
Journal of Arti�cial Intelligence Research 16 (2002) 359-387 Submitted 12/01; published 6/02

Collective Intelligence, Data Routing and Braess' Paradox

David H. Wolpert dhw@ptolemy.arc.nasa.gov

NASA Ames Research Center, Mailstop 269-2

Mo�ett Field, CA 94035

Kagan Tumer kagan@ptolemy.arc.nasa.gov

NASA Ames Research Center, Mailstop 269-3

Mo�ett Field, CA 94035

Abstract

We consider the problem of designing the the utility functions of the utility-maximizing
agents in a multi-agent system (MAS) so that they work synergistically to maximize a global
utility. The particular problem domain we explore is the control of network routing by
placing agents on all the routers in the network. Conventional approaches to this task have
the agents all use the Ideal Shortest Path routing Algorithm (ISPA). We demonstrate that
in many cases, due to the side-e�ects of one agent's actions on another agent's performance,
having agents use ISPA's is suboptimal as far as global aggregate cost is concerned, even
when they are only used to route in�nitesimally small amounts of traÆc. The utility
functions of the individual agents are not \aligned" with the global utility, intuitively
speaking. As a particular example of this we present an instance of Braess' paradox in
which adding new links to a network whose agents all use the ISPA results in a decrease

in overall throughput. We also demonstrate that load-balancing, in which the agents'
decisions are collectively made to optimize the global cost incurred by all traÆc currently
being routed, is suboptimal as far as global cost averaged across time is concerned. This
is also due to \side-e�ects", in this case of current routing decision on future traÆc. The
mathematics of Collective Intelligence (COIN) is concerned precisely with the issue of
avoiding such deleterious side-e�ects in multi-agent systems, both over time and space.
We present key concepts from that mathematics and use them to derive an algorithm
whose ideal version should have better performance than that of having all agents use
the ISPA, even in the in�nitesimal limit. We present experiments verifying this, and also
showing that a machine-learning-based version of this COIN algorithm in which costs are
only imprecisely estimated via empirical means (a version potentially applicable in the real
world) also outperforms the ISPA, despite having access to less information than does the
ISPA. In particular, this COIN algorithm almost always avoids Braess' paradox.

1. Introduction

There is a long history of AI research on the design of distributed computational systems,
stretching from Distributed AI (Huhns, 1987) through current work on multi-agent systems
(MAS's) (Claus & Boutilier, 1998; Hu & Wellman, 1998a; Jennings, Sycara, & Wooldridge,
1998; Sandholm, Larson, Anderson, Shehory, & Tohme, 1998; Sycara, 1998). When the
individual agents in such a system each have personal utility functions they are trying to
maximize and we also have a `world utility' that rates the possible dynamic histories of
the overall system, such a MAS constitutes a `collective'. In this paper we are particularly
concerned with agents that use machine learning techniques (e.g., Reinforcement Learning

c2002 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Wolpert & Tumer

(RL) Kaelbing, Littman, & Moore, 1996; Sutton & Barto, 1998; Sutton, 1988; Watkins &
Dayan, 1992) to try to maximize their utilities.

The �eld of Collective Intelligence (COIN) is concerned with the central design problem
for collectives (Wolpert, Tumer, & Frank, 1999; Wolpert & Tumer, 1999): How, without
any detailed modeling of the overall system, can one set utility functions for the individual
agents in a COIN so that the overall dynamics reliably and robustly achieves large values
of the provided world utility? In other words, how can we leverage an assumption that
our learners are individually fairly good at what they do, to have the collective as a whole
perform well? 1

An example of where this question looms very large is the problem of how to optimize the
ow of certain entities (e.g., information packets, cars) from sources to destinations across
a network of routing nodes. Here we are concerned with the version of the problem in
which \optimization" consists of minimizing aggregate cost incurred by the entities owing
to their destinations, and where an agent controls the routing decisions of each node in
the network. This problem underlies the distributed control of a large array of real-world
domains, including internet routing, voice/video communication, traÆc ows, etc. From
the COIN perspective, the problem reduces to the question of what goals one ought to
provide to each router's agent so that each agent's self-interestedly pursuing its own utility
results in maximal throughput of the entire system (\incentive engineering").

In this paper we investigate the application of recently developed COIN techniques,
to this routing domain. Like all work concerning COINs, these techniques are designed
to be very broadly applicable, and in particular are not designed for the routing domain.
Accordingly, their performance in this domain serves as a good preliminary indication of
their more general usefulness.

To ground the discussion, we will concentrate on the telecommunications data routing
problem where the entities being routed are packets. Currently, many real-world algorithms
for this problem are based on the Shortest Path Algorithm (SPA). In this algorithm each
routing node in the network is controlled by an agent who maintains a \routing table" of the
\shortest paths" (i.e., sequences of links having minimal total incurred costs) from its node
to each of the possible destination nodes in the net. Then at each moment the agent satis�es
any routing requests for a particular destination node by sending all its packets down the
associated shortest path. Many Ideal SPA (ISPA) algorithms exist for eÆciently computing
the shortest path when agent-to-agent path-cost communication is available and the costs
for traversing each agent's node are unvarying in time, e.g., Dijkstra's Algorithm (Ahuja,
Magnanti, & Orlin, 1993; Bertsekas & Gallager, 1992; Deo & Pang, 1984; Dijkstra, 1959).

If a non-in�nitesimal amount of traÆc is to be routed to a particular destination at some
moment by some agent, then that agent's sending all that traÆc down a single path will
not result in minimal cost, no matter how that single path is chosen. However if it must
choose a single path for all its traÆc, and if the routing decisions by all other agents are
�xed, then tautologically by using the ISPA the agent chooses the best such path, as far as
the traÆc it is routing is concerned. Accordingly, in the limit of routing an in�nitesimally

1. The lack of detailed modeling ensures that we do not face the problems of \brittleness" that sometimes
accompany mismatch between the real world and the assumptions concerning it built into non-adaptive,
\hard-wired" agents in large MAS's. In turn, this lack of modeling is what causes us to concentrate on
adaptive, RL-based agents.

360

Collective Intelligence, Data Routing and Braess' Paradox

small amount of traÆc, with all other agents' strategies being a \background", the ISPA is
the optimal (least aggregate incurred cost) routing strategy for the traÆc of the associated
single agent considered individually.

One might hope that more generally, if the agent must allot all of its traÆc to a single
path and all other agents' traÆc decisions are �xed, then its choosing that path via the
ISPA would be the choice that minimizes total incurred cost of all traÆc across the net, at
least in the limit of in�nitesimally little traÆc. This is not the case though, because in using
the SPA the agent is not concerned with the deleterious side-e�ects of its actions on the
costs to the traÆc routed by other agents (Korilis, Lazar, & Orda, 1997a; Wolpert et al.,
1999). The problem is made all the worse if the other agents are allowed to change their
decisions in response to our agent's decision. In the extreme case, as elaborated below, if
all agents were to try to minimize their personal costs via ISPA's, then the agents would
actually all receive higher cost than would be the case under an alternative set of strategies.
This is an instance of the famous Tragedy Of the Commons (TOC) (Hardin, 1968).

Deleterious side-e�ects need not be restricted to extend over space; they can also extend
over time. Indeed, consider the algorithm of having all agents at a given moment make
routing decisions that optimize global cost incurred by the traÆc currently being routed,
an algorithm often called \load-balancing" (LB) (Heusse, Snyers, Guerin, & Kuntz, 1998).
By de�nition, LB avoids the deleterious side-e�ects over space that can result in the TOC
for the costs incurred by the traÆc currently being routed. However, due to side-e�ects
over time, even conventional LB can be suboptimal as far as global cost averaged across
time is concerned. Intuitively, one would have to use \load-balancing over time" to ensure
truly optimal performance. So even if one could somehow construct a distributed protocol
governing the the agents that caused them to implement LB, still one would not have
gotten theme to all act in a perfectly coordinated fashion. Such diÆculties make this an
appropriate domain in which to investigate how well COIN techniques work in practice.

Real-world SPA's (RSPA) work by applying an ISPA to the estimated costs for traversing
each path of every agent. Typically those estimates will be in error because agent-to-agent
communication is not instantaneous, and therefore routing tables may be based on out of
date information. More generally though, even if that communication were instantaneous,
the cost to traverse an agent's node may be di�erent by the time the packet arrives at
that node. Accordingly, in general the performance of RSPA's is bounded above by that
of the associated ISPA. In this paper we do not wish to investigate such topics, but rather
to highlight the issue of side-e�ects. Accordingly we \rig the game" in our experimental
comparisons in favor of the SPA, by using ISPA's rather than RSPA's.

In general, even without side-e�ects, determining the optimal solution to a ow problem
(e.g., determining what the loads on each link need to be to maximize throughput on a
non-cooperative data network) can be nontractable (Ahuja et al., 1993; Orda, Rom, & Sidi,
1993b). Therefore, we will concern ourselves with providing good solutions that avoid the
diÆculties the ISPA has with side-e�ects. It is not our aim here to present algorithms
that �nd the best possible (perfectly load-balanced over time) solution. Previous work on
using machine learning to improve routing has sometimes resulted in better performance
than (non-idealized) SPA's (Littman & Boyan, 1993; Boyan & Littman, 1994; Stone, 2000;
Marbach, Mihatsch, Schulte, & Tsisiklis, 1998). That work has not grappled with the
central COIN design problem however.

361

Wolpert & Tumer

In Section 2 we discuss SPA's de�ciencies and in particular their manifestations in
Braess' paradox. Then, in Section 3 we present the theory of collective intelligence, an
approach that promises to overcome those de�ciencies. We then discuss the routing model
we will use in our experiments, and show how the theory of COINs can be applied to that
model to provide an alternative to shortest path algorithms in Section 3. In Section 5
we present simulation results with that model comparing ISPA to COINs. These results
demonstrate that in networks running ISPA, the per packet costs can be as much as 32
% higher than in networks running algorithms based on COIN theory. In particular, even
though it only has access to imprecise estimates of costs (a handicap that does not hold for
ISPA), the COIN-based algorithm almost always avoids Braess' paradox, in stark contrast
to the ISPA. In that the cost incurred with ISPA's is presumably a lower bound on that
of an SPA not privy to instantaneous communication, the implication is that COINs can
outperform such real-world SPA's. We conclude that the techniques of the �eld of collective
intelligence can be highly e�ective in designing the utility functions of the members of a MAS
to ensure they work in a coordinated and eÆcient manner to optimize overall performance.

