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Abstract: This paper develops a method for simultaneous estimation 
of This paper develops a method for simultaneous estimation of 
density functions for a collection of populations of protein backbone 
angle pairs using a data-driven, shared basis that is constructed by 
bivariate spline functions defined on a triangulation of the bivariate 
domain. The circular nature of angular data is taken into account by 
imposing appropriate smoothness constraints across boundaries of the 
triangles. Maximum penalized likelihood is used to fit the model and an 
alternating blockwise Newton-type algorithm is developed for 
computation. A simulation study shows that the collective estimation 
approach is statistically more efficient than estimating the densities 
individually. The proposed method was used to estimate neighbor-
dependent distributions of protein backbone dihedral angles (i.e., 
Ramachandran distributions). The estimated distributions were applied 
to protein loop modeling, one of the most challenging open problems 
in protein structure prediction, by feeding them into an angular-
sampling-based loop structure prediction framework. Our estimated 
distributions compared favorably to the Ramachandran distributions 
estimated by fitting a hierarchical Dirichlet process model; and in 
particular, our distributions showed significant improvements on the 
hard cases where existing methods do not work well. 
 
Keywords: Bivariate splines, Log-spline density estimation, Protein 
structure, Ramachandran distribution, Roughness penalty, 
Triangulations 
 

1 Introduction 
 

An important topic in the field of structural biology is the 
determination of the three-dimensional (3D) structure of a protein. A 
protein is a linear chain of amino acids, each of which is composed of 
an amino group (−NH2), a central carbon atom (Cα), a carboxyl group 
(−COOH), and a side-chain group that is attached to Cα and is specific 
to each amino acid. When amino acids are chained into a peptide, the 
carboxyl group of the previous amino acid reacts with the amino group 
of the following one, releases a water molecule and forms a peptide 
bond. In a protein, each amino acid is called a residue and the chain of 
carbon, nitrogen and oxygen atoms is referred to as the backbone. 
While the side-chain structures determine local structures and 
interactions of the amino acids of the protein, the backbone structure 
describes the overall shape of the protein and is the focus of much 
research. 
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The backbone structure can be either specified by the 3D 
coordinates of the backbone atoms or the backbone angles when the 
peptide bonds are assumed to have the same length. Although most 
problems in the protein structure field depend on coordinate-based 
methods, backbone-angle-based methods have provided an attractive 
alternative approach in various protein structure-related problems, 
such as protein structure prediction (Simons et al., 1999; Hamelryck 
et al., 2006; Boomsma et al., 2008; Zhao et al., 2010), protein loop 
modeling (Ting et al., 2010), model quality assessment (Benkert et al., 
2008; Gao et al., 2009; Archie and Karplus, 2009), prediction server 
ranking (Qiu et al., 2008; Maadooliat et al., 2013a), protein structure 
alignment (Miao et al., 2008; Challis and Schmidler, 2012), free 
energy function learning (Mu et al., 2005; Altis et al., 2008; Riccardi et 
al., 2009), and molecular dynamics simulation (Altis et al., 2007). In 
this paper, we focus on statistical modeling of the bivariate distribution 
of protein backbone angles. 
 

There are two typical ways to represent backbone angles of 
proteins, i.e., the (ϕ, ψ) representation and the (θ, τ) representation. 
The (ϕ, ψ) representation is defined by dihedral angles along the 
chain of all backbone atoms, whereas the (θ, τ) representation is 
defined by planar and torsion angles along the Cα trace; see Figure 1 
and also Oldfield and Hubbard (1994). Shortly after Kendrew et al. 
(1960) solved the first protein structure at atomic resolution, 
Ramachandran et al. (1963) studied the corresponding angular 
distribution. Since then, it has been found that different amino acids 
and secondary structures have different distributions in both the (ϕ, ψ) 
space (Ramachandran et al., 1963) and the (θ, τ) space (Hamelryck et 
al., 2006). 
 

To understand the protein angular distributions, the circular 
nature of the angular data (i.e., −180° and 180° corresponds to the 
same configuration) demands non-traditional statistical methods. 
Parametric families for angular data have been proposed in Mardia 
(1975), Rivest (1988), and Singh et al. (2002), but they usually do not 
fit the actual protein data well (Mardia et al., 2007). There have been 
sufficient interests in developing more flexible models for bivariate 
protein angular data sets. In particular, Pertsemlidis et al. (2005) used 
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a finite number of Fourier basis functions. Mardia et al. (2007) 
considered a finite mixture of bivariate von Mises distributions. 
Built on the work by Dahl et al. (2008), Lennox et al. (2009) 
developed a nonparametric Bayesian model consisting of a Dirichlet 
process mixture of bivariate von Mises distributions. These studies 
have provided excellent starting points for applying sophisticated 
statistical methods on protein structure related scientific problems. 
 

The purpose of this paper is to develop a flexible density 
estimation method for collectively estimating multiple bivariate angular 
densities. By “collective estimation”, we mean putting data from 
multiple distributions into one model and estimating all distributions 
together. We assume that multiple probability densities have some 
common features so that the log density functions can be represented 
using a common set of basis functions while each log density has its 
own coefficient vector in the basis expansion. The basis shared by the 
collection of density functions is not pre-specified but rather estimated 
as a low-dimensional manifold of a large space spanned by a rich 
basis. The functions in the rich basis are modeled as bivariate splines 
on a triangulation and roughness penalties are introduced to regularize 
the estimated bivariate splines. The circular nature of the angular data 
is respected by imposing appropriate smoothness constraints. 
 

Though there is a large literature on nonparametric density 
estimation (Silverman, 1986; Stone, 1990; Scott, 1992; Gu, 1993; 
Hansen et al., 1998), existing methods have focused on estimation of 
a single density. Compared with estimating each density individually, 
the proposed collective estimation approach has several advantages. 
Firstly, the collective estimation approach allows pooling data and 
borrowing strength across distributions to achieve better estimation 
efficiency. Secondly, by using a common basis, the dimensionality of 
the parameter space for characterizing all distributions is significantly 
reduced. Furthermore, each estimated density has a concise 
representation using the coefficients of the basis expansion and these 
coefficients can be used for visualization, clustering, and classification 
purposes. Finally, this collective density estimation approach likely 
has unique advantages for protein angles due to the physical 
constraints on conformation. The proposed method is most useful in 
estimating multiple densities when the sample sizes are small. We 
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shall demonstrate using a simulation study that our collective 
estimation approach can substantially improve estimation efficiency 
over a non-collective estimation approach using the kernel density 
estimators. 
 

Ramachandran plot (Ramachandran and Sasisekharan, 1968) is 
a scatter plot commonly used to visualize the backbone angle pairs, 
(ϕ, ψ). The estimated probability density function of the 
Ramachandran plot is referred to as the Ramachandran distribution, 
which has become a fundamental concept in various protein structure-
related problems, such as structural model checking (Laskowski et al., 
1993; Hooft et al., 1997; Davis et al., 2004), protein structure 
prediction (Rohl et al., 2004; Zhao et al., 2010), side chain rotamer 
library (Bhuyan and Gao, 2011; Shapovalov and Dunbrack, 2011), and 
empirical energy functions (Buck et al., 2006). Ramachandran distri- 
butions are known to be affected by the secondary structure 
(Hovmöller et al., 2002; Jha et al., 2005) and the amino acid type 
(Berkholz et al., 2009) of the residue from which ϕ and ψ angles are 
calculated, as well as the neighboring amino acids (Keskin et al., 
2004; Lennox et al., 2009; Ting et al., 2010). The neighbor-dependent 
Ramachandran distributions can reveal detailed relationships between 
protein sequences and structures, and provide significantly more 
accurate distributions to the aforementioned structure-related 
problems. However, density estimation of the neighbor-dependent 
Ramachandran distributions is difficult because when we focus on a 
specific amino acid while conditioning on the neighboring amino acids, 
the data are fractionated into groups each of which may contain only a 
small number of data points. This issue becomes more severe when 
the distributions are further conditioned on different secondary 
structures, i.e., α-helices, β-strands, and loops. By pooling the 
fractionated data together, our method can overcome the data sparsity 
problem and therefore improves the accuracy of density estimation. 
More accurate estimation of the probability density functions for the 
Ramachandran distributions can help improve protein structure 
prediction (Ting et al., 2010). 
 

