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Optical experiments on second-harmonic generation from split-ring-resonator square arrays show a

nonmonotonic dependence of the conversion efficiency on the lattice constant. This finding is interpreted

in terms of a competition between dilution effects and linewidth or near-field changes due to interactions

among the individual elements in the array.

DOI: 10.1103/PhysRevLett.109.015502 PACS numbers: 81.05.Xj

Tailored man-made effective materials called metamateri-

als are widely known for supporting unprecedented linear

optical properties, largely based on creating artificial magne-

tism via magnetic split-ring resonators and variations thereof

[1–6]. Nonlinear optical properties of metamaterials are at

least of equal scientific and technological interest [7,8]; how-

ever, they have been studied experimentally to a much lesser

extent [9–16]. Here, the long-term vision is to achieve optical

switchingor nonlinear frequency conversionwith efficiencies

that are orders of magnitude above those of natural substan-

ces. So far, however, experiments lag far behind this ambi-

tious goal. This status is largely due to a lack of fundamental

understanding of the underlying physics. For example, even

the microscopic source of the constituent metals’ (e.g., gold

or silver) optical nonlinearity is still the subject of scientific

controversy [17–19]. Nevertheless, the ‘‘hot spots’’ [20]

known from rough metal films raise hopes that huge en-

hancements might eventually be reproducibly achievable in

rationally designed and lithographically fabricated nonlinear-

optical metamaterial structures. For example, very promising

results have been obtained regarding high-harmonic genera-

tion from noble gases near bow-tie antennas [21].

One design strategy could be to create a tiny individual

building block (meta-atom), exhibiting large local-field

enhancement, add a nonlinear constituent to these hot

spots, and then pack these meta-atoms as densely as pos-

sible to form an effective nonlinear metamaterial. In this

Letter, we show experimentally and theoretically that col-

lective effects of the meta-atoms can substantially alter this

picture, leading to optimal behavior at some intermediate

packing density of the meta-atoms. Second-harmonic gen-

eration from split-ring resonators with a fundamental reso-

nance at around 1:4 !m wavelength serves as an example.

The samples for our experiments have been fabricated

using standard electron-beam lithography and standard

high-vacuum evaporation of gold, followed by a lift-off

procedure. We use split-ring resonators (SRR) as the para-

digmatic building block of metamaterials. The SRR

are arranged on a square lattice with lattice constant a.

To study the effect of packing, or equivalently to study the

second-harmonic generation (SHG) efficiency versus a, a
large set of samples has been fabricated in which we vary

the electron-beam exposure dose for each of the different

lattice constants (a ¼ 280, 300, 325, 350, 400, 450,

500 nm). From this set we pick those arrays that exhibit

a nearly constant resonance wavelength (about 1:4 !m)

of the fundamental SRR resonance. This choice aims at

easing the interpretation of the nonlinear-optical experi-

ments. It becomes apparent from Fig. 1 that the resulting

FIG. 1 (color online). Selected top-view electron micrographs

of the gold split-ring-resonator (SRR) square arrays used in our

experiments. The gold film thickness is 30 nm, the lattice

constant a is indicated in each case, and the footprint of each

array is 100" 100 !m. The red arrow illustrates the incident

linear polarization of light used throughout this Letter. The

length of the white scale bars is 200 nm. The yellow SRR on

the top illustrates the geometrical parameters used for the

calculations in Fig. 3 for all a.
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size variations of the SRR for the different arrays are

extremely small. This aspect is important because resulting

changes in the individual SRR properties (e.g., damping)

would be an artifact (also see [5]). All SRR arrays have a

footprint of 100" 100 !m and a gold film thickness of

30 nm.