2. Suboptimality of Shortest Path Routing and Braess Paradox

In this section we �rst demonstrate the suboptimality of an SPA when we have multiple
agents making simultaneous routing decisions, where no agent knows ahead of time the
other's choice, and therefore does not know ahead of time exactly what the costs will be.
We then demonstrate that such suboptimality can hold even when only one agent is making
a decision, and it knows what decisions the others have previously made. Next we present
Braess' paradox, a particularly pointed instance of these e�ects (for other discussion of
Braess' paradox in SPA routing, see Bass, 1992; Cohen & Kelly, 1990; Cohen & Je�ries,
1997; Hogg, 1995; Glance & Hogg, 1995; Korilis, Lazar, & Orda, 1999).

2.1 Suboptimality of SPA

Perhaps the simplest example of how individual greed on the part of all agents can lead
to their collective detriment occurs when two agents determine that their shortest path is
through a shared link with a limited capacity, while both have a second option that is slightly
less preferable. In such a case, their using the common link degrades the performance of
both parties, since due to limited capacity the performance of that link will quickly fall
below that of their second option.

More precisely, consider the case where the shared link has a cost given by x3 when
traversed by x packets, and where each router has an optional second link to the destination
where the cost for traÆc x to traverse such a second link is 2x. Acting alone, with a single
packet to send, they would both send that packet through the shared link (cost of 1).
However by both doing so, they incur a larger cost (cost of 8) than if they had both used
their second choices (cost of 4). Without knowing what each other will do ahead of time
(information not conventionally contained in routing tables), the agents will necessarily
have mistaken cost estimates and therefore make incorrect routing decisions. In this, even
in the limit of di�erentially small packets, use of SPA will lead to a wrong routing decision.

362

Collective Intelligence, Data Routing and Braess' Paradox

2.2 Suboptimality of ISPA

We now analyze a situation where the routers may know what the loads are but are each
acting to optimize the delays experienced by their packets alone. Consider the network
shown in Figure 1. Two source routers X and Y each send one packet at a time, with X
sending to either intermediate router A or B, and Y sending to either B or C. This type
of network may arise in many di�erent topologies as a subnetwork. Accordingly, diÆculties
associated with this network can also apply to many more complex topologies.

y

X

J
J
J
J
J
J
JJ

y

Y

J
J
J
J
J
J
JJ

y
A

y
B

y
C

Figure 1: Independent decisions at the source

Let xA, xB, yB , and yC , be the packet quantities at a particular �xed time t, at A, B,
or C, and originating from X or Y , as indicated. At t, each source has one packet to send.
So each of our variables is binary, with xA + xB = yB + yC = 1. Have Vi(zi) be the cost,
per packet, at the single instant t, at router i, when the total number of packets at that
instant on that router is zi. So the total cost incurred by all packets at the time t, G(~x; ~y),
equals xAVA(xA) + (xB + yB)VB(xB + yB) + (yC)VC(yC).

In an ISPA, X chooses which of xA or xB = 1 so as to minimize the cost incurred by
X's packet alone, gX(~x) � xAVA(xA) + xBVB(xB + yB). In doing this the ISPA ignores the
yBVB(xB + yB) term, i.e., it ignores the \side e�ects" of X's decision. Real-world SPA's
typically try to approximate this by having X choose either A or B according to whether
VA(0) or VB(yB) is smaller, where those two values can be estimated via pings, for example.

The right thing to do from the point of view of minimizing the global cost of course
is instead to have X minimize G(~x; ~y), or more precisely, the components of G(~x; ~y) that
depend on X. Writing it out for this case, X ought to act to minimize xAVA(xA) + (xB +
yB)VB(xB + yB). Due to the constraint that xA + xB = 1, this means sending down A i�
VA(1) < (yB + 1)VB(yB + 1) � yBVB(yB), which di�ers from the ISPA result in that X is
concerned with the full cost of going through router B, not just the portion of that cost
that its packet receives.

In the context of this example, thisG-minimizing algorithm constitutes \load-balancing"
(LB). Note that so long as sgn[VA(0) � VB(yB) � yBV

0
B(yB)] 6= sgn[VA(0) � VB(yB)], even

in the limit of in�nitesimally small traÆc (so that xA + xB equals some in�nitesimal Æ),
ISPA and LB still disagree. LB considers side-e�ects of current routing decisions on other
traÆc currently being routed. However because it does not consider side-e�ects of routing
decisions on future traÆc, even LB may not optimize global cost averaged across all time,

363

Wolpert & Tumer

depending on the details of the system. However through the use of \e�ect sets" COINs
can account even for such delayed side-e�ects2.

2.3 Braess' Paradox

Let us conclude this section with an illustration of Braess' paradox (Bass, 1992; Cohen
& Kelly, 1990; Cohen & Je�ries, 1997; Glance & Hogg, 1995; Hogg, 1995; Korilis, Lazar,
& Orda, 1997b; Korilis et al., 1999), a phenomenon that dramatically underscores the
ineÆciency of the ISPA. This apparent \paradox" is perhaps best illustrated through a
highway traÆc example �rst given by Bass (Bass, 1992): There are two highways connecting
towns S and D. The cost associated with traversing either highway (either in terms of tolls,
or delays) is V1+V2, as illustrated in Net A of Figure 2. So when x = 1 (a single traveler) for
either path, total accrued cost is 61 units. If on the other hand, six travelers are split equally
among the two paths, they will each incur a cost of 83 units to get to their destinations. Now,
suppose a new highway is built connecting the two branches, as shown in Net B in Figure 2.
Further, note that the cost associated with taking this highway is not particularly high (in
fact for any load higher than 1, this highway has a lower cost than any other highway in the
system). The bene�t of this highway is illustrated by the dramatically reduced cost incurred
by the single traveler: by taking the short-cut, one traveler can traverse the network at a
cost of 31 units (2 V1 + V3). Adding a new road has seemingly reduced the traversal cost
dramatically.

ySb
b

b
b

b

"
"
"
"
"

yV1 yV2

yV2 "
"
"
"
"

yV1b
b

b
b

b
yD

yS"
"
"
"
"

b
b

b
b

b
yV1 yV2

yV2 "
"
"
"
"

yV1b
b

b
b

b
yD

y
V3

��
��

��
��

��

Net A Net B
Figure 2: Hex network with V1 = 10x ; V2 = 50 + x ; V3 = 10 + x

However consider what happens when six travelers are on the highways in net B. If
each agent uses an ISPA, then at equilibrium each of the three possible paths contains two
travelers.3 Due to overlaps in the paths however, this results in each traveler incurring a
cost of 92 units, which is higher than than what they incurred before the new highway was
built. The net e�ect of adding a new road is to increase the cost incurred by every traveler.
This phenomenon is known as Braess' paradox.

2. A detailed discussion and proof of the suboptimality of LB is shown in appendix A. Since LB is not
used in current systems and is hard to imagine ever being used, our experiments do not consider it; it is
discussed here for pedagogical reasons.

3. We have in mind here the Nash equilibrium for this problem, where no traveler (or equivalently, no
router) can gain advantage by changing strategies.

364

Collective Intelligence, Data Routing and Braess' Paradox

3. Mathematics of Collective Intelligence

One common solution to these types of side-e�ect problems is to have particular agents
of the network (e.g., a \network manager" Korilis, Lazar, & Orda, 1995) dictate certain
choices to other agents. This solution can incur major brittleness and scaling problems
however. Another kind of approach, which avoids the problems of a centralized manager,
is to provide the agents with extra incentives that can induce them to take actions that are
undesirable to them from a strict SPA sense. Such incentive can be in the form of \taxes"
or \tolls" added to the costs associated with traversing particular links to discourage the
use of those links. Such schemes in which tolls are superimposed on the agents' goals are
a special case of the more general approach of replacing the goal of each agent with a new
goal. These new goals are speci�cally tailored so that if they are collectively met the system
maximizes throughput. A priori, a agent's goal need have no particular relation with the
SPA-type cost incurred by that agent's packets. Intuitively, in this approach, we provide
each agent with a goal that is \aligned" with the global objective, with no separate concern
for of that goal's relation to the SPA-type cost incurred by the traÆc routed by that agent.

In this section, we summarize the salient aspects of a Collective Intelligences (COIN) (Wolpert,
Wheeler, & Tumer, 2000; Wolpert & Tumer, 1999). In this paper we consider systems that
consist of a set of agents, connected in a network, evolving across a set of discrete, consecu-
tive time steps, t 2 f0; 1; :::g. Without loss of generality, we let all relevant characteristics of
a agent � at time t | including its internal parameters at that time as well as its externally
visible actions | be encapsulated by a Euclidean vector �

�;t
with components �

�;t;i
. We

call this the \state" of agent � at time t, and let �
;t
be the state of all agents at time t,

while � is the state of all agent across all time.

World utility, G(�), is a function of the state of all agents across all time. When �
is an agent that uses a Machine Learning (ML) algorithm to \try to increase" its private
utility, we write that private utility as g�(�), or more generally, to allow that utility to
vary in time, g�;� (�).

We assume that � encompasses all physically relevant variables, so that the dynamics
of the system is deterministic (though of course imprecisely known to anyone trying to
control the system). Note that this means that all characteristics of an agent � at t = 0
that a�ects the ensuing dynamics of the system must be included in �

�;0
. For ML-based

agents, this includes in particular the algorithmic speci�cation of its private utility, typically
in the physical form of some computer code (the mathematics can be generalized beyond
ML-based agents, as elaborated in Wolpert & Tumer, 1999).