We applied the proposed collective density estimation method to 
estimate the neighbor-dependent Ramachandran distributions of 
protein loop regions and used the estimated distributions for angular-
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sampling-based protein loop modeling. Protein loop modeling remains 
as one of the most challenging problems in protein structure 
prediction, and is a key step in comparative modeling, protein design 
and structure refinement problems (Mandell et al., 2009; Stein and 
Kortemme, 2013; Ting et al., 2010). Although the flexible nature of 
loop structures makes modeling backbone angular distributions for 
protein loops much more difficult than that for regular secondary 
structures including α-helices and β-strands, our collective density 
estimation approach has shown promises. On a benchmark data set of 
reconstructing short loops, we compared our method with the state-of-
art angular-sampling-based protein loop modeling procedures and 
observed competitive performance in terms of the ability to sample 
high-quality loops and the ability to select good loops by using 
the energy function. 
 

The rest of the paper is organized as follows. Section 2 presents 
the core of the proposed method and Section 3 provides 
implementation details. Section 4 reports simulation results to 
illustrate the proposed collective estimation approach and to compare 
it with a non-collective estimation approach. Application to neighbor-
dependent Ramachandran distributions of loop regions and sampling-
based protein loop modeling is given in Section 5. Section 6 concludes 
the paper and Appendices collect some technical details. 
 

2 Collective estimation of multiple probability 

density functions 
 

This section presents the main components of the proposed 
collective density estimation approach, including the probabilistic 
model, model identifiability, and penalized likelihood estimation. 
Throughout the rest of this paper, the Greek letters ϕ, ψ, θ, τ will be 
used in mathematical equations. Such use of notation should not be 
confused with the names of protain backbone angles, as can be easily 
seen from the context. 
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2.1 A model for multiple density functions using a 

shared basis 
 

Consider a collection of m probability distributions with density 
functions 𝑓𝑖 , 𝑖 = 1, ⋯ , 𝑚. We have data observed from each distribution 
and we would like to estimate the density functions together. The 
rationale of this collective density estimation approach is the 
assumption that the density functions in the collection can be 
represented by a shared basis. 
 

Assume that, up to a constant, each log density function can be 
represented by a linear combination of a common set of basis 
functions 𝜙𝑘(𝑥), 𝑘 = 1, ⋯ , 𝐾, and each has its own set of coefficients. 
Specifically, we assume that log{𝑓𝑖(𝑥)} = 𝜔𝑖(𝑥) − 𝑐𝑖 with  𝜔𝑖(𝑥) = ∑ 𝜙𝑘𝐾

𝑘=1 (𝑥)𝛼𝑖𝑘,     𝑖 = 1, ⋯ , 𝑚, 
(1) 

and 𝑐𝑖 = log{∫ exp 𝜔𝑖(𝑥)𝑑𝑥} is a normalizing constant to ensure that the 

integral of the density function is 1. Equivalently, the density functions 
can be written as 𝑓𝑖(𝑥) = exp𝜔𝑖(𝑥)∫ exp 𝜔𝑖  (𝑥)𝑑𝑥 = exp {∑ 𝜙𝑘(𝑥)𝛼𝑖𝑘 − 𝑐𝑖𝐾

𝑘=1 }, 
(2) 

For identifiability, we require that 1, 𝜙𝑘, 𝑘 = 1, … , 𝐾, are linearly 
independent. We would like K to be a small number so that the 
number of parameters to be estimated is kept at a manageable scale 
even when we estimate a large number of density functions (i.e., m is 
large). 

If the basis functions {𝜙𝑘(𝑥), 𝑘 = 1, ⋯ , 𝐾} were given, the density 
functions would belong to an exponential family of order K. However, 
in our setting the basis functions are not pre-specified and need to be 
determined by the data. To this end, we suppose that these basis 
functions fall in a low-dimensional subspace of a function space 
spanned by a rich family of fixed basis functions, {𝑏𝑙(𝑥), 𝑙 = 1, ⋯ , 𝐿}(𝐿 ≫ 𝐾), such that  
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 𝜙𝑘(𝑥) = ∑ 𝑏𝑙(𝑥)𝜃𝑙𝑘𝐿
𝑙=1 ,   𝑘 = 1 … , 𝐾. 

(3) 
For identifiability, we require that 1, 𝑏𝑙, 𝑙 = 1, … , 𝐿, are linearly 
independent. A large enough L ensures the needed flexibility in 
representing the unknown densities. For univariate densities, the 
fixed basis can be the monomials, B-splines, or the Fourier basis. 
Bivariate splines can be used as the fixed basis functions for bivariate 
densities; the details, including various complications for the specific 
application we consider, will be given in Section 3. 
 

To simplify the presentation, we now introduce some vectors 
and matrices to denote the quantities of interest. Denote ϕ(x) = (ϕ1(x), 

· · · , ϕK(x))⊤, αi = (αi1, · · · , αiK)⊤, b(x) = (b1(x), · · · , bL(x))⊤, θk = (θ1k, · · · , θLk)⊤, and Θ = (θ1, · · · ,  θK). Then, from (1) and (3) we can rewrite ωi(x) 
in the vector-matrix form as 
 𝜔𝑖(𝑥) = 𝜙(𝑥)⊤𝜶𝑖 = 𝐛𝑥⊤Θα𝑖 ,   𝑖 = 1, … , 𝑚.  

(4) 
 
We also denote A = (α1, . . . ,αm)⊤. The unknown parameters can then be 
collectively written as the pair (Θ,A). There is an identifiability issue 
caused by the non-uniqueness of the parametrization of (Θ,A). This 
issue can be resolved by introducing some restrictions on the 
parameterization; see Appendix A. 
 

We could have used the fixed basis {𝑏𝑙(𝑥), 𝑙 =  1,· · · , 𝐿} in (1) 
and (2), however that would be either too restrictive (if L is small) or 
incur a large number of parameters (if L is large). Alternatively, if we 
were to model the individual density functions separately using the 
fixed basis {𝑏𝑙(𝑥), 𝑙 =  1,· · · , 𝐿}, we would write  
 𝜔𝑖(𝑥) =  𝒃(𝑥)⊤𝜓𝑖 ,    𝑖 =  1, . . . , 𝑚.  

(5) 
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Let Ψ = (𝜓1, . . . , 𝜓𝑚)⊤ be the m × L matrix of coefficients from the basis 
expansions given in (5). Comparing (4) and (5), we obtain that Ψ = 𝑨Θ⊤, which is a rank-K matrix. Thus, the collective modeling approach 
introduces a low-rank structure to the coefficient matrix in the basis 
expansion of the log densities. This dimensionality reduction allows us 
to significantly reduce the number of parameters to be estimated and 
thus gain estimation efficiency. 
 

