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We study the collective excitations of polarized single-component quasi-two-dimensional dipolar fermions

in an isotropic harmonic trap by solving the collisional Boltzmann-Vlasov (CBV) equation via the method of

moments. We study the response to monopole and quadrupole perturbations of the trap potential and investigate

the dynamical character of excitations in each case. Simple analytic formulas are found using the linearized scaling

ansatz approximation and accurate numerical results are obtained by satisfying the first eight moments of the CBV

equation. Except for the lowest-lying monopole mode that is weakly affected by collisions, the quadrupole and

the higher-order monopole modes undergo a transition from the collisionless regime to a dissipative crossover

regime and finally approach the hydrodynamic regime upon increasing the dipolar interaction strength. For

strong transverse confinement (2D limit), we predict the existence of a temperature window within which

the characteristics of the collective modes become temperature independent. This plateau, which is a direct

consequence of dipole-dipole scatterings, persists as long as the scattering energies remain in the near-threshold

regime. The predictions of this work are expected to be observable in the current experiments.

DOI: 10.1103/PhysRevA.86.063638 PACS number(s): 03.75.Ss, 67.85.Lm, 67.10.Jn

I. INTRODUCTION

Dipolar quantum gases have been the subject of much

interest and significant experimental and theoretical inves-

tigations in the recent years. The long-range anisotropic

dipole-dipole interactions give rise to novel phenomena and

applications in these systems (see Ref. [1] and references

therein). Dipolar Bose-Einstein condensates (BECs) with

magnetic dipole-dipole interactions have been exhaustively

studied both theoretically and experimentally [2]. The most

recent experimental achievements along this line are the

realization of BECs of rare-earth atoms such as 164Dy [3]

and 168Er [4] with large magnetic dipole moments of 10μB

and 7μB , respectively. The many-body effects of dipolar

interactions are much easier to observe in dipolar BECs

compared to dipolar Fermi gases. Pauli exclusion sets a large

energy scale set for fermions and stronger dipolar interactions

are required for the interaction effects to become appreciable.

Since electric dipole-dipole interactions are typically

stronger than magnetic ones, much of the recent experimental

efforts have been focused on the realization of ultracold

heternucleus bialkali molecules which have large perma-

nent electric dipole moments. An important experimental

achievement in this direction was the realization of a nearly

quantum degenerate gas of fermionic KRb molecules at

JILA [5]. Unfortunately, complexities arising from ultracold

chemistry results in significant molecule loss and have also

hampered further evaporative cooling to quantum degeneracy.

The experiments with other bialkali fermionic polar molecules

such as LiCs [6,7] are also making significant progress.

More recently, the group at Stanford has realized a quan-

tum degenerate gas of fermionic 161Dy through sympathetic

cooling with the bosonic species 162Dy [8]. Having a large

permanent magnetic dipole moment of 10μB and being free

of the complication of ultracold chemistry, these species have

brought a new hope toward the experimental observation of

many-body dipolar physics.

An important experimental probe for the many-body

physics of ultracold gases is the measurement of collective

oscillations of trapped gases in response to perturbations of

the trap potential. These oscillations constitute the low-lying

collective excitations of these systems. The measurement

of the frequency and damping of these oscillations can be

utilized to understand the properties of the ground state and

to extract important information such as the character of

self-energy corrections, the equilibrium equation of state, and

the kinetic coefficients. Moreover, the possibility of carrying

out extremely precise measurements of these quantities allows

us to put our theoretical understanding of the system to the

test. For instance, by measuring the frequency of the radial

breathing mode for a two-component Fermi gas near the

BEC-BCS crossover with a 10−3 accuracy level, the Innsbruck

group could clearly verify the quantum Monte Carlo result

for the unitary gas and invalidate the predictions of the

BCS theory [9]. Another remarkable example is the recent

measurement of the universal quantum viscosity of the unitary

gas [10] that confirmed the theoretical T 3/2 scaling and also

provided evidence for a conjecture on the lower bound for the

viscosity/entropy ratio obtained using string-theory methods

[11]. At the moment, the collective oscillations of trapped

BECs [12] and two-component atomic gases with s-wave

interactions in three dimensions [13] are both understood fairly

well. Recently, the experimental and theoretical studies of the

2D Fermi gas interacting via s-wave Feshbach resonances have

also shown remarkable progress [14–18].

In this paper, we study the collective modes of quasi-

two-dimensional (quasi-2D) dipolar fermionic gases prepared

in a single hyperfine state and loaded into an isotropic

harmonic trap. Experimentally, this configuration may be

realized using a highly anisotropic optical dipole trap such

that ωz ≫ ωx = ωy , where ωi is the trap frequency along

ith axis. Stronger transverse confinements (larger ωz) can be

achieved using an optical lattice to slice the trapped gas into

thin “pancakes” [5]. In that case, we confine our attention
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to a single pancake here. We assume that the dipoles are

aligned perpendicular to the confining plane (see Fig. 2). In this

setting, the effective dipole-dipole interactions have a repulsive

long-range character and give rise to a normal Fermi liquid

state. This particular configuration is also necessary in order

to suppress inelastic dipolar collisions and also to reduce the

rate of chemical reactions in experiments with reactive bialkali

polar molecules.

In highly quantum degenerate Fermi liquids (T ≪ TF ,

where TF is the Fermi temperature), the elastic collisions are

suppressed due to Pauli exclusion and collisional effects may

be ignored as a first approximation in the study of collective

excitations. In this so-called collisionless (CL) limit, the col-

lective modes are undamped and no energy dissipation occurs.

As the temperature is increased, the collision rate rapidly

grows and the collisional effects may no longer be ignored.

In this regime, the dynamics is dissipative and the collective

modes are damped. However, if the collision rate surpasses

the typical frequency of collective oscillations (whose scale is

set by the trap frequency), the gas will remain “locally” in a

thermal equilibrium and a hydrodynamical (HD) description

emerges [19]. This ideal HD limit is again dissipationless

and the quasiequilibrium dynamics is simply described by

differential conservation laws of mass, momentum, and energy

currents [19,20]. A realistic system, however, typically lies

in the dissipative “crossover” regime between these two ideal

limits [21]. An important aspect of understanding a many-body

system is to determine where it lies within the CL-HD

spectrum, both qualitatively and quantitatively.

The theoretical investigation of collective modes of trapped

dipolar fermions has started more than a decade ago. Góral

et al. have studied the stability condition [22] and HD

excitations in traps with different degrees of of anisotropy [23]

at zero temperature. Lima et al. have studied the same problems

in more detail [24,25], while Sogo et al. have studied the the

CL limit [26]. More recently, Abad et al. have compared the

predictions of CL and HD formulations at zero temperature

for vertically aligned and tilted dipoles [27].

In light of the recent experimental progress with dipolar

fermions and the possibility of carrying out precise mea-

surement of the collective modes, it is worthwhile to carry

out a more detailed and quantitatively reliable theoretical

treatment of this problem. The issue of finite temperature has

not been addressed in any of the above works and once the

thermal effects are taken into account, all of the previously

used formulations become unreliable. The applicability of

ideal HD formulation at zero temperature is questionable

since collisions are absent. Also, the CL approximation is

only relevant to extremely quantum degenerate conditions

which is not within the reach of the experiments yet. Most

importantly, the crossover regime, which is most relevant to

current experiments, has not been studied so far.

Here, we make no prior assumption about where the

system lies in the CL-HD spectrum. We use the framework

of quantum kinetic equations (in particular, the collisional

Boltzmann-Vlasov limit), which, in principle, allows us to

study the dynamics in the whole spectrum in a unified way. The

CL and HD limits emerge naturally when the right physical

conditions are met. We evaluate the linear response of the

gas to monopole and quadrupole perturbations of the trap

potential and study the oscillation frequency and damping of

the generated excitations. We restrict our analysis to situations

where collisions lie well within the near-threshold scattering

regime so that Born approximation is applicable [28,29]. This

condition is satisfied well in the current experiments.
We carry out the calculations in two stages. First, we neglect

the self-energy corrections to quasiparticle dispersions (the
Boltzmann limit) and utilize the widely used linearized scaling
ansatz approximation [30] to obtain a simple semianalytic
picture. In the second stage, we include the self-energy
corrections to quasiparticle dispersions and also extend the
scaling ansatz by including higher-order moments (up to the
eighth order). We find that both of these refinements result
in significant quantitative corrections. Furthermore, inclusion
of higher moments allows us to study higher-order modes in
addition to the nodeless modes described by the scaling ansatz.

Before delving into the formalism and details, we find

it useful to briefly summarize our main results, some of

which are unique features of dipolar fermions in 2D. Without

self-energy corrections, the scaling ansatz analysis predicts

the well-known undamped monopole oscillations at a fixed

frequency of 2ω0, independent of the interaction strength and

temperature [31,32]. Here, ω0 ≡ ωx = ωy is the in-plane trap

frequency. Taking self-energy corrections into account, we find

that the oscillation frequency of the nodeless monopole mode

increases from 2ω0 due to the repulsive interactions while it

also assumes a small damping (see Fig. 6). While collisions

have a small influence on the dynamics of the scaling mode, we

find that higher-order monopole modes are strongly influenced

by collisions: They go through a dissipative crossover regime

as the interaction strength is increased and finally approach

the HD regime (see Fig. 1).

The quadrupole modes, including the lowest-lying nodeless

mode, exhibit the same CL-to-HD transition. In particular,

the oscillation frequency of the nodeless quadrupole mode

approaches
√

2ω0 in the collision-dominated regime, which is

the universal frequency of the quadrupole “surface” mode [33]

(see Fig. 9). The appearance of surface modes is an indication

for the emergence of hydrodynamics.

We find simple analytic results in the Boltzmann limit using

the linearized scaling ansatz approximation. In particular, we

find that the frequency and damping of the quadrupole oscil-

lations are controlled by a single parameter, the quadrupole

collision rate νc (see Sec. V B). Small and large values of νc

correspond to CL and HD behavior, respectively. For small

T/TF , we obtain νc ∼ T 2, which is due to Pauli blocking.

For large T/TF , the behavior of νc depends on the degree of

quasi-two-dimensionality ([quantified by η; see Eq. (13)]. In

the strictly 2D limit, we show that νc reaches a plateau for

T � TF . The existence of this plateau is a unique feature of

2D dipolar fermions and results from the balance between

rarefaction of the gas at higher temperatures and the growth

of the dipolar scattering cross section. The high-temperature

cutoff for this plateau behavior is Tdip ≡ h̄2/(ma2
dkB), where

ad ≡ mD2/h̄2 is the “dipolar length.” Here, m and D denote

the mass and the dipole moment of a single particle. For

T � Tdip, the scattering energies become semiclassical and

we find νc ∼ T −3/4.

Figure 1 shows a qualitative comparison between the

behavior of quadrupole oscillations in 2D two-component
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FIG. 1. (Color online) Qualitative comparison between the dy-

namical regimes of quadrupole oscillations of 2D s-wave and dipolar

fermions in harmonic traps. Panels (a1) and (b1) show the temperature

dependence of the collision rates of s-wave and dipolar fermions

respectively. Panels (a2) and (b2) show the resulting dynamical

regimes as a function of interaction strength and temperature. The

asymptotics of νs−wave
c is due to [15]. kF is the trap Fermi momentum,

a2 is the 2D scattering length and Tb = h̄2/(mkBa2
2 ). See Eqs. (13)

and (25) for the definition of the parameters appearing in (b1) and

(b2). Please refer to the main text for details.

fermions interacting via a s-wave Feshbach resonance (simply,

s-wave fermions) and 2D dipolar fermions. The top and bottom

panels show the temperature dependence of νc and the resulting

dynamical regimes of quadrupole oscillations as a function of

interaction parameter and temperature. The discussed regimes

of νc for 2D dipolar fermions can be seen in panel (b1). It is

worthy of mention that the temperature window in which νc

is appreciably large is “universal” for 2D s-wave fermions.

For 2D dipolar fermions, however, this window is amenable

to experimental tuning (see Sec. VIII).

We look into the effect of mean-field correction to quasi-

particle dispersions and show that it has a significant effect in

the quantum degenerate regime. This is again in contrast to

the case of s-wave fermions where self-energy correction is

found to have a small effect on the frequency of collective

modes [34]. Finally, going beyond the scaling ansatz by

satisfying higher-order moments of the CBV equation, we

show that the simple scaling ansatz overestimates the collision

rates, in agreement with the findings of Ref. [35]. We also

show that refinements to the predictions for the lowest-lying

monopole and quadrupole modes become negligible beyond

fourth-order moments. Finally, we discuss the observability

of our predictions in the experiments with 40K-87Rb and
161Dy and show that although the HD regime is not currently

achievable, a significant collisional damping and the plateau

in the collision rates are both expected to be observable.

This paper is organized as follows. In Sec. II, we describe

the model in detail and define the response functions. A brief

overview of the quantum kinetic equations, the approximations

leading to the CBV equation, and their validity conditions,

are given in Sec. II C. We discuss the equilibrium state of the

trapped gas in Sec. III. The linear response theory of the CBV

equation is described in Sec. IV and the variational calculation

of the response functions using the method of moments is

discussed. The linearized scaling ansatz analysis is given in

Sec. V, followed by the its extension to higher-order moments

and inclusion of self-energy corrections in Sec. VI. Finally,

we discuss the experimental outlook of this work in Sec. VII

and conclude the paper with further discussions in Sec. VIII.

Most of the technical details and tedious calculations are left

to the Appendixes.

II. THE FORMALISM

A. The Hamiltonian

The Hamiltonian for trapped dipolar fermions prepared in

a single hyperfine state and placed in a strong polarizing dc

field (electric for polar molecules, magnetic for atoms with

permanent magnetic dipoles) can be written as

H3D =
∫

d3r ψ†(r)

(

−
∇2

2m
+ U 3D

trap(r)

)

ψ(r)

+
∫

d3r d3r′ V3D
dip(r − r′) ψ†(r) ψ†(r′) ψ(r′) ψ(r),

(1)

where

U 3D
trap(r) = 1

2
mω2

zz
2 + 1

2
mω2

0(x2 + y2) (2)

is the axially symmetric trap potential and

V3D
dip(r) =

D2

|r|5
(|r|2 − 3z2). (3)

Here, D is the dipole moment. We set h̄ = 1 throughout

this paper unless it appears explicitly. A schematic picture

of the system is shown in Fig. 2. We have assumed that the

FIG. 2. (Color online) A schematic picture of quasi-2D dipolar

fermions in an isotropic in-plane trap. A strong dc field aligns

the dipoles along the vertical axis (z). The quasi-2D limit is

achieved when az ≡ [h̄/(mωz)]
1/2 is much smaller than both the

interparticle separation n
−1/2

2D and the thermal de Broglie wavelength

λT ≡ h/(2πmkBT )1/2 (equivalently, when ωz ≫ max{ǫF ,kBT }).
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dipoles are fully aligned along the z axis. Here, ψ (†)(r) is the

fermion annihilation (creation) operator in 3D space. In the

limit ωz ≫ ω0,ǫF ,kBT (where ǫF and T denote the Fermi

energy and the temperature), the particles occupy only the

lowest transverse subband and we can reduce the above 3D

Hamiltonian to an effective 2D model:

H2D =
∫

d2r ψ
†
0 (r)

(

−
∇2

2m
+ U 2D

trap(r)

)

ψ0 (r)

+
∫

d2r d2r′ V2D
dip(r − r′) ψ

†
0 (r) ψ

†
0 (r′) ψ0 (r′) ψ0 (r).

(4)

Here, r = (x,y) denote the in-plane 2D coordinates and ψ
(†)
0 (r)

denotes the fermion annihilation (creation) in the lowest

subband. We have neglected the constant zero-point energy

h̄ωz/2. U 2D
trap(r) = mω2

0(x2 + y2)/2 is the in-plane part of the

original trap potential and V2D
dip(r) is the effective dipole-dipole

interaction in the lowest subband:

V2D
dip(r) =

∫

dz dz′ |φ0(z)|2 |φ0(z′)|2 V3D
dip(r,z − z′), (5)

where φ0(z) = e−z2/(2a2
z )/(

√
π az)

1
2 is the transverse wave

function of particles in the lowest subband and az ≡ (mωz)
−1/2

is the transverse oscillator length. The above integral can be

calculated analytically and we find

V2D
dip(r) =

1
√

2π

D2

2a3
z

er2/(4a2
z )

×
[(

2 +
r2

a2
z

)

K0

(
r2

4a2
z

)

−
r2

a2
z

K1

(
r2

4a2
z

)]

, (6)

where {Kn(x)} denote the modified Bessel functions of the

second kind. In the momentum space, we get

Ṽ2D
dip(q) =

2πD2

az

[√

2

π
− qaze

q2a2
z /2Erfc

(
qaz√

2

)]

. (7)

The effective interaction is purely repulsive regardless of the

choice for az; however, its strength decreases as az is increased.

