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We calculate the excitation spectrum of a one-dimensional self-bound quantum droplet in a two-component
bosonic mixture described by the Gross-Pitaevskii equation (GPE) with cubic and quadratic nonlinearities. The
cubic term originates from the mean-field energy of the mixture proportional to the effective coupling constant
&g, whereas the quadratic nonlinearity corresponds to the attractive beyond-mean-field contribution. The droplet
properties are governed by a control parameter y oc §gN*/3, where N is the particle number. For large y > 0,
the droplet features the flat-top shape with the discrete part of its spectrum consisting of plane-wave Bogoliubov
phonons propagating through the flat-density bulk and reflected by edges of the droplet. With decreasing y,
these modes cross into the continuum, sequentially crossing the particle-emission threshold at specific critical
values. A notable exception is the breathing mode, which we find to be always bound. The balance point y = 0
provides implementation of a system governed by the GPE with an unusual quadratic nonlinearity. This case is
characterized by the ratio of the breathing-mode frequency to the particle-emission threshold equal to 0.8904. As
y tends to —oo, this ratio tends to 1 and the droplet transforms into the soliton solution of the integrable cubic

GPE.
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The mean-field interaction in a mixture of two bosonic
superfluids can be fine tuned to small values and can thus
become comparable to the beyond-mean-field (BMF) energy
correction, originating from the celebrated work by Lee et al.
[1]. In this case, quantum many-body effects crucially man-
ifest themselves in spite of the fact that the system is in the
weakly interacting regime. In particular, in three dimensions,
the competition between the slightly attractive mean-field
term and repulsive beyond-mean-field one can lead to the for-
mation of self-bound droplet states, as predicted theoretically
and demonstrated experimentally [2—7]. We should mention
here related studies of self-bound Bose-Fermi mixtures in
Refs. [8,9] and a very quickly developing field of dipolar
droplets in Refs. [10-17], also stabilized by BMF effects
[18-20].

The BMF contribution, being produced by zero-point ener-
gies of all Bogoliubov modes, strongly depends on the density
of states and, thus, on the dimensionality of the system.
For this reason, low-dimensional droplets, especially one-
dimensional (1D) ones, fundamentally differ from their three-
dimensional (3D) counterparts [21], offering, in particular,
significant practical advantages in terms of stability. Quite
generally, BMF effects in 1D systems may be enhanced by
decreasing the density without compromising the system’s
lifetime. Another feature contrasting with the 3D case is that
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in one dimension, the BMF energy correction is negative
and the self-binding property is manifest for any particle
number and for any sign of the mean-field term. In this
context, an important practical question is how to distinguish
droplets from quasi-1D bright solitons observed in attractive
single-component quantum gases [22-28]. Note that the 1D
quadratic-cubic Gross-Pitaevskii equation (GPE) describing
the droplets provides the full analytical account of their static
properties, such as shapes and energies [29-31]. However,
differences in the shapes of solitons and droplets become
apparent only when the latter are located deeply in the flat-top
regime [see Fig. 1(a)]. The same can also be said about their
dynamics, which is nonintegrable in the droplet case; in par-
ticular, the inelastic aspects of the droplet-droplet collision are
more visible at higher energies and for droplets with a signif-
icant flat-top region [32]. Another interesting, experimentally
measurable, but generally unexplored dynamical property of
1D droplets is the spectrum of small-amplitude excitations.
In this respect, the droplets are expected to feature qualitative
differences in comparison to 1D solitons, which support no
small-amplitude collective modes but solely the continuum
spectrum (see, for example, [33,34]), and in comparison to 3D
droplets, with their quite peculiar behavior of bulk and surface
collective modes [2].

In this Rapid Communication, we investigate the excitation
spectrum of a quantum droplet formed in a weakly interacting
1D mass-balanced binary mixture with competing mean-field
interactions tuned to a weak overall repulsion or attraction

©2020 American Physical Society
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FIG. 1. (a) The droplet wave functions for different values of
the control parameter y = —oo, 0, 2, and 6, ranging from the
soliton to flat-top shapes. For better comparison, we normalize
the corresponding density profiles to 1 and rescale x so that they
have the same rms widths. (b) The ratio of discrete Bogoliubov
frequencies w, to the particle-emission threshold —u as a function
of y = sgn(6g)N?*/3. Red crosses indicate branching points where
the discrete modes cross the particle-emission threshold and enter
the continuum of excitations. The dashed and dotted curves represent
asymptotic approximations (18) and (19), correspondingly.