Here we focus on the case where our goal, as COIN designers, is to maximize world utility
through the proper selection of private utility functions. Intuitively, the idea is to choose
private utilities that are aligned with the world utility, and that also have the property
that it is relatively easy for us to con�gure each agent so that the associated private utility
achieves a large value. In this paper, all utilities we consider are of the form

P
t�� Rt(� ;t)

for reward functions Rt (simply
P

tRt(� ;t) for non-time-varying utilities). From now on,

we will only consider world utilities whose associated set of fRtg are all time-translations of
one another. In particular, as shown below, overall network throughput is expressible this
way.

365

Wolpert & Tumer

We need a formal de�nition of the concept of having private utilities be \aligned" with
G. Constructing such a formalization is a subtle exercise. For example, consider systems
where the world utility is the sum of the private utilities of the individual agents. This might
seem a reasonable candidate for an example of \aligned" utilities. However such systems
are examples of the more general class of systems that are \weakly trivial". It is well-known
that in weakly trivial systems each individual agent greedily trying to maximize its own
utility can lead to the tragedy of the commons (Hardin, 1968; Crowe, 1969) and actually
minimize G. In particular, this can be the case when private utilities are independent of
time and G =

P
� g�. Evidently, at a minimum, having G =

P
� g� is not suÆcient to ensure

that we have \aligned" utilities; some alternative formalization of the concept is needed.
Note that in the simple network discussed in Section 2.1, the utilities are weakly trivial,
since G(~x; ~y) = gX(~x) + gy(~y). This provides another perspective on the suboptimality of
ISPA in that network.

A more careful alternative formalization of the notion of aligned utilities is the concept
of \factored" systems. A system is factored at time � when the following holds for each
agent � individually: A change at time � to the state of � alone, when propagated across
time, will result in an increased value of g�;� (�) if and only if it results in an increase for
G(�) (Wolpert & Tumer, 1999).

For a factored system, the side-e�ects of any change to �'s t = � state that increases its
private utility cannot decrease world utility. There are no restrictions though on the e�ects
of that change on the private utilities of other agents and/or times. In particular, we don't
preclude an agent's algorithm at two di�erent times from \working at cross-purposes" to
each other, so long as at both moments the agent is working to improve G. In game-theoretic
terms, in factored systems optimal global behavior corresponds to the agents' always being
at a private utility Nash equilibrium (Fudenberg & Tirole, 1991). In this sense, there can
be no tragedy of the commons for a factored system. As a trivial example, a system is
factored for g�;� = G 8�, a system conventionally called a `team game'.

Furthermore, if our system is factored with respect to private utilities fg�;�g, we want
each agent to be in a state at time � that induces as high a value of the associated private
utility as possible (given the initial states of the other agents). Assume � is ML-based and
able to achieve fairly large values of most private utilities we are likely to set it for time
� , i.e., assume that given that private utility g�;� , the rest of the components of �

�;�
are

set by �'s algorithm in such a way so as to achieve a relatively high value of g�;� . So our
problem becomes determining for what fg�;�g the agents will best be able to achieve high
g� (subject to each other's actions) while also causing dynamics that is factored for G and
the fg�;�g.

De�ne the e�ect set of the agent-time pair (�; �) at �, Ceff
(�;�)(�), as the set of all agents

�
�0 ;t

which under the forward dynamics of the system have non-zero partial derivative with

respect to the state of agent � at t = � . Intuitively, (�; �)'s e�ect set is the set of the states
of all agents �

�0;t�� that would be a�ected by a change in the state of agent � at time � .

Next, for any set � of agents (�0; t), de�ne CL�(�) as the \virtual" vector formed by
clamping the components of the vector � delineated in � to an arbitrary �xed value, which

366

Collective Intelligence, Data Routing and Braess' Paradox

in this paper is set to 0. 4 This operation creates a new state vector (e.g., worldline) where
the clamped components of that worldline (e.g., one player's action at a particular time
step) are \zeroed" (e.g., removed from the system).

The value of the wonderful life utility (WLU for short) for � is de�ned as:

WLU�(�) � G(�)�G(CL�(�)): (1)

In particular, we are interested in the WLU for the e�ect set of agent-time pair (�; �). This
WLU is the di�erence between the actual world utility and the virtual world utility where
all agent-time pairs that are a�ected by (�; �) have been clamped to a zero state while the
rest of � is left unchanged.

Since we are clamping to ~0, we can loosely view (�; �)'s e�ect set WLU as analogous
to the change in world utility that would have arisen if (�; �) \had never existed", hence
the name of this utility - cf. the Frank Capra movie. Note however, that CL is a purely
\�ctional", counter-factual operator, in that it produces a new � without taking into account
the system's dynamics. The sequence of states the agent-time pairs in � are clamped to
in constructing the WLU need not be consistent with the dynamical laws of the system.
This dynamics-independence is a crucial strength of the WLU. It means that to evaluate
the WLU we do not try to infer how the system would have evolved if agent �'s state were
set to ~0 at time � and the system evolved from there. So long as we know �, extending over
all time, �, and the function G, we know the value of WLU.

As mentioned above, regardless of the system dynamics, having g�;� = G 8� means the
system is factored at time � .

Theorem: Regardless of the system dynamics, setting g�;� = WLU
Ceff

(�;�)

8� results in a

factored system at time � .

Proof: The second term, G(CL
Ceff

(�;�)

(�)) is, by de�nition, independent of �
�;�
. Therefore

a change to only the (�; �) component of � will only a�ect the �rst term, G(�). Therefore
the e�ect of such a change on the value of the world utility is the same as its e�ect on the
value of the wonderful life utility. QED.

Since factoredness does not distinguish the team game and wonderful life utilities, we
need some other means of deciding which to use as our choice of fg�;�g. To determine
this, note that since each agent is operating in a large system, it may experience diÆculty
discerning the e�ects of its actions on G when G sensitively depends on all the agents in the
system. Therefore each � may have diÆculty learning from past experience what to do to
achieve high g�;� when g�;� = G. In particular, in routing in large networks, having private
rewards given by the world reward functions means that to provide each router with its
reward at each time step we need to provide it the full throughput of the entire network
at that step. This is usually infeasible in practice. Even if it weren't though, using these
private utilities would mean that the routers face a very diÆcult task in trying to discern

4. The choice of the clamping parameter used in an associated COIN can a�ect its performance. However
within wide ranges, it doesn't a�ect whether such a COIN outperforms alternatives like team games.

367

Wolpert & Tumer

the e�ect of their actions on their rewards, and therefore would likely be unable to learn
their best routing strategies.

This problem can be mitigated by using e�ect set WLU as the private utility, since the
subtraction of the clamped term removes much of the \noise" of the activity of other agents,
leaving only the underlying \signal" of how the agent in question a�ects the utility (this
reasoning is formalized as the concept of \learnability" in Wolpert & Tumer, 1999). Ac-
cordingly, one would expect that setting private utilities to WLU's ought to result in better
performance than having g�;� = G 8�; � . This is the primary theoretical consideration that
we leverage in the COIN techniques investigated in this paper.

In practice, we will sometimes only be able to estimate the \primary", most prominent
portion of the e�ect set. Technically, the associated WLU is not the e�ect set WLU, and
therefore not exactly factored. However assuming that that associated WLU is close enough
to being factored, we would expect the advantage in learnability with such a WLU to still
result in better performance than would using g�;� = G 8�; � (see Wolpert et al., 2000;
Wolpert & Tumer, 1999). Indeed, for the sake of improving learnability, sometimes we will
elect to exclude certain agent-time pairs from our estimate of the e�ect set of (�; �), even
if we are sure that that are a�ected by �

�;�
. This will be the case if we expect that the

changes in G due to varying �
�;�

that are \mediated" through those agent-time pairs are

relatively insigni�cant, and therefore e�ectively constitute noise for the learning process, so
that their e�ect on learnability is more important than their e�ect on factoredness.

4. Collective Intelligence for Network Routing

In this section, we use the theory summarized in Section 3 to derive individual goals for
each router, in the form of private utility functions to be maximized by appropriate choice
of routing decisions. The routers tried to achieve those maximizations by using algorithms
that only require limited knowledge of the state of the network (in particular knowledge
that is readily available to routers in common real data networks). In our simulations each
router used a Memory Based (MB) machine learning algorithm (nearest neighbor) to make
routing decisions. More precisely, for each potential routing decision, the routers look for
the past state that most closely closely matches their current state (e.g., load). They then
assign an "estimated" utility value to each potential routing decision and select the action
with the highest estimated utility value. We call this algorithm an MB COIN5.

4.1 Model Description

To apply the COIN formalism to a network routing model, we must formally describe
that as a set of deterministically evolving vectors �

;t
. In the model used in this paper, at

any time step all traÆc at a router is a set of pairs of integer-valued traÆc amounts and
associated ultimate destination tags. At each such time step t, each router r sums the
integer-valued components of its current traÆc at that time step (one component for each

5. Relatively minor details of the algorithm concerning exploration/exploitation issues along with a \steer-
ing" parameter are discussed at the end of this section.

368

Collective Intelligence, Data Routing and Braess' Paradox

ultimate destination) to get its instantaneous load. We write that load as:

zr(t) �
X
d

xr;d(t);

where the index d runs over ultimate destinations, and xr;d(t) is the total traÆc at time
t going from r towards d. After its instantaneous load at time t is evaluated, the router
sends all its traÆc to the next downstream routers, in a manner governed by the underlying
routing algorithm. We indicate such \next routers" by writing:

xr;d(t) =
X
r0

xr;d;r0(t);

where r0 is the next router for traÆc (r; d), i.e., the �rst stop on the path to be followed
from router r to ultimate destination d. After all such routed traÆc goes to those next
downstream routers, the cycle repeats itself, until all traÆc reaches its destinations.

In our simulations, for simplicity, traÆc was only introduced into the system (at the
source routers) at the beginning of successive disjoint waves of L consecutive time steps
each6. We use �(t) to indicate either the integer-valued wave number associated with time
t or the set of all times in that wave, as the context indicates.

