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The électrons bound to the surface of liquid dielectrics by image forces are 
described as a two-dimensional, classical, one-component plasma with 
inverse distance interactions. Exact expressions for the collective modes and 
the dynamic structure factor are obtained from first principles in the limit 
of long wavelengths. The différences and analogies with uncharged particle 
fluids and with the three-dimensional one-component plasma are explicitly 
displayed. The previously used mean-field approximation is shown not to 
describe weakly coupled Systems and to be inadéquate in the long-wavelength 
région. 
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1 . I N T R O D U C T I O N 

T h e study o f the static and dynamic properties o f C o u l o m b Systems has 
recently b e c o m e a very act ive field.^ Deta i l ed c o m p u t e r experiments on the 
s implest C o u l o m b System, the o n e - c o m p o n e n t p la sma (OCP) , have been 
per formed by H a n s e n et al.^^-^' A number o f c o m p u t e r experiments o n t w o -
c o m p o n e n t p lasmas , mo l t en salts, and ionic mixtures are underway,*^'^* whi le 
the n u m b e r o f theoretical studies is a l so currently increasing.'^'*'^' 

Recent ly , an interesting novel type o f C o u l o m b systera has emerged. 
It is obta ined experimental ly by fixing extra é lectrons o n the exterior o f 
dielectric surfaces by m e a n s o f image-binding.*^-''' T h è s e électrons can m o v e 
freely a l o n g the surface but find their m o t i o n perpendicular to the surface 

^ Chimie-Physique II, Université Libre de Bruxelles, Bruxelles, Belgium. 
° Chercheur Qualifié du Fonds National Belge de la Recherche Scientifique. 
^ For a gênerai review of the présent state of the art, consult the proceedings of a summer 

school held in Orléans in July 1977 (see Réf. 1). 
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extremely restricted. In most expérimental situations thèse électrons behave 

classically. T h e condit ions o f density and température can be varied rather 

easily so as t o cover the whole fluid phase, ranging from weak to strong 

coupl ing situations. A s done by previous authors/^' we will describe this 

(charge-compensated) électron surface layer as a classical, two-dimensional , 

one -component plasma (OCP). The interaction energy between two électrons 

o f the layer a distance r apart will be written = é^\r, with the understand-

ing that here e dénotes an effective charge related to the electronic charge, say 

Co, by e = ^o/e^'^, where e is the arithmetic mean of the dielectric constants o f 

the adjacent dielectrics [e = (ci + The fact that here the interaction 

potential is the three-dimensional ( ~ 1 / / ' ) and not the two-dimensional 

( ~ l n r ) C o u l o m b potential finds its origin in the surface layer being only 

approximately two-dimensional . In this treatment, we will neglect the 

présence o f impurity a toms from the surface, which are k n o w n to play an 

important rôle in the laboratory experiments.*^' The présent model is never-

theless directly accessible to computer experiments . '"' 

In Section 2, we recall the basic ingrédients of the microscopic theory o f 

C o u l o m b Systems, which was developed elsewhere,*^' and adapt them to the 

présent case. The long-wavelength limit o f the collective modes and the 

dynamic structure factor are obtained in Section 3. The results for the électron 

surface layer are compared there with the earlier results'^' for the three-

dimensional O C P and with the Landau-Placzek resuit for uncharged fluids. 

In Section 4, we compare our results with the mean-field results obtained by 

various authors*®' and conclude that the mean-field approximat ion is in-

adéquate for describing the long-wavelength behavior of the électron surface 

layer, even if the latter is weakly coupled.* Finally, our conclus ions are 

summarized in Section 5. 

2. M I C R O S C O P I C T H E O R Y O F C O U L O M B S Y S T E M S 

T h e charge-compensated électron surface layer will be described here as 

a classical, 2 D ( two-dimensional) O C P (one-component plasma). W e will 

start from the microscopic theory developed elsewhere*^*' for the 3 D OCP. 