We denote V2D
dip ≡ V , Ṽ2D

dip ≡ Ṽ , and U 2D
dip ≡ U in the remainder

of this paper for brevity.

It is worthwhile to study the behavior of the effective 2D

interaction in various limits. For qaz ≪ 1, we find:

Ṽ(q) ≃
4
√

2πD2

3az

− 2πD2q + O(q2), (8)

whereas for qaz ≫ 1, we get

Ṽ(q) ≃ −
2D2

√
2π

3az

(

1 −
3

q2a2
z

+ O
(

q−4a−4
z

)
)

. (9)

Apart from the constant term in Eq. (8), which only contributes

to interactions in the s-wave channel and is immaterial here, we

find a linear dependence on q. This linear behavior eventually

reaches a plateau once q ∼ 1/az. We shall see later that

this linear dependence has interesting consequences on the

temperature dependence of low-lying collective excitations.

In real space, for small r/az, we find a behavior similar to

the 2D Coulomb gas:

V(r) ≈
D2

√
2πa3

z

{

−2 − γ − ln
[

r2
/(

8a2
z

)]

+ O(r2 ln r)
}

,

(10)

where γ is the Euler’s constant. For large r/az, the r−3 dipole-

dipole interaction is recovered:

V(r) ≈ D2/r3 + O
(

a2
z

/

r5
)

. (11)

It is useful to define a “dipolar length”:

ad ≡
mD2

h̄2
, (12)

which is a quantum length scale associated to dipolar inter-

actions. We also define the following useful dimensionless

parameters:

λd ≡
mD2

h̄2

(
mω0

h̄

) 1
2

, (2N )
1
4 ≡

(
ad

a0

)

(2N )
1
4 ,

η ≡ (2N )
1
4

(
ω0

ωz

) 1
2

, (13)

where a0 ≡ [h̄/(mω0)]
1
2 is the in-plane oscillator length and

N is the number of trapped particles. λd is a measure of

dipolar interaction strength and is of the order of the typical

value of interaction energy over the kinetic energy in the

quantum degenerate regime. η is a measure of “quasi-two-

dimensionality” and is of the order of the transverse oscillator

length az divided by the inter-particle separation. The strict 2D

limit ωz → ∞ corresponds to η = 0.

B. Linear response theory

A typical experiment for measuring the collective excita-

tions of trapped particles is the following: The gas is prepared

in the thermal equilibrium at t < 0−. For t > 0−, the system

is subjected to a perturbation such as a kick or modulation of

the trap potential and a certain observable is monitored. If the

frequency and amplitude of the perturbing potential is small

compared to the macroscopic scales, such an experiment can

be theoretically investigated within the linear response theory.

Let us denote the perturbing potential and the observable as

δU (r,t) and O(r), respectively, and their corresponding second

quantized operators are δÛ ≡
∫

d2r ψ
†
0 (r) δU (r,t) ψ0 (r) and

Ô ≡
∫

d2r ψ
†
0 (r) O(r) ψ0 (r). The usual linear response theory

then yields

〈Ô〉t =
∫ t

0−
dt ′

∫

d2r d2r′ χR
dd(r,r′; t − t ′) O(r) δU (r′,t ′),

(14)

where χR
dd(r,r′; t − t ′) is the retarded density-density response

function:

χR
dd(r,r′; t − t ′) ≡ −iθ (t − t ′)Tr{ρ̂0[ρ̂(r,t),ρ̂(r′,t)]}, (15)

where ρ̂(r,t) = ψ
†
0 (r,t)ψ0 (r,t) is the density operator and ρ̂0

is the initial density matrix. At this stage, one may choose

a proper many-body approximation scheme and attempt to
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evaluate the response function using the diagram technique.

However, the lack of translational symmetry due to the pres-

ence of the trap potential makes this approach complicated. In

practice, one will have to make assumptions about separation

of microscopic and macroscopic time and length scales in order

to make the calculations tractable. It is, however, much more

transparent to acknowledge the existence of such a separation

of scales from the outset and reduce the complicated evolution

equations of the nonequilibrium Green’s functions to quantum

kinetic equations. One may then evaluate the linear response

functions directly using the quantum kinetic equations. We

describe this method in the next section, where we also briefly

review the quantum kinetic equations approach.

We conclude this section by defining the response functions

relevant to monopole and quadrupole oscillation experiments.

The monopole oscillations can be excited by choosing

δU (r,t) ≡ δUm(r,t) ≡ A(t) mω2
0r

2, where A(t) is the tempo-

ral shape of the perturbation (e.g., a δ function, a finite pulse

or a periodic modulation). We choose A(t) ≡ A0 ω−1
0 δ(t) for

concreteness. The linear response to any other pulse shape can

be determined from the impulse response. Note that we have

“defined” the monopole oscillations as the response of the

trapped gas to ∼r2 perturbation. One may choose any other

isotropic trap perturbation (such as r4, etc.). Such choices,

however, excite higher-order modes to a greater degree, which

may not be desirable. Here, the observable is the variation in

the size of the cloud, r̂2 − 〈r̂2〉0. We define the “monopole

response function” as

χr2 (t) = A−1
0 mω0 θ (t)(〈r̂2〉t − 〈r̂2〉0). (16)

Likewise, we define the quadrupole oscillations as the response

of the trapped gas to δU (r,t) ≡ δUq(r,t) ≡ A(t) mω2
0(x2 −

y2) and define the “quadrupole response function” as

χx2−y2 (t) = A−1
0 mω0 θ (t) 〈x̂2 − ŷ2〉t . (17)

Note that 〈x̂2 − ŷ2〉0 = 0 due to the isotropy of the trap.

C. From quantum kinetic equations to the collsional

Boltzmann-Vlasov equation

Quite generally, the dynamics of confined quantum gases

can be formulated and studied using the formalism of nonequi-

librium Green’s functions, that is, either by solving Kadanoff-

Baym equations within a relevant conserving approximation

[19] or by using the Keldysh-Schwinger diagram technique.

Such formulations in their fullest generality, however, are

only necessary when the spatial and temporal scales of

inhomogeneities (the trap and its perturbation) is comparable

to the microscopic scales. In experiments dealing with a

large number of particles N in shallow traps, there is a

natural separation of temporal and spatial scales between

the microscopic (single particle) and macroscopic (collective)

dynamics. Exploiting this fact, one can reduce the complicated

Kadanoff-Baym equations to the intuitive picture of quantum

kinetic equations using the well-known procedure of gradient

expansion [19,36]. There exist several decent treatments of

this subject in the literature and we refer the reader to the

excellent pioneering monograph by Kadanoff and Baym [19]

and Ref. [36] for details. For the purpose self-containedness

and in order to clarify the nature of approximations, however,

we provide a brief overview of the basic elements of the

kinetic theory. Our starting point is the general quantum kinetic

equation for a system composed of a single species of fermions

(i.e., a gas prepared in a single hyperfine state):

[Re(G−1)+,iG≷] − [i�≷,ReG+] = G<�> − G>�<,

(18)

where G+(p,ω; r,t) ≡ (ω − p2/(2m) − U (r,t) − �+)−1 and

G≷(p,ω; r,t) are the retarded and greater or lesser nonequilib-

rium Green’s functions in the mixed Wigner coordinates [36].

Here, U (r,t) is the external potential (i.e., the trap potential

and its perturbation) and is assumed to vary on a scale

much larger than the microscopic scales. �+(p,ω; r,t) and

�≷(p,ω; r,t) are the retarded and greater/lesser self-energies.

In the mixed Wigner coordinates, (p,ω) and (r,t) denote

to the Fourier transformed fast microscopic coordinates and

the slow macroscopic coordinates, respectively. [A,B] is the

generalized Poisson’s bracket:

[A,B] = ∂ωA∂tB − ∂tA∂ωB

−∇pA · ∇rB + ∇rA · ∇pB. (19)

It is generally understood that G+ encodes the spectral

properties of the system (single-particle states) while G< and

G> contains the information about the statistics of particles

and holes, respectively. Likewise, the real and imaginary

parts of �+ describe the renormalization of the single-particle

dispersion and the spectral broadening, respectively, while �<

and �> describe the scattering-in and -out rates. In analogy

to the equilibrium case, it is fruitful to introduce the local

spectral function A(p,ω; r,t), Wigner’s function f (p,ω; r,t),

and spectral broadening Ŵ(p,ω; r,t) (hereafter, we drop the

common arguments of the functions unless it is necessary),

such that G< ≡ iAf , A ≡ i(G> − G<) ≡ −2 Im(G+) and

Ŵ ≡ i(�> − �<) ≡ −2 Im(�+). The kinetic equations can

be partially integrated to yield (G+)−1 = ω − p2/(2m) −
Re(�+) + iŴ/2. This partial integration, along with one’s

choice of a many-body approximation that gives the self-

energies as a functional of G< and G> and finally the

kinetic equation [Eq. (18)] constitute a closed set of partial

integro-differential equations for f and A whose solution

describes the slow nonequilibrium dynamics of the system.

For the case of self-consistent many-body approximations,

the kinetic equation obeys differential conservation laws

for mass, momentum, and energy currents. The existence

and satisfaction of such conservation laws are necessary for

formation and propagation of collective modes [19].

Although the formalism of quantum kinetic equations is

much simpler than a full nonequilibrium treatment, it is still

extremely difficult to solve such equations in practice without

resorting to further approximations. One useful approximation

relevant for weakly interacting systems is the quasiparticle

approximation. The idea is that in the quantum degenerate

regime, only the particle-hole excitations near the Fermi

surface are responsible for the slow dynamics. The lifetime

of such excitations, Ŵ−1(pF ,ǫF ), is proportional to T 2
F /T 2,

which can be very large. Thus, one may neglect the spectral

broadening of the Green’s functions appearing in the Poisson

brackets as a reasonable approximation, and approximate the

spectral function as A ≈ 2πδ[ω − p2/(2m) − U − �+]. This
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approximation yields an ansatz for the greater/lesser Green’s

functions:

G<
qp(p,ω; r,T ) = 2πi Zp δ(ω − Ep) n(p; r,t),

(20)
G>

qp(p,ω; r,T ) = −2πi Zp δ(ω − Ep) [1 − n(p; r,t)],

where Ep is the (local) quasiparticle dispersion and is im-

plicitly given by ω − p2/(2m) − U (r,t) − �+(p,Ep; r,t) = 0

and Zp = [1 − ∂ω�+(p,ω = Ep; r,t)]−1 is the (local) quasi-

particle residue. n(p; r,t) ≡ f (p,Ep; r,t) is the quasiparticle

occupation number. Plugging this ansatz into the kinetic

equation, we obtain the collisional Boltzman-Vlasov (CBV)

equation:

(
∂

∂t
+

p

m
· ∇r + ∇p�

+[n] · ∇r − ∇r�
+[n] · ∇p

−∇rU (r,t) · ∇p

)

n(p; r,t) = Ic[n]. (21)

Ic[n] is called the collision integral operator and is given by

Ic[n] ≡ −iZp[(1 − n) �< + n�>]. (22)

The CBV equation can be thought of as a generalization of the

usual Boltzmann transport equation of classical gases by (1)

including Pauli exclusion in the collision integral and (2) using

dressed quasiparticle. A crucial observation made by Kadanoff

and Baym is that the one may use different conserving many-

body approximations for left-hand (known as convective or

dynamical) and the right-hand (collisional) sides of the kinetic

equation without breaking the conservation laws. Intuitively,

the dynamical and collisional contributions describe different

physics, and as long as each respect the conservation laws, the

conserving property of the kinetic equation is preserved as a

whole.

The main goal of this work is to study the effect of dipolar

interactions to the leading order in the interaction strength

on both CL quasiparticle transport and elastic quasiparticle

collisions. We use the self-consistent Hartree-Fock (HF) ap-

proximation on the dynamical side and the Born approximation

to describe collisions. The retarded self-energy in the HF

approximation is instantaneous and is given by

�+[n](p; r,t) =
∫

d2r′ d2p′

(2π )2
[V(r − r′)

− δ2(r − r′)Ṽ(p − p′)]n(p′; r′,t), (23)

where V(r) and Ṽ(p) are the two-body interactions in the real

and momentum space. Dealing with long-range interactions,

we have included nonlocal contributions in the Hartree

term. Such contributions are beyond the first-order gradient

approximation but their inclusion may be necessary for long-

range interactions. It is exactly the inclusion of such nonlocal

contributions in the Boltzmann-Vlasov equation for electron

liquids that yields plasmon modes and Landau damping.

However, we will shortly show that nonlocal direct interactions

are negligible in the case of dipole-dipole interactions. Also,

note that since �+ has no ω dependence, the quasiparticle

residue is 1. The collision integral in the Born approximation

is given by [36]

Ic[n] =
∫

d2p1

(2π )2

d2p′

(2π )2

d2p′
1

(2π )2
(2π )2δ2(�P)(2π )δ(�E)

×
1

2
|M|2[(1 − n)(1 − n1)n′n′

1 − nn1(1 − n′)

× (1 − n′
1)], (24)

where M = Ṽ(p − p′) − Ṽ(p − p′
1) is the Born scat-

tering amplitude, �P = p + p1 − p′ − p′
1 and �E =

Ep + Ep1
− Ep′ − Ep′

1
. Note that Ep = p2/(2m) + U (r,t) +

�+[n](p; r,t). We have also used the shorthand n ≡ n(p; r,t),

n1 ≡ n(p1; r,t), etc., in the above equation.

We conclude this section by discussing the validity of the

approximations adopted so far. Since we have described the

interactions using the lowest-order processes, the predictions

are quantitatively reliable only as long as the system is in the

weakly interacting regime, that is, λd ≪ 1 [see Eq. (13)]. For

dipolar interactions, this condition is equivalent to diluteness√
ρad ≪ 1, where ρ is the 2D density and ad is the dipolar

length defined earlier [Eq. (12)]. Since the Fermi liquid state

is expected to be stable for a wide range of interaction

strengths (up to the crystallization point), we do not expect

the higher-order many-body corrections to lead to qualitatively

different physics. Therefore, although our approximations are

only controlled in the dilute limit, we allow ourselves to extend

our analysis to λd ∼ O(1) as well.

Apart from the many-body physics, the validity of Born

approximation in describing two-body scatterings and the

negligence of multiple scatterings must also be assessed.

The Born approximation is valid when h̄v ≫ Va, where v is

the typical velocity of the scattering pairs in the center of mass

frame and a is range of interactions. Identifying a with ad and

v ∼ [m max(kBT ,kBTF )]
1
2 , this condition implies

max(kBT ,kBTF ) ≪ kBTdip ≡
h̄2

ma2
d

, (25)

where we have defined a “dipolar temperature” Tdip. This

is precisely the condition for near-threshold scatterings. The

dipolar scatterings in 2D is studied in detail in Ref. [28] and it

is shown that the Born approximation is quantitatively reliable

provided that mvad/h̄ � 0.1. Inclusion of multiple scatterings,

however, results in significant quantitative corrections as one

approaches the semiclassical regime and the Born approxima-

tion consistently found to overestimate the cross section. In this

paper, we confine our analysis to near-threshold scatterings.

Therefore, the quantitative validity of our results crucially

relies on Eq. (25). Here, we assume that the following scale

separation holds:

TF ≪ Tdip ⇔
a0

ad

≫ N
1
4 , (26)

so that we can allow ourselves to investigate both the

quantum degenerate regime (T/TF ≪ 1) and the thermal

regime (T/TF ≫ 1) up to T ∼ Tdip. We note that this condition

is satisfied well in the current experiments with both polar

molecules and rare-earth atoms (see Sec. VII).
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III. THE EQUILIBRIUM STATE

The first step in the linear response analysis using the kinetic

equations is to determine the equilibrium distribution about

which the perturbation analysis is carried out. We assume

that the system has reached a thermal equilibrium state in the

external potential U (r) = mω2
0r

2/2 before the perturbation is

introduced. It is easily shown that the CBV equation has a

unique equilibrium solution given by

n0(p; r)

=
{

exp

[

β

(
p2

2m
+ �0(p; r) +

1

2
mω2

0r
2 − μ

)]

+ 1

}−1

,

(27)

where we have introduced the shorthand �0 ≡ �+[n0]. The

above equation has to be solved self-consistently along with the

expression for the self-energy [Eq. (23)]. It is easily verified

that the above solution satisfies Ic[n0] = 0 and at the same

time, it solves the left-hand side of the CBV equation. The

global chemical potential μ has to be found such that the

equilibrium distribution function yields the correct number of

trapped particles:

∫

dŴ n0(p; r) = N, (28)

where we have defined the phase-space volume differential as

dŴ ≡ d2r d2p/(2π )2. In the case of harmonic traps, it is useful

to define the following scaled coordinates:

r̄ ≡
r

r0

, r0 ≡ [2N/(mω0)2]1/4,

(29)

p̄ ≡
p

p0

, p0 ≡ [2N (mω0)2]1/4.