In a real network, the cost of traversing a router depends on \after-e�ects" of recent
instantaneous loads, as well as the current instantaneous load. To simulate this e�ect, we
use time-averaged values of the load at a router rather than instantaneous load to determine
the cost a packet incurs in traversing that router. More formally, we de�ne the router's
windowed load, Zr(t), as the running average of that router's load value over a window
of the previous W timesteps (W is always set to an integer multiple of L):

Zr(t) � 1

W

tX
t0=t�W+1

zr(t
0) =

X
d

Xr;d(t);

where the value of Xr;d(t) is set by

Xr;d(t) =
1

W

tX
t0=t�W+1

xr;d(t
0)):

Intuitively, for large enough W , using such a window to determine costs across routers
means that typically those costs will only change substantially over time scales signi�cantly
larger than that of the individual routing decisions. Formally, the windowed load is the
argument to a load-to-cost function, V (�), which provides the cost accrued at time t by
each packet traversing the router at this timestep. That is, at time t, the cost for each
packet to traverse router r is given by V (Zr(t))

7. Note that in our model, the costs are
accrued at the routers, not the links. Also note that for simplicity we do not physically
instantiate the cost as a temporal delay in crossing a router. Di�erent routers have di�erent

6. L was always chosen to be the minimal number necessary for all traÆc to reach its destination before
the next wave of traÆc is initiated.

7. We also introduce \dummy routers" denoted by V0(�) = 0 which help in translating the mathematics
into the simulations. Omitting them will have no e�ect on the simulations.

369

Wolpert & Tumer

V (�), to reect the fact that real networks have di�erences in router software and hardware
(response time, queue length, processing speed etc). For simplicity, W is the same for all
routers however. With these de�nitions, world utility is given by

G(�) =
X
t;r

zr(t) Vr(Zr(t))

=
X
t;r;d

xr;d(t)Vr(Zr(t))

=
X
t;r;d

xr;d(t)Vr

0
@ 1

W

tX
t0=t�W+1

X
d0

xr;d0(t
0)

1
A

=
X
t;r;d

xr;d(t)Vr

 X
d0

Xr;d0(t)

!
: (2)

Our equation for G explicitly demonstrates that, as claimed above, in our representation
we can express G(�) as a sum of rewards,

P
tRt(�;t), where R(� ;t) can be written as function

of a pair of (r; d)-indexed vectors:

Rt(xr;d(t);Xr;d(t)) =
X
r;d

xr;d(t)Vr

 X
d0

Xr;d0(t)

!
:

Also as claimed, the Rt are temporal translations of one another.
Given this model, some of the components of �

;t
must be identi�ed with the values

xr;d;r0(t) 8 r; d; r0 and t, since those x's are set by the actions the agents will take. Since all
arguments of G must be components of �, we also include the Xr;d(t) 8r; d; t as components
of �

;t
. Formally, for routing based on ML agents, the internal parameters of the ML agents

must also be included in �. This is because those parameters a�ect the routing, and in
turn are a�ected by it. So to have � evolve deterministically, since it includes the routing
variables, it must also contain internal parameters of the agents. We won't have any need
to explicitly delineate such variables here however, and will mostly phrase the discussion as
though there were no such internal parameters.

Now the values fxr;d;r0(t� 1)g 8r; d; r0 specify the values fxr;d(t)g 8r; d directly. There-
fore, in concert with the fxr;d(t0 < t)g, they also set the fXr;d(t)g directly. Moreover in our
simulations the decisions fxr;d;r0(t)g 8r; d; r0 �xed by the routing algorithms at all times t
are given by a �xed function of the fxr;d(t)g and the fZr(t) =

P
d0 Xr;d0(t)g. So in point of

fact we can map the set of fxr;d;r0(t� 1);Xr;d0(t)g 8r; d; r0 to the full set fxr;d;r0(t)g 8r; d; r0,
not just to fxr;d(t)g. Accordingly, the xr;d;r0 undergo deterministic evolution. Since their
values across time set all the values of the Xr;d(t) across time, we see that the entire set of
the components of �

;t
undergo deterministic evolution in this representation, as required.

For evaluating the wonderful life utility we will need to group the components of �
;t

into disjoint agents �. Here we will have two types of agent, both types being indexed by
router-destination pairs. For each such agent index (r; d), the �rst agent type is the variable
Xr;d(t), and the second agent type is the Euclidean vector with components indexed by r0,
(xr;d)r0(t). In setting \actions" we are concerned with setting the states of the agents of
the second type. Accordingly, our learners will all be associated with agents of this second

370

Collective Intelligence, Data Routing and Braess' Paradox

type. Unless explicitly indicated otherwise, from now on we will implicitly have that second
type of agent in mind whenever we refer to a \agent" or use the symbol �.

4.2 ISPA Routing and COIN Routing

Based on the COIN formalism presented in Section 3 and the model described above, we
now present the ISPA and COIN-based routing algorithms. At time step t, ISPA has access
to all the windowed loads at time step t�1 (i.e., it has access to Zr(t�1) 8r), and assumes
that those values will remain the same at all times � t. Note that for large window sizes
and times close to t, this assumption is arbitrarily accurate. Using this assumption, in
ISPA, each router sends packets along the path that it calculates will minimize the costs
accumulated by its packets.

The COIN-based routing algorithms, in contrast, do not have such direct access to the
Zr. So to evaluate the WLU for a agent (r; d) at any time � , such an algorithm must
estimate the (primary members of the) associated e�ect set. This means determining what
components of �

;
will, under the dynamics of the system, be changed by altering any of the

components of the vector xr;d(�).

As a �rst approximation, we will ignore e�ects on traÆc that changing xr;d;r0(�) may
have that are \mediated" by the learning algorithms running in the system. That is, we
ignore changes that arise due to the the e�ects that changing xr;d;r0(�) has on rewards,
changes which induce changes in future training sets, which then in turn get mapped to
changes in the fxr;d;r0(t)g (and therefore the fXr;d(t)g) via the learning algorithms running
on the agents.

As another approximation, we will ignore e�ects mediated by the routing algorithms'
observations of the state of the network. That is, we ignore changes in the fxr00;d0;r000(t)g that
varying xr;d(�) may cause due to associated changes in the state of the network perceived by
(r00; d0)'s routing algorithm, changes that in turn cause that algorithm to modify its routing
decisions accordingly. We only consider the behavior of those routing algorithms that are
(potentially) directly a�ected by xr;d(�) in that they (potentially) have to route packets
that, at time � , passed through r on the way to d. So in particular we ignore e�ects of
xr;d(�) on the fxr00;d0 6=d;r000(t)g.

Since all packets routed in a wave arrive at their destinations by the end of the wave,
these approximations mean that the only xr00;d00;r000(t) that are in our estimate for xr;d(�)'s
e�ect set have t in the same wave as � . These are the only ones that are, potentially, directly
a�ected by the fxr;d;r0(t)g by \chaining together" the sequence of xr00;d00;r000(t) that get the
packets in xr;d(t) to their ultimate destination. Due to the wave nature of our simulations
though, the only xr00;d00;r000(t) within � 's wave that are a�ected by xr;d(�) all have d

00 = d.
For reasons of coding simplicity, we do not concern ourselves with whether t < � within a
given wave and then exclude some xr00;d00;r000(t) accordingly. In other words, all t within � 's
wave are treated equally.

So one set of members of xr;d(�)'s e�ect set is fxr00;d;r000(t) 8r00; d; r000; t 2 �(�)g. Note
that some of these members will be relatively una�ected by xr;d(�) (e.g., those with r00 far
in the net away from r). Again for simplicity, we do not try to determine these and exclude
them. As with keeping the xr00;d;r000(t < �), this inclusion of extra agents in our estimate of
the e�ect set should hurt learnability, but in general should not hurt factoredness. Therefore

371

Wolpert & Tumer

it should delay how quickly the learners determine their optimal policies, but it won't a�ect
the quality (for G) of those policies �nally arrived at. Note also that trying to determine
whether some particular xr00;d;r000(t 2 �(�)) should be included in xr;d(�)'s e�ect set would
mean, in part, determining whether packets routed from (r; d) would have reached r00 if
(r; d) had made some routing decision di�erent from the one it actually made. This would
be a non-trivial exercise, in general.

In contrast to the case with the xr00;d0;r000(t), there are Xr00;d0(t) with t in the future of � 's
wave that both are a�ected by xr;d(t) and also are not excluded by any of our approximations
so far. In particular, the Xr00;d(t) with either r00 = r or r00 one hop away from r will be
directly a�ected by xr;d(t), for t 2 [W�1

i=0 �(� + iL)) (cf. the de�nition of the X variables).
For simplicity, we restrict consideration of suchXr00;d variables to those with the same router
as r, r00 = r.

This �nal estimate for the e�ect set is clearly rather poor | presumably results better
than those presented below would accrue to use of a more accurate e�ect set. However it's
worth bearing in mind that there is a \self-stabilizing" nature to the choice of e�ect sets,
when used in conjunction with e�ect set WLU's. This nature is mediated by the learning
algorithms. If one assigns the same utility function to two agents, then the reward one
agent gets will be determined in part by what the other one does. So as it modi�es its
behavior to try to increase its reward, that �rst agent will be modifying its behavior in a
way dependent on what the other agent does. In other words, if two agents are given the
same WLU because they are estimated to be in each other's e�ect set, then ipso facto they
will be in each other's e�ect set.

Using our estimate for the e�ect set, the WLU for (�; �) is given by the di�erence
between the total cost accrued in � 's wave by all agents in the network and the cost accrued
by agents when all agents sharing �'s destination are \erased." More precisely, any agent �
that has a destination d will have the following e�ect set WLU's, g�;� :

g�;� (�)= G(�)�G(CL
Ceff

(�;�)

(�))

=
X
t;r0;d0

xr0;d0(t) Vr0

 X
d0

Xr0;d0(t)

!
�
X
t;r0;d0

�
xr0;d0(t)(1 � I(t 2 �(�))I(d0 = d))

�

� Vr0

 X
d00

[Xr0;d00(t) (1� I(t 2 [W�1
i=0 �(� + iL))I(d00 = d))]

!