2.2 Penalized likelihood estimation 
 

Suppose we have available data 𝑥𝑖 𝑗, 𝑗 =  1,· · · , 𝑛𝑖, from the ith 

distribution, 𝑖 =  1 . . . , 𝑚. The log likelihood is 
 ℓ(Θ, Α) = ∑ ∑ {𝜔𝑖(𝑥𝑖𝑗) − log ∫ exp 𝜔𝑖(𝑥) 𝑑𝑥} ,𝑛𝑖

𝑗=1
𝑚

𝑖=1  

(6) 
 
where 𝜔𝑖(𝑥) are defined in (3). It is concave in αi when other 
parameters are fixed and also concave in θk when other parameters 
are fixed. Applying the roughness penalty approach of function 
estimation (Green and Silverman, 1994), we estimate the model 
parameters by minimizing the following penalized likelihood criterion 
 −2ℓ(𝚯, 𝚨) + 𝜆 ∑ 𝐏𝐄𝐍(𝜙𝑘)𝐾

𝑘=1  

(7) 
 
where PEN(ϕk) is a roughness penalty function that regularizes the 
estimated basis function ϕk to ensure that it is a smooth function, and λ > 0 is a penalty parameter. The penalty function can usually be 
written as a quadratic form 
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∑ 𝐏𝐄𝐍(𝜙𝑘) = ∑ 𝜃𝑘⊤𝑹𝜃𝑘 = tr{𝚯⊤𝑹𝚯}𝐾
𝑖=𝑘

𝐾
𝑘=1 . 

(8) 

For univariate density estimation, noticing that 𝜙𝑘(𝑥)  =  𝐛(𝑥)⊤ 𝜃𝑘, we 

have that 𝐑 =  ∫ �̈� (𝑥)�̈�(𝑥)⊤ 𝑑𝑥 with �̈�(𝑡)  =  (𝑏1′′ (𝑡), . . . , 𝑏𝐿′′ (𝑡))⊤  if we 
use the usual squared-second-derivative penalty PEN(𝜙𝑘)  = ∫{𝜙𝑘′′(𝑥)}2𝑑𝑥. The form of R for bivariate density estimation is given in 
Section 3. 
 

We use an alternating blockwise Newton-Raphson algorithm to 
minimize the penalized log likelihood. Our algorithm cycles through 
updating of  𝛼𝑖 , 𝑖 =  1, . . . , 𝑚, and 𝜃𝑘 , 𝑘 =  1, . . . , 𝐾, until convergence. 
Following the usual step-halving strategy for the Newton-Raphson 
iteration, the updating formulas are 
 𝛼𝑖𝑛𝑒𝑤 = 𝛼𝑖𝑜𝑙𝑑 − 𝜏 [ 𝜕2𝜕𝛼𝑖𝜕𝛼𝑖⊤ {ℓ(Θ, Α)}]−1 [ 𝜕𝜕𝛼𝑖 {ℓ(Θ, Α)}] │Θ=Θ𝑜𝑙𝑑,Α=Α𝑜𝑙𝑑 

(9) 
and 
 𝛼𝑘𝑛𝑒𝑤 = 𝛼𝑘𝑜𝑙𝑑 − 𝜏 [ 𝜕2𝜕𝛼𝑘𝜕𝛼𝑘⊤ {ℓ(Θ, Α)} − 𝜆𝑅]−1 [ 𝜕𝜕𝛼𝑘 {ℓ(Θ, Α)}] │Θ=Θ𝑜𝑙𝑑,Α=Α𝑜𝑙𝑑 

(10) 
 
where τ is taken as the first one from the sequence  {(1/2)𝑡, 𝑡 =  0, 1, . . . } such that the objective function in (7) is reduced. 
The expressions of the gradient and Hessian of the log likelihood are 
given in Appendix B. The initial values of the Newton-Raphson iteration 
can be obtained by projecting some raw density estimates such as 
KDE to the model space of (2). 
 

We select the penalty parameter by minimizing the AIC (Akaike, 
1973): AIC(𝜆) = −2ℓ(Θ̂, Α̂) + 2df, 

(11) 
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where ℓ(Θ,A) is the log likelihood defined in (6), and the degrees of 
freedom df is defined as 
 df = ∑ trace𝐾

𝑘=1 {[∑ 𝑛𝑖𝛼𝑖𝑘2  var𝑖{b(Χ)} + 𝜆𝐑𝑚
𝑖=1 ]−1 [∑ 𝑛𝑖𝛼𝑖𝑘2  var𝑖{𝐛(Χ)}𝑚

𝑖=1 }]}. 
(12) 

 
The parameters in these formulas are replaced by their estimated 
values. The AIC can be derived as an approximation to the leave-one-
out cross-validation (O’Sullivan, 1988; Gu, 2002). 
 

2.3 The number of basis functions 
 

We identify the number of basis functions, K, using the scree 
plot as typically used in principal component analysis (Jolliffe, 2002). 
Using the fit from an initial model with a large K (i.e., 𝐾 =  min{𝑚, 𝐿}), 
we plot the sum of squares of the component coefficients as the 
function of the component index, that is, ∑𝑖 𝛼𝑖𝑘2   vs 𝑘, and find the 
“elbow” that locates a suitable value of K. 
 

3 Implementation details for bivariate density 

estimation 
 

The neighbor-dependent Ramachandran distributions 
encountered in our application are bivariate distributions. This section 
discusses details for implementing the proposed method for this 
bivariate case, including construction of the fixed basis using bivariate 
splines, imposition of various constraints on the basis functions, and 
formation of the roughness penalty. 
 

3.1 Triangulation and bivariate splines 
 

We assume that the densities are defined on a polygonal set Ω ⊂  ℝ2. To construct a suitable fixed basis {𝑏𝑙(𝑥), 𝑙 =  1, . . . , 𝐿} to be 
used in (3), we apply bivariate splines on a triangulation (Lai and 
Schumaker, 2007). A triangulation of Ω partitions the domain into 
triangles; see Figure 3 for some examples. A bivariate spline is a 
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piecewise bivariate polynomial (i.e., being a polynomial on each 
triangle) with the polynomial pieces joining together smoothly. Unlike 
for univariate splines where B-splines are available and easy to 
compute, constructing a locally supported basis for bivariate splines is 
complicated. We thus take a different strategy: we first represent 
bivariate polynomials on each triangle in the Bernstein-Bézier form (B-
form), and then join together the polynomials on adjacent triangles by 
imposing smoothness constraints across the edges. As shown 
in Lai and Schumaker (2007), the smoothness constraints can be 
written as a linear system of equations on the coefficients of the B-
form representation. To take into account the circular nature 
of the angular data, we need to put identical triangle edges at the 
angles of −180° and 180° and impose smoothness constraints across 
these edges. In next subsection, we show how to construct a basis 
under these constraints, along with the identifiability constraint 
mentioned earlier. 
 