In the scaled coordinates, the equation for the particle num-

ber is
∫

dŴ̄ n0(p̄; r̄) = 1/2, where dŴ̄ ≡ d2r̄ d2p̄/(2π )2 =
dŴ/(2N ). The equilibrium distribution function also reads as

n0(p̄; r̄)

=
{

exp

[

β̄

(
p̄2 + r̄2

2
+ �̄0(r̄; p̄) − μ̄

)]

+ 1

}−1

, (30)

where β̄ = TF /T and

TF = (2N )
1
2
h̄ω0

kB

(31)

is the (in-trap) Fermi temperature, μ̄ = μ/(kBTF ) is the

dimensionless chemical potential, and

�̄+[n](p̄; r̄,t) = ω−1
0

∫

dŴ̄′[
√

2N V[r0(r̄ − r̄′)]

−mω0δ
2(r̄ − r̄′)Ṽ[p0(p̄ − p̄′)]]n(p̄′; r̄′,t)

(32)

is the dimensionless self-energy functional. Also, �̄0 ≡
�̄+[n0]. The motivation for using scaled coordinates becomes

clear upon investigating the equilibrium state of the noninter-

acting problem. In this case, the (dimensionless) equilibrium

density ρ̄
(0)
0 (r̄) can be found analytically,

ρ̄
(0)
0 (r̄) ≡

∫
d2p̄

(2π )2
n̄0(p̄; r̄) = ln

[

1 + eβ̄(μ̄−r̄2/2)
]

/(2πβ̄),

(33)

using which we obtain an equation for the chemical potential

of the noninteracting trapped gas:

μ̄2 +
π2

3
T̄ 2 + 2 T̄ 2 Li2[− exp(−μ̄/T̄ )] = 1, (34)

where T̄ = T/TF . At low temperatures, the above equation

admits the solution μ̄ = 1 − π2T̄ 2/6 + O(β̄−2e−β̄). The zero-

temperature Thomas-Fermi radius of the cloud is easily

obtained from Eq. (33), yielding R
(0)
TF = [2

√
2N/(mω0)]1/2 ≡√

2 r0. Also, the Fermi momentum at the center of the trap is

given by p
(0)
F = [2

√
2N (mω0)]1/2 ≡

√
2 p0. We note that N

does not appear explicitly in the expressions written in terms

of the scaled coordinates. Moreover, at low temperatures, the

equilibrium distribution function is only appreciably larger

than zero in a region of size O(1) in the scaled phase-space

coordinates.

Once the interactions are taken into account, analytical

solutions can no longer be obtained and the equilibrium

distribution function has to found numerically. It is, however,

useful to investigate the effect of nonlocal Hartree self-energy

term first: The forthcoming calculations will be significantly

simplified if the nonlocal effects can be neglected. Carrying out

the trivial momentum integration in the first term of Eq. (32),

the Hartree self-energy can be expressed as a linear functional

of just the density:

�̄+
H [ρ̄](r̄,t) = ω−1

0

∫

d2r̄′ √2N V(r0r̄′) ρ̄(r̄ − r̄′,t). (35)

Observing that the density is only appreciable in a region of

size O(1) in the scaled coordinates and the appearance of

r0 ∼ N1/4 in the argument of interaction potential, the above

integral is expected to only depend of the values of the density

within a small region of size ∼N−1/4 about r̄. Assuming that

the density variation is smooth, we may expand ρ̄ to quadratic

order about r̄ to get

�̄+
H [ρ̄](r̄,t) ≈ ω−1

0

∫

d2r̄′ √2N V(r0r̄′)

×[ρ̄(r̄,t) − r̄′ · ∇ρ̄(r̄,t) + r̄ ′
α r̄ ′

β∂α∂β ρ̄(r̄,t)/2].

(36)

The first contribution is the usual local density approximation

(LDA):

�̄+
H,LDA[ρ̄](r̄,t) ≡

√
2Nω−1

0 ρ̄(r̄,t)

∫

d2r̄′ V(r0r̄′)

= m Ṽ(0) ρ̄(r̄,t). (37)

The gradient term vanishes due to the isotropy of V(r). The

quadratic term is dominated by the long-range behavior ofV(r)

assuming that the short-range part of V(r) is integrable [which

is the case for dipolar interactions; see Eq. (10)]. Observing

that the Hessian matrix of the density is also O(1) in the

scaled coordinates, we easily find that the quadratic term yields

a correction that scales like N1/2−α/4 for a potential with
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power-law tail V(r) ∼ r−α . For dipolar interactions, α = 3

and we find that the leading corrections to LDA scale like

N−1/4 and can be neglected for large N . Note that if we were

dealing with an electron gas (α = 1), such corrections would

grow larger with N and the nonlocal Hartree functional had

to be kept untouched. A direct result of this simple analysis is

that the Landau damping, which is driven by nonlocal direct

interactions, is expected to be absent in a dipolar Fermi gas in

the thermodynamic limit. In the remainder of this paper, we

treat the Hartree potential in the LDA approximation and use

the following local self-energy functional:

�̄+
LDA[n](p̄; r̄,t)

= m

∫
d2p̄′

(2π )2
[Ṽ(0) − Ṽ[p0(p̄ − p̄′)]]n(p̄′; r̄′,t)

= λd

∫
d2p̄′

(2π )2
u(|p̄ − p̄′|,η) n(p̄′; r̄′,t), (38)

where we have used Eq. (7) in the second line and have defined:

u(x,η) = 2πx Erfcx

(
xη
√

2

)

, (39)

where Erfcx(x) ≡ ex2

Erfc(x). The dimensionless parameters

λd and η were defined earlier [Eq. (13)]. Note that the

dependence on N enters the equations only through these two

dimensionless parameters.

We obtain the equilibrium distribution function using a

simple iterative method. At the initial step, we set �̄0 = 0 and

define the function n0(μ̄) ≡ n[�̄0,μ̄], that is, the distribution

function obtained using the self-energy �̄0 = 0 and chemical

potential μ̄. We find μ0 such that
∫

dŴ̄ n0(μ0) = 1/2. To

proceed from the ith step to the (i + 1)th step, we set

�̄i+1 = �̄+[ni], define ni+1(μ̄) ≡ n[�̄i+1,μ̄], and find μ̄i+1

such that
∫

dŴ′ ni+1(μ̄i+1) = 1/2. At the end of this step,

we set ni+1 → (1 − δ)ni + δ ni+1, where 0 < δ < 1. The last

step is to stabilize the iterative procedure and to damp possible

oscillations that prevent convergence. With an arbitrary choice

δ = 0.75, we found the this iterative procedure converges to a

fixed point in less than ten steps within a relative error tolerance

of 10−8. It is trivial to show that the fixed point is indeed the

solution.

Figure 3 shows the equilibrium quasiparticle distribution

function as a function of p̄ and r̄ for several values of T̄ and

λd . As one expects, the presence of interactions results in the

expansion of the gas in the trap [compare panels (a) and (b)]

and thermal fluctuations smear the Fermi surface [compare

panels (a) and (c)].

The equilibrium density is shown in Fig. 4(a). The nearly

Gaussian distribution around the edge of the trap at finite

temperatures and the reduction of the density at the center of

the trap at low temperatures due to repulsive interactions can

be clearly seen. We also compare the LDA and full nonlocal

Hartree self-energy functionals in Fig. 4(b) for various number

of particles in the trap. The relative correction to the LDA

predictions is of the order of 10−3 for a realistic number of

trapped particles and, as argued earlier, becomes smaller for

larger system sizes.

Having found the equilibrium state, we can move on to

the investigation of the low lying collective excitations. To
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FIG. 3. (Color online) Equilibrium quasiparticle distribution

function of quasi-2D dipolar fermions for different temperatures

and interactions strengths (ωz = 2π × 23 kHz, ω0 = 2π × 36 Hz,

N = 2200 in all cases). (a) T/TF = 0.1, λd = 0; (b) T/TF = 0.1,

λd = 1; (c) T/TF = 0.5, λd = 0; (d) T/TF = 0.5, λd = 1. Red and

blue regions (near to and far from the origin, respectively) correspond

to occupied and empty states.

this end, we discuss the linear response theory of the CBV

equation in the next section as a first step.

IV. ANALYSIS OF THE COLLECTIVE MODES: LINEAR

RESPONSE THEORY OF THE COLLISIONAL

BOLTZMANN-VLASOV EQUATION

The linear response can be conveniently evaluated using

kinetic equations by introducing a perturbation to the external

potential, linearizing the resulting equation about deviations

from the global equilibrium state, δn(p̄; r̄,t) ≡ n(p̄; r̄,t) −
n0(p̄; r̄), and solving the resulting linear integro-differential

equation. The benefit of this formulation compared to the

diagram technique is the possibility of obtaining approximate

solutions using well-known variational methods.

Since we are mostly concerned with low temperatures here,

it is beneficial to introduce the following ansatz for δn:

δn(p̄; r̄,t) ≡ θ (t) �0(p̄; r̄) �(p̄; r̄,t), (40)

where �0 ≡ ∂n0/∂μ̄ = β̄n0(1 − n0). The above ansatz is not

restrictive for T > 0 since �0 > 0 everywhere on the phase

space. The only exception is T = 0, where �0 restricts the

deviations to the local Fermi surface. This is, in fact, a favorable

feature since the low-lying collective modes are formed from

the particle-hole excitations about the Fermi surface at T = 0.

Also, at finite T , �0 is sharply peaked about the local

Fermi surface and allows the solution of the linearized CBV

equation to be representable with a smooth choice of � [20].

As we shall see, this feature allows us to construct decent
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FIG. 4. (Color online) Equilibrium density of a quasi-2D dipolar

Fermi gas as a function of the distance from the center of the trap

(ωz = 2π × 23 kHz, ω0 = 2π × 36 Hz). (a) Dashed and solid lines

correspond to the noninteracting (λd = 0) and interacting (λd = 1),

blue (top) and red (bottom) lines correspond to T/TF = 0.1 and 0.5

respectively. In all cases, N = 2200. (b) A comparison between the

equilibrium densities obtained from LDA (solid lines) and nonlocal

(dashed lines) Hartree self-energy functionals. From bottom to top,

N = 500, 1000, 2200, and 5000. λd = 1 and T/TF = 0.1 in all cases.

The nonlocal corrections are clearly negligible and become smaller

as N is increased.

approximate solutions by choosing a linear combination of

smooth functions as a variational ansatz for �.

Plugging this ansatz into the CBV equation, expanding to

first order in �, and taking a Fourier transform in time, we

obtain the following linear integral equation for �(p̄; r̄,ω):

−i ω̄ �0� + D[�] − I[�] = −(2N )−
1
2 {n0,δU (r0r̄,ω)},

(41)

where {φ,ψ} ≡ ∇r̄φ · ∇p̄ψ − ∇p̄φ · ∇r̄ψ is the Poisson

bracket with respect to the scaled phase-space coordinates, and

ω̄ ≡ ω/ω0. D[�] describes the CL self-consistent mean-field

dynamics of quasiparticles:

D[�] = �0{�,H̄0} + {n0,�̄[�0�]}
= �0{� + �̄[�0�],H̄0}, (42)

where H̄0 = (p̄2 + r̄2)/2 + �̄0. To get the second line, we

have used the identity {n0,A} ≡ −�0{H̄0,A}, which can be

easily proved by direct calculation and is valid for arbitrary A.

The first term in the first line of Eq. (42) describes the

evolution of quasiparticles in the equilibrium mean field,

whereas the second term describes their dynamics in the

self-consistently generated residual mean field �̄[�0�]. I[�]

describes the collisional dynamics and can be written as

I[�] = −
β̄(2N )

1
2

2

∫
d2p̄1

(2π )2

d2p̄′

(2π )2

d2p̄′
1

(2π )2
(2π )2δ2(�P̄)

× (2π )δ(�Ē) |M̄|2 S{�} n0n0,1(1 − n′
0)(1 − n′

0,1),

(43)

where �Ē ≡ H̄0(p̄,r̄) + H̄0(p̄1,r̄) − H̄0(p̄′,r̄) − H̄0(p̄′
1,r̄),

�P̄ ≡ p̄ + p̄1 − p̄′ − p̄′
1, M̄ = m(Ṽ[p0(p̄ − p̄′)] − Ṽ[p0(p̄ −

p̄′
1)]), and S[�] ≡ �(p̄; r̄,ω) + �(p̄1; r̄,ω) − �(p̄′; r̄,ω) −

�(p̄′
1; r̄,ω). Note that the dressed quasiparticle dispersions

have been used in the collision integrals. Specializing to the

case of dipole-dipole interactions, we get

|M̄|2 = λ2
d [u(|p̄ − p̄′|,η) − u(|p̄ − p̄′

1|,η)]2. (44)

Formally, the solution of Eq. (41) can be written as

� = − (−i ω̄�0 + D − I)−1 {n0,δU (r0r̄,ω)}
(2N )

1
2

, (45)

and the linear response can be determined using Eq. (40):

〈O〉t =
∫

dŴ

∫
dω

2π
e−iωt�0(p̄; r̄) �(p̄; r̄,ω+) O(p; r).

(46)

The difficulty is in inverting the operator appearing in the

parentheses in Eq. (45). Decent approximate solutions, how-

ever, can be found using a variational technique known as the

method of moments. To this end, we restrict the solution space

of Eq. (41) to a subspace spanned by a set of basis functions

of the phase-space variables {φα(p̄; r̄)} (the “moments”) and

expand � and δU in this basis:

�(p̄; r̄,ω) =
∑

α

�α(ω) φα(p̄; r̄),

(47)
(2N )−

1
2 δU (r0r̄,ω) =

∑

α

δUα(ω) φα(p̄; r̄).

Plugging this ansatz into Eq. (41) and evaluating the moments

of the resulting equation with respect to each of the basis

functions, that is, multiplying the sides of the CBV equation

by each of the basis functions and integrating over the phase-

space variables, we find a closed set of linear equations for the

coefficients {�α}:

−iω̄〈〈φβφα〉〉�α(ω) + 〈〈φβ{φα,H̄0}〉〉 [δUα(ω) + �α(ω)]

+〈〈φβ{�̄[�0φα],H̄0}〉〉�α(ω) − Iβα�α(ω) = 0, (48)

where we have defined the “�0 average” as

〈〈A(p̄; r̄)〉〉 ≡
∫

dŴ̄ �0(p̄; r̄)A(p̄; r̄). (49)

Summation over repeated indices is implied in Eq. (48).

The matrix elements of the collision integral, Iαβ ≡
∫

dŴ̄ φαI[φβ] can be put in the following symmetric form

using the symmetry properties of the collision integral kernel:

Iαβ = −
β̄(2N )

1
2

8

∫

d2r̄

∫
d2p̄

(2π )2

d2p̄1

(2π )2

d2p̄′

(2π )2

d2p̄′
1

(2π )2

× (2π )δ(�Ē) (2π )2δ2(�P̄) |M̄|2 S[φα] S[φβ]

× n0n0,1(1 − n′
0)(1 − n′

0,1). (50)

The first term on the second line of Eq. (48) can be put in

a more useful form using the identity φβ{�̄[�0φα],H̄0} =
{φβ�̄[�0φα],H̄0} − �̄[�0φα]{φβ,H̄0}. Taking the �0 average

of both sides on this identity, the first term on the left-

hand side vanishes. To see this, note that 〈〈{ψ,H̄0}〉〉 =
∫

dŴ̄ �0{ψ,H̄0} =
∫

dŴ̄ {�0ψ,H̄0} for arbitrary ψ . The last

equality holds since {�0,H̄0} = 0. Since �0 → 0 exponen-

tially fast for large r̄ or p̄, the Stokes’ theorem implies that the

last integral vanishes as long as ψ is exponentially bounded.
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Here, ψ = φβ�̄[�0φα], which is, in fact, exponentially

bounded. Finally, Eq. (48) can be put in the following matrix

form:

(−iω̄M + H0 − � − Ic)�(ω) = −H0 δU(ω), (51)

where

(M)αβ = 〈〈φαφβ〉〉,
(H0)αβ = 〈〈φα{φβ,H̄0}〉〉,

(52)
(�)αβ = 〈〈�̄[�0φβ]{φα,H̄0}〉〉,
(Ic)αβ = Iαβ,

and �(ω) and δU(ω) are the vectors with entries �α(ω) and

δUα(ω), respectively. If the observable O(p̄; r̄) is also express-

ible in terms of the basis functions, O(p̄; r̄) =
∑

α Oαφα(p̄; r̄),

then the linear response can be conveniently written as

〈O〉ω =
∫

dŴ̄ Oβφβ �0�α(ω+)φα

= OT
M �(ω+). (53)

Equations (51)–(53) are similar to the analysis of Ref. [35].

