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1. INTRODUCTION

Studying dynamic processes and transport phenom-
ena in disordered systems is one of the most important
problems of the modern physics of condensed matter
[1, 2]. For example, the collective dynamics of particles
on spatial scales of the order of several interatomic dis-
tances in liquids has currently aroused particular inter-
est [3]. This is related in part to the improvement of
experimental technique intended for inelastic neutron
scattering, to the appearance of the third-generation
sources of synchrotron radiation, and to the development
of the technique of inelastic X-ray scattering (where the
response is strictly coherent and the dynamic structure
factor 

 

S

 

(

 

k

 

, 

 

ω

 

) is directly measured) [3, 4].

Numerous experimental studies have found that the
frequency spectra of the dynamic structure factors of
liquid metals have a three-peak shape even outside the
hydrodynamic (microscopic) spatial region, where one
elastic (

 

ω

 

 = 0) and two inelastic (

 

ω

 

c

 

 

 

≠

 

 0) peaks exist,
just as in the hydrodynamic Rayleigh–Mandelshtam–
Brillouin triplet. The latter two peaks indicate the
appearance of collective excitations. As the wavevector

 

k

 

 increases, the high-frequency collective excitation
frequency 

 

ω

 

c

 

(

 

k

 

) increases, reaches its maximum at 

 

k

 

m

 

/2
(where 

 

k

 

m

 

 is the position of the main maximum in the
static structure factor 

 

S

 

(

 

k

 

)), and then decreases. When
the so-called de Genes narrowing zone is approached,
the high-frequency peaks disappear.

The presence of high-frequency collective excita-
tions in liquid aluminum at finite wavevectors has
experimentally been revealed only recently [3, 5]. This
result is supported (mostly qualitatively) by molecular
dynamics simulation using various models for interpar-
ticle interaction potentials. The microstructure and
dynamics of liquid aluminum near the melting point
were first studied by molecular dynamics simulation
in [6], where the local Ashcroft pseudopotential [7] and
two nonlocal pseudopotentials were used. Although the
static characteristics calculated with all three potentials
are in good agreement with experimental data, the sim-
ulated dynamic structure factor spectra differ from
experimental data. The static characteristics and micro-
scopic dynamics of liquid aluminum have recently been
studied by ab initio molecular dynamics simulation
using the orbital-free (OF-AIMD) [8] and Kohn–Sham
(KS-AIMD) [9] methods. In particular, the dynamic
structure factor 

 

S

 

(

 

k

 

, 

 

ω

 

) was calculated and compared
with experimental data on inelastic X-ray scattering
[5]. Although the calculation results also exhibit a
three-peak shape of 

 

S

 

(

 

k

 

, 

 

ω

 

), the heights and positions of
the side peaks differ significantly from the experimen-
tal values.

Several theoretical approaches were proposed to
explain the triplet structure of 

 

S

 

(

 

k

 

, 

 

ω

 

) in liquid alumi-
num at finite wavevectors: for example, a semiempiri-
cal modified hydrodynamic model [6, 10] or an
approach based on a generalized Langevin equation
and the viscoelastic model of [5]. These theories repro-
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duce certain specific features of experimental 

 

S

 

(

 

k

 

, 

 

ω

 

)
spectra. Nevertheless, they have the following disad-
vantages: the time dependences of relaxation processes
are approximated using simplified model functions,
and they introduce various fitting parameters.

In this work, we describe microscopic dynamics in
liquid aluminum with another theoretical approach; it is
based on the Zwanzig–Mori formalism and ideas con-
cerning reduced description of relaxation processes [11].
It should be noted that a similar approach has been suc-
cessfully applied earlier to describe the microscopic
dynamics of particles in liquid alkali metals [12–15].
We also performed molecular dynamics simulations
using the “glue” interparticle potential proposed
in [16, 17]. The frequency spectra of the scattering
intensity in liquid aluminum calculated by the two
methods were compared with experimental data.