3.2 Construction of the fixed basis functions to satisfy 

constraints 
 

Let 𝔾0  =  {�̃�(𝑥)⊤ �̃�} be an L0-dimensional linear space spanned 

by the basis �̃�(𝑥). Let 𝔾 = {�̃�(𝑥)⊤ �̃�, 𝐇 𝛽 =  𝟎} be the L-dimensional 

linear subspace of 𝔾0 obtained by imposing the constraints 𝐇 �̃� = 0 on 
coefficients of the basis expansion, where H is a given (𝐿0  −  𝐿)  × 𝐿0 
matrix. In our application, 𝔾0 is the space of piecewise bivariate 
polynomials on a triangulation and is easy to construct, and 𝔾 is the 
space of splines with smoothness constraints written in the form of a 
set of linear equations. Consider the QR decomposition 
 

𝐇⊤ = 𝐐𝐿0 × 𝐿0 [ 𝐑(𝐿0 − 𝐿) − 𝐿 × (𝐿0 − 𝐿)𝟎L × (L0 − L) ] = [ 𝐐1𝐿0 × (𝐿0 − 𝐿) ⋮ 𝐐2𝐿0 × 𝐿] [𝐑 𝟎], 
 
where Q is an orthogonal matrix and R is an upper triangular matrix. 

Then 𝛽 =  𝑸2𝛽 for an unconstrained β will satisfy the constraints 𝐇�̃� =0. In fact,  
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𝐇�̃� = [𝐑⊤𝟎] [𝐐1⊤𝐐2⊤] 𝐐2𝛽 = [𝐑⊤𝟎] [𝟎 𝐈 ] 𝛽 = 𝟎. 

 
It follows that 𝐛(𝑥)  =  𝑸2⊤�̃�(𝑥) is a desired basis for 𝔾. 
 

The method in the previous paragraph can also be used to 
construct a fixed basis 𝑏1(𝑥), . . . ,  𝑏𝐿(𝑥) such that 1, 𝑏1(𝑥), . . . , 𝑏𝐿(𝑥) are 
linearly independent, required by identifiability (Section 2.1). To be 
more specific, assume we start with a basis �̃� (𝑥)  = (�̃�1(𝑥), . . . , . �̃�𝐿0  (𝑥))⊤ but it is not linearly independent with the constant 

function 1. There is a vector β0 such that 1 =  �̃�(𝑥)⊤𝛽0. Let h0 be a 
vector such that 𝐡0⊤ 𝛽0  ≠  0. Applying the construction method, we can 

obtain a basis b(x) for the linear space 𝔾 =  {�̃�(𝑥)⊤𝛽,  𝐡0⊤ 𝛽 =  0}. We 

claim that b(x) is linearly independent of the constant function 1 and 
thus is the desired basis. See Appendix C for a proof of this claim. 
When we use the bivariate spline basis discussed in Section 3.1,  𝛽0  =  𝟏, the vector of 1’s. For convenience, we used 𝐡0  =  𝟏 in our 
implementation of the method. 
 

3.3 Roughness penalty 
 

For a function 𝑔(𝑥), 𝑥 =  (𝑥1, 𝑥2), defined on a region Ω of ℝ2, 
denote the partial derivatives as  
 𝑔𝑖𝑗(𝑥1, 𝑥2) = 𝜕𝑔(𝑥1,𝑥2)𝜕𝑥𝑖𝜕𝑥𝑗 ,       𝑖, 𝑗 =  1, 2. 

 
The thin-plate penalty (Wahba, 1990; Green and Silverman, 1994) is 
defined as 
 𝐏𝐄𝐍(𝑔)  = ∬Ω(𝑔112 +  2 𝑔122 +  𝑔222 ) 𝑑𝑥1𝑑𝑥2. 

 
Suppose that there is a basis expansion 𝑔(𝑥)  =  𝐛(𝑥)⊤𝛽, where 𝐛(𝑥) is 
a vector of basis functions. Let 𝐛𝑖𝑗(𝑥)  =  (𝑏1,𝑖𝑗(𝑥), . . . , 𝑏𝐿,𝑖𝑗(𝑥))⊤ be a 

vector of partial derivatives of the component functions of 𝐛(𝑥) for i, j 
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= 1, 2. Then 𝑔𝑖𝑗(𝑥)  =  𝐛𝑖𝑗⊤ (𝑥)𝛽, and the penalty function can be written 

in quadratic form as 
 PEN(𝑔)  =  𝛽⊤ 𝐑𝛽  

(13) 
 
with the penalty matrix 𝐑 = ∬Ω{𝐛11(𝑥)𝐛11⊤ (𝑥)  +  2 𝐛12(𝑥)𝐛12⊤ (𝑥)  + 𝐛22(𝑥)𝐛22⊤ (𝑥)} 𝑑𝑥. 

(14) 
 
When Ω is a collection of triangles, the above integration can be 
computed as the summation of integrations over all triangles. We 
apply the penalty matrix defined in (14) when we compute the 
penalty function in (8) for bivariate density estimation. 
 

As shown in Subsection 3.2, it is convenient to construct a 
desirable basis b(x) by projecting a larger basis �̃�(𝑥) onto a 

constrained space, using 𝐛(𝑥)  = 𝐐2⊤�̃�(𝑥). Suppose that the penalty 
matrix corresponding to the basis �̃�(𝑥) is �̃� (defined as in (14) with an 
obvious change of notation), then the penalty matrix for b(x) can be 

obtained as 𝐑 =  𝐐2⊤�̃�𝐐2. 
 

4 Simulations 
 

We conducted a simulation study to evaluate the proposed 
collective density estimation method and compared it with a non-
collective density estimation approach using the kernel density 
estimator. From now on, we refer to our proposed method as PSCDE 
(penalized spline collective density estimator). The simulation setups 
were designed to mimic actual protein angular distributions. 
Hamelryck et al. (2006) reported that there exists a very strong 
concentration of the dihedral/planar (𝜃 − 𝜏 ) angles around 𝜃1∗  =  95 
and  𝜏1∗   =  50 for α-helices, and a relatively strong concentration 
around 𝜃2∗   =  120 and  𝜏2∗  =  −165 for β-strands. Motivated by this 
observation, we considered bivariate distributions in the following form 
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(𝜃 𝜏) ~𝛿 (WN(𝜃1∗, 𝜌𝜃) WN(𝜏1∗, 𝜌𝜏)) + (1 − 𝛿) (WN(𝜃2∗, 𝜌𝜃) WN(𝜏2∗, 𝜌𝜏)) 

(15) 
 
with 𝜌0  =  0.99 and 𝜌𝜏   =  0.975, where WN(𝜇, 𝜌) is the wrapped normal 
distribution on the unit circle with mean direction μ and concentration 
parameter ρ (Jammalamadaka and SenGupta, 2001). Data generated 
from (15) with a large value of δ are similar to angles from α-helices, 
and with a small value of δ are similar to angles from β-strands. 
 
We used the following model of m bivariate distributions to generate 
simulated data. The m distrbutions are clustered into three sets, each 
of which contains m/3 distributions from (15) and corresponds to 
respective mixture parameters δ = 0.96 (mimicking α-helices), δ = 
0.20, and δ = 0.04 (mimicking β-strands). We generated n pairs of 
angles from each distribution. Different values of m and n were 
considered. Note that for simplicity in generating the data the 
distributions in each cluster were chosen to be the same, but they 
were treated as different distributions when we applied the estimation 
methods. 
 

