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Abstract

Background: E-communities, social groups interacting online, have recently become an object of interdisciplinary research.
As with face-to-face meetings, Internet exchanges may not only include factual information but also emotional information
– how participants feel about the subject discussed or other group members. Emotions in turn are known to be important
in affecting interaction partners in offline communication in many ways. Could emotions in Internet exchanges affect others
and systematically influence quantitative and qualitative aspects of the trajectory of e-communities? The development of
automatic sentiment analysis has made large scale emotion detection and analysis possible using text messages collected
from the web. However, it is not clear if emotions in e-communities primarily derive from individual group members’
personalities or if they result from intra-group interactions, and whether they influence group activities.

Methodology/Principal Findings: Here, for the first time, we show the collective character of affective phenomena on a
large scale as observed in four million posts downloaded from Blogs, Digg and BBC forums. To test whether the emotions of
a community member may influence the emotions of others, posts were grouped into clusters of messages with similar
emotional valences. The frequency of long clusters was much higher than it would be if emotions occurred at random.
Distributions for cluster lengths can be explained by preferential processes because conditional probabilities for
consecutive messages grow as a power law with cluster length. For BBC forum threads, average discussion lengths were
higher for larger values of absolute average emotional valence in the first ten comments and the average amount of
emotion in messages fell during discussions.

Conclusions/Significance: Overall, our results prove that collective emotional states can be created and modulated via
Internet communication and that emotional expressiveness is the fuel that sustains some e-communities.

Citation: Chmiel A, Sienkiewicz J, Thelwall M, Paltoglou G, Buckley K, et al. (2011) Collective Emotions Online and Their Influence on Community Life. PLoS
ONE 6(7): e22207. doi:10.1371/journal.pone.0022207

Editor: Attila Szolnoki, Hungarian Academy of Sciences, Hungary

Received February 12, 2011; Accepted June 17, 2011; Published July 27, 2011

Copyright: � 2011 Chmiel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a European Union grant by the 7th Framework Programme, Theme 3: Science of complex systems for socially intelligent
ICT. It is part of the CyberEmotions (Collective Emotions in Cyberspace) project (contract 231323). The work was also supported by Polish Ministry of Science Grant
1029/7.PR UE/2009/7. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jholyst@if.pw.edu.pl

Introduction

The scientific study of emotions began with the publication of

Darwin’s ‘‘The expression of the emotions in man and animals’’ in

1872 [1]. Based on this biological framework, psychologists have

researched affective processes with regard to a) causes, b) mental

processes and bodily systems involved, c) intra- and interpersonal

regulation, d) communication, and e) consequences. For Darwin,

the social nature of emotion was evident but since the end of the

19th century, particularly starting with William James [2], the

majority of theories and research have focused on psychological

processes within the individual, neglecting the complex behavior

that emerges when individuals interact. In the past few years there

has been increasing acceptance that the brain is a social organ [3]

in the sense that the perception of others’ emotional actions leads

to complex behaviors that are still poorly understood. Neverthe-

less, insights have been gained regarding the five issues raised

above, especially concerning social structures emerging due to

emotional interactions.

The Internet can be studied as a system of human behavior in

which social dynamics [4-12] are evident. Internet communica-

tion displays different activity patterns compared to traditional

communication [13]. Many people spend increasing amounts of

time online on social web sites (cyberspace) like MySpace,

Facebook, Twitter, and a variety of blogs. Networks of people

interacting in this way are often referred to as virtual

communities, based on the influential book by Howard

Rheingold (1994) [14]. While everyday connotations of the term

community might trigger assumptions or connotations regarding

the degree or quality of interaction of members, their social

relationship, or the temporal and spatial properties of interactants

that might not hold in a virtual community, the term has found

common acceptance. Synonymous descriptors are online com-

munity or e-community.
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Nowadays e-communities are increasingly prevalent and

important in everyday life [15] as well as in business contexts

where the use of social web functions plays an important part in

marketing and customer interaction. Moreover, studies of affective

interactions in e-communities are pivotal for understanding social

relations in general as only online can large-scale interactions be

studied systematically [4,9,12]. This paper uses automatic

sentiment analysis to investigate such large scale Internet

interactions to identify the key properties of emotion transmission

in e-communities and to further our understanding of human

interaction in larger social networks.

