how visual infor-

mation changes with number of individuals in the group.

In future work, it will be valuable to compare results to

other animal groups that vary in their individual properties

and group dynamics, and to test the expected changes in

detection ability with respect to individual placement and

group motion direction.

4. Methods

4.1. Experiments
Golden shiners (Notemigonus crysoleucas) are a small minnow

native to the northeastern USA and Canada [29]. Juvenile shiners

approximately 5 cm in length were purchased from Anderson

Farms (www.andersonminnows.com) and were allowed to

acclimate to the laboratory for two months prior to experiments.

Fish were stored in seven 20-gallon tanks at a density of

approximately 150 fish per tank. Tank water was conditioned,

de-chlorinated, oxygenated, and filtered continuously. Fifty per

cent of tank water was exchanged twice per week. Nitrates,

nitrites, pH, saline and ammonia levels were tested weekly.

The room temperature was controlled at 16°C, with 12 h of

light and 12 h of dark, using dawn–dusk simulating lights.

Fish were fed three times daily with crushed flake food and

experiments were conducted 2–4 h after feeding. These

methodologies are identical to those used in [53].

Trials with groups of 10, 30 and 70 shiners (3 trials each) and

with 151 shiners (1 trial) were allowed to swim freely in a 2.1 ×

1.2 m experimental tank. Water depth was 4.5–5 cm. Fish were

filmed for 2 h from a Sony EX-1 camera placed 2 m above the

tank, filming at 30 frames per second (figure 8).

The arena was acoustically and visually isolated from exter-

nal stimuli: two layers of sound insulation were placed under

the tank, and the tank was enclosed in a tent of featureless

white sheets. Trials took place in a quiet laboratory with no

people present during filming. All experimental procedures

were approved by the Princeton University Institutional

Animal Care and Use Committee.

4.2. Tracking and group area
We focused analysis on a 13min segment for each trial. We chose

a time 1 h after the onset of the trial to minimize stress on the fish

from handling. Fish positions, orientations and body postures

were extracted from videos via the SchoolTracker algorithm

used in [20]. Briefly, SchoolTracker works by detecting fish in

each frame, then creating tracks by linking detected fish across

frames. We then performed manual data correction to ensure

accuracy in the tracks.

We used a convex hull and Voronoi tessalation to quantify

the overall spatial area occupied by the group as well as the

spatial area per individual (figure 9).

4.3. External detection
To examine external detection, we represent individuals as simpli-

fied four-sided polygons defined by their head, eyes, and tail

(figures 1a and 10a). We compute detection capability using an
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algorithm that considers m points located in a circular arrange-

ment at a distance L from the group centroid. Note that

geometry dictates that individuals will have different relative

angles with respect to a point located close to the group (i.e.

small L), but all group members have the same relative angle to

an point located at an infinite distance away (i.e. for large L). In

order to obtain dominant trends and simplify our analysis, we

use a large value of L such that results do not depend on the pre-

cise value. With this, the results represent an angular dependence

of detection, and not detection of a discrete virtual stimulus; thus

L should be seen as a parameter that enables a simple compu-

tational algorithm to yield a well-defined estimate of visual

N = 10 N = 30

N = 70 N = 151

Figure 8. Tank configuration and different numbers of fish. Snapshots showing groups with different numbers of fish in the experimental tank. See also electronic

supplementary material video for a short clip, and Data availability to access full videos.

N = 10 N = 30 N = 70 N = 151

Figure 9. Group and individual area calculations. (a) The area of the group is calculated by a convex hull that contains the head positions of all group members (grey

shading). Individual area is calculated using a Voronoi tesselation, keeping only Voronoi polygons that are enclosed in the overall group boundaries (coloured areas).
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Figure 10. Polygon representation of fish and detection analysis quantities. (a) Example zoomed-in video frame from a group of 10 fish with the four-sided fish

polygon model shown as the red overlay. (b) By setting the origin at the group centroid and the group travel direction along the x-axis, we define the (ξ, ν)

coordinate system. The front–back coordinate is ξ, and the side–side coordinate is ν. The front, back, left side and right side of the group (ξF, ξB, νL and νR,

respectively) are defined as the head position of the individual farthest away from the group centroid in that direction. The group direction of travel is along the

x-axis. (c) To examine detection, we consider m points placed at a distance of L from the group centroid; we used values of m = 200 and L ¼ 1200 pixels (135 cm),

and note that none of the results depend on these exact values; we use this representation for simplicity to represent detection with respect to different locations.

The angle θk defines the angular location of an external point with respect to the group travel direction.
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detection capability. We use this representation because we wish to

analyse general trends in detection capability, which are driven by

visual blockage due to the presence of neighbouring individuals.

We note that the same algorithm for estimating detection capability

could be used to examine quantitative differences in detection capa-

bility due to finite size effects if a particular experiment was to

consider distinct stimuli at a specified distance L. We use the

values m = 200 and L ¼ 1200 pixels (135 cm), noting that none of

the results depend on these exact values. In our representation, we

specify that an individual has direction capability in a certain direc-

tion if there is a clear visual line in that direction, without blockage

from neighbours (figure 1a).