The kernel density estimator (KDE, Wand and Jones, 1995) is a 
widely used nonparametric density estimator. A typical form of the p-
dimensional kernel density estimator is 
 

𝑓ℎ(𝐗) = 1𝑛 (∏ ℎ𝑘𝑝
𝑘=1 )−1 ∑ 𝐾 (𝑥1 − 𝑥𝑖1ℎ1 , … , 𝑥𝑝 − 𝑥𝑖𝑝ℎ𝑝  )𝑛

𝑖=1 , 
 
where K is a p-variate kernel function satisfying ∫ 𝐾(𝐱)𝑑𝐱 =  1 and  
h = (h1, · · · , hp) is known as the bandwidth vector that controls the 
smoothness of the density estimate. To take into account the circular 
nature of the angular data, Maadooliat et al. (2013a) suggested the 
following modified bivariate kernel estimator 
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𝑓ℎ1,ℎ2 (𝑥1, 𝑥2) = ∑ 𝜑 (𝑥1 ⊖ 𝑥𝑖1ℎ1 ) 𝜑 (𝑥2 ⊖ 𝑥𝑖2ℎ2 )𝑛𝑖=1 𝑛ℎ1ℎ2  

(16) 
 
where φ(•) is the standard Gaussian density function, and the notation ⊖ is used to denote the distance between two points on a unit circle. 
For example, if ω1 = 359° and ω2 = 1°, the Euclidean distance |ω1 − ω2| 

= 358, but the difference on the unit circle is |ω1 ⊖ ω2| = 2. Our use of 
distance on the circle yields a smooth density on the manifold of 
angular space and prevents the boundary effect from the naïve use of 
the kernel density estimation. 
 

The bandwidth is an important tuning parameter for the KDE. 
We considered the following five methods for bandwidth selection: a 
well-supported rule-of-thumb method for choosing the bandwidth of a 
Gaussian KDE (rKDE, Venables and Ripley, 2002), plug-in bandwidth 
selector (Hpi, Chacón and Duong, 2010), biased cross-validation 
(Hlscv, Sain et al., 1994), smoothed cross-validation (Hlscv, Jones et 
al., 1991), and least-squares cross-validation (Hlscv, Sain et al., 
1994). The first bandwidth selector is implemented in the MASS 
package of R and the other four bandwidth selectors are implemented 
in the ks package of R (Duong, 2007; Chacón and Duong, 2011). 
 

Figure 2 shows the perspective plots for the true bivariate 
density, the estimated density by the rKDE and the PSCDE for data 
generated from a density corresponding to δ = 0.04 with m = 42 
and n = 50. The plots were drawn on the same scale for ease of direct 
visual comparison. We observe that the KDE obtains more peaks than 
that exist in the true density, while the PSCDE is closer to the truth. 
This is also clearly seen in the contour plot of Figure 3. Figure 2 also 
shows the scatter plot of the first two coefficients (A.2 vs A.1) in the 
distributions fitted by the PSCDE. We observe a clear separation into 
three classes, indicating that these coefficients are also useful for 
clustering purposes. 
  

Next we present the results from a systematic simulation study. 
For each of the two models, we considered six different cases from all 
possible combinations of m = 6, 18 and n = 30, 50, 100. To evaluate the 
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performance of a method in estimating angular densities, we used 
three distance measures, namely, the integrated absolute distance 
(IAD), the Hellinger distance (HLD), and the symmetrized Kullback-
Leibler divergence (SKLD). For distribution functions F and G with 
corresponding densities f and g, these distances are defined as 
 IAD(𝐹, 𝐺)  =  ∫  |𝑓(𝐱)  −  𝑔(𝐱)|𝑑𝐱,  

(17) 
 HLD(𝐹, 𝐺)  =  [ ∫ {√𝑓(𝐱)  −  √𝑔(𝐱)}2 𝑑𝐱]1/2,  

(18) 
 SKLD(𝐹, 𝐺)  =  ∫ {𝑓(𝐱)  −  𝑔(𝐱)}𝑙𝑜𝑔 {𝑓 (𝐱)𝑔(𝐱)} 𝑑𝐱.  

(19) 
 
More details about these metrics can be found in DasGupta (2011). 
 

We generated data from each simulation setup, applied both the 
PSCDE (with K = 2, suggested by the scree plot) and the KDE (with 
five different bandwidth selectors) on the generated data. For each 
data set and a given method, we computed the distance between the 
estimated density and the true density using the three distance 
measures mentioned above. We ran the simulation 100 times for each 
setup. The empirical means and standard errors of the distances are 
reported in Table 1. For both methods the distance between the 
estimated and the true densities decreases as the number of 
observations (n) increases. This is due to the increment of estimation 
efficiency by increasing the sample size. When the number of 
distributions (m) gets larger, the performance of the proposed PSCDE 
improves, while the performance of KDE does not change. The PSCDE 
clearly outperforms KDE in all setups no matter which bandwidth 
selector is used and its superiority gets enhanced when m gets larger. 
This result suggests that the PSCDE can improve estimation 
efficiency by borrowing strength across distributions while the non-
collective estimation method of KDE does not have such ability. 
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5 Application: Neighbor-dependent 

Ramachandran distributions for protein loop 

modeling by Rosetta 
 

5.1 Background on angular-sampling-based protein 

structure prediction 
 

In nature, a protein folds into its native structure, which is the 
key to understanding its functions and behaviors in complex biological 
networks. Although high-throughput sequencing technologies have 
been advanced in recent years, experimental protein structure 
determination by X-ray crystallography or nuclear magnetic resonance 
spectroscopy remains a costly and time-consuming process, causing 
an increasing gap between the number of known protein sequences 
and that of known structures. Therefore, computational protein 
structure prediction has become an important alternative to 
experimental methods. 
 

One successful approach for computational protein structure 
prediction is angular-sampling based methods (Rohl et al., 2004; 
Bystroff et al., 2000; Tuffery and Derreumaux, 2005; Hamelryck 
et al., 2006; Sellers et al., 2008; Boomsma et al., 2008; Mandell et 
al., 2009; Ting et al., 2010; Lennox et al., 2010; Zhao et al., 2010; 
Stein and Kortemme, 2013; Maadooliat et al., 2013b; Källberg et al., 
2014). Compared with other sampling-based methods, angular-
sampling-based methods have the advantage of being able to model 
the continuous conformational space of proteins. Every angular-
sampling-based method has two key steps: (1) sampling realistic and 
nativelike conformations; (2) identifying the good conformations. The 
sampling step requires accurate estimation of torsion angle 
distributions that captures the local relationships between sequences 
and structures. The identification step selects good conformations from 
the sampled ones or direct searches the comformation space by 
minimizing a suitable energy function, which in turn is chosen to 
distinguish correct, native-like structures from incorrect ones. An 
energy function is often specified as a weighted linear combination of a 
number of statistical and empirical terms, such as that encode bond 
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lengths, bond angles, torsion angles, van-der-Waals interactions, and 
electrostatic interactions. 
 

Among existing computational protein structure prediction 
softwares, Rosetta is one of the most accurate and commonly used. It 
provides a flexible library of functionality to accomplish a diverse set of 
biomolecular modeling tasks. The kinematic inversion closure (KIC) 
protocol in Rosetta was developed by Mandell et al. (2009) to 
reconstruct high-resolution loop structures. Loop structures are 
irregular parts of proteins which play important roles in protein 
function, stability and folding (Fetrow, 1995). They are often 
conformationally flexible and cannot be modeled using standard 
homology modeling techniques. In KIC, the torsion angles, (ϕ, ψ), are 
sampled from an estimated Ramachandran distribution of the 
associated amino acids to effectively explore the conformational space. 
The sampling step is followed by a Monte-Carlo minimization step that 
involves an empirical energy function. Mandell et al. (2009) 
demonstrated that Rosetta with this KIC procedure can accurately 
predict native-like structures of protein loop regions. 
 