=
X

t2�(�)

X
r0

0
@X

d0

xr0;d0(t) Vr0(
X
d00

Xr0;d00(t)) �
X
d0 6=d

xr0;d0(t) Vr0(
X
d00 6=d

Xr0;d00(t))

1
A

+
X

t2[W�1
i=1 �(�+iL)

X
r0

0
@X

d0

xr0;d0(t) [Vr0(
X
d00

Xr0;d00(t))� Vr0(
X
d00 6=d

Xr0;d00(t))]

1
A (3)

where I(:) is the indicator function that equals 1 if its argument is true, 0 otherwise.
To allow the learner to receive feedback concerning its actions in a wave immediately

following that wave rather than wait for �WL time steps, we will approximate the second
sum in that last equality, the one over times following � 's wave, as zero. There is another
way we can view the resultant expression, rather than as an approximation to the e�ect

372

Collective Intelligence, Data Routing and Braess' Paradox

set WLU. That is to view it as the exact WLU of an approximation to the e�ect set, an
approximation which ignores e�ects on future windowed loads of clamping a current traÆc
level. Regardless of what view we adopt, presumably better performance could be achieved
if we did not implement this approximation.

Given this approximation, our WLU becomes a wave-indexed time-translation-invariant
WL \reward function" (WLR):

g�;� (� ;t2�(�)) =
X

t2�(�);r0

 X
d0

xr0;d0(t) Vr0(
X
d00

Xr0;d00(t))

�
X
d0 6=d

xr0;d0(t) Vr0(
X
d00 6=d

Xr0;d00(t))

1
A : (4)

Notice that traÆc going from a router r0 6= r to a destination d0 6= d a�ects the value of
the WLR for agent (r; d). This reects the fact that WLR takes into account side-e�ects
of (r; d)'s actions on other agents. Note also that each r0-indexed term contributing to the
WLR can be computed by the associated router r0 separately, from information available
to that router. Subsequently those terms can be propagated through the network to �, in
much the same way as routing tables updates are propagated.

Given this choice of private utility, we must next specify how the COIN-based routing
algorithm collects the initial data that (in conjunction with this utility) is to be used to
guide the initial routing decisions that every agent with more than one routing option must
make. In our experiments that data was collected during a preliminary running of an ISPA.
In this preliminary stage, the routing decisions are made using the ISPA, but the resulting
actions are \scored" using the WLR given by Equation 3. We use the ISPA to generate the
routing decisions in the initial data since it is likely in practice that some kind of SPA will
be the routing algorithm running prior to \turning on" the COIN algorithm. Alternately
one can generate the initial data's routing decisions by having the routers make random
decisions, or by having them implement a sequence of decisions that \sweeps" across a grid
through the possible set of actions. The data collected in this stage provides us with initial
input-output training sets to be used by the machine learning algorithm on each agent: for
each router-destination agent, inputs are identi�ed with windowed loads on outgoing links,
and the associated WLR values for the destination in question are the outputs.

After suÆcient initial data is collected using the ISPA, the system switches to using
the COIN algorithm to make subsequent routing decisions. In this stage, each agent routes
packets along the link that it estimates (based on the training set) would provide the best
WLR. To perform the estimation, the MB COIN makes use of a single-nearest-neighbor
algorithm as its learner. This algorithm simply guesses that the output that would ensue
from any candidate input is the same as the output of the element of the training set
that is the nearest neighbor (in input space) of that candidate input.8 In other words, the
learner �nds the training set input-output pair whose input value (loads on outgoing links)

8. This is a very simple learning algorithm, and we use it here only to demonstrate the potential practical
feasibility of a COIN-based routing algorithm. The performance can presumably be improved if more
sophisticated learning algorithms (e.g., Q-learning Sutton & Barto, 1998; Watkins & Dayan, 1992) are
used.

373

Wolpert & Tumer

is closest to that which would result from each potential routing decision. Then the learner
assigns the WLR associated with that training data pair as the estimate for what WLR
would result from said routing decision. These WLR values are then used to choose among
those potential routing decisions. The input-output data generated under this algorithm is
adding to the training set as it is generated.

In this routing algorithm, the routers only estimate how their routing decisions (as
reected in their loads at individual time steps) will a�ect their WLR values (based on
many agents' loads). It is also possible to calculate exactly how the routing decisions a�ect
the routers' WLR's if, unlike the MB COIN, we had full knowledge of the loads of all
agents in the system. In a way similar to ISPA, for each router we can evaluate the exact
WLR value that would ensue from each of its candidate actions, under the assumption
that windowed loads on all other routers are the same one wave into the future as they are
now. We call this algorithm for directly maximizing WLR (an algorithm we call the full
knowledge COIN, or FK COIN).

Note that under the assumption behind the FK COIN, the action � chooses in wave �(�)
that maximizes WLR will also maximize the world reward. In other words, WL reward is
perfectly factored with respect to (wave-indexed) world reward, even though the associated
utilities are not related that way (due to inaccuracy in our estimate of the e�ect set). Due
to this factoredness, the FK COIN is equivalent to load balancing on world rewards. Since
LB in general results in inferior performance compared to LB over time, and since the FK
COIN is equivalent to LB, one might expect that its performance is suboptimal. Intuitively,
this suboptimality reects the fact that one should not choose the action only with regard
to its e�ect on current reward, but also with concern for the reward of future waves. In the
language of the COIN framework, this suboptimality can be viewed as a restatement of the
fact that for our inexactly estimated e�ect set, the system will not be perfectly factored.

The learning algorithm of the MB COIN as described is extraordinarily crude. In addi-
tion, the associated scheme for choosing an action is purely exploitative, with no exploration
whatsoever. Rather than choose some particular more sophisticated scheme and tune it to
�t our simulations, we emulated using more sophisticated algorithms in general. We did
this by modifying the MB COIN algorithm to occasionally have the FK COIN determine
a router's action rather than the purely greedy learner outlined above. The steering pa-

rameter discussed in Section 5.5 determines how often the routing decision is based on the
MB COIN as opposed to the FK COIN.

5. Simulation Results

In practice, it is very diÆcult to implement either FK COIN or LB. In this section we use
experiments to investigate behavior of algorithms that can conceivably be used in practice.
More precisely, based on the model and routing algorithms discussed above, we have per-
formed simulations to compare the performance of ISPA and MB COIN across a variety of
networks, varying in size from �ve to eighteen routers. In all cases traÆc was inserted into
the network in a regular, non-stochastic manner at the sources. The results we report are
averaged over 20 runs. We do not report error bars as they are all lower than 0:05.

In Sections 5.1 - 5.4 we analyze traÆc patterns over four networks where ISPA su�ers
from the Braess' paradox. In contrast, the MB COIN almost never falls prey to the paradox

374

Collective Intelligence, Data Routing and Braess' Paradox

for those networks (or for no networks we have investigated is the MB COIN signi�cantly
susceptible to Braess' paradox). Then in Section 5.5 we discuss the e�ect on the MB
COIN's performance of the \steering" parameter which determines the intelligence of the
MB COIN.9

5.1 Bootes Network

The �rst network type we investigate is shown in Figure 3. It is in many senses a trivial
network, as in Net A, the sources do not even have any choices to make. The loads intro-
duced at the sources do not change in time and are listed in Tables 1 and 2, along with the
performances of our algorithms.

yS1@
@

@
@

@
yV1 yV2�
�
�
�
�

@
@

@
@

@
yD

yS2A
A
A
A
A

yV0 yV0

yS1@
@

@
@

@

�
�
�
�
�

yV3

yV1 yV2�
�
�
�
�

@
@

@
@

@
yD

yS2 A
A
A
A
A

yV0 yV0

Net A Net B

Figure 3: Bootes Network

Loads at (S1; S2) Net ISPA MB COIN

1,1 A 6.35 6.35
B 8.35 5.93

2,1 A 8.07 8.07
B 10.40 7.88

2,2 A 9.55 9.55
B 10.88 9.71

4,2 A 10.41 10.41
B 11.55 10.41

Table 1: Average Per Packet Cost for BOOTES2 networks for V1 = 10 + log(1 + x) ; V2 =
4x2 ; V3 = log(1 + x) .

The MB COIN results are identical to the ISPA results in the absence of the additional
link (Network A). However, Braess' paradox arises with ISPA, in that the addition of the
new link in network B degrades the performance of the ISPA in six of the eight traÆc
regimes and load-to-cost functions investigated. The MB COIN on the other hand is only

9. In Sections 5.1 - 5.4, the steering parameter is set at 0.5.

375

Wolpert & Tumer

Loads at (S1; S2) Net ISPA MB COIN

1,1 A 30.35 30.35
B 20.35 20.35

2,2 A 35.55 35.55
B 40.55 34.99

4,2 A 41.07 41.07
B 50.47 44.13

6,3 A 44.63 44.63
B 51.40 44.63

Table 2: Average Per Packet Cost for BOOTES4 network for V1 = 50 + log(1 + x) ; V2 =
10x ; V3 = log(1 + x) .

hurt by the addition of the new link once, and manages to gainfully exploit it seven times.
When their behavior is analyzed in�nitesimally, the MB COIN either uses the additional
link eÆciently or chooses to ignore it in those seven cases. Moreover, the MB COIN's
performance with the additional link is always better than the ISPA's. For example, adding
the new link causes a degradation of the performance by as much as 30 % (loads = f2; 1g)
for the ISPA, whereas for the same load vector MB COIN performance improves by 7 %.