This theory can be easily adapted t o the présent case. The interest o f starting 

with a theory that does not rely o n any assumption concerning the strength o f 

the system's coupl ing is twofo ld . First, most o f the expérimental Systems are 

k n o w n to be fairly strongly coupled.*^""' M o r e important, however , is the 

fact that we expect difficulties to s h o w up in the limit o f vanishing coupl ing 

and in the mean-field approximat ion. Indeed, as was shown by Totsuji,'^"' 

* A short report was presented at the récent lUPAP conférence on Statistical Physics 
(Haifa, August 1977) and will be published in the proceedings of this conférence. 
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the Debye-Huckel theory, which is the static version of Vlassov's mean-field 

theory, does net yield correctly the static equihbrium corrélations o f a weakly 

coupled 2 D OCP, whereas it does in the 3 D case. As the enhancement of the 

coUisional effects noticed by Totsuji for the 2 D statics is likely t o show up 

also in the dynamics, we feel that it is important to be able to analyze the 

mean-field approximation starting from a more gênerai setting. 

We summarize now the main steps of the microscopic approach, refer-

ring to the literature*^'" for the détails. We start from the microscopic phase-

space density / ( rpr) of the TV particles: 

/ (rpO = 2 8(1- xAO) 8(p - P X O ) (1) 

where x / O and p^O dénote, respectively, the position and momentum of 

particle j at time /. Next , we consider the space-time corrélation function S o f 

the equilibrium fluctuations 8f = f — < / > of / : 

S { r - i ' , t - f ; pp') = <8/(rpO S/(r'p'?')> (2) 

where, as usual, </4> dénotes the canonical equilibrium average o f A over the 

initial phase {x/O), p/O)}. From the Liouville équation obeyed by / ( r p / ) an 

exact kinetic équation for S is then derived.^ This équation reads in Fourier-

Laplace transform 

z 5 ( k z ; pp') - J d^" S ( k z ; pp")-S(kz; p"p') = /S(k, / = 0 ; pp') (3) 

where S is the so-called memory function. The kinetic équation (3) is then 

finally transformed into an algebraic set of transport équations : 

2 [z s,, - Q,,(kz)]C7,,.(k2) = iG,ri^, t = 0) (4) 
i = i 

for the hydrodynamic space-t ime corrélation functions Gj^: 

G.Xkz) = f dv dp' S{kz; pp') (5) 

where the Mj(p) (/ = 1-5) correspond to the density (/ = M), the longitudinal 

(/ = /), and transverse (/ = ti, /a) momentum and the excess kinetic energy 

(/ = e) States, and the Oj are normalization constants. The transport matrix 

appearing in Eq. (4) can be further related to the memory function S o f 

Eq. (3) [see, for instance, Eq. (44)]. Using the system's invariance and 

° We foUow here very closely a theory first developed by Forster and Martin"^' for 
uncharged particle fluids. 
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c o n s e r v a t i o n laws, we arrive at the f o l l o w i n g f o r m for the matrix é léments Qj, 

o f interest t o us : 

n „ , ( k z ) = kvo (6a) 

D,„(kz) = Â:i;o[l - c{k)]; D„(kz) = -ik^DiQ^z); 0 „ ( k z ) = A : A . ( M 

(6b) 

£2„(kz) = kD,i^^z)�, fl„(kz) = -ik^D,{]tz) + zB,{z) (6c) 

T h è s e are in fact the only nonvanish ing matrix é léments for = 

(«, /, e). T h e k and z factors appearing in Eq. (6) have been puUed out f rom 

by us ing the microscopic conservat ion laws, whi le the /-factors have been 

in troduced for later convenience . In Eqs. (6) w e have a lso introduced the 

thermal ve loc i ty VQ [VQ^ = {mP)~^, m be ing the m a s s o f the particles and /3 the 

inverse température in energy units] and the (d imensionless ) direct corrélation 

f u n c t i o n c{k), wh ich is related to the static structure factor S(k) by 

S{k) = [1 - c(k)]-' (7) 