To determine external detection coverage, at each time step,

we first shift coordinates such that the group centroid is at the

origin, and follow this by a rotation that sets the direction of

travel of the group centroid to be along the x-axis. In this coordi-

nate system, each individual’s location is defined by a front–back

distance ξi(t) along the x-axis, and a side–side distance νi(t) along

the y-axis (figure 10a). The edge of the group in each direction is

defined as the individual furthest away in that direction; we

denote these values as ξF(t), ξB(t), νL(t) and νR(t) for the front,

back, left and right edges, respectively (figure 10a). In the (ξ, ν)

coordinate system, we expect side-to-side symmetry for reflec-

tions about the ξ-axis. However, due to both eye positions

being located at the head, and a ‘blind angle’ where individuals

cannot see behind themselves, there is no front–back symmetry.

We used a blind angle value of 25°, which was obtained from a

visual study of our study species [31].

Figure 10b shows both a small and large group with the

‘circle of points’ surrounding it. Each point has an angular

location θk relative to the direction of travel of the group centroid,

where k = 1… 200. Individual i has both left and right eyes

located to the sides of its body, the positions of which were esti-

mated from the tracking software. We say that individual i has

detection capability at relative angle θk at time t if there is no

visual blockage between either its left eye or its right eye and

the point at θk. This defines the function

h(N)
tik ¼

1, at time t, individual i can detect the point at uk
0, otherwise,

�

(4:1)

which is calculated for each group containing a different number

(N ) of individuals.

To approximate out-of-plane effects, we use an analogous

calculation to that described above, but instead define a prob-

ability that the presence of a neighbour in a certain direction

blocks external vision in that direction. This is done with consist-

ent random draws that affect the left eye and right eye together.

To consider the blind angle to the rear of an individual, we

simply exclude directions within the blind angle and mark

them as not detected. Although other than the blind angle we

did not place an explicit limit on the range of the left eye

versus the right eye in the detection calculations, an individual’s

own body blocks vision to their opposite side, so that the left eye

does not have a clear visual path to the right side, and vice versa.

We use equation (4.1) to calculate the distributions of individ-

ual detection coverage and the total number of detections in the

group. Using 〈· 〉 to represent an average over the specified indi-

ces, first we define the following notation to simplify the

calculations of individual detection:

h(N)
ti ¼

�
h(N)
tik

�

k
, (4:2)

which is the individual detection at an instant in time, calculated

by averaging over all possible detection directions k. The average

individual detection coverage is

H(N)
indiv ¼

�
h(N)
tik

�

t,i,k
¼
�
h(N)
ti

�

t,i
: (4:3)

The variance of individual detection coverage is

DH(N)
indiv

� �2
¼
D

(h(N)
ti �H(N)

indiv)
2
E

t,i
(4:4)

¼
D

h(N)
ti �

�
h(N)
ti

�

t

� �2
E

t,i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mean of individual variances

þ
D �

h(N)
ti

�

t
�H(N)

indiv

� �2
E

i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

variance of individual means

, (4:5)

where the second line follows because the individual and tem-

poral differences are symmetric about the mean. The first term

in equation (4.5) is the mean of the individual variances,

which is associated with individuals having different values

of detection coverage during the course of a trial. The

second term in equation (4.5) is the variance of the individual

means, which is associated with consistent individual differ-

ences. Applying this to the data with results from out-of-

plane effects (25% out-of-plane probability) and blind angle,

we obtain that the variance of the individual means explains

(8.2%, 7.7%, 6.4%, 9.0%) of the total variance for the group

sizes of N = (10, 30, 70, 151), respectively, with the remaining

fraction of the variance accounted for by the mean of the

individual variances.

The average number of detections in the group is

H(N)
group ¼

*
XN

i¼1

h(N)
tik

+

t,k

¼ N
D

h(N)
tik

E

t,i,k
: (4:6)

Note that while the averages in equations (4.3) and (4.6) are

related by the simple formula H(N)
group ¼ NH(N)

indiv, the full distri-

butions of individual and total detections in the group do not

have such a simple relation to each other. The standard deviation

of the number of detections in the group is

DH(N)
group ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
*

XN

i¼1

h(N)
tik �H(N)

group

 !2+

t,k

v
u
u
t , (4:7)

which is shown in figure 7c.

To compute detection with respect to the group direction of

travel in figure 6, we use only polarized group states where

the direction of travel is well defined. To categorize when the

group is in a polarized state or the other states used in

figure 4, we calculate the group’s polarization and rotation

order parameters using definitions and threshold values to

define the different states following [34].

4.4. Model
We formulate a simple model to describe the external visual

detection coverage of individuals in a group. In this model, the

group occupies a circular area with radius R, within which

there is a constant visual blockage probability. Using symmetry,

an individual’s field of view depends solely on its distance r from

the centre of group, where 0≤ r≤R. Whether or not an individ-

ual located at r can see outside the group in a direction θ depends

on the distance g(r, θ) from the individual to the edge of the

group in that direction (figure 7a). Using the law of cosines,

this distance is

g(r, u) ¼ r cos uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � r2 sin2
u

p

: (4:8)

We say that the probability of being able to see outside the

group in a given direction is the product of the blockage prob-

ability λ times the distance to the edge in that direction.