Fig. 2(a) exhibits the measured linear-optical extinction

spectra (negative decadic logarithm of the intensity trans-

mittance) for normal incidence of light, depicted on a

false-color scale. As expected from the dilution and con-

sistent with previous results, we find a monotonic decay

of the peak extinction of the fundamental resonance

versus lattice constant. The small wiggles in the reso-

nance position are due to small SRR size variations

among the different arrays. The same aspects hold true

for a higher-order resonance centered around 750 nm

wavelength. Panel (c) of Fig. 2 reveals the measured

SHG signal versus center wavelength of the incident laser

pulses that are derived from a tunable optical parametric

amplifier (OPA) and versus lattice constant, again de-

picted on a false-color scale. To eliminate any parasitic

effects due to changes in the pulse duration, pulse energy,

pulse shape, beam divergence etc. when tuning the OPA,

the SHG signals from the SRR arrays are consistently

normalized to the off-resonant SHG from a quartz sur-

face. Details of this setup have been published previously

[12]. In sharp contrast to the linear optical data, the SHG

signals show a nonmonotonic behavior versus lattice con-

stant. The SHG signal in Fig. 2(c) at 1395 nm excitation

wavelength first rises from normalized levels of 1.3 at

280 nm lattice constant to SHG levels of 3 at 400 nm

lattice constant. For yet larger lattice constants, the SHG

rolls off, reaching a level of 0.8 at 500 nm lattice constant.

To rule out any effects from the slightly varying SRR

resonance wavelength, we have taken complete SHG

spectra for each lattice constant. At each lattice constant,

we find the same general nonmonotonic behavior. The

decay of the SHG signal at very large lattice constants is

determined by the decreasing number of oscillators per

area or per volume. After all, zero SRR density will

surely lead to zero SHG from the SRR array. This dilution

corresponds to a scaling of the second-order nonlinear

polarization / 1=a2; hence, the SHG signal intensity

scales / 1=a4. In the opposite limit of very small a, the
SRR eventually touch (which happens at a ¼ 195 nm, see

Fig. 1), the SRR resonance disappears, and both the

extinction and the SHG signal are expected to decrease.

However, as becomes clear from the extinction spectra in

Fig. 2(a), a well-defined SRR resonance is observed for

all lattice constants investigated. Even at the smallest

lattice constant of a ¼ 280 nm, no drop of the extinction

with decreasing a is found. The initial rise of the SHG

signal versus lattice constant for small a must, thus, have

a different origin.

Intuitively, one might be tempted to suspect some sort

of diffractive effect, e.g., brought about by the Wood

(or Rayleigh) anomaly. Fortunately, closely similar

samples have recently been characterized in detail in

linear-optical experiments [5] (also see [3]). For normal

incidence of light at the fundamental resonance

FIG. 2 (color online). (a) Normal-incidence, linear-optical extinction (negative decadic logarithm of the measured intensity

transmittance) versus wavelength and versus lattice constant a of the SRR square arrays, plotted on a false-color scale. Two selected

cuts through these data are shown by the white curves. The white dashed horizontal lines are the respective zero levels. (b) Damping

versus lattice constant as obtained from Lorentzian fits to the data in (a). (c) Second-harmonic generation (SHG) signal from the same

SRR arrays versus incident fundamental wavelength of the optical parametric amplifier (OPA) and versus a. The SHG signal is

normalized to a quartz reference and plotted on a false-color scale. A selected cut through these data versus lattice constant a is shown

by the black curve. The white dashed vertical line is the zero level. Note the nonmonotonic behavior of the SHG, whereas the linear

properties in (a) show a monotonic decay with increasing a.
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wavelength, the Wood anomaly occurs at lattice constants

larger than about 900 nm, i.e., diffraction of the incident

light into the SRR plane can be ruled out under the present

conditions. Diffraction of the SHG signal would lead to a

decrease rather than to the observed initial increase in the

(zeroth-order) forward direction but may well contribute to

the expected decay of the SHG signal at larger lattice

constants. Yet, these linear optical experiments [5] also

revealed a pronounced decrease of the linewidth of the

SRR resonance with increasing lattice constant. For the

present samples, the damping " as obtained from

Lorentzian fits to the data shown in Fig. 2(a) decreases

from " ¼ 16 THz at a ¼ 280 nm nearly linearly to " ¼
10 THz at a ¼ 500 nm (see Fig. 2(b)). This dependence

can be interpreted as being due to a retarded long-range

interaction among the SRR in the array [5]. The linewidth

of the resonance enters sensitively into the second-order

nonlinear-optical susceptibility #
ð2Þ—even in the simple

textbook nonlinear oscillator model [22]. Smaller damping

leads to larger resonant #ð2Þ [22]. In addition, the amplitude

of local-field-enhancement effects also increases with de-

creasing damping. The overall SHG intensity therefore

further increases with decreasing damping. Moreover, the

spatial distribution of the local SRR fields also enters

sensitively into the SHG conversion efficiency. Combined

with the trivial dilution effect discussed above, these three

aspects can qualitatively explain the measured nonmono-

tonic behavior of the SHG signal versus lattice constant.