Here, however, we have an additional matrix � that accounts

for the residual mean-field due to self-consistency.

It is useful to define an “evolution matrix” and express it in

its diagonal basis:

E ≡ M
−1(H0 − � − Ic) = i V�V

−1, (54)

where � is the diagonal matrix of eigenvalues and V is the

matrix of eigenvectors. Note that, in general, E is a not a Her-

mitian matrix and may have complex eigenvalues. Moreover,

it is a non-normal matrix and therefore, its eigenvectors are

not orthogonal [37]. Using the diagonal form of the evolution

matrix, Eq. (51) can be expressed as

�(ω) = −iV
1

ω − �
V

−1
M

−1
H0 δU(ω). (55)

The real and imaginary parts of � determine the oscillation

frequency and damping of the eigenmodes. Clearly, not all

of the eigenmodes are expected to contribute to the linear

response to a given perturbation. This becomes particularly

important when one is dealing with a large variational basis

set. In such cases, as we will see later, the evolution matrix will

have poles which are very close to each other on the complex

frequency plane and it is not a priori clear which one(s) and

the proportion to which it (they) contributes to the response

of the system. Using the linear response formalism described

here, however, this question does not need to be addressed

separately. Using Eqs. (53) and (55), we get

〈O〉ω =
∑

α

rα(ω)

ω − �α

,

rα(ω) = −i[VT
MO]α[V−1

M
−1

H0 δU(ω)]α; (56)

that is, the residues rα can be expressed in terms of the known

matrices. Note that in case of Dirac δ perturbations, δU(ω) is

independent of ω and so are the residues.

Before we attempt to obtain accurate solutions obtained

using large variational basis sets, we find it useful to make

simple analytical predictions using a small basis set as the

first step. We use the scaling ansatz approach to find such a

basis set and neglect self-energy corrections to simplify the

calculations at first. We extend the basis set and include self-

energy corrections later and discuss the nature and importance

of the corrections that follow.

V. LINEARIZED SCALING ANSATZ ANALYSIS

The scaling ansatz provides a simple and intuitive picture

of the collective excitations of confined gases. This method

has been applied to various systems in both isotropic and

anisotropic traps, including Bose gases below and above the

critical temperature, s-wave and dipolar fermions in the CL

and HD regimes [22–27,30]. Here, we apply the method to the

CBV equation, which, as we shall see, allows us to study both

CL and HD limits as well as transition from one regime to the

other.

In this method, one assumes that the nonequilibrium quasi-

particle distribution function can be approximately described

as a scaled copy of the equilibrium distribution:

nSA(p̄; r̄,t) ≡
1

∏

i(biφi)
n0

[

φ−1
i (p̄i − ḃi r̄i/bi); r̄i/bi

]

, (57)

where bi and φi (i = x,y) are time-dependent scale factors of

positions and momenta. The prefactor is to ensure conservation

of particle number. The equilibrium solution corresponds to the

choice bx = by = φx = φy = 1. Introducing reparametriza-

tion of the scaling variables

bx(t) = 1 + λ̄(t) + λ(t), by(t) = 1 + λ̄(t) − λ(t),
(58)

φx(t) = 1 + ν̄(t) + ν(t), φy(t) = 1 + ν̄(t) − ν(t),

and expanding Eq. (57) to first order in λ, λ̄, ν, and ν̄, we get

δnSA ≈ −2(λ̄ + ν̄)n0 + �0[ ˙̄λ r̄ · p̄ + ν̄ p̄2 + λ̄ r̄2]

+�0

[

λ̇ (x̄p̄x − ȳp̄y) + ν
(

p̄2
x − p̄2

y

)

+ λ (x̄2 − ȳ2)
]

,

(59)

where δnSA ≡ nSA − n0. We have neglected self-energy cor-

rections to simplify the analysis and explicitly used the

noninteracting equilibrium solution. Also, �0 = ∂n0/∂μ̄ =
β̄n0(1 − n0) as before. Here, (λ̄,ν̄) and (λ,ν) control the

isotropic (monopole) and anisotropic (quadrupole) scalings.

Comparing the last equation to Eq. (40), we can recognize the

first and second set of terms in the brackets as �mon and �quad,

that is, the variational basis set that the scaling ansatz provides

for monopole and quadrupole modes, respectively.

The first term in Eq. (59), which is a consequence of

the normalization prefactor of the scaling ansatz requires

further discussion. First of all, we note that this term may

only be nonvanishing in the monopole case. Since quadrupole

oscillations are purely anisotropic, none of the terms appearing

in �quad violate the conservation of mass in the linear regime

and therefore no normalization is necessary. The monopole

oscillations as described by �mon, however, may violate the

conservation of mass and the ansatz must be fixed with

063638-10



COLLECTIVE EXCITATIONS OF QUASI-TWO- . . . PHYSICAL REVIEW A 86, 063638 (2012)

a counterterm. The scaling ansatz fixes this defect with a

uniform scaling of the distribution, leading to the first term

in Eq. (59). Unless one restricts the ansatz by setting φ−1
i =

bi (so that λ̄ + ν̄ = 0), the ansatz may lead to unphysical

conclusions once collisions are taken into account. It is

generally understood that the nonequilibrium dynamics of

degenerate Fermi gases are governed by excitations near the

Fermi surface while the fermions deep inside the Fermi sea

remain in place due to their large excitation energy gap. A

global rescaling of the quasiparticle distribution, that is, a

uniform rescaling of quasiparticle occupations irrespective of

their energy gap implies mobilization of all particles with the

same likelihood, including those which are deep inside the

Fermi sea. This is clearly an unphysical picture and may lead

to unrealistically large collision rates.

To address this issue, we remove the global normalization

factor and allow the chemical potential to vary instead.

This amounts to adding a term ∼δμ̄(t) ∂n0/∂μ̄ = �0 δμ(t)

to the ansatz, that is, adding φ = 1 to the monopole basis

set. The phase-space moment equation that is associated

with this trivial moment function is exactly the statement of

conservation of mass. In summary, we obtain

�mon = δμ(t) + c1(t) r̄ · p̄ + c2(t) r̄2 + c3(t) p̄2 (60)

and

�quad = d1(t) (x̄p̄x − ȳp̄y) + d2(t)(x̄2 − ȳ2)

+ d3(t)(p̄2
x − p̄2

y), (61)

where δμ(t), ci(t), and di(t) are time-dependent functions to

be determined.

The determination of these unknown functions is usually

done by plugging the ansatz into the kinetic equation, multi-

plying the resulting equation by each of the basis functions and

integrating over the phase-space variables to obtain a close set

of differential equations. This is equivalent to the formalism

described in Sec. IV and we prefer to do it in our matrix

notation as a warmup for the later sections, where we extend the

basis set and include self-energy corrections. We remark that

the role of various terms appearing in Eqs. (60) and (61) can

be understood intuitively. In particular, r̄ · p̄ and x̄p̄x − ȳp̄y in

�mon and �quad correspond to isotropic and anisotropic scaling

velocity fields vmon ∝ r̄ and vquad ∝ x̄ex − ȳey .

A. Monopole oscillations from the scaling ansatz

Neglecting self-energy corrections, we get � = 0, and

H̄0 = (r̄2 + p̄2)/2 using which we can easily calculate M and

H0. The collision matrix elements identically vanish due to

conservation of energy and momentum [see Eq. (50), and

notice that S[1] = S[r̄2] = 0, S[p̄2] = 2�Ē and S[r̄ · p̄] =
r̄ · �P̄]. While it is possible to find analytic expressions for

the �0 averages appearing in M and H0, we find that they

all factor out from the evolution matrix using the relations

〈〈r̄2〉〉 = 〈〈p̄2〉〉 and 〈〈r̄4〉〉 = 〈〈p̄4〉〉 we have here. The evolution

matrix evaluates to the following simple form

E
mon
SA =

⎛

⎜
⎜
⎜
⎝

0 0 0 0

0 0 2 −2

0 −1 0 0

0 1 0 0

⎞

⎟
⎟
⎟
⎠

(62)

and is independent of temperature. In the above equation, the

matrix elements appear in the same order as the basis functions

in Eq. (60). The monopole excitation operator is r2, which

gives the “excitation vector” δU = (0,0,1,0)T in the scaling

ansatz basis [see the definition of δU after Eq. (52)]. Using

Eq. (55), we finally find

�mon(p̄; r̄,ω) = [−2iω̄(r̄ · p̄) + 2r̄2 − 2p̄2]/(ω̄2 − 4). (63)

The frequency of oscillations is given by the poles of the

denominator, ω̄mon = ±2, which is a well-known result [32].

We state it without proof that extending the monopole basis has

no effect on this result as long as self-energy corrections are

neglected. In fact, it is a well-known fact that the full nonlinear

Boltzmann equation (including collisions) admits an exact

monopole solution with frequency 2ω0 [32], corresponding

to a nodeless scaling velocity field ∝r. The existence of this

undamped solution is deeply related to the fact that the trap

potential is harmonic and the particles are assumed to have

quadratic dispersions. Using dressed quasiparticle dispersions

or adding an anharmonicity to the trap potential both lead to

the violation of this exact result.

We remark that besides the ω̄ = ±2, the above evolution

matrix admits two zero eigenvalues that correspond to eigen-

vector � ∼ 1 and � ∼ r̄2 + p̄2. Both of these eigenvectors

correspond to unphysical excitations since they violate con-

servation of mass. However, it is easy to see that both lie in the

null space of H
mon
0,SA. Therefore, using Eq. (55), we see that these

unphysical modes will never be excited regardless of one’s

choice of excitation vector δU. The number of such unphysical

modes increases as one extends the variational basis set.

B. Quadrupole oscillations from the scaling ansatz

We find the following forms for M and H0 in the quadrupole

basis:

M
quad

SA =
1

2

⎛

⎜
⎝

〈〈r̄2p̄2〉〉 0 0

0 〈〈r̄4〉〉 0

0 0 〈〈p̄4〉〉

⎞

⎟
⎠ (64)

and

H
quad

0,SA =
1

2

⎛

⎜
⎝

0 2〈〈r̄2p̄2〉〉 −2〈〈r̄2p̄2〉〉
−〈〈r̄4〉〉 0 0

−〈〈p̄4〉〉 0 0

⎞

⎟
⎠ . (65)

The order of basis functions is the same as it appears in

Eq. (61). The only nonzero collision matrix element is I33,

the rest of which vanish again due to conservation laws [see

Eq. (50), and note that S[x̄2 − ȳ2] = 0 and S[x̄p̄x − ȳp̄y] =
(x̄ex − ȳey) · �P̄]. The collision integral can be expressed

as follows using the results of Appendixes C4 and D4
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[in particular, see Eq. (C20)]:

I
quad

33 = −64π (2N )
1
2 λ2

d T̄ 5

∫ ∞

0

ρ5 dρ

∫ 2π

0

dφ

2π

∫ 2π

0

dφ′

2π

∫ π
2

0

dξ sin7 ξ cos ξ

∫ π
2

0

dν sin5 ν cos ν

× sin2(φ − φ′)[χ1 Erfcx(2ηχ1

√

T̄ ρ) − χ2 Erfcx(2ηχ2

√

T̄ ρ)]2

×
[

1

cosh(ρ − μ̄/T̄ ) + cosh(ρ sin2 ξ sin 2ν cos φ)

1

cosh(ρ − μ̄/T̄ ) + cosh(ρ sin2 ξ sin 2ν cos φ′)

]

, (66)

where χ1 = sin ξ sin ν | sin[(φ − φ′)/2]| and χ2 = sin ξ sin ν

| cos[(φ − φ′)/2]|. The above integration cannot be carried

out analytically in general and requires a numerical treatment.

The analytical low-T and high-T asymptotic results are given

in Appendix B. Note that the (dimensionless) noninteracting

chemical potential μ̄ is given implicitly by Eq. (34) and

only depends on the dimensionless temperature T̄ . Therefore,

except for the prefactor, the above integral is a universal

function of T̄ and η. We define the dimensionless “quadrupole

collision rate” νc as

νc ≡ −
2I

quad

33

〈〈p̄4〉〉
≡ N

(
ad

a0

)2

Q(T̄ ,η). (67)

The last equation also serves as the definition of the universal

function Q(T̄ ,η). The quadrupole excitation operator is x2 −
y2, which yields δU = (0,1,0)T in this basis and, finally, a

simple calculation similar to the monopole case yields

�quad(p̄; r̄,ω) =
[

2ω̄(νc − iω̄)(x̄p̄x − ȳp̄y) + 2i(νc − iω̄)

× (x̄2 − ȳ2) + 2ω̄
(

p̄2
x − p̄2

y

)]

/Dquad(ω̄,νc),

(68)

where Dquad(ω̄,νc) is the quadrupole characteristic equation

and is given by

Dquad(ω̄,νc) = ω̄(ω̄2 − 4) + iνc(ω̄2 − 2). (69)

The roots of Dquad(ω̄,νc) determine the frequency and damping

of quadrupole oscillations. We note that Eq. (68), along with

the characteristic equation given above, are “generic” results in

the sense that one obtains the same expression for quadrupole

oscillations independent of the specific form of interactions.

For instance, Refs. [31] and [38] obtain the same characteristic

equation for s-wave fermions and a classical gas, respectively.

The model-specific details are encoded in the collision rate νc.

Therefore, it is worthwhile to review the generic features of

the quadrupole oscillations from Eq. (68) in terms of νc as a

first step. We return to the analysis of νc afterwards.

Two important limits can be recognized for quadrupole

oscillations. The CL limit is achieved for νc → 0:

lim
νc→0

�quad(p̄; r̄,ω) ≡ �CL
quad(p̄; r̄,ω) =

[

−2iω̄(x̄p̄x − ȳp̄y)

+ 2(x̄2 − ȳ2) − 2
(

p̄2
x − p̄2

y

)]

/(ω̄2 − 4).

(70)

Notice the formal similarity to the monopole case. In this

limit, we obtain undamped oscillations at ωCL
quad = 2ω0 which

correspond to the free motion of particles in the trap. In the

limit of very fast collisions, νc → ∞, we find

lim
νc→∞

�quad(p̄; r̄,ω) ≡ �HD
quad(p̄; r̄,ω) = [−2iω̄(x̄p̄x

− ȳp̄y) + 2(x̄2 − ȳ2)]/(ω̄2 − 2),

(71)

which describes undamped oscillations at a frequency ωHD
quad =√

2ω0. This is the well-known quadrupole “surface” mode

which is also obtained by solving ideal HD equations for

harmonically trapped gases [33]. Although we have neglected

self-energy corrections here, it can be shown that the frequen-

cies of these HD modes are universal since they do not change

the density in the bulk, are confined to the surface, and are

entirely driven by the trap restoring force [33]. We observe

this universality in later sections, where we include self-energy

corrections and still obtain the same oscillation frequency in

the HD limit.

Except for the two ideal limits discussed so far, quadrupole

oscillations are otherwise damped for any finite value of νc. For

large nuc (near HD), this is due to the fact that the collisions

are not fast enough to maintain the local equilibrium and thus

lead to dissipation. For small νc (near CL), collisions result in

a friction between the otherwise freely moving particles and

again lead to dissipation. In general, the oscillation frequency

and damping rate can be found by analyzing the roots

Dquad(ω̄,νc). Figures 5(a)–5(c) show the real and imaginary

parts of the poles as a function of νc. In the limit νc ≪ 1, the

three poles are approximately located at

±
(

2 −
5ν2

c

64

)

−
iνc

4
+ O

(

ν5
c

)

, −
iνc

2
+ iO

(

ν3
c

)

. (72)

The first two poles describe a damped oscillatory mode at

a frequency slightly lower than 2ω0 and a damping rate

of ∼νcω0/2. The third pole corresponds to an overdamped

component. In the other limit νc ≫ 1, we get

±
(√

2 +
3

2
√

2ν2
c

)

−
i

νc

+ O
(

ν−3
c

)

, − iνc + iO
(

ν−1
c

)

.

(73)

Again, the first two poles describe a damped oscillatory mode

at a frequency slightly higher than
√

2ω0 and a damping rate of

∼ν−1
c ω0, accompanied by a (highly) overdamped component

with a damping rate of ω0νc. Studying the residues of the

overdamped poles, we find that the contribution of the this

component is ∝ν2
c and ∝ν−2

c to leading order in the CL and

HD limits, respectively, and has its maximum contribution

in the CL-HD crossover regime. We associate the presence
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FIG. 5. (Color online) Frequency and damping of quadrupole oscillations of quasi-2D dipolar fermions in isotropic harmonic traps from

the scaling ansatz analysis. (a), (b) The frequency and damping of oscillations vs νc, respectively. (c) The damping rate of the overdamped

component vs νc. (d) The evolution of the damped oscillatory pole on the complex plane upon increasing νc in the range [0,15]. (e) Q(T/TF ,η)

as a function of T/TF for different values of η ≡ (2N )
1
4 (ω0/ωz)

1
2 . Q is related to the quadrupole collision rate as νc = N (ad/a0)2 Q(T/TF ,η).