5.2 Hex Network

In this section we revisit the network �rst discussed in Section 2.1 (redrawn in Figure 4 to
include the dummy agents). In Table 3 we give full results for the load-to-delay functions
discussed in that section. We then use load-to-cost functions which are qualitatively similar
to those discussed in Section 2.1, but which incorporate non-linearities that better represent
real router characteristics. That load-to-cost function and associated results are reported
in Table 4.

ySb
b

b
b

b

"
"
"
"
"

yV1 yV2

yV2 "
"
"
"
"

yV1b
b

b
b

b
yD

yV0 yV0

yS"
"
"
"
"

b
b

b
b

b
yV1 yV2

yV2 "
"
"
"
"

yV1b
b

b
b

b
yD

y
V3

��
��

��
��

��

yV0 yV0

Net A Net B
Figure 4: Hex network

This network demonstrates that while the addition of a new link may be bene�cial in
low traÆc cases, it leads to bottlenecks in higher traÆc regimes. For ISPA although the

376

Collective Intelligence, Data Routing and Braess' Paradox

per packet cost for loads of 1 and 2 drop drastically when the new link is added, the per
packet cost increases for higher loads. The MB COIN on the other hand uses the new
link eÆciently. Notice that the MB COIN's performance is slightly worse than that of the
ISPA in the absence of the additional link. This is caused by the MB COIN having to use
a learner to estimate the WLU values for potential actions whereas the ISPA simply has
direct access to all the information it needs (costs at each link).

Load Net ISPA MB COIN

1 A 55.50 55.56
B 31.00 31.00

2 A 61.00 61.10
B 52.00 51.69

3 A 66.50 66.65
B 73.00 64.45

4 A 72.00 72.25
B 87.37 73.41

Table 3: Average Per Packet Cost for HEX network for V1 = 50+x ; V2 = 10x ; V3 = 10+x
.

Load Net ISPA MB COIN

1 A 55.41 55.44
B 20.69 20.69

2 A 60.69 60.80
B 41.10 41.10

3 A 65.92 66.10
B 61.39 59.19

4 A 71.10 71.41
B 81.61 69.88

Table 4: Average Per Packet Cost for HEX network for V1 = 50 + log(1 + x) ; V2 =
10x ; V3 = log(1 + x) .

5.3 Buttery Network

The next network we investigate is shown in Figure 5. It is an extension to the simple
network discussed in Section 5.1. We now have doubled the size of the network and have
three sources that have to route their packets to two destinations (packets originating at
S1 go to D1, and packets originating at S2 or S3 go to D2). Initially the two halves of the
network have minimal contact, but with the addition of the extra link two sources from the
two two halves of the network share a common router on their potential shortest path.

377

Wolpert & Tumer

yS1 T
T
T
T
T
yV1 yV2�
�
�
�
�

T
T
T
T
T

�
�
�
�
�

yD1

yS2 T
T
T
T
T

�
�
�
�
�

yD2

yV3T
T
T
T
T

yV1

yS3@
@@

yV0 yV0

yS1 T
T
T
T
T

yV3

�
�
�
�
�

yV1 yV2�
�
�
�
�

T
T
T
T
T

�
�
�
�
�

yD1

yS2 T
T
T
T
T

�
�
�
�
�

yD2

yV3T
T
T
T
T

yV1

yS3@
@@

yV0 yV0

Net A Net B

Figure 5: Buttery Network

Table 5 presents two sets of results: �rst we present results for uniform traÆc through
all three sources, and then results for asymmetric traÆc. For the �rst case, the Braess'
paradox is apparent in the ISPA: adding the new link is bene�cial for the network at low
load levels where the average per packet cost is reduced by nearly 20%, but deleterious at
higher levels. The MB COIN, on the other hand, provides the bene�ts of the added link
for the low traÆc levels, without su�ering from deleterious e�ects at higher load levels.

Loads (S1; S2; S3) Net ISPA MB COIN

1,1,1 A 112.1 112.7
B 92.1 92.3

2,2,2 A 123.3 124.0
B 133.3 122.5

4,4,4 A 144.8 142.6
B 156.5 142.3

3,2,1 A 81.8 82.5
B 99.5 81.0

6,4,2 A 96.0 94.1
B 105.3 94.0

9,6,3 A 105.5 98.2
B 106.7 98.8

Table 5: Average Per Packet Cost for BUTTERFLY network for V1 = 50+log(1+x) ; V2 =
10x ; V3 = log(1 + x).

For the asymmetric traÆc patterns, the added link causes a drop in performance for the
ISPA, especially for low overall traÆc levels. This is not true for the MB COIN. Notice also
that in the high, asymmetric traÆc regime, the ISPA performs signi�cantly worse than the
MB COIN even without the added link, showing that a bottleneck occurs on the right side
of network alone (similar to the Braess' paradox observed in Section 5.1).

378

Collective Intelligence, Data Routing and Braess' Paradox

5.4 Ray Network

In all the networks and traÆc regimes discussed so far the sources are the only routers with
more than one routing option. The �nal network we investigate is a larger network where
the number of routers with multiply options is signi�cantly higher than in the previous
networks. Figure 6 shows the initial network (Net A) and the \augmented" network (Net
B), where new links have been added. The original network has relatively few choices for
the routers, as packets are directed toward their destinations along \conduits." The new
links are added in the augmented networks to provide new choices (crossing patterns) that
could be bene�cial if certain of the original conduits experience large costs.

yS1e
e
e
e

yS2%
%
%
%yV3 J

J
J
J

yV3J
J
J
J

yV1 yV2 yV2 yV1

yV0 yV0 yV0 yV0

yV2 "
"
"
"
"

yV1 "
"
"
"
"

yV1b
b

b
b

b

yV2b
b

b
b

b
yD1

yD2

yS1e
e
e
e

yS2%
%
%
%yV3 J

J
J
J

yV3#
#
#
#
#

yV3J
J
J
J

yV3c
c

c
c

c
yV1 yV2c

c
c

c
c

yV2#
#
#
#
#

yV1

yV3 yV3yV0 yV0 yV0 yV0

yV2 "
"
"
"
"

yV1 "
"
"
"
"

yV1b
b

b
b

b

yV2b
b

b
b

b
yD1

yD2

Net A Net B
Figure 6: Ray network

Table 6 shows the simulation results for these networks (S1 and S2 send packets to D1

and D2 respectively). At low load levels both the ISPA and the MB COIN use the new links
e�ectively, although the MB COIN performs slightly worse. This is mainly caused by the
diÆculty encountered by the simple learner (single nearest neighbor algorithm) in quickly
learning the traÆc patterns in this large network. Unlike the ISPA however, the MB COIN
avoids the Braess' paradox in all cases except the very high traÆc regime. Moreover, even
there, the e�ect is signi�cantly milder than that encountered by the ISPA.

5.5 Steering the MB COIN

The �nal aspect of COIN-based routing we investigate is the impact of the choice for the
value of the steering parameter. This parameter both controls the amount of exploration
the algorithm performs and determines the \intelligence" of the MB COIN at estimating
the surface directly calculated by the FK COIN. In Figures 7 - 8, the FK COIN results
correspond to setting the steering parameter of the MB COIN to 1:0. This provides an
upper bound on the performance that can be achieved though MB COIN.

For the HEX network (Figure 7), the performance at the worst setting for the MB COIN,
which corresponds to no steering, is comparable to ISPA. In contrast, with moderate steering

379

Wolpert & Tumer

Loads at S1andS2) Net ISPA MB COIN

2,2 A 143.6 143.7
B 124.4 126.9

3,3 A 154.6 154.9
B 165.5 151.0

4,4 A 165.4 166.0
B 197.7 165.6

6,6 A 186.7 187.4
B 205.1 191.6

Table 6: Average Per Packet Cost for RAY network for V1 = 50 + log(1 + x) ; V2 =
10x ; V3 = 10 + log(1 + x).

65

70

75

80

85

0 0.1 0.2 0.3 0.4 0.5

P
e
r

P
a
ck

e
t
D

e
la

y

Steering Parameter

ISPA
FK COIN
MB COIN

140

150

160

170

180

0 0.1 0.2 0.3 0.4 0.5

P
e
r

P
a
ck

e
t
D

e
la

y

Steering Parameter

ISPA
FK COIN
MB COIN

Figure 7: Impact of steering on Hex4 (left) and Ray4 (right) networks.

(0.5) the results are similar to that of the FK COIN, as the learner has more information
to work with (arising from the extra parts of the input space represented in the training
set due to the occasional use of the FK COIN), it bridges the gap between a suboptimal
algorithm susceptible to Braess' paradox and one which eÆciently avoids that paradox.

For the RAY network (Figure 7), the value of the steering parameter is more critical.
With no steering at all, the MB COIN performs poorly in this network | even worse than
ISPA. This is not surprising in that because there are many routing choices that a�ect
the performance, the simple memory-based learner needs proper \seeding" to be able to
perform well. Even with minimal steering though, the MB COIN quickly outperforms the
ISPA.

Finally, for both the Buttery and Bootes networks (Figure 8) the MB COIN needs
very little steering to perform well. Although for the Buttery network the performance of
MB COIN improves slightly with more information, it is signi�cantly better than the ISPA
across the board.

380

Collective Intelligence, Data Routing and Braess' Paradox

90

95

100

105

0 0.1 0.2 0.3 0.4 0.5

P
e
r

P
a
ck

e
t
D

e
la

y

Steering Parameter

ISPA
FK COIN
MB COIN

35

40

0 0.1 0.2 0.3 0.4 0.5

P
e
r

P
a
ck

e
t
D

e
la

y

Steering Parameter

ISPA
FK COIN
MB COIN

Figure 8: Impact of steering on Buttery4 (left) and Bootes4 (right) networks.

6. Conclusion

E�ective routing in a network is a fundamental problem in many �elds, including data
communications and transportation. Using a shortest path algorithm (SPA) on each of the
routers to determine that router's decisions is a popular approach to this problem. However
under certain circumstances it su�ers from a number of undesirable e�ects. One such e�ect is
Braess' paradox, where for the same pattern of introduced traÆc into a network, increasing
the capacity of that network results in lower overall throughput, due to the harmful side-
e�ects of the decisions made by each router on the traÆc in the rest of the system. Even
the theoretical load-balancing algorithm, which addresses some of these e�ects to produce
decisions that are optimal for any single moment of time, can still su�er from side-e�ects
that result in sub-optimal performance. This is because such e�ects extend across time
(i.e., what you do now a�ects performance later) as well as space.