(o< 8g). In this case, integrating out the relative motion and
including the corresponding BMF correction, one arrives at
a scalar GPE with cubic (mean-field) and attractive quadratic
(BMF) nonlinearities. This GPE can be cast in a dimension-
less form controlled only by a dimensionless parameter y
8gN?/3, which is exactly defined in Eq. (6). It determines the
droplet’s shape and its excitation frequencies, which we calcu-
late from the linearized Bogoliubov—de Gennes equations and
plot in Fig. 1(b). We find that, for large y, flat-top droplets
with a large bulk region support plane-wave phonons and
behave similarly to constant-density elastic media with free
ends. As y decreases, the droplet’s bulk region shrinks and the
phonons get pushed above the particle-emission threshold, in
which those with smaller wavelengths get to the continuum
faster; see Fig. 1(b). Eventually, the breathing oscillation
remains the only collective discrete mode supported by the
droplet. For y =0, the cubic nonlinearity disappears and
our system is described by a GPE with a rather unusual
quadratic-only nonlinearity. In this case, the ratio of the
breathing-mode frequency to the particle-emission threshold
equals wp/(—u) =~ 0.8904, clearly distinguishing our droplet

from the soliton of the cubic GPE. This ratio tends to 41 for
large negative y, when the droplet crosses over to the soliton.

We consider a binary mass-balanced Bose-Bose mixture
with two components labeled by o = {1, |}, which is charac-
terized by the set of three coupling constants g,, = g,/». In
the vicinity of the mean-field collapse point (i.e., for small

g =281, + . /811814 K &1t ~ &gyy), the energy density of
the homogeneous mixture reads [21]

12 1,2 12 12
B~ (g¢/¢ ny — g¢/¢ nl)z «/gTTgNSg(g¢/¢ ny + gT/T n¢)2
2 (gr1 + 84 )
2/m
—m(8¢¢”¢ + gy, ()

where n4 and n| are the densities of the components and m
is the mass of the atoms. The first and second terms on the
right-hand side of Eq. (1) correspond to the mean-field con-
tribution and the last one is the leading-order BMF correction
accounting for quantum many-body effects. The expansion is
valid in the weakly interacting regime |g,,/|/n < 1 and, as we
have mentioned, it requires |§g| to be small. Under these con-
ditions, it was demonstrated [2,21] that the mixture can exist
in vacuum as a droplet. The minimization of the dominant first
term in the right-hand side of Eq. (1) forces the components
of the mixture to follow the ratio n4/ny, = ,/g,/8++, which
is also true in the inhomogeneous case for sufficiently smooth
temporal and spatial variations of the total density. The mix-
ture thus reduces to an effectively single-component Bose
liquid parametrized by ¥ (x), related to the individual compo-
nent wave functions by ¥, (x) = g}-,/; Y (x)/\/ /8o + A/€55-
where 1 =] and | =%. Accordingly, the Gross-Pitaevskii
energy functional of the two fields ¥4 (x) and v (x), the local
part of which is given by Eq. (1), reduces to a functional of
Y (x) and leads to the GPE,

72 2. /818110
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with the total density given by n(x) = |y (x)|*> and total atom
number N = f ;O [ (x)|?dx. Introducing the healing length

ok V2182l
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and rescaling coordinate x = £X, time t = (/i/m&?)f, and the
wave function

§ 3)
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Eq. (2) acquires the dimensionless form
i0:(x, ) = [-87/2 + sgn(89)|¢ (X, DI* — 1%, DII(E.1D),
(&)

with the normalization condition ffooo lp(E)|?di =N =

Nm(2|8g)3%/( /811 + ,/gH)S. Together with the sign of §g,
the rescaled atom number N provides a parametrization of
the system. Both parameters can be combined into the single
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dimensionless coupling constant

y = sgn(6gN*? = 2(xN)*8g/ (/a1 + V&) (6)

From now on, we adopt the rescaled units and omit tildes over
x, t, and N, measuring energy in units of "2 / m&z, frequencies
in units of /m&?2, etc.

The ground-state wave function ¢y is a stationary solution
of Eq. (5), ¢(x,t) = ¢o(x)e™ "™, with the always attractive
BMF term allowing for a self-localized solution in the form
of a droplet, irrespective of the sign of §g. The ground-state
solution is [21,31]

V1o i/ 1o
1+ /T—sgn(8g)i/mo cosh(v/=2pux)’

with the relation between the chemical potential and the
rescaled particle number,

_i[lnH_ VEIB i} ®)
V1= mo |’

Mo

2 / / )
Nso<0 = ng ——( ®_ arctan Ll , )
Ho Mo Mo

depending on the sign of dg. In Egs. (8) and (9), uo = —2/9
and ny = 4/9 are, respectively, the chemical potential and the
saturation density for a uniform liquid at 6g > O.