2. THEORETICAL FORMALISM

The intensity of inelastic X-ray scattering 

 

I

 

(

 

k

 

, 

 

ω

 

) in
the system under study is connected with the dynamic
structure factor 

 

S

 

(

 

k

 

, 

 

ω

 

) by the relation [3, 4, 18]

(1)

where 

 

β

 

 = 1/

 

k

 

B

 

T

 

; 

 

k

 

B

 

 and 

 

T

 

 are the Boltzmann constant
and the system temperature, respectively; 

 

R

 

(

 

k

 

, 

 

ω

 

) is the
experimental resolution function; and the dynamic
structure factor 

 

S

 

(

 

k

 

, 

 

ω

 

) contains detailed information on
the collective properties of the system. As was shown in
famous work [19], the 

 

S

 

(

 

k

 

, 

 

ω

 

) spectrum is connected
with the autocorrelation function of local-density fluc-
tuations

(2)

through its Laplace transform

by the relation

(3)

Here,

I k ω,( ) �βω '

1 e �βω '––
----------------------R k ω ω '–,( )S k ω ',( ) ω,d∫=

φ k t,( ) ρ* k 0,( )ρ k t,( )〈 〉
ρ k 0,( ) 2〈 〉

------------------------------------------=

φ̃ k z,( ) e zt– φ k t,( ) td

0

∞

∫=

S k ω,( ) S k( )
π

----------Re φ̃ k z, iω=( )[ ].=

S k( ) ρ k t,( ) 2〈 〉=

 

is the static structure factor of the liquid,

(4)

where 

 

V

 

 is the system volume, 

 

g

 

(

 

r

 

) is the radial pair dis-
tribution function, and the angle brackets 

 

〈

 

…〉 indicate
ensemble averaging. Thus, to determine the dynamic
structure factor and the scattering intensity, we have to
know the time behavior of the autocorrelator of local-
density fluctuations φ(k, t) or its frequency spectrum.

We now consider an isotropic system consisting of
N particles of mass m. The initial dynamic variable is
taken to be the local-density fluctuations of the number
of particles

(5)

whose time evolution is specified by the equation of
motion

(6)

where  is the Liouville operator,

(7)

and Fj is the total force acting on the jth particle.
Using the Gram–Schmidt orthogonalization, we

then obtain an infinite set of orthogonal dynamic vari-
ables

(8)

they are connected by the recurrent relations

(9)

where δj, l is the Kronecker delta and

(10)

is the frequency relaxation parameter of the jth order
having the dimensions of frequency squared.

S k( ) 1
Nm
V

-------- ik r⋅( ) g r( ) 1–[ ]exp r,d∫+=

ρ k t,( ) 1

N
-------- ik r j t( )⋅( ),exp

j 1=

N

∑=

dρ k t,( )
dt

------------------- i�̂ρ k t,( ),=

�̂

�̂ i
p j

m
-----

j

∑–
∂

∂r j

-------⋅ i F j
∂

∂p j

--------,
j

∑–=

A k( ) A0 k( ) A1 k( ) A2 k( ) … A j k( ) …, , , , ,{ },=

k k ,=

A j*Al〈 〉 δ j l, A j
2〈 〉 ,=

A0 k( ) ρ k( ),≡

A j 1+ k( ) i�̂A j k( ) Ω j
2 k( )A j 1– k( ),+=

j 0 1 2 …, A 1–, , , 0,≡=

Ω j
2 k( )

A j 1+ k( ) 2〈 〉
A j k( ) 2〈 〉

------------------------------=
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By analogy with Eq. (2), we define the time autocor-
relation functions of the dynamic variables Aj(k) as fol-
lows:

(11)

they have the properties

(12)

(13)

(14)

Property (12) follows directly from definition (11); the
limit in Eq. (14) is valid for ergodic processes and
results from the principle of long-term correlation
weakening; and Eq. (13) can easily be derived from
well-known Schwartz’s inequality [20]. It should be
noted that, if M0(k, t) = φ(k, t) specifies local-density
autocorrelations, then the M1(k, t) function corresponds
to the time autocorrelation function of longitudinal
momentum component fluctuations, M2(k, t) is directly
related to the time autocorrelation function of energy
fluctuations, and so on. In other words, at k  0, the
values of M0(k, t), M1(k, t), and M2(k, t) can be com-
pared with the time autocorrelation functions corre-
sponding to three retained hydrodynamic variables.