The low-temperature and high-temperature asymptotes in the 2D limit are shown as blue and red (horizontal) dashed lines, respectively.

of such an overdamped component to the initial high-energy

excitations. Figure 5(d) shows the evolution of the first pole

on the complex frequency plane upon increasing νc: It starts

off on 2ω0, moves to the lower half plane, and finally returns

to the real axis at the HD frequency
√

2ω0.

We finally turn to the analysis of Q(T̄ ,η), the universal

function that controls the quadrupole collision rate νc for

dipole-dipole interactions [Eq. (67)]. νc can be identified

with different quantities in different regimes. In the collision-

dominated regime (i.e., νc ≫ 1) where a viscous HD descrip-

tion is admissible, the shear viscosity sum rule yields νc as

ω0〈P/ηs〉trap, where P , ηs, and ω0 are the local pressure,

shear viscosity, and the trap frequency, respectively [15]. By

〈· · · 〉trap, we imply averaging over the trap. In the classical

regime (T ≫ TF ), one finds νc ∼ τ−1
c , where τc is the typical

time between two single-particle collisions [31]. This can be

established by replacing the Fermi-Dirac with Boltzmann-

Maxwell distribution and evaluating the collision integral in

the saddle-point approximation.

We have calculated Q for several values of η as a function

of T̄ by evaluating the 5D integral appearing in Eq. (66)

numerically. The results are shown in Fig. 5(e). The asymptotic

behavior of Q can be found analytically in the low- and

high-temperature regimes and is given in Appendix B in the

2D limit (η = 0). They appear on the same figure as red and

blue dashed lines. We find that Q ∼ T̄ 2 for small T , while it

saturates to a constant value for large T̄ . The low-temperature

T 2 scaling is related to Pauli blocking; however, it is different

from the case of 2D s-wave fermions (and 2D paramagnetic

electron gas), where one finds νc ∼ T 2 ln(T/TF )−2 [15,39].

This difference can be traced back to the fact that the system

investigated here is spin polarized and the s-wave scattering

channel is blocked. The logarithmic enhancement of the

shear viscosity (i.e., attenuation of νc) originates from the

logarithmic divergence of the s-wave scattering length in

the near-threshold regime in 2D. We remark that the near-

threshold cross section of all other scattering channels remains

bounded [29], leading to a bounded Born cross section.

The high-temperature plateau is a unique feature of near-

threshold dipole-dipole scatterings in the 2D limit and its

existence can be understood in terms of the interplay between

the temperature dependence of the scattering cross section

and rarefaction of the gas. Provided that TF ≪ T ≪ Tdip,

we can estimate the relaxation rate using the aforementioned

identification νc ∼ τ−1
c . The Born 2D scattering cross section

scales like σB ∼ q−1|Ṽ(q)|2 ∼ qa2
d Erfcx2(qaz), where q is the

typical momentum of scattering particles and is ∼(mkBT )1/2 in

the high-temperature regime. The collision frequency is τ−1
c ∼

h̄ql−1
mfp ≡ h̄qnσ , where lmfp = (nσ )−1 is the mean free path.

The density at the center of the trap is n0 = mω2
0N/(2πT ) and

decreases as 1/T . Combining these results, the collision rate

amounts to

νc ∼ N

(
ad

a0

)2

Erfcx2

[(
kBT

h̄ωz

) 1
2
]

, (TF ≪ T ≪ Tdip).

(74)

In the 2D limit, ωz → ∞ and we find νc = const [note that

Erfcx(0) = 1]. In other words, the growth of scattering cross

section counteracts rarefaction of the gas to yield a constant

collision rate. For finite ωz, the scattering cross section starts

to decrease once kBT � h̄ωz and, consequently, νc decays like

∼1/T [note that Erfcx(x) ∼ 1/x for large x]. We remark that

the single subband picture adopted here is no longer valid

in the quasi-2D regime for kBT � h̄ωz and one must take

into account the higher subbands as well. We have shown

in a previous paper [40] that all intersubband interaction

matrix elements have the same long wavelength behavior and

therefore, we expect this scaling result to remain unaffected.

The plateau reached in the 2D limit relies crucially on the

applicability of the Born approximation. As mentioned earlier,

the scatterings enter the semiclassical regime for T � Tdip [see

Eq. (25)] and Born approximation breaks down. In this regime,

the total scattering cross section can be estimated using the

Eikonal approximation [28] and one finds σSC ∼ (ad/q)1/2.

Repeating the same analysis with the semiclassical cross
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section, we find

νc ∼ N

(
ad

a0

) 1
2
(

h̄ω0

kBT

) 3
4

, (T � Tdip). (75)

The qualitative behavior of νc for the full range of temperatures

was shown earlier in Fig. 1(b1).

So far, we have neglected self-energy corrections in the

description of the collective modes. We have also restricted

our analysis to a variational calculation within a small basis

set. In the next section, we extend our analysis to address both

of these shortcomings.

VI. EXTENDED BASIS ANALYSIS: THE EFFECT

OF HIGHER-ORDER MOMENTS AND SELF-ENERGY

CORRECTIONS

The general formalism described in Sec. IV allows one

to include self-energy corrections and to obtain a more

accurate calculation of the response functions by extending the

variational basis set in a controlled way. Using simple symme-

try considerations, we introduce extensible polynomial-like

variational basis sets relevant for describing monopole and

quadrupole dynamics. Finite truncations of these basis sets

allows one to satisfy all phase-space moments of the CBV

equation up to the truncation order. Since we are dealing

with large basis sets and self-energy corrections at finite

temperatures, resorting to numerical methods is inevitable at

this stage and no simple analytic results are expected to be

found.

Our goal here is to evaluate the linear responses accurately

within the approximations made so far. In practice, the reliabil-

ity of the approximate linear response functions obtained using

the method of moments depends on one’s choice of the basis

functions. This choice can be motivated by the symmetries

of the perturbing potential and the equilibrium state. Here,

the trap potential is assumed to be isotropic and it is easy

to see that [D,Lz] = [I,Lz] = 0, where Lz ≡ L(r)
z + L

(p)
z ,

L(r)
z = i(x∂y − y∂x), and L

(p)
z = i(px∂py

− py∂px
) are the

rotation operators in the coordinate and momentum space,

respectively. Therefore, if δU lies in a certain eigenspace of

Lz; so will the solution of the linearized equation � and one

may choose the basis functions from the same eigenspace.

Another symmetry which is preserved by the CBV equation

is the reflection symmetry. Defining the x-reflection operator

as Rxφ(px,py ; x,y) = φ(−px,py ; −x,y), it is easy to show

that the linearized evolution operator commutes with Rx as

well. We utilize these observations to define appropriate (and

extensible) basis sets for monopole and quadrupole dynamics

in the next two sections.

A. Variational basis set for monopole oscillations

The generator of monopole oscillations, δUm ∼ r2, be-

longs to the zero-angular-momentum representation of Lz.

An arbitrary function of such type can be expressed as

f (p,r)[(x + iy)(px − ipy)]n for n ∈ Z and arbitrary f (p,r).

Any smooth function of this type can be written as a

power series expansion in r2, p2, r · p, and ξ ≡ ypx − xpy .

Observing that ξ 2 = r2p2 − (r · p)2, the most general basis

for such functions can be constructed from the following two

classes:

φ+
α ≡ φ(mα ,nα ,kα ) = r2mα p2nα (r · p)kα ,

(76)
φ−

α ≡ φ(mα ,nα ,kα ) = ξ r2mα p2nα (r · p)kα .

Observing that Rxφ
±
α = ±φ±

α and the fact that the equilibrium

state and the perturbations are reflection symmetric, we discard

{φ−
α }. We define {φ+

α } as the “extended monopole basis” and

drop the + superscript for brevity. To truncate the basis set,

we keep all basis functions satisfying m + n + k � M , where

M is a positive integer which we call the order of the basis set.

A first-order basis set contains four elements, {1,r · p,p2,r2}
and is equivalent to the linearized scaling ansatz discussed

earlier. In general, a basis set of order M has (M + 1)(M + 2)

(M + 3)/6 elements. Expressions useful for numerical evalua-

tion of the matrix elements of M, H0, �, and Ic in the monopole

basis are given in Appendix C.

B. Variational basis set for quadrupole oscillations

By definition, a quadrupole (d-wave) function in 2D

changes sign upon a simultaneous π/2 rotation of both r and

p. Such functions belong to the mz = ±2 representation of

Lz which can be expressed as f (p,r) eiMφr eiNφp , where M

and N are two integers such that M − N = ±2, φr and φp

are the angles r and p make with a fixed axis (we arbitrarily

choose the x axis), and f (p,r) is an arbitrary scalar function

of p and r. One can identify 12 classes of functions with such

symmetry. Apart from the arbitrary scalar function f (p,r), the

accompanying multipliers can be

ξ+
1 ≡ x2 − y2, ξ+

2 ≡ p2
x − p2

y, ξ+
3 ≡ xpx − ypy,

η+
1 ≡ xy(ypx − xpy), η+

2 ≡ pxpy(ypx − xpy),

η+
3 ≡ (ypx + xpy)(ypx − xpy),

and

ξ−
1 ≡ xy, ξ−

2 ≡ pxpy, ξ−
3 ≡ ypx + xpy,

η−
1 ≡ (ypx − xpy)(x2 − y2), η−

2 ≡ (ypx − xpy)
(

p2
x − p2

y

)

,

η−
3 ≡ (ypx − xpy)(xpx − ypy).

The functions with + and − superscript are even and odd

eigenfunctions of the reflection operator Rx , respectively. Like

before, we drop the second class. Also, we find the following

relations between these prefactors:

2η+
1 = r2ξ+

3 − (r · p) ξ+
1 ,

2η+
2 = (r · p) ξ+

2 − p2 ξ+
3 , (77)

2η+
3 = r2 ξ+

2 − p2 ξ+
1 ,

using which we can drop the class of functions f (p,r) η+
i

from the basis set. Since f (p,r) is assumed to be a smooth

scalar function of p and r, it can be expanded in the monopole

basis. Thus, in summary, we find that any smooth reflection

symmetric quadrupolar function can be expanded in terms

of {ξ+
i φ+

α } for i = 1,2,3 and α = (m,n,k), where m, n,

and k are non-negative integers and φ+
α are the previously

introduced monopole basis functions. We denote this basis

set as the “extended quadrupole basis.” We also remark that

this basis set can be reduced further in light of the relation
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2(r · p) ξ+
2 = p2ξ+

1 + r2ξ+
3 , so that the basis functions of the

type ξ+
2 r2mp2n(r · p)k+1 can be written as a linear combination

of ξ+
1 r2mp2n+2(r · p)k and ξ+

3 r2m+2p2n(r · p)k . Like before,

we drop the + superscript for brevity in the remainder of

the paper. An order-M truncation of the quadrupole basis

set is the finite set that comprises all quadrupole basis

functions satisfying k + m + n � M − 1. The first-order basis

set contains three elements {x2 − y2,p2
x − p2

y,xpx − ypy} and

is equivalent to the linearized scaling ansatz discussed earlier.

In general, a quadrupole basis set of order M contains

M(M + 1)(2M + 7)/6 elements. Again, expressions useful

for numerical calculation of the matrix elements of M, H0,

�, and Ic in the quadrupole basis are given in Appendix D.

C. Numerical results

In this section, we present the numerical results obtained by

calculating the linear responses to monopole and quadrupole

perturbations using the extended basis set approach. We varied

λd and T/TF in the range (0,2) at fixed N = 2200. We studied

the 2D limit ωz = ∞ as well as a quasi-2D case corresponding

to the current experiments with KRb (ω0 = 2π × 36 Hz, ωz =
2π × 23 kHz [5]). This choice of parameters yields η ≃ 0.322

in the quasi-2D case.

For each configuration, we performed the calculations

within a fourth-order basis set comprising 35 and 50 basis

functions for the monopole and quadrupole cases, respectively,

and satisfying all phase-space moments of the CBV equation

up to eighth order. The matrix elements of M, H0, and

� can be calculated with little computational effort using

the expressions provided in Appendixes C and D and the

previously obtained equilibrium solutions. The most computa-

tionally demanding part is the evaluation of the collision matrix

elements. Although a considerable number of them vanish

either due to symmetries or conservation laws, a fourth-order

basis set still requires calculation of 118 (monopole) and 307

(quadrupole) unique collision matrix elements, each of which

is a 5D integral that has to be evaluated for each choice of λd ,

η, and T/TF . Such a task clearly requires considerably more

computational effort compared to the simple scaling ansatz

analysis we presented earlier, where only a single collision

matrix element had to be dealt with.

We calculated the collision matrix elements using the Monte

Carlo integration method with 5 × 108 integration points,

yielding a relative statistical error of less than 10−3. We

incorporated the dressed quasiparticle dispersions into the

collision integral within a local effective mass approximation

(see Appendix C 4), which we found to be an excellent

approximation in all cases. However, in order to assess the

accuracy of this approximation and the consistency of the

obtained results, we (1) we performed exact calculation of

the collision integrals for a few representative cases using an

extrapolation technique (see Appendix E) and (2) checked the

satisfaction of conservation laws. We discuss both of these

consistency checks later.

For the monopole case, we calculated the dimensionless

spectral function Ar2 (ω) defined as

Ar2 (ω) ≡ −(2N )−
1
2 Im[χr2 (ω)], (78)

This quantity can be found using Eqs. (53) and (55) by

choosing the excitation and observation vectors as δUα =
Oα = δmα , where m is the index that corresponds to the basis

function φ = r2. For the quadrupole case, we calculated the

spectral function Ax2−y2 (ω) defined as

Ax2−y2 (ω) ≡ −(2N )−
1
2 Im[χx2−y2 (ω)]. (79)

Likewise, this quantity can be evaluated by choosing the

excitation and observation vectors as δUα = Oα = δqα , where

q is the index that corresponds to the basis function φ = ξ1 =
x2 − y2. These spectral functions can be directly measured in

the experiments in different ways (Ref. to Sec. VII).

Although the evolution matrix has a large number of

eigenmodes, some of which are isolated in the complex plane

and some of which may belong to branch lines, only a few of

them get excited and contribute to the response. Many of the

modes lie inside the null space of H0, are unphysical, and do

not get excited (see the discussion at the end of Sec. V A). In all

cases, we found that the spectral functions can be reproduced

accurately by a fit function with two simple poles in the lower

half plane,

Afit(ω) = Im

[
A

ω − � − iŴ
−

A∗

ω + � − iŴ
+

iB

ω − iŴ′

]

,

(80)

corresponding to damped oscillations with a frequency and

damping rate of � and Ŵ, respectively, and a possibly over-

damped component with a decay rate of Ŵ′. The overdamped

component is only present in the quadrupole response. The

above model extracts the most important features of the

numerically obtained spectral functions and also allows us

to present the obtained results in a concise way.

Although we kept up to 8 moments (and in some cases, up

to 12 moments) of the CBV equation, we found the inclusion

of sixth-order moments (and above) to result in relative

refinements to the frequency of the first and second excited

modes, which are smaller than 10−3 and 10−2, respectively, in

all cases.

1. Monopole oscillations

As mentioned earlier in Sec. V A, without self-energy

corrections, the CBV equation for harmonically trapped gases

admits an exact solution corresponding to a scaling velocity

field v ∼ r, which has a fixed oscillation frequency of 2ω0

with no damping, independent of the interaction strength and

temperature. This is due to fact that the Boltzmann equation

admits a rigorously closed set of equations for the phase-space

averages of r2, p2 and r · p, all of which are unaffected

by collisions due to conservation laws. Taking self-energy

corrections into account, the quasiparticle dispersions no

longer remain quadratic and one finds that this simple chain of

moment equations cannot be closed anymore. In particular,

contributions from higher-order moments, many of which

are strongly influenced by the collisions, become important.

Therefore, we expect the monopole oscillations to be damped

to a certain degree.

Figure 6 shows the frequency and damping of the monopole

oscillations extracted from the numerically obtained spec-

tral functions. The colored and grayscale (top and bottom,
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FIG. 6. (Color online) The oscillation frequency and the damping

(inset) of the monopole excitations extracted from the numerically

obtained spectral functions using a fourth-order basis set (including

self-energy corrections). The colored and grayscale (upper and lower)

graphs correspond to an ideal 2D system (η = 0) and a quasi-2D

system (η ≃ 0.322), respectively. Blue and red line colors correspond

to low and high temperatures, respectively. In all cases, N = 2200.