We distinguish three characteristic regimes of the droplet’s
behavior [see Fig. 1(a) for respective droplet profiles]. The
first is the flat-top case, withdg > Oand N > 1 (i.e.,y > 1).
Note that in 1D, the surface of the droplet reduces to two
edges, and therefore the surface tension does not significantly
affect the bulk density. Namely, for large N, the droplet’s bulk
density deviates from ny = 4/9 by an exponentially small
correction n ~ ng[l + 4exp(—1 — 3N/4)] and the chemical
potential is u ~ uo[l — 4exp(—2 — 3N/2)] [32]. Therefore,
the right matter-vacuum interface of the droplet in this regime,
with exponential accuracy, reduces to the kink structure,

2/3
1 +exp(2x/3—1—L/3)’

which is an exact solution of Eq. (5) with u = pg. For
convenience, we have set the horizontal shift in Eq. (10) such
that the center of mass of the kink’s density is located at
x =L/2, where L = N/ny is the length of the droplet. The
left edge is represented by the respective antikink ¢yinx (—x).

The second limit corresponds to small y, i.e., small N
and |u|. In this case, the cubic nonlinear term in Eq. (5)
can be neglected and we arrive at a GPE with a rather
unusual quadratic-only nonlinearity, which gives rise to
the droplet wave function of the Korteweg—de Vries-type
1/ cosh?(/—/2 x).

The third limit corresponds to negative &g, large N, and
the chemical potential diverging as u oc —N? [see Eq. (9)].
In this regime, the quadratic nonlinearity can be neglected,
and Eq. (5) becomes the integrable GPE with the cubic
nonlinearity characterized by the bright soliton solution,

¢s(x) = v/nop/ 1o/ cosh(y/ =2 x). (1)

Small fluctuations of the droplet can be calculated by
linearizing GPE (5) around the ground state given by Eq. (7).

do(x) =

(N

Nsgs0 = ng

Prink (X) = (10)

Namely, writing
Plx,1) = e[’”{fbo(x) + ) luy(x)e " + v} (X)ei“’”’]} (12)
n

and expanding Eq. (5) to the first order in # and v, we obtain
the Bogoliubov—de Gennes equations,

sgn(8g)¢3 — %¢0j| |:u,,(x)

T |[iio] =o- 02

T —w,

sgn(88)d5 — 3%o
where the operator is 7 = —92/2 — pu + 2sgn(3g)¢3 —
3¢0/2 and we use the fact that ¢y is real. We solve Egs. (13)
numerically, finding discrete eigenfrequencies w,,, labeled by
integer 1. The value n = 0 stands for the zero-frequency
mode, proportional to the droplet wave function itself, rep-
resenting an infinitesimal phase shift, ¢g — ¢o(x) + iy (x).
The excitation with n = 1 corresponds to the center-of-mass
displacement of the droplet which has a vanishing frequency.
The lowest nontrivial collective mode in our setup is the
breathing mode with n = 2.

Ratios of the mode frequencies to the particle-emission
threshold, —w,/u, are shown in Fig. 1(b) as functions of
parameter y defined in Eq. (6). This spectrum is the main
result of this Rapid Communication. We find that the breath-
ing mode always stays below the particle-emission threshold,
whereas all other modes with n > 3 eventually cross it, fol-
lowing the decrease of y. Near the crossings, the correspond-
ing mode is characterized by a large probability of finding a
particle (nonvanishing u,) outside of the droplet. In this case,
one may treat the droplet as a potential well for atoms, the
depth of which changes linearly with N close to the crossing
point. The corresponding particle-droplet binding energy then
follows the usual 1D threshold law —p — w, o< (N — N,,)z,
consistent with our numerical results. The threshold values for
a few lowest modes are N3 ~ 0.774, N, ~ 3.453, N5 ~ 6.119,
Ne ~ 8.783, and N; ~ 11.447.