W i t h thèse ingrédients, the densi ty-densi ty corrélat ion funct ion G„„, which is 

obta ined f r o m Eq. (5) wi th M„(p) = 1 and equal t o the number density n, 

i .e., 

G„„(kz) = ( l / « ) J dp dç' Sikz; pp') ( 8 ) 

can n o w b e further resolved exactly in terms o f the transport matrix é léments 

o f Eqs . (6) as 

r ( b ^ - ;P(IA + ik^Di(kz)][z + ik^a^kz)] - k^viÀkz) 
i7„„(,Kz; i^>^K) _ ^ zik''D,{kz)][z + ik^a,{kz)] - zk^y,,{kz) 

m 

where S{k) = GnJJc, t — 0) , whi le the f o l l o w i n g abbreviat ions have been 

in troduced : 

<^\k) = {kv,y[\ - c{k)]; a^kz) = D,{kz)l[\ - 5 , ( z ) ] ; 

yu{kz) = DUkz)D,,ikz)l[\ - 5 , ( z ) ] (10) 

I n the f o l l o w i n g w e will be concerned with the behavior o f G„„(A:z), as g iven 

by Eq. (9), but on ly for small k values. In order to per form such an analysis 

w e need t o k n o w the small-A: behavior o f c(k) a n d the a m o u n t o f analyticity 

satisfied by Diikz), a^kz), a n d yi^(kz). Leaving the d iscuss ion o f the dynamical 

quanti t ies such as Di(kz) for next section, w e c lose this s u m m a r y of the 

microscop ic a p p r o a c h with a discuss ion o f the small-A: statics. 
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W e will assume that, if V(r) is the interaction potential, we can write in 

pos i t ion space 

c(r)=-npV(r) for r ^ o o (11) 

This relation states that distant particles can only be weakly coupled. Indeed, 

the rhs o f Eq. (11) is also the weak-coupl ing limiting value o f c(r). In three 

dimensions , Eq. (11) is very well satisfied by the computer experiments'^^' on 

the OCP. A formai proof o f Eq. (11) for a gênerai fluid appears to be under-

way."^> W e also notice that relation (11) is very sensitive to the nature o f the 

interaction potential . For instance, for the 3 D O C P with V{r) = eo^jr we have 

in wave-vector space 

c(k)=-k^^jk^ for Â : ^ 0 (12) 

where ^3 is the 3 D D e b y e wave vector {k^^ = Arreo^nP). T h e singular nature o f 

c{k) for the OCP, as displayed in Eq. (12), was shown elsewhere'^*' to explain 

the profound différences between the small-A: behavior o f the OCP and o f 

ordinary fîuids. For the 2 D O C P with V{r) = e^jr, where e is the effective 

charge, we obtain instead of Eq. (12) 

cik) = -kilk for k->0 (13) 

where kz = lire^iti^ is the 2 D ana log o f the D e b y e wave vector, «2 being the 

average number o f particles per unit area. From Eq. (13) we see that in two-

dimensions c{k) is still singular for small k, but this singularity, which is 

characteristic o f C o u l o m b Systems, has been weakened. A s will be seen below, 

it is this weakening o f the C o u l o m b singularity that is responsible for the 

fact that in two dimensions the plasma mode is a low-frequency mode whereas 

the D e b y e screening is algebraic rather than exponential.'^' W e find it illumi-

nating to be able to fo l low explicitly the modifications brought about by the 

change o f dimensionality <̂  between d = 2 and d = 3. W e therefore introduce 

a dimensionality index d so that all the relevant information about c(k) can 

be summarized in the fo l lowing expression: 

c{k) = -{kjky-^ + ê{k) (14) 

T h e d-T) O C P (d = 2, 3) with 1 /r interactions can then be characterized by 

the coupl ing constant = {k^^jn^ measuring the inverse o f the number o f 

particles in a d-Y> cube constructed with the D e b y e length k^ ^ as unit length. 