Following the promising results of the KIC in obtaining accurate 
predictions for the local protein structures, Stein and Kortemme 
(2013) developed a new protocol, called “next-generation KIC” (NGK), 
to further improve Rosetta’s KIC protocol. NGK consists of a 
combination of several strategies, including: (a) intensification: aim to 
intensify sampling of certain regions by sampling (ϕ, ψ) from 
neighbor-dependent Ramachandran distributions (referred to as 
Rama2b sampling); and (b) annealing: modulate the energy function 
and gradually ramp the weight of terms in the Rosetta energy function 
to overcome energy barriers. In both of these strategies, the amino-
acid-specific Ramachandran distributions used in KIC are replaced by 
distributions specific to the amino acid and its immediate left or right 
neighbor. The neighbor-dependent Ramachandran distributions used in 
NGK are provided by fitting a hierarchical Dirichlet process (HDP) 
model (Ting et al., 2010). From here on we refer to the Stein and 
Kortemme procedure as NGK.HDP. 
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5.2 Comparison of estimations of neighbor-dependent 

Ramachandran distributions 
 

Below we demonstrate that our proposed collective density 
estimation method offers a competitive alternative to HDP in 
estimating the neighbor-dependent Ramachandran distributions. We 
replaced the neighbor-dependent Ramachandran distributions in NGK 
obtained by applying HDP with those obtained from applying PSCDE, 
and refer to the new protocol as NGK.PSCDE. To facilitate a fair 
comparison, except the replacement of the neighbor-dependent 
Ramachandran distributions, all other components of NGK remain the 
same. We evaluated the performance of different density estimation 
methods using the task of protein loop structure prediction. 
 

We used the same data set provided in Ting et al. (2010) to 
obtain the neighbor-dependent Ramachandran distributions when 
applying the proposed PSCDE method. The data set is generated 
from 3, 038 proteins with available electron densities from the Uppsala 
Electron Density Server (Kleywegt et al., 2004). As in Ting et al. 
(2010), we considered a set of 62,345 residues after removing those 
with electron density in the bottom 20th percentile and restricting the 
set to loop residues with no missing backbone atoms and at least three 
residues away from α-helices or β-strands. For each amino acid type, 
we applied PSCDE (with K = 4) to collectively estimate the m = 20 
left-neighbor-dependent Ramachandran distributions; we also applied 
PSCDE to collectively estimate the m = 20 right-neighbor-dependent 
Ramachandran distributions. Since there are 20 possible amino acid 
types, we obtained 800 (= 20 × (20 + 20)) neighbor-dependent 
estimated density functions. The number of data points available for 
each of these 800 density functions, i.e., ni in (6), ranges from 6 to 
620, with median 131 and quartiles 68.75 and 213.20. 
 

In our comparison of NGK.HDP and NGK.PSCDE for protein loop 
modeling, we also included Rosetta’s KIC protocol as a benchmark. It 
is noteworthy that Rosetta is the most comprehensive method as well 
as one of the most accurate protein structure prediction methods, 
which has consistently won the CASP (Critical Assessment of Protein 
Structure Prediction) competitions (Cozzetto et al., 2009; 
Kryshtafovych et al., 2011, 2014). Thus, any improvement on the 
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performance upon Rosetta is considered significant in the protein 
structure prediction community.  

 
We assessed the three methods by reconstructing the structures 

of short loops (12-residue segments) from an established benchmark 
data set with 20 proteins. This benchmark was compiled by Zhu et al. 
(2006) to allow direct comparisons among studies by Jacobson et al. 
(2004), Zhu et al. (2006), and Sellers et al. (2008). It was selected 
from high quality structures (resolution ≤ 2.0Å, R < 0.25) for loops 
with diverse sequences (< 40% sequence identity), low temperature 
factors (< 35), lack of contacts to heteroatom groups (> 4.0Å for 
neutral ligands, > 6.5Å for metal ions), lack of secondary structure 
within the loop, lack of more than 4 loop residues adjacent to either 
loop endpoint, and pH 6.5.7.5; see Mandell et al. (2009) for more 
details. Although KIC and NGK.HDP have demonstrated considerable 
success in sampling and identifying near-native conformations 
on this benchmark (Stein and Kortemme, 2013), for some of the 
proteins, sub-angstrom conformations (i.e., reconstructed loops that 
are within 1Å to the native structure) were either not sampled or not 
identified correctly by the energy function. 
 

In our comparative study, the assigned loop in each protein was 
deleted and then “reconstructed” using KIC, NGK.HDP and NGK.HDP 
methods, respectively. For each of the 20 benchmark proteins, we 
reconstructed 500 loop structures for the associated assigned loop 
(12-residue) using different methods (KIC, NGK.HDP and 
NGK.PSCDE). Figure 4 provides a sketch of five randomly selected KIC 
reconstructions of a loop for one of the benchmark proteins, “PDB id: 
1CB0”. The fact that none of the five reconstructions match the true 
structure very well indicates the difficulty of the problem. 
 

Following Stein and Kortemme (2013), we used two metrics to 
evaluate the performance of each method: The first metric is the 
percentage of reconstructed loops that are within 1Å to the native 
structure (i.e., sub-angstrom cases), denoted as %sA. The second 
metric is the lowest root mean square deviation (RMSD) of the 
backbone atoms between the 10 lowest energy reconstructed loops 
and the native structure, denoted as RMSD*. The first metric 
measures the ability to sample high-quality loops, whereas the second 
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metric measures the ability to select good loops by using the energy 
function. Using these two metrics, we obtained an overall comparison 
of the three methods based on the reconstructed 500 structures for 
each case. The results are summarized in Table 2. For “1BN8”, none of 
the three methods were able to generate any structure predictions 
(probably due to some internal issues of Rosetta), so both %sA and 
RMSD* are unavailable for this protein. For two out of the rest of 19 
proteins (“1CNV” and “1CS6”), we did not obtain any sub-angstrom 
structure using any of the three methods, as indicated by %sA being 
0.0. 
 

Table 2 indicates that the KIC obtains the highest %sA for 3 
proteins (“1I7P”, “1MS9” and “1MY7”), while both NGK.HDP and 
NGK.PSCDE obtain the highest %sA for 7 proteins each. Therefore, the 
two NGK methods seem to be competitive with respect to the 
percentage of sub-angstrom structures criterion on this benchmark. 
However, an important observation from Table 2 is that for all six hard 
cases, i.e., the %sA is less than 10% for KIC, the proposed 
NGK.PSCDE clearly outperforms the other two methods by giving the 
highest %sA value. This is significant because angular-sampling-based 
methods are most useful for such hard protein targets, whereas for 
relatively easy targets with close homologs, non-sampling-based 
methods such as template-based modeling methods are often 
sufficiently accurate. In terms of the second evaluation criterion, the 
lowest RMSD among the top ten reconstructed loops selected by the 
energy function, the proposed NGK.PSCDE significantly outperforms 
both KIC and NGK.HDP. In fact, NGK.PSCDE obtains the smallest 
RMSD* for 14 out of the 19 proteins, and obtains the second smallest 
RMSD* for 4 of the rest 5 proteins. 
 