The Collective Intelligence approach is a novel way of controlling distributed systems so
as to avoid deleterious side-e�ects of routing decisions. The central idea is to have learning
algorithms control the autonomous agents that constitute the overall distributed system.
In such a Collective Intelligence (COIN), the central issue is to determine the personal
objectives to be assigned to each of those autonomous agents. One wants to choose those
goals so that the greedy pursuit of those goals by the associated learning algorithms leads to
desirable behavior of the overall system. In this paper we have summarized the mathematics
of designing such goals and derived a routing algorithm based on that mathematics.

We ran computer simulations to compare a COIN-based algorithm with an ideal SPA
(whose performance upper-bounds all real-world SPA's) for routing. The COIN-based algo-
rithm was severely handicapped. The estimation of the \e�ect sets" used by that algorithm
was exceedingly crude. In addition, the learning algorithms of the agents were particularly
unsophisticated, and therefore were not able to e�ectively maximize their individual perfor-
mances. In contrast, the ideal SPA had access to more information concerning the state of
the system than the (real-world-implementable) COIN did, information that no real-world
SPA could access.

381

Wolpert & Tumer

Despite these biases in favor of the ideal SPA, in our experiments the ideal SPA induced
average costs as much as 32 % higher than the COIN-based algorithm. Furthermore the
COIN-based algorithm almost always avoided the Braess' paradox that seriously diminished
the performance of the SPA.

These techniques have also been very successfully employed in many other, non-routing
domains, such as coordination of autonomous rovers (Tumer, Agogino, & Wolpert, 2002),
combinatorial optimization, \congestion games" (Wolpert & Tumer, 2001), and control of
data-upload from a planet (Wolpert, Sill, & Tumer, 2001). We conclude from these results
that the techniques of the �eld of collective intelligence can be highly e�ective in designing
the utility functions of the members of a MAS to ensure they work in a coordinated and
eÆcient manner to optimize overall performance. We are currently investigating extensions
of our COIN algorithm that involve novel goals for the agents, goals that are more \learn-
able" for the learning algorithms. We are also expanding the simulations to larger networks
using a commercial event driven simulator. Future work will focus on not making the ap-
proximation that current traÆc levels do not a�ect future windowed loads (Equation 3).
It will also involve investigating better estimates of e�ect sets, in particular not including
all agents with the same destination in one's e�ect set, and more generally using a more
\�ne-grained" representation of the agents, for example including each packet's originating
source, to allow a more �ne-grained e�ect set (and resultant WLU).

Acknowledgments

The authors thank Joe Sill and the reviewers for their helpful comments.

Appendix A. Suboptimality of Load-Balancing

In this appendix we we present an existence proof of the suboptimality of Load-Balancing
(LB) by explicitly constructing a situation where conventional LB is suboptimal.

Consider a system with discrete time, in which the source agent X under consideration
must route one packet to the (�xed) destination at each time step. Presume further that
no traÆc from any source agent other than X enters any of the agents X sends to, so that
traÆc coming from X is the sole source of any costs associated withX's outbound links. Let
S(t) be the number of times our agent sent a packet down some link A in the W time steps
preceding t, and take s(t) = A;B to mean that the router uses link A or B, respectively, at
time t. Model queue backups and the like by having the cost to send a packet down link
A at time t be CA(S(t)=W), and have the cost for our router to instead send the packet
down link B be CB(1� S(t)=W), For simplicity we assume that both CA(:) and CB(:) are
monotonically increasing functions of their arguments.

Restrict attention to agents that work by having s(t) = A i� S(t) � k for some real-
valued threshold k. The LB algorithm will choose s(t) = A i� CA(S(t)=W) � CB(1 �
S(t)=W). So the LB algorithm's behavior is indistinguishable from this kind of threshold
algorithm, with k set so that CA(k=W) = CB(1� k=W). (We implicitly assume that CA(:)
and CB(:) are chosen so that such a solution exists for 1 < k < W � 1.) The question is

382

Collective Intelligence, Data Routing and Braess' Paradox

what k should be to optimize total averaged cost across time, and in particular if that k is
the same as kLB , the k that LB uses.

Now as we go from one time step to the next, the routing decision made W time steps
ago drops out of the computation of S(t), while the routing decision just made is newly
included. In general, S(t+1) = S(t)+ 1 if the router just used A at time t and used link B
at the time W time steps into the past. On the other hand, S(t+1) = S(t)�1 if the router
just used B and used A W time steps ago, while S(t+1) = S(t) if the routing decision just
made is the same as the routing decision W time steps ago. So in general, S(t) can only
change by -1, 0, or +1 as we go from one time step to the next.

Consider cases where 1 < k < W � 1, so that eventually the router must choose an A,
and at some subsequent time t� the router switches from A to B. At that time s(t��1) = A
and s(t�) = B. This implies that S(t�� 1) � k; S(t�) > k. De�ne the value S(t�� 1) as k�.
Note that S(t�) = k� + 1, and k � 1 < k� � k.

Now for any time t0, if S(t0) = k� + 1, s(t0 + 1) = B, and the only possible next values
are S(t0 + 1) = k� or S(t0 + 1) = k� + 1, depending on the old decision s(t�W) that gets
dropped out of the window. Similarly, if S(t0) = k�, s(t0 + 1) = A, and the only possible
next values are S(t0 + 1) = k� or S(t0 + 1) = k� + 1, again depending on the old decision
being dropped. So we see that once S(t0) 2 fk�; k� + 1g, it stays there forever.

This means that because of the relationship between k and k�, in any interval of W
consecutive time steps subsequent to t�, the number of packets sent along A by router X
must be 2 (k�1; k+1]. (Note that it is possible to send k+1 packets along A, but not k�1
packets. Therefore the number sent along B must be 2 [W � (k + 1);W � (k � 1)). Each
time that a packet is sent along A the cost incurred is the cost of link A with average traÆc
level S(t)=W , CA(S(t)=W). Similarly, each time the link B is chosen, the cost incurred is
CB(1 � S(t)=W). Since S(t) 2 fk�; k� + 1g, and both CA(:) and CB(:) are monotonically
increasing, the cost for sending the packet down link A 2 (CA((k� 1)=W); CA((k+ 1)=W],
and that for sending it down link B is contained in [CB(1�(k+1)=W); CB(1�(k�1)=W)).

Now we know that the choice of A must have average frequency (across all time) between
k�=W and (k� +1)=W . Similarly, B will have average frequency between (1� (k� +1)=W)
and 1� k�=W . Accordingly, the average cost is bounded above by

k� + 1

W
CA

�
k + 1

W

�
+

�
1� k�

W

�
CB

�
1� k � 1

W

�
; (5)

where the �rst term provides the maximum possible average cost for using link A, while
the second term independently provides the maximum possible average cost for using link
B. Note that the actual cost will be lower since the two frequencies in this bound, one for
A and one for B, cannot both have the values indicated. Because k� 1 < k� � k and since
1� k�1

W = 1 + 2
W � k+1

W , our upper bound is itself bounded above by

k + 1

W
CA

�
k + 1

W

�
+

�
1 +

2

W
� k + 1

W

�
CB

�
1 +

2

W
� k + 1

W

�
: (6)

The optimal k will result in an average cost lower than the minimum over all k of the
upper bound on average cost, given in Equation 6. So the average cost for the optimal
k is bounded above by the minimum over k of this upper bound. Lable this argmin of
Equation 6 k'.

383

Wolpert & Tumer

Since other values of k besides kLB result in behavior equivalent to LB, it does not
suÆce to simply test if k' = kLB . Instead let us evaluate some lower bounds in a similar
fashion to how we evaluated upper bounds. Using the average frequencies discussed above,
the average cost is bounded below by:

k�

W
CA

�
k � 1

W

�
+

�
1� 1

W
� k�

W

�
CB

�
1� k + 1

W

�
; (7)

where the �rst term provides the minimum possible average cost for using link A, while the
second term provides the minimum possible average cost for using link B. Again, because
k � 1 < k� � k, the term is Equation 7 is further bounded below by

k � 1

W
CA

�
k � 1

W

�
+

�
1� 2

W
� k � 1

W

�
CB

�
1� 2

W
� k � 1

W

�
: (8)

In particular this bound holds for the average cost of the LB algorithm:

kLB � 1

W
CA

�
kLB � 1

W

�
+

�
1� 2

W
� kLB � 1

W

�
CB

�
1� 2

W
� kLB � 1

W

�
; (9)

where as before kLB satis�es CA(kLB=W) = CB(1� kLB=W).
By appropriate choice of CA(:) and CB(:), we can ensure that the lower bound on the

cost with the LB algorithm (Equation 9 evaluated with k = kLB) is higher than the upper
bound on the average cost incurred by the optimal algorithm (the minimum over k of Equa-
tion 6). That is, the best possible average cost achieved by load balancing will be worse
than the worst average cost that could arise through the optimal routing strategy. This
establishes that LB does not engage in optimal routing.

Example: Let CA(x) = x2 and CB(x) = x. Balancing the loads on A and B | setting
CA(S(t)=W) = CB(1�S(t)=W) | results in (S(t)=W)2 = 1�S(t)=W , leading to kLB=W =p
5�1
2 = :618. For W = 1000, the associated lower bound on average cost (Equation 9) is

(:618)3 + (:998 � :618)2 = :380. On the other hand, with CA and CB given as above, Eq 6
is (k+1

W)3 + (1 + 2
W � k+1

W)2. Di�erentiating with respect to k and setting the result to

zero leads to k0

W = �1
3 � 1

W +

p
28+48=W

6 . For a window size of W = 1000, this yields
k0=W = :548, a di�erent result than kLB . Plugging into Equation 6, the upper bound on
the cost with k0 is (:549)3 + (1:002 � :549)2 = :371, which is less than :380.