The inset plot shows the damping rate in the 2D case (η = 0).

respectively) plots correspond to the 2D limit (η = 0)

and a quasi-2D sample (η ≃ 0.322). The repulsive dipole-

dipole interactions clearly result in a significant increase in

the oscillation frequency. Also, as one expects, finite transverse

confinement leads to a weaker effective repulsive effective

interaction and, thus, a smaller increase in the frequency of

collective modes.

Figure 7 shows a typical plot of the poles of the evolution

matrix as well as the mass currents associated with the

three lowest-lying modes that get excited by the monopole

perturbation. The lowest-lying mode (indicated by “a” and

having a nodeless mass current) makes the most contribution.

In fact, the relative spectral weight of all other modes are

generally found to be less than ∼10−3 in all cases. We label

the monopole modes according to the number of nodes in their

mass current; that is, (a), (b), and (c) correspond to n = 0, 1,

and 2, respectively.

The most intriguing finding is that the nodeless mode

exhibits a negligible damping in all of the studied cases despite

the presence of remarkably large self-energy corrections

(Ŵmon < 10−3ω0; see the inset plot of Fig. 6). This is, however,

not the case for the higher-order modes. Figure 8 shows

the evolution of n = 0 and n = 1 modes upon increasing T

at fixed λd for a 2D [panels (a) and (b)] and a quasi-2D

system [panels (c) and (d)]. The behavior of the n = 0

mode is similar in 2D and quasi-2D: The rise in temperature

reduces the self-energy effects and the frequency approaches

its noninteracting value of 2ω0. The damping remains small

∼10−4ω0 and exhibits a peak around T ∼ TF . While the mode

eventually becomes CL in quasi-2D (for T ≫ h̄ωz), on the

contrary, it reaches a plateau in 2D. The difference between

2D and quasi-2D systems is more striking for n = 1 and

higher-order modes: Upon increasing T , while the frequency

of oscillations monotonically decreases in 2D until it reaches

(a)

(b)

(c)
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FIG. 7. (Color online) (left) A typical picture of the poles of

the evolution matrix (T/TF = 0.45, λd = 2, N = 2200, and η = 0).

(Right) The mass currents associated with the indicated poles. Yellow

(bright) and green (dark) background colors indicate large and small

current magnitudes, respectively. The three indicated poles (a), (b),

and (c) have the largest residues in the monopole response function

and are also the lowest-lying modes that survive in the collision-

dominated regime.
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FIG. 8. (Color online) The evolution of the two lowest-lying

monopole modes upon increasing T at fixed λd = 1 and N = 2200.

The temperature is uniformly increased from T/TF = 0.05 to

T/TF = 2 with 0.05 increments. ω(n) and γ (n) denote the real and

imaginary parts of the complex eigenvalue, respectively. The arrows

indicates the direction of increasing T . Panels (a) and (b) correspond

to the n = 0 and n = 1 modes, respectively, for a 2D system (η = 0).

Panels (c) and (d) show the same quantities for a sample quasi-2D

system (η ≈ 0.322). While the 2D system reaches a plateau for

T ≫ TF (indicated by P), the quasi-2D system eventually becomes

CL; that is, γ (i)
mon → 0, ω(n)

mon → 2(n + 1) ω0. The dashed lines show

this expected behavior qualitatively.
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FIG. 9. (Color online) Evolution of the quadrupole oscillations from CL to HD regime upon increasing the interaction strength (left to

right). In all cases, T/TF = 0.45 and η = 0 (ωz = ∞). The top row shows the quadrupole spectral function and the bottom row shows the

locations of the poles of the evolution matrix on the complex plane. The pole shown as red is the pole that makes the dominant contribution to

the response. (a1) and (a2) λd = 0.1; (b1) and (b2) λd = 0.4; (c1) and (c2) λd = 2. See Fig. 10 for a plot of the mass currents associated with

the encircled poles. Refer to Sec. VII for a discussion on the experimental methods of measuring the spectral functions.

the plateau, it has a nonmonotonic behavior in quasi-2D.

Initially, it decreases due to enhanced collisions and reduced

self-energy effects. Once T ∼ h̄ωz, the collision rate starts to

decrease and the mode eventually becomes CL. A qualitative

account of this behavior was given in Sec. V B. Finally, we

note that the character of the plateau in 2D is determined by

λd and N , and the modes in the plateau may lie anywhere in

the CL-HD spectrum.

In summary, we find that the monopole response is governed

predominantly by the lowest-lying (nodeless) mode, with the

higher-order modes capturing a relative spectral weight of less

than 10−3. The collisional effects play a little role in defining

the character of this dominant mode. In contrast, the higher-

order modes are found to be significantly affected by collisions.

They undergo a transition from the CL to the HD regime.

2. Quadrupole oscillations

In the previous section, we found that the nodeless

monopole mode is essentially immune to collisions. This is

not the case for the nodeless quadrupole mode. The scaling

ansatz analysis presented earlier already shows that this mode

is, in fact, strongly affected by collisions.

Similar to the monopole case, we find that quadrupole

perturbations of the trap potential primarily excite the lowest-

lying quadrupole mode and the relative spectral weight of

higher-order modes are generally less than 10−3. In this case,

however, we find a small but significant contribution from a

few overdamped modes, especially in the crossover regime.

This is in agreement with the scaling ansatz analysis.

A typical scenario for the quadrupole response is shown in

Fig. 9. The top and bottom rows show the quadrupole spectral

function and the location of the poles on the complex frequency

plane, respectively. For weak interactions [λd ≪ 1, Figs. 9(a1)

and 9(a2)], the spectral function is sharply peaked around 2ω0

and the poles of the evolution matrix lie very close to the real

axis about their CL frequencies. Upon increasing the interac-

tions, the poles spread to the lower half complex frequency

plane, indicating entrance to the dissipative CL-HD crossover

regime. The spectral function is significantly broadened [see

Fig. 9(b1)] in this regime. For stronger interactions, the local

equilibrium picture starts to emerge, indicated by a reduction in

damping. Figure 9(c2) clearly shows a sharply peaked spectral

function near
√

2ω0 in the strongly interacting regime. This is

exactly the universal frequency of the HD quadrupole surface

mode discussed earlier.

Figure 10 shows the mass currents associated to the three

lowest-lying modes marked in Fig. 9(c2). The axially averaged

mass currents have n = 0, 1, and 2 nodes respectively. Figure

11 shows the evolution of the first two upon increasing the

temperature for a 2D and a quasi-2D case. Both modes are

strongly influenced by collisions and their qualitative behavior

is similar to the n = 1 monopole mode discussed in the

previous section. While these modes eventually become CL

in quasi-2D for T ≫ h̄ωz, they reach a plateau for T ≫ TF in

2D [marked with P in (a) and (b)].

Figures 12 and 13 show the frequency and damping rate

of the quadrupole oscillations obtained from the fit to the

quadrupole spectral function, in 2D and quasi-2D, respectively.

−2 0 2
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2 (a)

−2 0 2

−2
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−2 0 2

−2

0
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FIG. 10. (Color online) The mass current associated to the three

modes marked in Fig. 9(c2). Yellow (bright) and green (dark) shades

indicate large and small current magnitudes, respectively. (a) The

lowest lying mode, known as the surface mode, characterized by the

velocity field v ∼ xex − yey ; (b),(c) the next two modes. The nodal

structure of the mass current is clearly noticeable.
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FIG. 11. (Color online) The evolution of the two lowest-lying

quadrupole modes upon increasing T for fixed λd = 1 and N = 2200.

See the caption of Fig. 8 for the description of various panels. The

blue line in (a) denotes
√

2ω0, the frequency of quadrupole surface

mode.
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FIG. 12. (Color online) Frequency and damping (top and bottom

graphs, respectively) of quadrupole oscillations in a 2D system

(η = 0) with N = 2200 particles. The solid colored lines are the

numerical results obtained using a fourth-order basis set, including

self-energy corrections. The red and blue line colors denote high and

low temperatures, respectively. The dashed black lines correspond to

the analytic scaling ansatz analysis presented earlier (Sec. V B).
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FIG. 13. (Color online) Frequency and damping of quadrupole

oscillations for a quasi-2D system corresponding to η ≃ 0.322

(refer to the caption of Fig. 12 for details).

The result from the previous scaling ansatz analysis without

self-energy corrections is also shown as dashed black lines for

reference. Since the quadrupole spectral function is virtually

exhausted by the nodeless mode, these plots essentially show

the interaction and temperature dependence of the nodeless

mode.

The refinements arising from inclusion of both self-energy

corrections and higher-order moments are significant. In the

low-temperature regime, self-energy corrections are dominant

and yield a ∝λd shift of the frequencies (see the rightmost

plot in the top panel of Fig. 12). The collisional corrections

are only ∝λ4
d in the weakly interacting regime [see Eq. (72)

and note that νc ∝ λ2
d ]. The corrections resulting from the

inclusion of higher-order moments can also be seen in the high-

temperature curves appearing in the same figure. For T > TF ,

self-energy corrections become negligible and the refinement

is predominantly due to inclusion of higher-order moments.

In summary, we find that all quadrupole modes are strongly

influenced by collisions and exhibit the transition from the CL

to the HD regime. There is a notably large mean-field shift in

the oscillation frequency at low temperatures. Similar to the

monopole case, the quadrupole spectral function is essentially

exhausted by the lowest-lying (nodeless) mode, with a small

contribution from overdamped modes in the crossover regime.

Upon increasing the temperature, the frequency and damping

of all modes reach a plateau for a strictly 2D system. A

qualitative account of this behavior was given in Sec. V B.

In a quasi-2D system, however, the CL regime appears again

for T � h̄ωz.
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VII. EXPERIMENTAL OUTLOOK

The collective modes can be probed experimentally in

various ways. As described earlier, one common method

is to perturb the trap potential with a short pulse and

monitor the evolution of the cloud using either in situ or

absorption imaging techniques (for example, see Ref. [9]).

The relevant observables are the radius and anisotropy of

the cloud in case of monopole and quadrupole perturbations,

respectively. The frequency and damping of the collective

modes are found by fitting the measured time evolution of

the observable Oexp(t) to a function of the form Ofit(t) =
Ae−γ t sin(ωt + φ0) + Be−γODt , where ω is the frequency of

oscillations, and γ and γOD are damping rate of the oscillatory

and overdamped components, respectively. If required, the

spectral function can be subsequently found by taking a

Fourier transform of the measured impulse response signal

Oexp(t). Another approach which may yield more accurate

results is the direct measurement of spectral functions via trap

modulation spectroscopy. In this method, one introduces a

low-amplitude periodic modulation at a fixed frequency � to

the trap potential for a duration τ ≫ ω−1
0 ,�−1 and measures

the absorbed energy. For a finite trap modulation pulse such

as δU ∼ e−|t |/τ cos(�t) v(r), a simple linear response analysis

yields [43]

�Eabs ∼ −τ � Im[χv(r)(� + i/τ )], (81)

where �Eabs is the absorbed energy, v(r) is the shape of

the trap perturbation (i.e., x2 + y2 and x2 − y2 for monopole

and quadrupole modes respectively), and χv(r) is the retarded

response function of v(r). Equation (81) implies that the

absorbed energy in a modulation experiment provides a direct

measurement of the spectral function. The absorbed energy can

be measured in various ways. One method is to let the system

rethermalize after the modulation pulse, followed by mapping

it to a noninteracting system by switching off the interactions

adiabatically and finally measuring the temperature rise of

the noninteracting gas through a time-of-flight expansion

experiment. The location of the peak in the measured spectral

function and its width yield the frequency and damping of

the collective mode. According to the results presented in the

previous section, quadratic perturbations in the trap potential

predominantly excite the lowest-lying mode. If required, the

spectral weight of higher-order modes can be increased using

quartic perturbations, for example, (x2 + y2)2 and x4 − y4 for

monopole and quadrupole symmetries, respectively.

At the time this paper was written, the dipolar interaction

strengths in the experiments were not strong enough to possi-

bly drive the system to the HD regime. In the experiments with

fermionic 40K-87Rb at JILA [5], the transverse and in-plane

trap frequencies are ωz = (2π ) × 23 kHz and ω0 = (2π ) × 36

Hz, respectively. The central layer has 2200 molecules, the

temperature is T = 500 nK and the dipole moment is D =
0.158 debye, using which we find T/TF ≈ 4.36, η ≈ 0.322,

and λd ≈ 0.252. The dipolar temperature is Tdip ∼ 1.8 μK and

TF /Tdip ≈ 6.4 × 10−2. Therefore, the near-threshold scatter-

ing condition can be satisfied well for quantum degenerate

temperatures. However, the lowest achievable temperature in

the current experiments is well above quantum degeneracy and

T/Tdip ≈ 0.28. The scattering energies lie in the crossover

between the threshold and semiclassical energies and we

estimate the Born approximation to overestimate the cross

section by a factor of 3 using the results of Ref. [28]. Since

the temperature is high, mean-field corrections are small and

the change in the monopole oscillation frequency is negligible.

For quadrupole oscillations, we obtain �quad ≈ 1.9990 ω0 and

Ŵquad ≈ 0.007 ω0 = 1.7 Hz. Including corrections to the Born

approximation, we estimate Ŵquad ≈ 0.6 Hz which might be

difficult to observe due to the presence of a two-body loss rate

of ∼ 4 Hz Ref. [5]. We remark that the collision rates can be

dramatically increased by making the transverse confinement

stronger. For example, in the strictly 2D limit ωz → ∞, we

get �2D
quad ≈ 1.8 ω0 and Ŵ2D

quad ≈ 0.3 ω0 ≈ 71 Hz at the same

temperature and phase-space density.

The experiment with 161Dy [8] at Stanford is another

promising candidate to observe the predictions of this paper.

With N = 6000 atoms at a temperature T/TF = 0.21 and a

large magnetic dipole moment of 10μB , one is able to study

both quantum degenerate and thermal regimes. Once the atoms

are loaded into an optical lattice, we believe it will be possible

to trap at least N = 2000 atoms at the Fermi temperature

in the central pancake, with ωz = (2π ) × 20 kHz and ω0 =
(2π ) × 100 Hz. For this configuration, we find TF /Tdip ≈
0.04, λd ≈ 0.21, and η ≈ 0.56. The near-threshold condition

is satisfied well and we reliably obtain �quad ≈ 1.992 ω0 and

Ŵquad ≈ 0.0085 ω0 ≈ 5.3 Hz. That damping is expected to be

easily observable due to the long-time stability of the gas.

The mean-field shifts of the frequencies may also be observed

at lower temperatures. With N = 1000 atoms in the central

pancake and at T/TF = 0.2 and the same trap frequencies, we

obtain �quad ≈ 1.95 ω0 and Ŵquad ≈ 0.0065 ω0 ≈ 4.8 Hz, and

�mon − 2ω0 = 0.015 ω0 ≈ 9.3 Hz, all of which are expected to

be observable. Another intriguing possibility is the observation

of the predicted plateau of the collision rate, which is

also a direct consequence of universal near-threshold dipolar

scatterings. This can be simply done by heating the gas and

probing the collective modes at temperatures above TF .

VIII. DISCUSSIONS

Most of the relevant discussions were already given in the

main text. Here, we give a brief summary of the main results

along with several complementary comments.

We started our analysis by investigating the equilibrium

state of quasi-2D dipolar fermions in isotropic traps. In order

to study the collective modes of the system, we solved the col-

lisional Boltzmann-Vlasov equation for small perturbations of

the trap potential with monopole and quadrupole symmetries.

The self-energy corrections to quasiparticle dispersions and

collisions were taken into account via the self-consistent HF

and Born approximations, respectively. The validity of these

approximations were assessed at the end of Sec. II C. In par-

ticular, the usage of Born approximation restricts the validity

domain of our results to near-threshold scattering energies

[see Eq. (25)]. We confined our attention to the regime where

TF ≪ Tdip, so that the scatterings remain in the near-threshold

regime even in the thermal regime T ≫ TF . We showed that

this condition is satisfied well in the current experiments.

We emphasize that once the conditions for the applicability

of our approximations are met, the formalism of collisional
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Boltzmann-Vlasov equation is universally applicable to both

CL and collision-dominated (HD) regimes, as well as the

crossover between the two.

We carried out the analysis of collective modes in two

stages. As a first approximation, we studied the problem in the

Boltzmann limit by only keeping the collisional effects and

using bare dispersions. We calculated the response functions

using the simple picture of scaling ansatz. This analysis

implied the generic result that monopole oscillations occur at

a fixed frequency of 2ω0, are undamped, and are independent

of temperature and interaction strength. In case of quadrupole

oscillations, however, we found a transition from the CL limit

to the HD limit. We calculated the quadrupole collision rate,

νc, for various temperatures and transverse trap frequencies.