We now determine the normalized frequency
moments of the dynamic structure factor:

(15)

It should be noted that only even moments (p = 2, 4, …)
take finite values and that odd moments become zero.
Taking into account the second equality in the last
equation, we can represent the short-term behavior of
the φ(k, t) function in the form of the Taylor series

(16)

M j k t,( )
A j* k 0,( )A j k t,( )〈 〉

A j k 0,( ) 2〈 〉
---------------------------------------------,=

M0 k t,( ) φ k t,( ),≡

M j k t,( )
t 0→
lim 1,=

0 M j k t,( ) 1,≤ ≤

M j k t,( )
t ∞→
lim 0.=

ω 2 p( ) k( ) = 

ω2 pS k ω,( ) ωd

∞–

∞

∫

S k ω,( ) ωd

∞–

∞

∫
--------------------------------------- = i–( )pdpφ k t,( )

t pd
---------------------

t 0=

,

p 1 2 … ., ,=

φ k t,( ) 1
1
2!
-----ω 2( ) k( )t2–

1
4!
-----ω 4( ) k( )t4+=

–
1
6!
-----ω 6( ) k( )t6 … .+

By making allowance for the relation

(17)

which holds true at a fixed k, we can obtain the follow-
ing useful expressions relating the frequency moments

ω(2j)(k) to the frequency parameters (k) from
Eqs. (9) and (10):

(18)

From definition (10), we can readily derive expressions

for the frequency parameters (k). For example, for

the first three parameters (k), (k), and (k), we
have

(19)

(20)

(21)

where �(k) is a combination of integral expressions
containing the interparticle interaction potential u(r)
and the three-particle distribution function g3(r, r'). A
complete expression for �(k) is given in [21]. Note
that, as order j increases, the expressions for the fre-

i 2 j( )d2 jφ t( )
dt2 j

-----------------
t 0=

i�̂A0( )
j

[ ]* i�̂A0( )
j

〈 〉
A0

2〈 〉
------------------------------------------------------,=

Ω j
2

Ω1
2 k( ) ω 2( ) k( ),=

Ω2
2 k( ) ω 4( ) k( )
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Ω3
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ρ
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quency relaxation parameters (k) become much
more complex and begin to contain the equilibrium dis-
tribution functions of a group of j particles.

The authors of [22, 23] used the technique of projec-
tion operators and showed that the φ(k, t), M1(k, t),
M2(k, t), … functions are connected by a chain of the
integro-differential equations

(22)

With the Laplace transform, chain (22) can be written
as the recurrent relation

(23)

or the continued fraction

(24)

Ω j
2

dφ k t,( )
dt

------------------- Ω1
2 k( ) τM1 k t τ–,( )φ k τ,( ),d

0

t

∫–=

dM1 k t,( )
dt

----------------------- Ω2
2 k( ) τM2 k t τ–,( )M1 k τ,( ),d

0

t

∫–=

…

dM j k t,( )
dt

----------------------- Ω j 1+
2 k( ) τM j 1+ k t τ–,( )M j k τ,( ),d

0

t

∫–=

j 1 2 3 … ., , ,=

M̃ j k z,( ) 1

z Ω j 1+
2 k( )M̃ j 1+ k z,( )+

-------------------------------------------------------,=

j 1 2 3 …,, , ,=

φ̃ k z,( ) 1

z Ω1
2 k( )M̃1 k z,( )+

--------------------------------------------=

=  
1

z
Ω1

2 k( )

z
Ω2

2 k( )

z
Ω3

2 k( )
z …+
--------------+

-----------------------+

--------------------------------+

-----------------------------------------.

The same result was obtained by the method of recur-
rent relations [18], which differs from the technique of
projection operators. Note that, in both methods,
Eq. (22) and, correspondingly, fraction (24) can exactly
be derived from equation of motion (6).

Thus, the problem of finding φ(k, t) (or (k, z)) can
be reduced to the calculation of a certain time correla-
tion function of the jth order Mj(k, t), which eventually
corresponds to the disconnection of the infinite chain of
kinetic integro-differential equations (22) (i.e., to the
break of fraction (24)). Another possible way is to cal-

culate the frequency parameters (k) appearing in
fraction (24). The chain of Eqs. (22) can be discon-
nected by the following methods:

(i) the transition to the Markovian limit of Van
Hove at a certain jth relaxation level, which is per-
formed by introducing the so-called slow time τ = λ2t
(λ  0) [24];

(ii) the method of model memory functions, where
the Mj(k, t) function of the jth order is approximated by
a certain simplified model function, such as an expo-
nential function, a Gaussian function, or a hyperbolic
secant or by their linear combination [25–29];

(iii) the mode-coupling approach [30], where the
second-order memory function M2(k, t) is approxi-
mated by a polynomial of the initial time correlation
function φ(k, t).