To test this qualitative reasoning quantitatively and to

rule out any experimental artifacts, we have performed

numerical calculations using the discontinuous Galerkin

time-domain method [23,24] for the experimentally

investigated gold split-ring-resonator square arrays. We

describe the optical response of the metal by the

FIG. 3 (color online). Calculations corresponding to the experiment in Fig. 2. The representation is the same, allowing for direct

comparison. The geometrical parameters used for the split-ring resonators are shown at the top of Fig. 1. Panel (c) uses the

hydrodynamic Maxwell-Vlasov theory to describe the nonlinear response of the gold split-ring resonators.

FIG. 4 (color online). Near-field distributions for three different lattice constants a as obtained from numerical calculations with

parameters as in Fig. 3. The square modulus of the electric-field vector, j ~Ej2, at the fundamental SRR resonance frequency is shown on

a logarithmic false-color scale. The normalization is the same for all three panels. For clarity, half of the golden SRR in one unit cell is

made transparent. For the lattice constants shown, an increase of the SRR lattice constant a leads to an increase of the strength of the

near and internal fields and, hence, to a larger SHG far-field signal. At yet larger lattice constants, this trend is reversed by the trivial

dilution effect.

PRL 109, 015502 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
6 JULY 2012

015502-3



state-of-the-art hydrodynamic Maxwell-Vlasov theory

[25,26]. Its linear limit corresponds to the Drude free-

electron model, for which we have chosen a plasma

frequency !pl ¼ 1:33" 1016 rad=s, a collision frequency

!col ¼ 8" 1013 rad=s, and a background dielectric

constant of $1 ¼ 9:84. The refractive index of the glass

substrate is taken as n ¼ 1:46. The geometric SRR

parameters (which are the same for all lattice constants

a) are according to the yellow SRR in Fig. 1. Fig. 3(a)

shows calculated linear-optical extinction spectra. These

calculations reproduce the experimentally observed

monotonic decrease of the extinction peak and of the

damping [see Fig. 3(b)] with increasing lattice constant

a. The nonlinear SHG calculations are depicted in

Fig. 3(c). We find a pronounced maximum of the SHG

signal versus lattice constant at about a ¼ 400 nm

throughout the entire spectral resonance. This nonmono-

tonic behavior versus lattice constant nicely reproduces

the experimental findings shown in Fig. 2(c). Thus, the

numerical results strongly support the above qualitative

reasoning in that the SHG signal is strongly influenced

by collective effects via the SRR damping as well as via

the SRR near-field distributions.

Since the detailed microscopic mechanism of the

metal nonlinearity is still subject to debates (see above),

we have also performed calculations using other models

for the nonlinearity. In particular, this includes a simple

generic treatment with an effective instantaneous second-

order nonlinear susceptibility for the gold SRR. The

results (shown in the Supplemental Material [27] to-

gether with details on the model) confirm the fundamen-

tal nature of the reported nonmonotonic behavior.

However, none of these calculations is able to precisely

reproduce the asymmetry of the spectral SRR resonance

shown in Fig. 2(c).

Fig. 4 illustrates the origin of the collective effects as

already qualitatively discussed above. Indeed, the SRR

near fields within one unit cell at the fundamental reso-

nance frequency depend on the lattice constant. Stronger

near fields lead to stronger internal currents and hence to

larger SHG signals. Once the SRR are separated by more

than the extent of their near-fields, the near fields no

longer increase with increasing a and the SHG signal

eventually decreases due to the trivial dilution effect.

In conclusion, we have observed a nonmonotonic

behavior of the resonant second-order nonlinear conver-

sion efficiency in split-ring-resonator arrays versus pack-

ing density. The corresponding theoretical modeling

indicates that this finding is a rather general phenomenon

that is based on collective effects among the metamate-

rial building blocks and that should occur in many non-

linear metamaterials. Thus, future experiments aiming at

achieving large effective (high-order) optical nonlineari-

ties should keep these collective effects in mind. The

same very likely holds true for experiments aimed at

compensating metamaterial losses by parametric gain or

by stimulated emission.
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