We found that in the 2D limit (η = 0), νc is a monotonically

increasing function of temperature and reaches a plateau for

large T/TF . This plateau persists up to T ≃ Tdip, beyond which

the scattering energies enter the semiclassical regime and the

cross section starts to decrease upon increasing the temperature

further. The existence of this plateau, which is a unique feature

of dipolar scatterings implies that (1) the character of trap

excitations of a polarized 2D dipolar gas becomes essentially

temperature independent in the regime TF � T � Tdip and (2)

collisional effects persists in the thermal regime despite the

fact that gas becomes very dilute. This behavior differentiates

2D dipolar fermionic gases from s-wave fermions where

rarefaction of the gas at high temperatures carries the system

back to the CL regime for T � TF . Also, the temperature

window for collisional behavior is universal for s-wave

fermions and is not amenable to tuning, whereas for quasi-2D

dipolar fermions, one can expand this window by (1) making

the transverse confinement stronger to approach the 2D limit

and (2) either increasing Tdip by using weaker dipoles or

decreasing TF by decreasing the density.

The existence of the plateau is guaranteed as long as

the scale separation TF ≪ Tdip is met. Combining Eqs. (25)

and (67), one can find the condition for the plateau to lie in the

collision-dominated (HD) regime as well:

N
1
4 ≪

a0

ad

≪ N
1
2 (HD plateau). (82)

The left- and right-hand sides of this inequality are equivalent

to TF ≪ Tdip and N (ad/a0)2 ≫ 1, respectively, where the

latter condition implies νc ≫ 1. The above inequality may

be used as a simple experimental guideline to observe HD

behavior with dipolar fermions.

In the second stage of calculations, we extended the

analysis by (1) including self-energy corrections and (2) going

beyond the scaling ansatz by satisfying higher moments of the

CBV equation. Chiacchiera et al. [35] and Pantel et al. [41]

have carried out a similar extended moments analysis of the

Boltzmann equation for s-wave fermions and have shown that

corrections of this type significantly improve the matching

between the theory and the experiments.

We evaluated all of the matrix elements of the CBV equation

numerically exactly with the exception of the collision integral

matrix elements where we incorporated the dressed quasi-

particle dispersions via a local effective mass approximation

(LEMA) for practical reasons. Nevertheless, we found this

scheme to be an excellent approximation. We show later in this

section that the conservation laws are satisfied well. Moreover,

we evaluated the exact collision matrix elements in a few

cases using an extrapolation technique (albeit at the costs of a

significantly increased computation time; see Appendix E) and

found the corrections beyond LEMA to be negligible indeed.

The extension of the scaling ansatz analysis allowed us to

(1) study the effects of self-energy corrections on the frequency

and damping of various modes, (2) investigate the higher-order

(nodal) monopole and quadrupole modes which are beyond

the scope of the scaling ansatz, and (3) study the speculated

damping of the nodeless monopole mode, which is a direct

consequence of self-energy corrections. We found that despite

the fact that inclusion of higher-order moments results in the

appearance of numerous new normal modes, the responses to

the monopole and quadrupole perturbations (∼r2 and x2 − y2,

respectively) are predominantly governed by the lowest-lying

(nodeless) mode. We remark that the frequency and damping

of the mode, however, is significantly modified by both self-

energy corrections and inclusion of higher-order moments.

We argued that the self-energy corrections are expected

to result in the damping of the nodeless monopole mode, a

feature which is absent in the simple Boltzmann equation.

We found that although this expectation is met, the damping

remains very small (<10−3ω0), even in the strongly interacting

regime. The frequency of oscillations, however, is significantly

increased from its noninteracting value of 2ω0. This mean-

field frequency shift was found to be most significant at low

temperatures where self-energy effects are large.

By investigating the velocity field of nodeless monopole

mode, we found that it retains its scaling character to a good

approximation (i.e., v ∼ r), as well as its isothermal character.

It is known from the HD theory of nonideal fluids that for

a true isotropic and isothermal scaling flow, no dissipation

results from shear viscosity or thermal conduction and the

only source of dissipation is the bulk viscosity (for instance,

see Ref. [42], Sec. 49). In this situation, one finds dS/dt =
∫

d2r n−1
0 T −1ζ (∇ · v)2, where S is the total entropy and ζ is

the bulk viscosity. Note that the dissipation rate is second order

in v and is therefore small.

At this point, we cannot rule out the possibility that a

more accurate description of the strongly correlated regime

would change this finding. In particular, going beyond the

quasiparticle ansatz in the kinetic equation and taking the

collisional broadening of the single-particle spectrum into

account may yield a larger damping of the nodeless monopole

mode. We will investigate this possibility in the future works.

The analysis of higher-order monopole modes (n � 1) and

all quadrupole modes yields the same qualitative picture that

the scaling ansatz analysis of the nodeless quadrupole mode

provides, that is, existence of a plateau in 2D upon increasing

the temperature and reappearance of the CL regime in quasi-

2D. We find, however, significant quantitative corrections. At

low temperatures, self-energy corrections result in a shift of the

frequencies proportional to λd . We also found that the scaling

ansatz overestimates the collision rates in general. This defect

is mostly noticeable in the high-temperature regime where

the gas is extended in the trap and higher-order moments are

required to accurately account for the density variations.

We included up to 8 moments in the extended analysis

(and up to 12 moments in pilot studies). We generally found
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FIG. 14. Maximum relative deviations of the particle number

(left) and energy (right) for monopole oscillations in a sample

configuration (T/TF = 0.1, λd = 0.5, η = 0 and N = 2200). M is

the truncation order of the basis set.

that the most important corrections to the scaling ansatz stems

from the fourth-order moments, beyond which the corrections

become increasingly smaller. In practice, a second-order basis

set is sufficient to obtain the frequencies of the nodeless modes

within a 0.1% tolerance of the exact solution. The accurate

description of higher-order modes naturally require inclusion

of higher-order moments.

Finally, we investigate the satisfaction of conservation laws

as a consistency check for our numerical calculations. The

CBV equation conserves the particle number, momentum, and

energy, both in the differential form and the integral form

(see Appendix A). The quadrupole oscillations trivially satisfy

these conservation laws due to the axial symmetry of the

equilibrium state. This is not trivial for monopole oscillations

as they have same symmetry as the equilibrium state. Figure 14

shows the maximum relative deviations of the particle number

and energy in monopole oscillations as a function of moment

satisfaction order for a sample case. We find that the particle

number is conserved within a relative error of ∼10−6 even

in a first-order basis set (this is because one of the moment

equations is in fact a statement of mass conservation). On

the other hand, we find that conservation of energy improves

substantially upon extending the basis set. For the fourth-order

basis set, the relative error in the conservation of energy is

∼10−5.

Some of the possible extensions of this work are (1)

going beyond the Born approximation and including mul-

tiple scatterings in order to rigorously extend this study to

semiclassical scattering energies (T > Tdip), (2) going beyond

the quasiparticle approximation and taking into account the

collisional broadening of the single-particle spectrum toward

quantitatively reliable predictions in the strongly interacting

regime, and (3) inclusion of higher transverse subbands to

account for T � h̄ωz in quasi-2D systems.
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APPENDIX A: CONSERVATION LAWS

OF THE LINEARIZED COLLISIONAL

BOLTZMANN-VLASOV EQUATION

The CBV equation admits local conservation laws for

mass density, mass current, and energy, which can be simply

established by multiplying the sides of CBV equation by 1,

p, and energy density E , respectively, and integrating over

p [20]. Here, E is the energy density. The collision integrals

vanish identically in all three cases due to the existence

of the same conservation laws in the level of two-body

scatterings. We state these conservation laws in their integral

form here and utilize them later as a consistency check for

our numerical calculations. The conservation of mass (or

equivalently, particle number) is

d

dt

∫

dŴ n(p; r,t) = 0. (A1)

The linearized equation using the parametrization given by

Eq. (40) yields

d

dt

∫

dŴ �0�(p; r,t) = 0. (A2)

In the same parametrization, the conservation of momentum

reads as

d

dt

∫

dŴ p �0�(p; r,t) = 0. (A3)

The energy density is given by EHF = p2/(2m) + mω2
0r

2/2 +
�+[n]/2 in the HF approximation, using which we get the

following linearized form of conservation of energy:

d

dt

∫

dŴ(δE n0 + E0�0�(p; r,t)) = 0, (A4)

where E0 ≡ H0 is the equilibrium energy density and

δE = �+[δn]/2 = �+[�0�]/2. Using the properties of

HF self-energy functional, it is easy to show
∫

dŴδE n0 =
(1/2)

∫

dŴ�+[�0�] n0 ≡ (1/2)
∫

dŴ�+[n0] �0�, using

which the two terms in Eq. (A4) can be combined to yield

d

dt

∫

dŴH0�0�(p; r,t) = 0. (A5)

APPENDIX B: ASYMPTOTIC ANALYSIS OF Q(T̄,η = 0)

In the 2D limit (η = 0), the asymptotic behavior of Q(T̄ ,η)

can be studied analytically. Setting η = 0, the Erfcx functions

appearing in the collision integral [see Eq. (66)] evaluate to

unity and the expression in the brackets in the second line sim-

ply becomes [χ1 − χ2]2 = sin2 ξ sin2 ν [1 − | sin(φ − φ′)|].
This results in significant simplifications.
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1. Low-temperature expansion

In the low-temperature regime, μ̄/T̄ → ∞, we may use the

following identity:

lim
μ̄/T̄ →∞

(μ̄/T̄ )−3

∫ ∞

0

ρ5 dρ

[
1

cosh(ρ − μ̄/T̄ ) + cosh(b1ρ)

×
1

cosh(ρ − μ̄/T̄ ) + cosh(b2ρ)

]

=
4π2

3
δ(b1) δ(b2).

(B1)

The above identity can be established by observing that for

large β̄μ̄ the integrand is exponentially small unless ρ ∼ β̄μ̄

and b1,b2 ∼ (β̄μ̄)−1. In the limit β̄μ̄ → ∞, the right-hand

side becomes proportional to δ(b1) δ(b2). The proportionality

constant can be found by integrating the left-hand side over

b1 and b2, which gives the 4π2/3 prefactor. Identifying b1 and

b2 as sin2 ξ sin 2ν cos φ and sin2 ξ sin 2ν cos φ′, respectively,

we can carry out the ξ and ν integrations using the δ functions

and we finally get

Q(T̄ → 0,η = 0) ≈ C
(μ̄/T̄ )3

〈〈p̄4〉〉
, (B2)

where C is given by

C =
32

9

∫ 2π

0

dφ

∫ 2π

0

dφ′ [1 − | sin(φ − φ′)|] sin(φ − φ′)2

cos2 φ + cos2 φ′

(B3)

and is equal to 19.176 999 to six decimal places. 〈〈p̄4〉〉 can be

found analytically with little effort and we get

〈〈p̄4〉〉 = −8T̄ 3 Li3(−eμ̄/T̄ ). (B4)

Using the asymptotic expansion of Li3(−x) for large x and the

low-temperature expansion of μ̄ mentioned after Eq. (34), the

following low-temperature expansion follows:

−Li3(−eμ̄/T̄ ) = 1/(6T̄ 3) + π2/(12T̄ ) + O(T̄ ). (B5)

Combining the last four equations, we finally get

Q(T̄ → 0,η = 0) ≈ 2
3
C T̄ 2 ≈ 12.784 666 T̄ 2 (B6)

to leading order. This asymptotic limit is shown in Fig. 5(e) as

a blue dashed line and agrees well with the numerical result.

2. High-temperature expansion

The analysis of the classical limit (β̄μ̄ → 0) is simpler.

First, we rewrite the hyperbolic functions in the denominator

as cosh(ρ − ln z) ≡ eρ/(2z) + (z/2)e−ρ . Here, z ≡ exp(μ̄/T̄ )

is the fugacity and goes to zero in the high-temperature

limit. Thus, cosh(ρ − ln z) ≈ eρ/(2z) to leading order. The

denominator of Eq. (66) is dominated by the first cosh term.

Neglecting the second cosh terms, the integrations become

elementary and we get

Q(T̄ → 0,η = 0) ≈
8(8 − 3π )z2T̄ 5

〈〈p̄4〉〉
. (B7)

The fugacity in the classical limit can be found using Eq. (34)

and we get z = 1/(2T̄ 2) + O(T̄ −4). Using the asymptotic

expansion −Li3(−z) = z + O(z2), we finally find

Q(T̄ → ∞,η = 0) = 1
2
(3π − 8) ≈ 0.712 389. (B8)

This asymptotic limit is shown in Fig. 5(e) as a red dashed line

and is in agreement with the numerical result.

APPENDIX C: MATRIX ELEMENTS OF THE EVOLUTION

MATRIX IN THE MONOPOLE BASIS

The linear response analysis of the CBV equation using

extended variational basis sets requires calculation of a large

number of matrix elements. This task, however, can be sim-

plified since the angular integrations appearing in expression

for the matrix elements of M, �, and H0 can be carried out

analytically using the symmetries of the basis functions and

the equilibrium state. The problem reduces to the evaluation

of a 2D integral over p̄ and r̄ for each matrix element which

can be done numerically accurately and efficiently.

In this Appendix, we provide readily computable formulas

for the matrix elements in the monopole basis. We define the

shorthands Rα ≡ 2mα + kα , Pα ≡ 2nα + kα for given basis

function φα . Rα and Pα count the powers of r and p appearing

in φα , respectively.

1. Matrix elements of M

By definition, we have

Mαβ =
∫

dŴ̄ �0(p̄,r̄) φαφβ

=
∫

(2π ) r̄ dr̄
1

(2π )2
p̄ dp̄ �0(p̄,r̄) r̄Rα+Rβ

×p̄Pα+Pβ

∫ 2π

0

(cos ψ)kα+kβ dψ

=
E(kα + kβ)(kα + kβ)!

2kα+kβ

[( kα+kβ

2

)

!
]2

[ ∫

r̄Rα+Rβ+1

× p̄Pα+Pβ+1 �0(p̄,r̄) dr̄ dp̄

]

, (C1)

where E(n) = 1 for even n and E(n) = 0 for odd n. For future

reference, we define

h(n) =
E(n) n!

2n [(n/2)!]2
(C2)

and

Im
n [A(p̄,r̄)] =

∫

A(p̄,r̄) r̄m+1 p̄n+1 dr̄ dp̄, (C3)

using which we can write Mαβ = h(kα + kβ) I
(Rα+Rβ )

(Pα+Pβ ) [�0].

2. Matrix elements of H0

First, we evaluate the Poisson bracket {φβ,H̄0}:

{φβ,H̄0} = ∇r̄φβ · ∇p̄H̄0 − ∇p̄φβ · ∇r̄H̄0

= γp (p̄ · ∇r̄)φβ − γr (r̄ · ∇p̄)φβ

= γp[2mβ φ(mβ−1,nβ ,kβ+1) + kβ φ(mβ ,nβ+1,kβ−1)]

− γr [2nβ φ(mβ ,nβ−1,kβ+1) − kβ φ(mβ+1,nβ ,kβ−1)],

(C4)
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where

γr ≡ r̄−2r̄ · ∇r̄H̄0 = 1 + r̄−2r̄ · ∇r̄�̄0,
(C5)

γp ≡ p̄−2p̄ · ∇p̄H̄0 = 1 + p̄−2p̄ · ∇p̄�̄0.

Plugging Eq. (C4) into the definition of (H0)αβ , we get

(H0)αβ =
∫

dŴ̄ �0 φα{φβ,H0}

= [2mβ h(kα + kβ + 1) + kβ h(kα + kβ − 1)]

× I
(Rα+Rβ−1)

(Pα+Pβ+1) [γp�0]

− [2nβ h(kα + kβ + 1) + kβ h(kα + kβ − 1)]

× I
(Rα+Rβ+1)

(Pα+Pβ−1) [γr�0]. (C6)

3. Matrix elements of �

By definition,

�̄[�0φβ] = λd

∫
d2p̄′

(2π )2
u(|p̄ − p̄′|,η) �0(p̄′,r̄) φβ(p̄′,r̄).

(C7)

It is easy to verify that a simultaneous rotation of r̄ and p̄ leaves

�̄[�0φβ] invariant, so that �̄[�0φβ] may only depend on r̄ , p̄,

and φ, the angle between r̄ and p̄. Let cos ψ = (p̄ · p̄′)/(p̄p̄′)
and cos φ = (r̄ · p̄)/(r̄ p̄), so that r̄ · p̄′ = r̄ p̄′ cos(φ + ψ).

Expanding u(|p̄ − p̄′|,η) in a cosine series,

u(|p̄ − p̄′|,η) =
∞
∑

n=0

u(n)(p̄,p̄′; η) cos(nψ), (C8)

where

u(n)(p̄,p̄′) =
1

π (δn,0 + 1)

×
∫ 2π

0

dψu(
√

p̄2 + p̄′2− 2p̄p̄′cos ψ,η) cos nψ,

(C9)

and plugging into Eq. (C7), we get

�̄[�0φβ](p̄,r̄,φ)

= λd

∫
p̄′ dp̄′

2π
�0(p̄′,r̄) p̄′Pβ r̄Rβ

×
∞
∑

n=0

u(p̄,p̄′; η)

∫ 2π

0

dψ

2π
cos(nψ) cos(φ + ψ)kβ .