However, all these methods are approximate. More-
over, they contain a large number of fitting parameters
having no clear physical meaning. In addition, it is dif-
ficult to directly determine the frequency parameters

(k) from Eqs. (19)–(21), since one has to calculate
integral expressions containing distribution functions
of many particles.

In this work, we propose another method to deter-

mine (k, z). As is seen from Eqs. (18), the frequency

parameters (k) can be derived from the frequency
moments ω(j)(k), which, in turn, can be obtained from
experimental data on scattering. For example, using the
data on the X-ray scattering intensity I(k, ω) in liquid
aluminum at T = 973 K, we deconvolved Eq. (1) and
found the frequency spectra of the dynamic structure
factor S(k, ω) of the system under study at various
wavevectors k, at which the frequency moments ω(j)(k)
were determined by Eqs. (15) and, then, the frequency

parameters (k) were determined. The calculated val-
ues of the first six frequency parameters are given in
Table 1. It is obvious that the frequency parameters
(just as the frequency moments) are very sensitive to
the shape of the dynamic structure factor S(k, ω), whose
experimental values contain certain errors. Moreover,
as order j increases, the errors of the frequency param-

eters (k) also increase. However, in the course of

φ̃

Ω j
2

Ω j
2

φ̃
Ω j

2

Ω j
2

Ω j
2

Table 1.  Frequency relaxation parameters  (×1026 s–2)
obtained from experimental data on inelastic X-ray scatter-
ing [5]

k, nm–1

4.2 5.432 7.808 26.061 127.08 106.38 102.74

5.4 6.904 11.108 35.045 125.02 106.22 102.69

7.8 11.692 19.621 40.493 124.17 105.98 102.61

9.0 12.445 22.407 43.009 123.86 105.85 102.58

Ω j
2

Ω1
2 k( ) Ω2

2 k( ) Ω3
2 k( ) Ω4

2 k( ) Ω5
2 k( ) Ω6

2 k( )



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 103      No. 6      2006

COLLECTIVE DYNAMICS IN LIQUID ALUMINUM NEAR THE MELTING TEMPERATURE 845

calculations, we found that the ratios of the neighboring
frequency parameters,

are less sensitive to the from of S(k, ω). The values of
ξj + 1, j(k) at the same wavevectors are given in Table 2.

As is seen from Tables 1 and 2, the first frequency

parameters (k) (j = 1, 2, 3, 4) increase with subscript
j for all wavevectors, i.e., ξj + 1, j(k) > 1 at j = 1, 2, 3, 4,
whereas the frequency parameters of the fifth and sixth

orders (k) and (k) are somewhat underestimated

as compared to (k). However, their ratios ξ5, 4(k) and
ξ5, 6(k) are close to unity. Therefore, we may assume
that

(25)

In other words, beginning from (k), the high-order
frequency parameters virtually coincide.

From a physical viewpoint, this assumption means
the following. Since the quantities reciprocal to the fre-

quency parameters, i.e., 1/ (k), characterize the qua-
dratic time scales of the relaxation processes related to
the fluxes of the Aj – 1(k) variables [2, 31], condition (25)
allows us to pass from the infinite set of dynamic vari-
ables (9) to the finite set

(26)

that is, it allows us to decrease the number of variables
required for the description of the collective dynamics
of particles [11]. As was shown above, the autocorrela-
tion functions of the variables from set (26) are related
to the autocorrelators of the longitudinal components of
the hydrodynamic variables and their fluxes.

With condition (25), we can also disconnect chain (22).
To this end, we rewrite fraction (24) by making allow-
ance for Eq. (25):

(27)

As is known from the theory of continued fractions [32],
a fraction of type (27) corresponds to the function (in

ξ j 1+ j, k( ) Ω j 1+
2 k( )/Ω j

2 k( ),=

Ω j
2

Ω5
2 Ω6

2

Ω4
2

Ω4
2 k( ) Ω5

2 k( ) Ω6
2 k( ) … Ω j

2 k( ),= = = =

j 4.≥

Ω4
2

Ω j
2

A k( ) A0 k( ) A1 k( ) A2 k( ) A3 k( ) A4 k( ), , , ,{ },=

M̃3 k z,( ) 1

z
Ω4

2 k( )

z
Ω4

2 k( )

z
Ω4

2 k( )
z …+
--------------+

-----------------------+

--------------------------------+

-----------------------------------------.=

the variable z)