Although emotions are typically expressed using a variety of

non-linguistic mechanisms, such as laughing, smiling, vocal

intonation and facial expression, textual communication can be

just as rich and has been augmented by expressive textual

methods, such as emoticons and slang [16]. Taking advantage of

this, sentiment analysis, a research field in computational

linguistics and computer science, has evolved rapidly in the last

ten years in response to a growing recognition of the importance of

emotions in business and the increasing availability of masses of

text in blogs and discussion forums. The development of a number

of algorithms to detect positive and negative sentiment has also

made large-scale online text sentiment research possible, such as

predicting elections by analyzing sentiment in Twitter [17], and

diagnosing trends for happiness in society via blogs [18] and

Facebook status updates [19].

In this paper we discuss the impact of emotional expressions

from Internet users on the vitality of online debates. We focus on

(i) measuring the transfer of emotions between participants and (ii)

the influence of emotions on a thread’s life-span.

Results

Collective effects in emotional discussions
We collected over 4 million comments from three prominent

interactive spaces: blogs, BBC discussion forums and the popular

social news website Digg (for key properties see Table 1). The texts

were processed using sentiment analysis classifiers to predict their

emotional valence (see Figure 1 and Materials and Methods). To

detect affective interactions between discussion participants we

calculated statistics for groups of comments with similar emotion

levels. Every discussion thread (identified by a unique URL) was

analysed separately and was converted into a chain even if a tree

structure was present (see Figure S1). We define an emotional

cluster of size n as a chain of n consecutive messages with the same

sentiment orientation: i.e. negative, positive or neutral, where

before the cluster and after the cluster is a message with a valence

different from the cluster valence (see the upper row in Figure 2

and Figure S2). For comparison we present also shuffled data

received from the same discussions (see the bottom row in

Figure 2). The clusters in the shuffled data are clearly shorter than

the clusters in the original discussion. The reason for this could be

emotional interactions between group members in the original

data. To prove this hypothesis we checked the distribution of

cluster lengths. If affective interactions between group members

were absent then the probability of finding a cluster of length n
among all clusters corresponding to any specific emotion

e~f{1,0,1g (see Materials and Methods for details) would be

described by an independent and identically distributed (i.i.d.)

random process (see the second section in Text S1 of SI) with the

cumulative distribution:

P
(e)
i:i:d: §nð Þ~p(e)n{1 ð1Þ

Here p(e) is the probability of a negative or positive emotion

measured as the number of comments with the valence e divided

by the total number of comments in the considered data (for exact

values see Table 1). Figures 3A and 3B show BBC and Digg data

compared to predictions from an i.i.d. process. The agreement

between the data and Eq. (1) diverges for nw10, and the

frequency of long clusters of the same emotional valence is large

compared to the frequency expected for mutually independent

messages. For example for BBC forums there were 91 negative

clusters of length n~25 while the i.i.d. prediction is n~6; similarly

for Digg there were 57 positive clusters of length n~11 whereas

the i.i.d. prediction is n~2. It follows that there is a tendency for

emotions of the same valence to occur together, suggesting the

presence of attractive affective forces between discussion partici-

pants: posts tend to trigger follow-up posts of the same valence.

To quantify the strength of the interactions between authors of

consecutive posts, consider the conditional probability p(ejne) that

after n comments with the same emotional valence the next

comment will have the same valence. For an i.i.d. process such a

conditional probability is independent from the parameter n since

by definition p(ejne)~p(e) for the i.i.d. process. Figure 3C shows

however that this probability for the original data is an increasing

function of n for nv20. The data reveals the relation

p(eje)vp(ejee)v:::vp(ejne)&p(eje)na ð2Þ

where p(eje) is the conditional probability that two consecutive

messages have the same emotion defined by p(eje)~p(ee)=p(e)
where p(ee) is the joint probability of the pair ee that is measured

Table 1. Datasets properties.