References

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network Flows. Prentice Hall, New
Jersey.

Bass, T. (1992). Road to ruin. Discover, 13 (5), 56{61.

Bertsekas, D., & Gallager, R. (1992). Data Networks. Prentice Hall, Englewood Cli�s, NJ.

Bonabeau, E., Henaux, F., Guerin, S., Snyders, D., Kuntz, P., & Theraulaz, G. (1999a).
Routing in telecommunications networks with \smart" and-like agents. (pre-print).

Bonabeau, E., Sobkowski, A., Theraulaz, G., & Deneubourg, J.-L. (1999b). Adaptive task
allocation inspired by a model of division of labor of social insects. (pre-print).

384

Collective Intelligence, Data Routing and Braess' Paradox

Boyan, J. A., & Littman, M. (1994). Packet routing in dynamically changing networks:
A reinforcement learning approach. In Advances in Neural Information Processing
Systems - 6, pp. 671{678. Morgan Kaufman.

Choi, S. P. M., & Yeung., D. Y. (1996). Predictive Q-routing: A memory based reinforcement
learning approach to adaptive traÆc control. In Touretzky, D. S., Mozer, M. C., &
Hasselmo, M. E. (Eds.), Advances in Neural Information Processing Systems - 8, pp.
945{951. MIT Press.

Claus, C., & Boutilier, C. (1998). The dynamics of reinforcement learning cooperative
multiagent systems. In Proceedings of the Fifteenth National Conference on Arti�cial
Intelligence, pp. 746{752, Madison, WI.

Cohen, J. E., & Je�ries, C. (1997). Congestion resulting from increased capacity in single-
server queueing networks. IEEE/ACM Transactions on Networking, 5 (2), 305{310.

Cohen, J. E., & Kelly, F. P. (1990). A paradox of congestion in a queuing network. Journal
of Applied Probability, 27, 730{734.

Crowe, B. L. (1969). The tragedy of the commons revisited. Science, 166, 1103{1107.

Deo, N., & Pang, C. (1984). Shortest path algorithms: Taxonomy and annotation. Networks,
14, 275{323.

Dijkstra, E. (1959). A note on two problems in connection with graphs. Numeriche Math-
ematics, 1 (269-171).

Fudenberg, D., & Tirole, J. (1991). Game Theory. MIT Press, Cambridge, MA.

Glance, N. S. (1993). Dynamics with Expectations. Ph.D. thesis, Stanford University.

Glance, N. S., & Hogg, T. (1995). Dilemmas in computational societies. In Lesser, V.
(Ed.), Proc. of the 1st International Conference on Multi-Agent Systems (ICMAS95),
pp. 117{124, Menlo Park, CA. AAAI Press.

Hardin, G. (1968). The tragedy of the commons. Science, 162, 1243{1248.

Heusse, M., Snyers, D., Guerin, S., & Kuntz, P. (1998). Adaptive agent-driven routing
and load balancing in communication networks. Advances in Complex Systems, 1,
237{254.

Hogg, T. (1995). Social dilemmas in computational ecosystems. In Proceedings of the
Fourteenth International Joint Conference on Arti�cial Intelligence, pp. 711{716, San
Mateo, CA. Morgan Kaufmann.

Hu, J., & Wellman, M. P. (1998a). Multiagent reinforcement learning: Theoretical frame-
work and an algorithm. In Proceedings of the Fifteenth International Conference on
Machine Learning, pp. 242{250.

Hu, J., & Wellman, M. P. (1998b). Online learning about other agents in a dynamic multi-
agent system. In Proceedings of the Second International Conference on Autonomous
Agents, pp. 239{246.

Huberman, B. A., & Hogg, T. (1988). The behavior of computational ecologies. In The
Ecology of Computation, pp. 77{115. North-Holland.

385

Wolpert & Tumer

Huberman, B. A., & Lukose, R. M. (1997). Social dilemmas and internet congestion. Science,
277 (5325), 535{537.

Huberman, B. A., & Hogg, T. (1993). The emergence of computational ecologies. In Nadel,
L., & Stein, D. (Eds.), 1992 Lectures in Complex Systems, Vol. V of SFI Studies in
the Sciences of Complexity, pp. 185{205. Addison-Wesley, Reading, MA.

Huhns, M. E. (Ed.). (1987). Distributed Arti�cial Intelligence. Pittman, London.

Jennings, N. R., Sycara, K., & Wooldridge, M. (1998). A roadmap of agent research and
development. Autonomous Agents and Multi-Agent Systems, 1, 7{38.

Kaelbing, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey.
Journal of Arti�cial Intelligence Research, 4, 237{285.

Kelly, F. P. (1996). Modeling communication networks, present and future. Philosophical
Trends Royal Society of London A, 354, 437{463.

Korilis, Y. A., Lazar, A. A., & Orda, A. (1995). Architecting noncooperative networks.
IEEE Journal on Selected Areas in Communications, 13 (8), 1241{1251.

Korilis, Y. A., Lazar, A. A., & Orda, A. (1997a). Achieving network optima using Stackel-
berg routing strategies. IEEE/ACM Transactions on Networking, 5 (1), 161{173.

Korilis, Y. A., Lazar, A. A., & Orda, A. (1997b). Capacity allocation under noncooperative
routing. IEEE Transactions on Automatic Control, 42 (3), 309{325.

Korilis, Y. A., Lazar, A. A., & Orda, A. (1999). Avoiding the Braess paradox in noncoop-
erative networks. Journal of Applied Probability, 36, 211{222.

Kumar, S., & Miikkulainen, R. (1997). Dual reinforcement Q-routing: An on-line adaptive
routing algorithm. In Arti�cial Neural Networks in Engineering, Vol. 7, pp. 231{238.
ASME Press.

Littman, M. L., & Boyan, J. (1993). A distributed reinforcement learning scheme for network
routing. In Proceedings of the 1993 International Workshop on Applications of Neural
Networks to Telecommunications, pp. 45{51.

Marbach, P., Mihatsch, O., Schulte, M., & Tsisiklis, J. (1998). Reinforcement learning for
call admission control and routing in integrated service networks. In Advances in
Neural Information Processing Systems - 10, pp. 922{928. MIT Press.

Orda, A., Rom, R., & Shimkin, N. (1993a). Competitive routing in multiuse communication
networks. IEEE/ACM Transactions on Networking, 1 (5), 510{521.

Orda, A., Rom, R., & Sidi, M. (1993b). Minimum delay routing in stochastic networks.
IEEE/ACM Transactions on Networking, 1 (2), 187{198.

Sandholm, T., Larson, K., Anderson, M., Shehory, O., & Tohme, F. (1998). Anytime coali-
tion structure generation with worst case guarantees. In Proceedings of the Fifteenth
National Conference on Arti�cial Intelligence, pp. 46{53.

Sandholm, T., & Lesser, V. R. (1995). Issues in automated negotiations and electronic com-
merce: extending the contract net protocol. In Proceedings of the Second International
Conference on Multi-Agent Systems, pp. 328{335. AAAI Press.

386

Collective Intelligence, Data Routing and Braess' Paradox

Schaerf, A., Shoham, Y., & Tennenholtz, M. (1995). Adaptive load balancing: A study in
multi-agent learning. Journal of Arti�cial Intelligence Research, 162, 475{500.

Shenker, S. J. (1995). Making greed work in networks: A game-theoretic analysis of switch
service disciplines. IEEE Transactions on Networking, 3 (6), 819{831.

Stone, P. (2000). TPOT-RL applied to network routing. In Proceedings of the Seventeenth
International Machine Learning Conference, pp. 935{942. Morgan Kau�man.

Subramanian, D., Druschel, P., & Chen, J. (1997). Ants and reinforcement learning: A case
study in routing in dynamic networks. In Proceedings of the Fifteenth International
Conference on Arti�cial Intelligence, pp. 832{838.

Sutton, R. S. (1988). Learning to predict by the methods of temporal di�erences. Machine
Learning, 3, 9{44.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA.

Sycara, K. (1998). Multiagent systems. AI Magazine, 19 (2), 79{92.

Tumer, K., Agogino, A., & Wolpert, D. (2002). Learning sequences of actions in collectives
of autonomous agents. In Proceedings of the First International Joint Conference on
Autonomous Agents and Multi-Agent Systems, Bologna, Italy.

Tumer, K., & Wolpert, D. H. (2000). Collective intelligence and Braess' paradox. In
Proceedings of the Seventeenth National Conference on Arti�cial Intelligence, pp. 104{
109, Austin, TX.

Watkins, C., & Dayan, P. (1992). Q-learning. Machine Learning, 8 (3/4), 279{292.

Wolpert, D. H., Kirshner, S., Merz, C. J., & Tumer, K. (2000). Adaptivity in agent-based
routing for data networks. In Proceedings of the fourth International Conference of
Autonomous Agents, pp. 396{403.

Wolpert, D. H., Sill, J., & Tumer, K. (2001). Reinforcement learning in distributed domains:
Beyond team games. In Proceedings of the Seventeenth International Joint Conference
on Arti�cial Intelligence, pp. 819{824, Seattle, WA.

Wolpert, D. H., & Tumer, K. (1999). An Introduction to Collective Intelligence. Tech.
rep. NASA-ARC-IC-99-63, NASA Ames Research Center. URL:http://ic.arc.na-
sa.gov/ic/projects/coin pubs.html. To appear in Handbook of Agent Technology,
Ed. J. M. Bradshaw, AAAI/MIT Press.

Wolpert, D. H., & Tumer, K. (2001). Optimal payo� functions for members of collectives.
Advances in Complex Systems, 4 (2/3), 265{279.

Wolpert, D. H., Tumer, K., & Frank, J. (1999). Using collective intelligence to route internet
traÆc. In Advances in Neural Information Processing Systems - 11, pp. 952{958. MIT
Press.

Wolpert, D. H., Wheeler, K., & Tumer, K. (2000). Collective intelligence for control of
distributed dynamical systems. Europhysics Letters, 49 (6).

387