We now address the structure of the modes in the flat-top
limit, y > 1, in the regime w, < —u. In this case, Eqs. (13)
can be diagonalized in terms of plane waves in the bulk of
the droplet where, as said above, one might set ¢9 =2/3
and u = —2/9. Since ¢o(x) = ¢o(—x), the solutions are then
either even (cos) or odd (sin) combinations of plane waves,

1/9
1y (x) ikyx 4 =ik
[vnu)] x |:wn — e+ 1/81](6 et U9
where k,%/Z = x/wf/ +1/81 —1/9. To find the eigenfre-
quency w,, one should match (14) to a solution of Egs. (13)
around the right edge of the droplet, where these equations
take the form of

ELfF ) = o, f (),
E_fr () = o, f;F (%),
where f,]i = u,(x) £ v, (x), and the operators are

Er=—07/2 — po + (2 £ D () — (3/2 £ 1/2)¢ink (),

(16)
and we have neglected the exponentially small deviation of ¢
from ¢k and p from p. For w, = 0, Egs. (15b) and (15a)

(152)
(15b)
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decouple and are solved by arbitrary combinations of f~(x)
Grink () and £ (x) o dxyink (x) = —1/[9cosh?(x/3 — 1/2 —
L/6)], which correspond, respectively, to uniform phase ro-
tation and translation of the droplet’s edge [35]. For small
finite w,, one can iterate Eqgs. (15a) and (15b), obtaining
their solution in powers of w,. Neglecting the phase rotation,
we choose f,f = OxPkink> fn’ = 0 as the zero-order solution,
which we substitute in the right-hand side of Egs. (15a) and
(15b). The first iteration gives

f,f] |:3x¢kink(x)] |: 0 }
= , 17
|:f N 0 e (@ — x)Pxink (x) 1n

where a is an arbitrary constant. This constant is determined
in the next iteration by noting that the equation &, fn+ (x) =
a),zl (a — x)¢xink (x) can be solved only when its right-hand side
is orthogonal to d,¢xink (x) since the latter corresponds to a
discrete eigenstate of £, with a vanishing eigenvalue. The
condition f(a — X)@kink (X) 0xPkink (x)dx = 0 gives a = L/2.
Matching expression (17) with a = L/2 to plane waves (14)
yields the spectrum

w, ~4m(n —1)/(27N), (18)

shown in Fig. 1(a) by dashed curves. The fact that the (ex-
trapolated) node of the phonon field is located at x = L/2 is
consistent with the fact that the edge of the droplet is free, i.e.,
it experiences no compression and no gradient of the velocity
field.

As we approach the opposite (soliton) limit y — —oo,
we observe that the breathing-mode frequency tends to, but
never crosses, the particle-emission threshold. This is not
a numerical artifact. The asymptotic behavior of this mode
can be understood from the following perturbative procedure.
Retaining only the leading-order terms in 1/ in Egs. (13)
(equivalent to the formal substitution ¢35 — ¢2 and ¢y —
0), the resulting equations are solved by wr, = —pu, u(x) =
tanh? (/=2 x) and v(x) = —1/ cosh?(v/—2u x). This solu-
tion corresponds to the s-wave scattering of an atom by a
soliton at zero collision energy and is characterized by infinite
scattering length, i.e., there is, effectively, no atom-soliton
interaction. Using the first-order perturbation theory around
this solution [using d)g — ¢X2 and ¢y = ¢, as perturbations in

Egs. (13)], we find that the droplet acts as a weakly attractive
potential for the atom, characterized by the scattering length
6/, which gives a weakly bound state (the breathing mode)
with the energy

2

T
W+ p~ = <L — . (19)

In Fig. 1(b), this asymptote is shown with a dotted bold
line. Lastly, we note that the existence and properties of
internal modes in somewhat similar cubic-quintic GPE were
considered in Ref. [34] and a perturbative treatment of the
quintic term for this GPE was also performed in the context
of quasi-1D bright solitons [36].

In conclusion, we have obtained the complete frequency
spectrum of the one-dimensional self-bound quantum droplet
of the Bose-Bose mixture. The results can be used to charac-
terize the droplet, measure its parameters, and distinguish it
from the bright soliton. By manipulating interactions in the
mixture, all collective excitations, except the breathing mode,
can be pushed into the continuum, thus offering a way to cool
the droplet. The breathing mode, which we find to be always
bound, opens the way to experimental realization of a robust
intrinsic mode in self-trapped matter-wave states (see [34] for
the discussion). We note that our derivation assumes a purely
one-dimensional mixture in free space in the weakly interact-
ing regime. Deviations from these assumptions—in particular,
the effects of an external trapping and 3D character of the
system (cf. [4,28,37])—may become qualitatively important
in the experimental situation. We leave these topics for future
studies.
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