(28)

By applying the inverse Laplace transform to Eq. (28),
we obtain

(29)

where J1 is the first-order Bessel function. Substituting

Eq. (28) into fraction (24), we obtain (k, z) and, mak-
ing allowance for Eq. (3), find the following expression
for the dynamic structure factor:

(30)

3. COMPUTER DYNAMICS SIMULATION
AND ITS DETAILS

Atomic dynamics can also be studied with computer
simulation. We investigated the thermodynamic state of
liquid aluminum having a numerical density n =
0.052763 Å–3 (mass density ρµ = 2.36 g/cm3) and a tem-
perature T = 1000 K (melting temperature Tm =
933.47 K). We consider a system of N = 4000 particles

M̃3 k z,( )
z– z2 4Ω4
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2Ω4
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---------------------------------------------------.=
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Table 2.  Ratios of the neighboring frequency relaxation

parameters ξj + 1, j(k) = , where j = 1, 2, 3, 4,
and 5

k, nm–1 ξ2, 1 ξ3, 2 ξ4, 3 ξ5, 4 ξ6, 5

4.2 1.4373 3.3377 4.8763 0.8371 0.9658

5.4 1.6087 3.1549 3.5674 0.8496 0.9668

7.8 1.6782 2.0638 3.0665 0.8535 0.9682

9.0 1.8005 1.9194 2.8799 0.8546 0.9691

Ω j 1+
2 k( )/Ω j

2 k( )
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in a cubic cell (L = 42.32 Å) with periodic boundary
conditions. Particles interact through the so-called glue
potential [16, 17]

(31)

which contains a short-range pair potential ψ(r), a mul-
tiparticle glue function U( ), and a  function. The
latter is defined as

(32)

where ρ(r) is the atomic density. The ψ(r), ρ(r), and
U( ) functions are shown in Fig. 1. To reduce the cal-

E Epair Eglue+ ψ rij( )
i j<
∑ U ρi( ),

i

∑+= =

ρ ρi

ρi ρ rij( ),
j

∑=

ρ

culation time, we neglected particle interaction at a dis-
tance r ≥ rc , where rc = 5.558 Å is the cutoff radius.

The initial conditions were taken to be a particle
configuration corresponding to the face-centered cubic
lattice of crystalline aluminum with a lattice parameter
a = 4.23 Å. To integrate the equation of motion, we used
the Verlet algorithm with time step ∆t = 10–14 s [33].
15000 time steps were executed to bring the system to
an equilibrium state, and 100000 time steps were exe-
cuted to average the time correlation functions. The
average equilibrium characteristics and time correla-
tion functions were obtained by averaging over the
number of particles and time.

4. COMPARISON WITH EXPERIMENT
AND DISCUSSION OF THE RESULTS

Figure 2 shows the simulated radial distribution
function g(r) of liquid aluminum at T = 1000 K and the
static structure factor S(k) found from Eq. (4). Both

65432

0.4

0.2

0

r, Å

ψ, eV

(a)

65432
r, Å

0.10

0.05

0

ρ

(b)

1.20.90.60.30

0

–1

–2

U, eV

(c)

ρ

Fig. 1. (a) ψ(r), (b) ρ(r), and (c) U( ) functions determin-
ing the interparticle interaction potential [16, 17] for liquid
aluminum.

ρ

105 15

3

2

1

0

(a)

g

r, Å

8642 100

2

1

3

(b)

k, Å–1

S

Fig. 2. (a) Radial distribution function g(r) and (b) the static
structure factor S(k) for liquid aluminum: (solid line)
molecular dynamics simulation at T = 1000 K and a mass
density ρµ = 2.36 g/cm3 and (symbols) experimental data on
X-ray scattering at T = 943 K [34, 35].
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functions are compared with experimental data on
X-ray scattering [34, 35]. The simulation results are
seen to reliably characterize the fine structure of the
system under study and to exactly reproduce the exper-
imental data. Therefore, it is interesting to test the cho-
sen potential model to describe the nonequilibrium
characteristics of the system. To this end, we used the
simulation results to calculate the dynamic structure
factor directly from definition (3) with autocorrelator (2)
and the local density specified by Eq. (5). For compar-
ison with the experimental data, we took into account
the condition of detailed balance and the experimental
resolution according to Eq. (1). The I(k, ω) results
obtained are shown in Figs. 3a–3d. The glue-potential
simulation results are seen to correctly reproduce the