Figure 5 illustrates the relationship between the empirical 
energy function and the RMSD that we obtained for reconstructing the 
500 12-residue loops for the PBD entry “1OYC” using the three 
methods (KIC, NGK.HDP and NGK.PSCDE). It is clear that NGK.PSCDE 
not only generates more high-quality loops than KIC and NGK.HDP, 
but also has a higher correlation between the energy value of the 
predicted loop and the RMSD to the native structure, especially in the 
sub-angstrom region. Note that a lower energy value does not 
necessarily imply a lower RMSD and vice versa, however, a higher 

http://dx.doi.org/10.1080/01621459.2015.1099535
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 

accessed by following the link in the citation at the bottom of the page. 

Journal of the American Statistical Association, Vol. 111, No. 513 (2016): pg. 43-56. DOI. This article is © American 

Statistical Association and permission has been granted for this version to appear in e-Publications@Marquette. 

American Statistical Association does not grant permission for this article to be further copied/distributed or hosted 

elsewhere without the express permission from American Statistical Association. 

23 

 

correlation between the energy value and the RMSD indicates that 
searching a structure with lower energy will likely find a structure that 
is closer to the native structure in terms of RMSD. 
 

Finally, Figure 6 presents the best model fits (in terms of 
RMSD*) by the three methods and the native structure, for four 
proteins (“1CB0”, “1F46”, “ICS6” and “1OYC”) arbitrarily selected 
out of 14 cases where NGK.PSCDE outperforms the other two methods 
in terms of RMSD*. It is clear that the loops predicted by NGK.PSCDE 
match the native structures very well, while the predictions from KIC 
and NGK.HDP do not match well for three and two proteins 
respectively among those four proteins. 
 

6 Conclusion 

 
This paper develops a novel approach for collectively estimating 

multiple bivariate densities. By pooling data from different distributions 
and using a shared basis, the collective estimation approach is 
statistically more efficient than non-collective estimation approaches. 
The proposed method uses penalized bivariate splines on a 
triangulation to yield a flexible family of bivariate densities. As an 
output of applying the new method, each estimated log density is 
expressed in a basis expansion where the basis is estimated from the 
data, assuming that the densities lie in a low-dimensional manifold of 
the large space spanned by a pre-specified rich basis. The collective 
density estimation approach is widely applicable when there is a need 
to estimate multiple density functions from different populations. 
Moreover, the coefficients of the basis expansion for the fitted 
densities provide a low-dimensional representation that could be useful 
for visualization, clustering, and classification of the densities. We 
applied the new method to estimate the neighbor-dependent 
Ramachandran distributions and the estimated distributions show 
competitive performance for angular-sampling-basis protein loop 
modeling.  
 

One limitation of the our approach is that the possible 
dependence of data from the same density is not modeled and thus 
our likelihood should be interpreted as a composite likelihood if 
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dependence exists. The consequence of not modeling the dependence 
is the potential loss of efficiency and the incorrect degrees of freedom 
used in AIC. Dependence should not be a serious problem for the 
application of modeling the neighbor-dependent Ramachandran 
distributions, because when conditioning on the neighboring amino 
acids, subsetting the data substantially reduces the dependence. 
Extending the proposed method to dependent data is an interesting 
research topic. 
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Appendix A: Identifiability of (Θ,A) 
 

The non-uniqueness of the parametrization of (𝜣, 𝑨) causes an 
identifiability issue. Specifically, if 𝑼 is a K × K orthogonal matrix, then 𝚯𝛂i  =  (𝚯𝐔)(𝐔⊤𝛂i). Thus �̃�  =  𝚯𝐔 and  �̃�𝑖  =  𝐔⊤𝛂i give the same 
representation (4). To gain identifiability, we require that  
(i) Θ⊤Θ = I, (ii) A⊤A = D2 be a diagonal matrix, (iii) the columns of A be 
ordered such that the diagonal elements of D2 are in strictly decreasing 
order, and (iv) the first non-zero element of each column of Θ be 
positive. With such Θ and A, if the diagonal elements of D are all 

different, setting �̅�  =  𝐀𝐃−𝟏 and so �̅�⊤ �̅� =  𝐈, we have that  𝚯𝑨⊤  =  𝚯𝑫�̅�⊤ which is a uniquely defined singular value decomposition 
(SVD). The desired identifiability of (Θ,A) then follows from the 
uniqueness of the SVD. 
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Appendix B: Gradient and Hessian of the log likelihood 

function 

 
Let Eω(·) and varω(·) denote respectively the expectation and 
covariance operator with respect to the density ω. Then 
 𝐸𝜔𝑖{𝐛(𝑋)}  =  ∫ exp𝜔𝑖(𝑥)𝐛(𝑥)𝑑𝑥∫ exp𝜔𝑖(𝑥)𝑑𝑥 ,  

(20) 
and 
 var𝜔𝑖  {𝐛(𝑋)} = ∫ exp 𝜔𝑖(𝑥)𝐛(𝑥)𝐛(𝑥)⊤𝑑𝑥∫ exp 𝜔𝑖(𝑥) 𝑑𝑥−  {∫ exp 𝜔𝑖(𝑥)𝐛(𝑥)𝑑𝑥}{∫ exp 𝜔𝑖(𝑥)𝐛(𝑥)𝑑𝑥}⊤{∫ exp 𝜔𝑖(𝑥)𝑑𝑥}2  

(21) 
 
Here the exponential function when applied to a vector is treated as a 
component-wise operation; the expectation and integration operators 
are interpreted in the same manner. 
 

Denote βi = Θαi so that ωi(x) = b(x)⊤βi. Some simple calculation 
yields 
 𝜕𝜕𝛽𝑖 log ∫ exp 𝜔𝑖(𝑥)𝑑𝑥 =  𝐸𝜔𝑖  {𝐛(𝑋)},  

(22) 
 
and 
 𝜕2𝜕𝛽𝑖𝜕𝛽𝑖⊤ log ∫  exp𝜔𝑖(𝑥)𝑑𝑥 =  var𝜔𝑖{𝐛(𝑋)}.  

(23) 
 
These facts are properties of the exponential family and are useful 
when computing the gradient and Hessian of the log likelihood. 
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To compute the log likelihood, we need the following 
expressions 
 ∑ 𝜔𝑖𝑛𝑖
𝑗=1 (𝑥𝑖𝑗)  = ∑ 𝐛(𝑥𝑖𝑗)⊤𝚯𝜶𝑖𝑛𝑖

𝑗=1   = ∑ 𝐛(𝑥𝑖𝑗)⊤(𝜽1𝛼𝑖1 +  ⋯ +  𝜽𝐾𝛼𝑖𝐾)𝑛𝑖
𝑗=1 , 

 
and 
 ∫ exp𝜔𝑖(𝑥)𝑑𝑥 = ∫ exp𝐛(𝑥)⊤𝛩𝛼𝑖𝑑𝑥 = ∫ exp𝐛(𝑥)⊤(𝜃1𝛼𝑖1 + ⋯ + 𝜃𝐾𝛼𝑖𝐾)𝑑𝑥. 
 
Using these expressions we obtain that 
 𝜕𝜕𝛼𝑖 ∑ 𝜔𝑖(𝑥𝑖𝑗)  =  𝛩⊤𝑛𝑖

𝑗=1 ∑ 𝒃(𝑥𝑖𝑗)𝑛𝑖
𝑗=1 ,    𝑖 =  1, . . . , 𝑚 

 

 𝜕𝜕𝜃𝑘  ∑ 𝜔𝑖(𝑥𝑖𝑗)𝑛𝑖
𝑗=1  =  𝛼𝑖𝑘 ∑ 𝐛(𝑥𝑖𝑗),𝑛𝑖

𝑗=1     𝑘 =  1, . . . , 𝐾 

 

 𝜕𝜕𝛼𝑖 log ∫ exp𝜔𝑖(𝑥)𝑑𝑥  =  𝚯⊤𝐸𝜔𝑖{𝐛(𝑋)},   𝑖 =  1, . . . , 𝑚 

 𝜕𝜕𝜃𝑘 log ∫ exp𝜔𝑖(𝑥)𝑑𝑥 =  𝛼𝑖𝑘𝐸𝜔𝑖{𝐛(𝑋)}, 𝑘 =  1, . . . , 𝐾. 
 