(C10)

The angular integration can be evaluated using contour integral

techniques:

∫ 2π

0

dψ

2π
cos(nψ) cos(φ + ψ)k

=

[

k!

2k

θ (k − n) E(k + n)
[(

k−n
2

)

!
] [(

k+n
2

)

!
]

]

cos(nφ), (C11)

where θ (n) = 1 if n � 0 and θ (n) = 0 otherwise. We denote

the numerical prefactor in the brackets of the above equation

by g(n,k). Plugging this into Eq. (C10), we get

�̄[�0φβ](p̄,r̄,φ) = λd

kβ
∑

n=0

Q
(n)
β (p̄,r̄) cos(nφ), (C12)

where

Q
(n)
β (p̄,r̄) = −g(n,kβ) r̄Rβ

∫
dp̄′

2π
�0(p̄′,r̄) p̄′(Pβ+1)

× u(n)(p̄,p̄′; η). (C13)

The last integral can be easily evaluated numerically. Also,

note that we only need u(n) up to n = kβ in order to evaluate

�̄[�0φβ] exactly. This is due to the fact that g(n,kβ) vanishes

for n > kβ . Having evaluated �̄[�0φβ], �αβ can be evaluated

readily by appealing to its definition:

�αβ = λd

kβ
∑

n=0

(

[2mα g(n,kα + 1) + kα g(n,kα − 1)]

× I
(Rα−1)
(Pα+1)

[

Q
(n)
β �0γp

]

− [2nα g(n,kα + 1) (C14)

+ kα g(n,kα − 1)] I
(Rα+1)
(Pα−1)

[

Q
(n)
β �0γr

])

. (C15)

4. Matrix elements of Ic

The evaluation of the matrix elements of the linearized

collision integral operator is the most computationally expen-

sive part of the calculation. Once HF self-energy corrections

are taken into account, deviation of quasiparticle dispersion

from the bare quadratic dispersion makes the calculations

even more challenging. The collision integrals are commonly

evaluated with bare quadratic dispersions. This is justified in

the Boltzmann equation limit, where mean-field corrections

are neglected altogether. Here, since we have included mean-

field effects on the dynamics, we must also use the dressed

quasiparticles dispersion in order to satisfy conservation of

energy. In order to do this in a numerically tractable way,

we have found that the quasiparticle dispersions can be

approximated well using a local effective mass approximation

(LEMA) within an error of less than 2%. To this end, we

approximate the dressed quasiparticle energies as

H̄0(p̄,r̄) ≈ ε0(r̄) +
p̄2

2m∗(r)
+

r̄2

2
, (C16)

where

ε0(r̄) = �̄0(r̄; 0),
(C17)

m∗(r̄) =
[

1 + ∂2
p̄ �̄0(r̄; p̄)

∣
∣
p̄=0

]−1
.

As we will see shortly, this approximation allows us to put

the collision integral into a simple form suitable for numerical

treatments. As a first step, we go to the center-of-mass frame

of the colliding particles and define

p̄ =
P̄

2
+ q̄, p̄1 =

P̄

2
− q̄,

(C18)

p̄′ =
P̄′

2
+ q̄′, p̄′

1 =
P̄′

2
− q̄′,
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using which we get

d2r̄
d2p̄

(2π )2

d2p̄1

(2π )2

d2p̄′

(2π )2

d2p̄′
1

(2π )2
(2π )δ(�Ē) (2π )2δ(�P̄)

→
m∗(r̄)

2
r̄ dr̄ dψ

P̄ dP̄

2π

q̄ dq̄

2π

dφ

2π

dφ′

2π
, (C19)

where φ, φ′, and ψ are defined as cos φ = q̄ · P̄/(q̄P̄ ),

cos φ′ = q̄′ · P̄/(q̄ ′P̄ ), and cos ψ = r̄ · P̄/(r̄ P̄ ). Note that P̄ ≡
P̄′ and q̄ ≡ q̄ ′ in the rest of the integrand due to conservation

of momentum and energy. The scattering amplitude M̄ =
λd [u(|p̄ − p̄′|,η) − u(|p̄ − p̄′

1|,η)] → λd [u(2q̄| sin[(φ − φ′)/
2]|,η) − u(2q̄| cos[(φ − φ′)/2]|,η)]. The product of the

equilibrium distribution functions, n0 n0,1(1 − n′
0)(1 − n′

0,1)

can be conveniently written as

n0 n0,1(1 − n′
0)(1 − n′

0,1)

→
1

4

1

cosh E + cosh γ

1

cosh E + cosh γ ′ ,

where E = β̄(P̄ 2/4 + q̄2)/[2m∗(r̄)] + β̄r̄2/2 − β̄μ̄, γ =
β̄P̄ q̄ cos φ/[2m∗(r̄)], and γ ′ = β̄P̄ q̄ cos φ′/[2m∗(r̄)]. The an-

gle ψ is only present in S[φα]S[φα]. Therefore, the in-

tegration over ψ is immediate and elementary, which we

evaluate using MATHEMATICA and define Sαβ (r̄ ,P̄ ,q̄,φ,φ′) ≡
∫

dψ S[φα]S [φβ]. The integral can be put in a more

useful form using a spherical change of variables, P̄ =
(8ρ/β̄)1/2 sin ξ cos ν, q̄ = (2ρ/β̄)1/2 sin ξ sin ν and r̄ =
(2ρ/β)1/2 cos ξ , where ρ ∈ [0,∞), ν ∈ [0,π/2], and ξ ∈
[0,π/2]. The final expression is

Iαβ = −
(2N )

1
2 λ2

d

8(2π )2 β̄Nα+Nβ+3

∫ ∞

0

ρ2 dρ

∫ 2π

0

dφ

2π

∫ 2π

0

dφ′

2π

∫ π
2

0

dξ sin3 ξ cos ξ

∫ π
2

0

dν sin 2ν

× Sαβ (
√

2ρ cos ξ,
√

8ρ sin ξ cos ν,
√

2ρ sin ξ sin ν,φ,φ′) m∗(r̄)

×
[
√

β̄ u
(

2

√

2ρ/β̄ sin ξ sin ν |sin[(φ − φ′)/2]|,η
)

−
√

β̄ u
(

2

√

2ρ/β̄ sin ξ sin ν |cos[(φ − φ′)/2]|,η
)]2

×{[cosh(ρ sin2 ξ/m∗(r̄) + ρ cos2 ξ + β̄ε0(r̄) − β̄μ̄) + cosh(ρ sin2 ξ sin 2ν cos φ/m∗(r̄))] × (φ ↔ φ′)}−1, (C20)

where Na(b) = ma(b) + na(b) + ka(b) and r̄ ≡
√

2ρ/β̄ cos ξ in

m∗(r̄) and ε(r̄). We evaluate the above 5D integral for all

pairwise combination of basis functions using a numerical

Monte Carlo integration with 5 × 108 points, which we found

to yield a relative statistical error of less than 10−3 in all cases.

APPENDIX D: MATRIX ELEMENTS OF THE EVOLUTION

MATRIX IN THE QUADRUPOLE BASIS

In this Appendix, we provide readily computable expres-

sions for various matrix elements in the quadrupole basis

by carrying out the angular integrations analytically. For a

given quadrupole basis function ξiφα , we define the shorthand

(μi,νi) as the number of powers of r and p present in ξi ,

respectively, that is, (μ1,ν1) = (2,0), (μ2,ν2) = (1,1), and

(μ3,ν3) = (0,2).

1. Matrix elements of M

The angular integrations in M can be easily carried out using

the parametrization cos φ = r̂ · x̂ and cos ψ = r̄ · p̄/(r̄ p̄). In

this variables, we get ξi = r̄μi p̄νi cos(2φ + νjψ). The angular

integration are elementary and we find

M
ij

αβ =
∫

dŴ̄ �0 ξi ξj φαφβ

=
1

2
g(|νi − νj |,kα + kβ) I

(Rα+Rβ+μi+μj )

(Pα+Pβ+νi+νj ) [�0]. (D1)

2. Matrix elements of H

As a first step, we evaluate the Poisson bracket {ξjφβ,H̄0} =
ξj {φβ,H̄0} + φβ{ξj ,H̄0}. The expression for {φβ ,H̄0} is known

from the previous Appendix [Eq. (C4)]. We can write

{ξj ,H̄0} = Xjk(p̄,r̄) ξk (sum over k is implied), where

Xjk =

⎛

⎜
⎝

0 2γp 0

−γr 0 γp

0 −2γr 0

⎞

⎟
⎠ . (D2)

Therefore, we get

(H0)
ij

αβ =
∫

dŴ̄ �0 ξi φα{ξjφβ ,H̄0}

=
∫

dŴ̄ �0 φα{φβ,H̄0} ξiξj

︸ ︷︷ ︸

(H0)
ij

αβ,1

+
∫

dŴ̄ �0 φαφβ Xjk ξi ξk

︸ ︷︷ ︸

(H0)
ij

αβ,2

. (D3)

The angular integrations in (H0)
ij

αβ,1 can be most easily

evaluated using the parametrization defined earlier, cos φ =
r̂ · x̂ and cos ψ = r̄ · p̄/(r̄ p̄). The final result is

(H0)
ij

αβ,1 = 1
2
[2mβ g(|νi − νj |,kα + kβ + 1)

+ kβ g(|νi − νj |,kα + kβ − 1)] I
(Rα+Rβ+μi+μj −1)

(Pα+Pβ+νi+νj +1)

× [�0 γp] − 1
2
[2nβ g(|νi − νj |,kα + kβ + 1)

+ kβ g(|νi − νj |,kα + kβ − 1)]

× I
(Rα+Rβ+μi+μj +1)

(Pα+Pβ+νi+νj −1) [�0 γr ].
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The angular integrations in (H0)
ij

αβ,2 are similar to those in

(M)
ij

αβ and the result is

(H0)
ij

αβ,2 = 1
2
g(|νi − νk|,kα + kβ)I

(Rα+Rβ+μi+μk)

(Pα+Pβ+νi+νk) [�0 Xjk].

(D4)

3. Matrix elements of �

Similar to the monopole case, the first step is evaluating

�̄[�0ξjφβ]:

�̄[�0ξjφβ]

= λd

∫
p̄′dp̄′

2π

∞
∑

n=0

u(n)(p̄,p̄′; η) �0(p̄′,r̄) r̄Rβ+μj p̄′Pβ+νj

×
∫

dψ ′

2π
coskβ (ψ + ψ ′) cos[2φ + νj (ψ + ψ ′)]

× cos(nψ ′), (D5)

where we have expressed u(|p̄ − p̄′|,η) as a cosine series

like before. The ψ ′ integration can be conveniently carried

out using the contour integral technique and gives g̃(νj ,n,kβ)

cos(2φ) cos(nψ) − h̃(νj ,n,kβ ) sin(2φ) sin(nψ), where

g̃(0,n,k) ≡ g(n,k),

g̃(1,n,k) ≡ g(n,k + 1),
(D6)

g̃(2,n,k) ≡ 2g(n,k + 2) − g(n,k),

h̃(ν,n,k) ≡ g̃(ν,n,k) − g(ν + n,k).

Plugging this back into Eq. (D5), we get

�̄[�0ξjφβ] =
kβ+2
∑

n=0

Q
(n)
β,j (p̄,r̄)[g̃(νj ,n,kβ) cos(2φ)

× cos(nψ) − h̃(νj ,n,kβ) sin(2φ) sin(nψ)],

(D7)

where

Q
(n)
β,j (p̄,r̄) = λd

∫
dp̄′

2π
r̄Rβ+μj p̄′Pβ+νj +1

× u(p̄,p̄′; η) �0(p̄′,r̄). (D8)

The last integral can be evaluated easily numerically. The final

result can be expressed easily using using last two expressions:

(�)
ij

αβ =
kβ+2
∑

n=0

[
1

2
G

(νk ,n,kα )
(νj ,n,kβ ) I

(Rα+μk )
(Pα+νk )

[

�0Q
(n)
β,jXik

]

+
1

2

(

2mα G
(νi ,n,kα+1)
(νj ,n,kβ ) + kα G

(νi ,n,kα−1)
(νj ,n,kβ )

)

× I
(Rα+μi−1)
(Pα+νi+1)

[

�0Q
(n)
β,jγp

]

+
1

2

(

2nα G
(νi ,n,kα+1)
(νj ,n,kβ ) + kα G

(νi ,n,kα−1)
(νj ,n,kβ )

)

× I
(Rα+μi+1)
(Pα+νi−1)

[

�0Q
(n)
β,jγr

]
]

, (D9)

where we have defined the shorthand notation G
(ν1,n1,k1)
(ν2,n2,k2) =

g̃(ν1,n1,k1) g̃(ν2,n2,k2) + h̃(ν1,n1,k1) h̃(ν2,n2,k2).

4. Matrix elements of Ic

The matrix elements of the collision integral in the

quadrupole basis is identical in form to those of the monopole

basis [Eq. (C20)]. The only differences are (1) Sαβ must be

replaced with

S
ij

αβ(r̄ ,P̄ ,q̄,φ,φ′) ≡
∫

dθ

2π
dψ S[ξiφα] S[ξjφβ], (D10)

where we introduced an extra angle cos θ = ex · P̄/P̄ , and

(2) the prefactor β̄Nα+Nβ+3 → β̄Nα+Nβ+5 in the denominator

due to the extra powers of β̄−1 introduced by ξi and ξj . The

definition of Nα(β) is the same as before.

APPENDIX E: CALCULATION OF THE COLLISION

INTEGRALS WITH EXACT HARTREE-FOCK

QUASIPARTICLE DISPERSIONS

In Appendix C4, we simplified the expression for the

collision integral matrix elements using the LEMA. Although

we found this scheme to be a decent approximation in the

weakly interacting regime (the approximate dispersions lie

within a few percents of the exact HF dispersions), one may

argue that an exact treatment is necessary for stronger inter-

actions. In particular, this may have important consequences

when one is looking at the effects that crucially depend on

self-energy corrections, such as the damping of the nodeless

monopole mode. In this section, we discuss this issue and

present numerical justification for the reliability of LEMA.

The major simplification resulting from LEMA is the

possibility of an analytic treatment of the δ function in the

collision integral associated to the conservation of energy

[see Eq. (C19)]. In that case, LEMA simply yields q = q ′,
where q and q ′ are the magnitude of the momenta of the initial

and final scattering pairs in the center-of-mass frame. Without

a (local) quadratic dispersion, this simple result does not hold

anymore and, in general, there is no easy way of treating the

0 1 2
10

−5

10
−4

10
−3

10
−2

10
−1

0 1 2 0 1 2

(a) (b) (c)

FIG. 15. (Color online) The damping rate of the monopole

oscillations in 2D and with N = 2200 particles. (a) T/TF = 0.5,

(b) T/TF = 1.0, and (c) T/TF = 1.5. The (light) solid colored lines

are the previously discussed result obtained using the LEMA. The

dashed lines denote approximate solutions obtained by relaxing

the conservation of energy (from top to bottom, σ = 0.05, 0.02,

0.01, and 0.005). The solid black line is the extrapolation to σ = 0

(the exact result).
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δ function analytically since the quasiparticle dispersions are

evaluated numerically. Here, we introduce a simple numerical

approach to overcome this difficulty. Using a limiting process

to to define the δ functions,

δ(�Ē) = lim
σ→0

1
√

2πσ
e−�Ē2/(2σ 2), (E1)

we replace the δ function with Gaussians and calculate the

collision integrals for various values of σ . We find the σ → 0

limit by extrapolation. This approach is considerably more

computationally demanding than LEMA; however, it yields an

accurate calculation of the collision integral matrix elements.

The integrals are 6D in this case (the variables being r̄ , P̄ ,

q̄, q̄ ′, φ, and φ′) since q and q ′ may assume different values

now.

We implemented the above method for both monopole and

quadrupole oscillations within a second-order basis set. The

extrapolation is carried out using a polynomial fit. Figure 15

shows the damping of monopole oscillations obtained using

several choices of σ , the extrapolated result, and the LEMA

result for reference. The matching between the effective mass

approximation and the exact result is excellent up to λd ∼ 1.

The LEMA result, however, deviates from the exact result

for λd � 1. Nonetheless, we find γ exact
mon < 10−3ω0 and our

conclusion about the smallness of the damping of the nodeless

monopole mode remains valid. Finally, we note that the

beyond-LEMA refinement to the prediction for the frequency

of monopole oscillations is much smaller (a relative correction

of about 10−6). This is due to the fact that the frequency shift es-

sentially results from the self-energy corrections on the dynam-

ical side of the CBV equation which is already treated exactly.
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