Assuming that blocking events are randomly distributed and

occur with a uniform probability through the group, we use

the Poisson distribution to represent the probability of external

detection:

Pext(r, u) ¼ e�lg(r,u)
:
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For the individual at position r, the total external detection capability

is an average, calculated by the integral over all possible angles:

v(r) ¼
1

2p

ð
p

�p

e�lg(r,u) du: (4:9)

To perform calculations, we set R= 1, which is done without loss of

generality because detection in equation (4.9) depends on the pro-

duct in the exponent.

Thus far we have assumed that the group occupies a fixed area

defined by the radius R. However, in the data we observe that

groups change the area they occupy over the course of a trial

(figure 5). To represent a distribution of the area occupied, con-

sider a group at two different sizes: R (the average radius), and

R1 (the ‘current’ radius). Defining the ratio α =R/R1, the distance

to the edge of the group scales as g1(r1, θ) = g(r, θ)/α. For the block-

age probability, we expect this to scale with the density within the

group, and thus have λ1 = λα2. For a current configuration of the

group defined by the size ratio α, the external visual detection cov-

erage of an individual is calculated by using equation (4.9) in the

current configuration:

v(r, a) ¼
1

2p

ð
p

�p

e�l1g1(r1 ,u) du ¼
1

2p

ð
p

�p

e�lg(r,u)a du: (4:10)

For simplicity, we represent different group areas by using aGaus-

sian with a mean of α = 1 to represent different possible values of

the group radius,

P(a) ¼
1

M
exp �

(a� 1)2

2s2

 !

, (4:11)

where σ represents the magnitude of changes in the group radius,

andM is a normalization factor. Because the radius must be posi-

tive, we restrict to values α > 0.

To compute the probability distribution of external detection,

we evaluate equation (4.10) on a discrete set of radii, calculating

the number of individuals in a shell around a given value of r as

proportional to

n(r, a) ¼ p((rþ d)2 � r2)P(a), (4:12)

where δ is the width of the shell. We then use binning to calculate

the probability distribution of detection coverage, using equation

(4.11) to represent the probability of different group areas. To

apply the model to the groups with different numbers of individ-

uals, we specify that λ varies to a power of the number of

individuals (N) in the group (main text equation (2.1), repeated

here):

l(N) ¼ l0N
q
:

The model results for all values of N are defined by the three

parameters λ0, q, and σ. Because the average detection coverage

depends only very weakly on the value of σ, we use a two-step

procedure to fit these parameters to the data, fitting λ0 and q to

the average detection coverage, and then subsequently fitting σ

to the standard deviation of the total number of detections in

the group.

Note that individuals maintaining constant density with an

increase in N can be approximated with q = 0.5 (this represents

a linear increase in area with N). However, even if individuals

did maintain constant density, this scaling would only be strictly

true for point particles. To see why, consider the case where indi-

viduals are zero-dimensional ‘points’; then, the visual blockage

probability would only depend on the density of points, and

would be constant with distance for uniformly distributed

points. However, since instead a group member has a two-

dimensional projection represented in our calculations by a poly-

gon, the visual blockage probability depends both on the density

of neighbours and the distance from each observer. Because of

this, we fit both the values of λ0 and q. The fitting procedure

for these parameters minimizes the mean square error of the

model result for mean external detection capability compared

to the data for each value of N, where values from the data are

used that consider out-of-plane effects with a 25% out-of-plane

probability (figure 7b).

Following this, we fit σ by minimizing the mean square error

of the model result for the standard deviation of the total number

of detections in the group compared to the data (figure 7c). Note

that in the model, a single configuration of the group is defined

by a particular value of the group area.

4.4.1. Analytical approximation for average detection capability
To obtain an analytical approximation of mean model detection

results, consider equation (4.9), which is the detection capability

of an individual located at position r. Using a single value for the

group area, the average visual degree is an integral over the unit

sphere of equation (4.9) times the probability that an individual is

located at r:

�v ¼
1

p

ð
p

�p

ð1

0

e�l r cos uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2 sin2

u

p� �

rdudr: (4:13)

Although this cannot be evaluated in closed form, we can obtain

an approximation by considering the series expansion in powers

of r:

�v ¼
1

p

ð
p

�p

ð1

0
e�l r� l cos ur2 þ

1

2
l(l cos2 uþ sin2

u)r3 þ � � �
	 


dudr:

(4:14)

Evaluating the integral for the individual terms yields an

expression in the form of an exponential times a series expansion

in powers of λ (main text equation (2.2), repeated here):

�v � e�l 1þ
Xjmax

j¼1

c jl
j

0

@

1

A
:

Keeping terms to sixth order in r has jmax = 6 and the following

coefficient values: c1 = 0.1455, c2 = 0.1455, c3 = 1.302 × 10−2, c4 =

6.185 × 10−3, c5 = 3.255 × 10−4, c6 = 1.085 × 10−4. We use the

above expression (equation (2.2)) with these coefficient values

to plot the series approximation in figure 7d,e.
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