Probability of emotion p(e) Exponent a

N U T SeT p(z) p({) p(0) az a{ a0

BBC 2,474,781 18,045 97,946 20.44 0.19 0.65 0.16 0.38 0.05 0.45

Digg 1,646,153 84,985 129,998 20.16 0.31 0.48 0.21 0.20 0.11 0.37

Blogs 242,057 N/A 1219 0.14 0.35 0.22 0.43 0.23 0.19 0.16

Properties of the three datasets: number of comments N , number of different users giving comments U , number of discussions/threads T , average valence in the
dataset SeT, probability of finding positive, negative or neutral emotion (respectively p(z), p({) and p(0)) and values of exponents a for positive, negative and neutral
clusters (respectively az , a{ and a0). In case of Blogs data it was impossible to quantify the number of different users and note also a low number of comments in this
dataset. Each data set has a different overall average valence – BBC is strongly negative, Digg is mildly negative while Blogs are mildly positive.
doi:10.1371/journal.pone.0022207.t001
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as a number of occurrences of the two consecutive messages with

the same valence e divided by the number all appearing pairs. The

characteristic exponent a represents the strength of the preferential

process leading to the long –range attraction between posts of the

same emotion. When a~0 there is an i.i.d. process. Relation (2)

implies that finding a positive message after seven positive

comments is more likely than after six. It holds true for nv20,

but then saturation follows, with p(ejne) decreasing to zero for

large n (see Figure 3C). Preferential processes are common in

complex systems [20] with positive feedback loop dynamics and

they can be one of sources responsible for the emergence of fat-

tailed distributions, including power-law scaling [21,22]. Using the

relation p(ejne)&p(eje)na gives an analytical approximation to the

cluster distribution (see the second section in Text S1 of SI).

P(e)
a §nð Þ&p(eje)n{1 (n{1)!½ �a ð3Þ

This solution (3) is presented in Figure 3 (solid lines in Figures 3A and

3B). The fit with the data is far better than for the i.i.d., especially for

large n. The differences between the analytical assumption and the

real data come from the artificial extension of the scaling relation

p(ejne), for large n (see the second section in Text S1 of SI).

Figure 2. An example of a discussion in the ‘‘Eastern religion’’ BBC forum in September 2005. The original discussion, consisting of 22
posts is shown in the upper row. Each square represents one post: red, blue or black squares indicate that the comment was classified as,
respectively, positive, negative or neutral (objective). The bottom row presents shuffled data, i.e., the comments were arranged in a random order.
Note the difference between the length of clusters in the original and in the shuffled data.
doi:10.1371/journal.pone.0022207.g002

Figure 1. Schematic plot of the process of document classification. A sample from the set of documents is passed to human experts who
read the content and manually classify it. The algorithm extracts the characteristics of each class by analyzing the provided documents, i.e., ‘‘learns by
example’’, and stores this knowledge. As result each document is classified with the emotional value –1, 0 or +1 describing its emotional valence.
doi:10.1371/journal.pone.0022207.g001
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Values of the exponent a for different communities and different

cluster types are presented in Figure 3D as a function of the

probability p(e) derived from the frequency of a given emotion. A

good fit is a~0:75 exp½{4p(e)� although power-law and linear

approximations also work well, comparing the values of R2 (see

Figure description). This behaviour means that for more frequent

emotions the chance to attach a consecutive message with the

same valence grows slower with n than for less frequent ones.

Figure 3 confirms that the occurrence of emotional posts cannot

be described by the i.i.d. process and there are specific correlations

between emotions in consecutive posts. These correlations result

from emotional interactions between discussion participants via

their messages. The interactions possess an attractive character

because clusters of posts with the same emotional valence are

longer than clusters from random distributions. The emotion

expressed by a participant depends on the emotions in previous

posts: he/she tends to express emotions that have been recently

used in the discussion. This observation is consistent with general

ideas regarding functions of emotions (e.g. [23]). Thus, positive

emotions in interactive contexts could be interpreted as facilitating

affiliative responses. With negative emotions the situation is more

complicated as different emotional states, such as sadness and

anger, would tend to elicit different specific responses in others.