high-frequency portions of the experimental X-ray
scattering spectra at all wavevectors k: they correctly
predict the positions, heights, and decrease of the side
peaks. However, the simulated height of the central
peak (at ω = 0) is slightly overestimated. This discrep-
ancy can be caused by the fact that the time interval in
the computer experiment is limited (finite).

The X-ray scattering intensity I(k, ω) in liquid alumi-
num was also calculated using theoretical model (30)
developed for the dynamic structure factor. The fre-

quency parameters (k), (k), (k), and (k)
used for the calculations are given in Table 1, and the
values of the static structure factor S(k) are borrowed
from [34, 35]. The calculated and experimental results
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Fig. 3. Frequency spectra of the scattering intensity I(k, ω) in liquid aluminum at T = 1000 K at various wavevectors k: (a–d) solid
line illustrates the molecular dynamics simulation and (e–h) solid line illustrates the results of theoretical model (30) for the corre-
sponding wavevectors k. The experimental data on inelastic X-ray scattering [5] are shown by symbols.
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are compared in Figs. 3e–3h. The calculated scattering
intensity I(k, ω) spectra are seen to coincide with the
experimental data of [5].

Figure 4 shows the dispersions of the high-fre-
quency I(k, ω) peak determined from the experimental
data, by the glue-potential simulation, and by the theo-
retical model developed. The theoretical values of ωc(k)
are seen to precisely reproduce the experimental
results, whereas the simulation results are higher than
the experimental values at wavevectors k ≥ 9 nm–1.
Moreover, all (experimental, simulation, and theoreti-
cal) results indicate the presence of the so-called posi-
tive dispersion effect [2] in the microscopic region
under study: the values of ωc(k) exceed the values pre-
dicted by the usual hydrodynamic theory with a linear
dispersion [36] and a sound velocity cs = 4750 m/s [3,
Table 1; 37].

As follows from an analysis of Eq. (30), the posi-
tions of ωc(k) and the widths of the side peaks in the
spectra of the dynamic structure factor S(k, ω) (and,
correspondingly, the I(k, ω) intensities) are determined
by the solutions of the bicubic polynomial in frequency
ω in the denominator of Eq. (30). The coefficients of
this polynomial are specified by the first four frequency

parameters (k) (j = 1, 2, 3, 4), whose values depend
on the corresponding equilibrium j-particle equilibrium
distributions. An important conclusion follows from
these results: the high-frequency collective excitations
that are observed on microscopic spatial scales in liquid
aluminum as the side I(k, ω) peaks are mainly caused
by two-, three-, and four-particle interactions.

Ω j
2

5. CONCLUSIONS

We theoretically described the collective dynamics
of particles that occurs on microscopic spatial scales in
liquid aluminum near the melting temperature and
showed that the idea of reduced description can be actu-
alized using the experimentally observed equalization
of the time scales of relaxation processes. In the case of
liquid aluminum, this equalization of the time scales of
high-order dynamic variables was detected by analyz-
ing the latest experimental data on inelastic X-ray scat-
tering. This equalization can be explained by the fact
that, on spatial scales comparable with the interatomic
distances, the role of fast relaxation processes (~10–14 s)
becomes substantial and that the hydrodynamic variables
cease to be slow as compared to other variables [2].

Screening effects also significantly affect ionic
motion in liquid aluminum. Therefore, in the case of
liquid aluminum, it is rather difficult to choose an
appropriate model for an interparticle interaction
potential, in contrast to liquid alkali metals (where
ionic motion is accurately determined by pairwise
screened ion–ion interactions). In this work, we showed
that the glue potential used earlier for studying cluster
formation [16, 17] can successfully be employed to
describe both the structural properties of liquid alumi-
num and the collective dynamics of particles in it.

We also revealed that the high-frequency collective
dynamics of this system is directly related to three- and
four-particle interactions along with two-particle inter-
actions. Our analysis indicates that the correlations of a
large number of particles on these spatial scales turn out
to be actually insignificant.
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