The last two equations follow from (22) and the chain rule. Equation 
(23) and the chain rule together gives the following useful expressions 
 
∂2∂•i∂•⊤ilog   expωi(x) dx = •⊤varωi {b(X)}•, i = 1, . . . ,m 

 
∂2∂ k∂ ⊤klog   expωi(x) dx = α2ik varωi {b(X)}, k = 1, . . . , K. 
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Using the expressions in previous paragraph, we obtain that the 
gradient vector of the log likelihood is given by 
 𝜕𝜕𝛼𝑖 {ℓ(𝚯, 𝑨)}  =  𝚯⊤ ∑[𝐛(𝑥𝑖𝑗)  − 𝐸𝜔𝑖{𝐛(𝑋)}]𝑛𝑖

𝑗=1 ,  
(24) 

 𝜕𝜕𝜃𝑘 {ℓ(𝚯, 𝑨)}  = ∑ 𝛼𝑖𝑘𝑚
𝑖=1 ∑[𝐛(𝑥𝑖𝑗)  − 𝐸𝜔𝑖{𝐛(𝑋)}],𝑛𝑖

𝑗=1   
(25) 

 
and the diagonal blocks of the Hessian are given by 
 𝜕2𝜕𝛼𝑖𝜕𝛼𝑖⊤ {ℓ(𝚯, 𝐀)} = −𝑛𝑖𝚯⊤var𝜔𝑖{𝐛(𝑋)}𝚯,    𝑖 =  1, . . . , 𝑚  

(26) 
 𝜕2𝜕𝜃𝑘𝜕𝜃𝑘⊤ {ℓ(𝚯, 𝐀)}  =  − ∑ 𝑛𝑖𝛼𝑖𝑘2  var𝜔𝑖  {𝐛(𝑋)},𝑚

𝑖=1     𝑘 =  1, . . . , 𝐾. 
(27) 

 
Note that the quantities in (26) and (27) are non-positive definite. It 
follows that the log likelihood function is concave in αi when other 
parameters are fixed and also concave in θk when other parameters 
are fixed. The expectation and variance appeared in the gradient and 
Hessian can be computed using numerical integration. 
 

Appendix C: Proof of the Claim in Section 3.2 

 
Suppose 
 1 ·  𝑐0  +  𝐛(𝑥)⊤𝒄 =  0,  

(28) 
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we show that c0 = 0 and c = 0. Since b(x)⊤c ∈ 𝔾, there is a vector β with 𝒉0⊤ 𝛽 =  0 such that 𝐛(𝑥)⊤𝐜 = �̃�(𝑥)⊤𝛽. This together with (28) and  1 =  �̃�(𝑥)⊤𝛽0 yields that �̃�(𝑥)⊤(𝑐0𝛽0  +  𝛽)  =  0, which in turn implies 

that 𝑐0𝛽0  +  𝛽 =  𝟎, because �̃�(𝑥) is a basis. Thus, 
 0 =  𝐡0⊤(𝑐0𝛽0  +  𝛽)  =  𝑐0𝐡0⊤𝛽0  +  𝐡0⊤𝛽 =  𝑐𝐡0⊤𝛽0. 
 
Since 𝐡0⊤𝛽0  ≠  0, we conclude that c0 = 0. Plugging this into (28), we 
obtain 𝐛(𝑥)⊤𝐜 =  0. Because b(x) is a basis, we have that c = 0. This 
completes the proof of the claim. 
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Table 1: Comparison of PSCDE and KDE with 5 different bandwidth selectors (rKDE, 
Hpi, Hbcv, Hscv, Hlscv) for the simulation study, with three sample sizes (n = 30, 50, 
100) and two different numbers of distributions (m = 6, 18) using integrated absolute 
distance (IAD), Hellinger distance (HLD), and symmetrized Kullback-Leibler distance 
(SKLD). The empirical mean and standard errors (in parentheses) are reported, based 
on 100 simulation runs. 
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Table 2: Comparing the performance of KIC, NGK.HDP and NGK.PSCDE for 
reconstructing short loops with the length of 12-residue for 20 benchmark proteins 
based on 500 simulation runs. The stars indicate the proteins whose sub-angstrom 
reconstruction is not seen. For each of the benchmark proteins, the method produces 
the highest percentage of sub-angstrom structures (%sA) is denoted as bold. 
Similarly, the method that produces the smallest RMSD• on the energy score is 
indicated in bold. 
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Figure 1: Schematic representation of the protein backbone angles. The atoms on the 
chain are labeled. (a) Angles along the Cα trace is denoted by (𝜃𝑖 , 𝜏𝑖), where  𝜃𝑖 is the 
pseudo-bond angle of three consecutive Cα atoms (𝐶𝛼(𝑖), 𝐶𝛼(𝑖 +  1), 𝐶𝛼(𝑖 +  2) , and 𝜏𝑖 
is the pseudo-torsion angle of four consecutive Cα atoms (𝐶𝛼(𝑖), · · · , 𝐶𝛼(𝑖 +  3). The 

term pseudo is used for (θ, τ) here because the consecutive Cα atoms are not actually 
connected by a single chemical bond. (b) Angles along the chain of all backbone atoms 
is denoted by (𝜙𝑖 , 𝜓𝑖), where 𝜙𝑖 is the torsion angle formed by 𝐶(𝑖 −  1), N(𝑖), 𝐶𝛼(𝑖), 𝐶(𝑖) 
and 𝜓𝑖 is the torsion angle formed by N(𝑖), 𝐶𝛼(𝑖), 𝐶(𝑖), N(𝑖 +  1). A bond or planar angle 
is the angle formed between three consecutive atoms. For four atoms bonded together 
in a chain, the torsion or dihedral angle is the angle between the plane formed by the 
first three atoms and the plane formed by the last three atoms. 
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Figure 2: One of the m/3 = 14 densities corresponding to δ  = 0.04 from the 
simulation model with m = 42 and n = 50. (A)-(C): Perspective plots of the true 
density, rKDE estimate, and PSCDE; (D) scatter plot of the first two coefficients from 
the fitted PSCDE model. 
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Figure 3: Contour plots of the densities shown in panels (A)-(C) of Figure 2, 
presented on the triangulation used by the PSCDE. Panel (D) shows all data points 
from the 42 densities in one simulation run. 

 

Figure 4: Five randomly selected reconstructed loop models for protein “1CB0” plus 
the native structure of the associated loop (in blue). 
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Figure 5: Energy vs. RMSD for “1OYC” based on 500 loops predicted by NGK.PSCDE 
(A), NGK.HDP (B), and KIC (C). Kernel density estimates of the RMSD obtained for the 
predicted loops by three different methods (panel D). 
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Figure 6: The best model fit (in terms of RMSD*) predicted by the 
three methods for “1CB0” (A), “1F46” (B), “ICS6” (C), and “1OYC” 
(D).  
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