Anger, whether directly targeted at interactants or at the topic of

the discussion, might elicit anger, sadness in contrast might elicit

empathic responses that also expresses sadness. Given that current

sentiment analysis algorithms cannot distinguish between such

discrete states, a large-scale quantitative analysis of such

Figure 3. Emotional clustering in Digg, BBC and Blog data. (A–B) Cumulative cluster distributions for the BBC (A) and Digg data (B). Points
correspond to the collected data (circles - positive messages, triangles - negative messages). Dotted lines are the i.i.d. process, and solid lines derive
from Eq (3). It is clear that messages are mutually dependent and using the model with preferential cluster growth leads to a better fit with collected
data. (C) The conditional probability of the next comment occurring having the same emotion for BBC (open symbols) data. Circles come from
positive messages and triangles from negative messages. We observe that p(ejne)~p(eje)na(solid lines) in the first ten where there is the best
statistics available (the largest number of comments) of the gathered data. Filled symbols indicate the shuffled data and dotted lines show the values
of emotional probabilities p(z) and p({) for BBC data (see Table 1). Note that pi:i:d:(ejne)~p(e) fits well to shuffled data for small values of n. (D) The
preferential exponent a decays with emotion frequency p(e) although no exact relation can be received from the collected data. The solid line follows
the relation a~B exp½{bp(e)� with B~0:75+0:14 and b~4:0+0:5 while dotted and dashed curves are, respectively, power-law and linear fits. The
value of R2 for exponential fit is 0.96, while for power-law and linear it is 0.94 and 0.90 respectively.
doi:10.1371/journal.pone.0022207.g003
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hypotheses is, at present, not possible. However, interestingly

enough the empirical data we present here might just suggest that

it does not matter which discrete negative emotions are expressed -

negative statements tend to follow negative statements.

Life-spans of communities
Do community emotions evolve over time? This phenomenon

was studied quantitatively for BBC forums as follows. Threads of

the same size were grouped together and a moving average of the

emotion type of the last 10 comments was calculated for each

point. As seen in Figure 4A, shorter threads tend to start from a

lower (i.e., less negative) emotional level than longer ones. On the

other hand threads end with a similar mean emotional valence

value regardless of their lengths: the last point of each data series in

4A (circles, squares, triangles and diamonds) is at almost the same

level, about 20.42. This phenomenon is echoed in Figure 4B

where the average emotional valence of the first 10 comments

minus the average emotional valence of the last 10 comments is

plotted, showing that longer threads have larger changes in

emotional valence. Figure 4C also suggests that the initial

emotional content (whether positive or negative) may be used as

an indicator of the expected length of a thread: low absolute

average emotion valences lead to shorter discussions. A possible

heuristic explanation is that the first few posts in a thread may give

it the potential (emotional fuel) to propel further discussion. Once

the emotions driving the discussion dry out, the thread is no longer

of interest to its participants and it may die. For threads possessing

higher initial levels of emotion it takes more comments to resolve

the emotional issue, resulting in longer discussions (cf. results for

the discussions at BBC forum in [24]).

Discussion

Understanding the nature of interactions in e-communities is

useful for predicting the future shape of society because of the

increasing importance of the Internet in communication [6–9].

Since this medium offers both anonymity and the possibility to

contact with many others it is important to understand the impact

of collective effects within online discussions. Phenomena such as

an online disinhibition effect [25] might impact the intensity of

emotions expressed which in turn might create differences in the

contagion from and reactions to statements made in interaction.

Here, on the basis of automatic sentiment detection methods

applied to huge datasets we have shown that Internet users’

messages correlate at the simplest emotional level: positive,

negative or neutral messages tend to provoke similar responses.

This result agrees with observations of singular events correspond-

ing to propagations of emotions in bipartite networks of blogs [8].

Our simple approach demonstrates that the existence of many

groups of consecutive messages (i.e., clusters) with the same

emotional valence can be explained by preferential processes for

cluster growth. The collective character of expressed emotions

occurs in several different types of e-community. It was observed

for BBC forums and Digg, both communities where negative

emotions dominate, and also for the Blogs06 blogs where most

comments are positive. This may seem to contradict a previous

analysis of online social networks [9] that found negative

interactions to be different from positive interactions. However,

the links and network motifs in the e-community studied in [9]

were not expressing the emotions of participants but relationships

like friendship, communication, enmity or punishment.

We hypothesise that the strength of emotional interactions can

be indirectly measured by the parameter a expressing the

influence of the most recent emotional cluster on the probability

that the next post has the same emotion (Eq. (2)). Table 1 shows

that this strength depends not only on the kind of e-community but

also on the value of the emotional valence. Surprisingly, stronger

collective behavior, corresponding to larger values of a, exists

when a given emotion is less frequent.

We are aware of the fact that both our method of data collection

and the results of the sentiment classifiers suffer from various

errors that can be only partly estimated (see Materials and

Methods Section and Ref [26]).These errors, however, are unlikely

to lead to a spurious occurrence of the observed clustering effects.

Since the classifier treats every post independently from the

previous one, there is no memory effect that could be introduced

by classifier actions. Assuming that classifier errors are random, it

is more likely that a cluster is broken by a random error than that a

cluster is formed by a series of errors. Hence the raw cluster

statistics are likely to underestimate the strength of the clustering

phenomenon existing in the studied communities

We also give evidence that in BBC forums the initial emotional

level of a discussion fuels its continuation: when this fuel is

exhausted a discussion is likely to end (Figures 4A, B). This is

because higher levels of emotions in the first ten comments in a

thread lead to longer discussions (Figure 4C). Although this

behavior agrees with observations concerning political discussions

in Polish Internet forums [7] where the growth of discussions was

dependent on the degree of controversy of the subject and the intensity of personal

conflict between the participants [7] the effect was not present in the

Digg and Blogs06 data so the type of e-community matters for this

phenomenon.

Our analysis provides a better understanding of affective

interactions between large numbers of people and is an important

step towards the development of models of collective emotions in

cyberspace [8,24,27–31]. By involving collective phenomena,

these patterns go beyond the complexity of the nested intra- and

inter-individual feedback loops in face-to-face communication

[32]. In the future software tools [33–34] may be designed to

support e-communities by measuring the emotional level of

discussions. Since negative emotions not only prolong discussions

but can also damage cooperation between community members,

emotion level information may help participants to keep a

community alive.

Materials and Methods

Data sets
The BBC web site had a number of publicly-open moderated

Message Boards covering a wide variety of topics that allow

registered users to start their own discussions and post comments

on existing discussions. Our data included discussions posted on

the Religion and Ethics and World/UK News message boards

starting from the launch of the website (July 2005 and June 2005

respectively) until June 2009. The Blogs dataset is a subset of the

Blogs06 [35] collection of blog posts from 06/12/2005 to 21/02/

2006. Only posts attracting more than 100 comments were

extracted, as these seemed to initialize non-trivial discussions. The

Digg dataset comprises a full crawl of digg.com, one of the most

popular social news websites. The data spans February to April

2009 and consists of all the stories, comments and users that

contributed to the site during this period [36].

Algorithms
Sentiment analysis algorithms typically operate in three stages:

(a) separate objective from subjective texts, (b) predict the polarity

of the subjective texts, and (c) detect the sentiment target [36]. A

variety of methods are used, including machine learning based

Collective Emotions Online
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upon the words used in each text, summarized in vector form [37],

and lexical approaches that start with a dictionary of known

sentiment-bearing terms and apply linguistically-derived heuristics

to predict polarity from their occurrence and contexts [38]. Our

algorithm used supervised, machine-learning principles [39]. This

is an efficient way to generate a classifier when there is a large

amount of human-coded documents because the algorithm can

use these to learn the features of documents that typically associate

with the different categories. We implemented an hierarchical

extension of a standard Language Model (LM) classifier [39]. LM

classifiers estimate the probability that a document belongs to all of

the available classes and select the one with the highest probability

as the final prediction. In our hierarchical extension a document is

initially classified by the algorithm as objective or subjective and in

the latter case a second-stage classification determines its polarity,

either positive or negative. We used a manually annotated subset

of approximately 34,000 documents from the Blogs06 data set as a

training corpus. After training, the algorithm would have learned

which words typically occur in positive, negative and objective

documents. For instance, it can be expected to learn that

documents typically containing ‘‘love’’, ‘‘hate’’ or ‘‘disagree’’ are

likely to be subjective and that ‘‘love’’ and ‘‘hate’’ are good

predictors for the positive and negative categories respectively.

Because the distribution of documents per category is uneven, the

probability thresholds for both classification tasks were optimized

on a small subset. The optimized classifier (described fully

elsewhere [40]) has an accuracy of 73.73% for subjectivity

detection and 80.92% for polarity detection on a humanly

annotated BBC subset. A limitation of LM classifiers in contrast

to linguistic algorithms is that they are context-insensitive and can

make incorrect predictions when the normal meaning of individual

words is changed by their context. The most common case is

probably negations: a linguistic classifier would probably identify

‘‘not happy’’ as negative because ‘‘not’’ modifies the meaning of

Figure 4. Time dependence of emotions in BBC forum threads. (A) Average emotion valence in the thread (moving average of the previous
10 messages in the thread). Four groups of threads of lengths 20, 40, 60 and 80 are represented by different symbols (respectively circles, squares,
triangles and diamonds). Shorter threads start from emotional levels closer to zero. (B), Emotional level (valence) at the beginning of a thread minus
the emotional level at the end as a function of thread length (grey symbols). Black triangles display binned data. Longer threads use more emotional
‘fuel’ over time. (C), Average length of the thread as a function of the absolute value of the average emotion valence of the first 10 comments.
Emotional thread starts, whether positive or negative, usually lead to longer discussions. Error bars indicate standard deviations.
doi:10.1371/journal.pone.0022207.g004
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‘‘happy’’ whereas a simple LM classifier is likely to ignore ‘‘not’’

altogether as a word that is neutral on its own and identify

‘‘happy’’ as a positive word, making this the polarity prediction.

With a large training set, however, LM classifiers can learn the

typical polarity of enough words to outperform the linguistic

approach in some cases, including the data used here [40]. This

may be partly due to the use of sentences and argument structures

in our data set that are too complex for simple lexical rules and

tend to neutralise their effectiveness. Note that other researchers

have proposed many alternative LM variations to the fairly

general approach used here. Our specific LM implementation is

likely to vary in overall performance with these but the

classifications should not change in a systematic way because the

same data features are used as the input in all cases.

Valence
There is converging evidence that (hedonic) valence is at the

center of emotion experience. This has been demonstrated using a

variety of methods [41]. In simple terms, the relevant aspect of any

object that elicits emotions is whether we like it or not, or whether

it is good for us or not [42]. This distinction is evident from

measures of approach/avoidance that clearly indicate that valence

is one of the most important determinants of behavior from simple

life-forms to humans [43]. Thus, while humans often report affect

in terms of basic emotions, such as ‘‘happiness’’, ‘‘anger’’, or

‘‘sadness’’, the degree to which events or objects are evaluated as

positive or negative that affects subjective experience (feeling),

physiological processes in the periphery and the brain [44],

expressive behavior, and action readiness [23]. For the purpose of

the present model we shall identify valence as a single dimension

that is scaled from 21 (negative) through 0 (neutral), to +1

(positive). There is a debate to whether it is possible that positive

and negative emotions can co-exist [45] but for practical purposes

a single dimension represents emotions well. Similarly, a second

(arousal) and occasionally a third dimension (e.g., dominance or

power) are considered in dimensional models (see [46]). However,

valence explains most of the variance from these dimensions [47].

Thus, for simplicity in the present analysis we use only the primal

dimension of affect – valence.

Supporting Information

Figure S1 The difference between the actual tree structure (A)

present in the BBC and Digg datasets as compared to the

chronological layout of the posts (B). The numbers indicate the

order of messages (1 being the first, 10 being the last) while arrows

indicate that a post was given in reply to another one (e.g. post 9 is

the response to post 7).

(TIF)

Figure S2 In case of the i.i.d. random process to obtain the

probability of finding a cluster of exactly n consecutive emotional

values (here n~5 and e~{1) one has to take into account two

factors: the length of the cluster itself and the issue that on the both

borders there should be posts with emotional value other than

inside the cluster. Thus in the presented case the probability is

proportional to 1{p({)½ �p({)5 1{p({)½ �.
(TIF)

Text S1 Text S1 includes a detailed derivation of the analytical

approximation of cluster length distribution as well as comparison

of this approach with the i.i.d. random process, Markov chain and

k{1ð ÞMarkov model. It also contains the analysis of the influence

of the thread length on the emotional cluster distributions and

discussion on the number of unique users in emotional clusters.

(PDF)
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