Here and in Eq. (14), k^ dénotes the D e b y e wave vector, k^ = 

{2^~^TTei^ni^y"^'^, o f a System o f température ; 8 " \ o f particles of charge 

(^2 = 6,^3 = BQ), and o f average number o f particles per unit d-T> v o l u m e 

given by « j . In Eq. (14), c{k) represents a remainder, which is assumed regular 

as A: ^ 0 and which can incorporate any short-range interactions eventually 
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présent together with the C o u l o m b interactions. It is convenient t o define the 

isothermal compressibility xr through the relation 

^ ( A ; = 0 ) = 1 - XT^IXT ( 1 5 ) 

where XT° = PIna is the perfect-gas value o f XT � With thèse définitions, Eq. (14) 

reduces to the Debye-Hi i cke l approximation for a pure C o u l o m b case if we 

put c(k) = 0, whereas it reduces t o the neutral fluid resuit if we put e^, and 

hence also k^, equal t o zéro. Substitution o f Eqs. (14)-(15) into Eq. (7) leads 

then immediately to 

Sik) = (klkaY-^ for A : - > 0 

for the O C P (e^ ^ 0), whereas for a neutral fluid {e^ = 0) we recover the 

compressibiUty sum-rule 

s { k = 0 ) = XTIXT° ( 1 7 ) 

This is as far as we need to g o for the static properties. 

3, T H E C O L L E C T I V E M O D E S A N D 

D Y N A M I C S T R U C T U R E F A C T O R 

F r o m Eq. (9) we see that the collective modes building u p G„„(kz) are 

given by the solutions o f the fo l lowing dispersion équation : 

[z2 - w\k) + zik^D,ikz)][z + ik^<x,{kz)] = z i t V u C M (18) 

This équation has the typical structure o f a coupled m o d e spectrum where the 

density modes , corresponding to the zéros o f — tu^ + zik^D,, are coupled 

t o the energy modes , z + ik^a^ = 0, by the rhs of Eq. (18), i.e., by yj^. 

In what fo l lows we will only be interested in the solutions z = z{k) o f 

Eq. (18) for small k values. In this microscopic région (k^O) we expect 

weakly damped modes to show up, which for large enough t imes t will 

d o m i n a t e the Van H o v e funct ion G„„(k, t), i.e., the t ime-image o f G„„(kz). 

T h e small-/:, large-? behavior o f G„„(k, / ) will be analyzed below. First, w e 

will concentrate on the collective m o d e s given by the small-A: solutions o f 

Eq. (18). The small-/: behavior o f w{k) appearing in Eq. (18) fo l lows im-

mediate ly from Eqs. (10), (14) - (15) : 

<^\k) = (kvomkalky-^ + XT°IXT] for A : - > 0 (19) 

F o r uncharged particles (e<j = 0 = k^ Eq. (19) yields the isothermal sound 

wave frequency, u}\k) = {kcY, with C^IVQ^ = X T ° I X T , whereas for the d-D 

O C P we get cii%k) = w/ik/k^f''^, with OJ^ = Vok^, i.e., a high-frequency 

p lasma m o d e in three dimensions and a low-frequency plasma m o d e in t w o 

dimensions . In order t o obtain the small-A: solutions o f Eq. (18) we also need 
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s o m e informat ion about the behav ior o f Di(kz), «^(kz), and yuC^z). In three 

d imens ions Di{00) and «^(00) c a n be related to the transport coefficients'^** 

(respectively, the longitudinal v i scos i ty a n d the thermal conductivity) , whereas 

yi£(00) is a thermodynamic coeff ic ient g iven by 

y „ ( 0 0 ) = c\cjc„ - 1) (20) 

where cjc^ is the spécifie heat ratio. In t w o dimensions , the situation is n o t s e 

favorable , as A ( 0 , z) and «^(O, z ) presumably*^^'"* exhibit a weak logar i thmic 

singularity for small z. A s our in tent ion here is not to tackle this diff icult 

problem, we will content ourse lves wi th the fo l lowing assumptions , c o m -

pat ib le with our présent k n o w l e d g e o f 2 D transport. W e will assume that t h e 

transport quantit ies Z), a n d are such that kDi{0, z{k)) and ka^iO, z{k) 

vani sh as A; ^ 0 for z{k) at m o s t o f order A:̂ '̂ , whereas yui^), not be ing a 

transport quantity, will be a s s u m e d to exist at A = 0, z = 0. T h e n one c a n 

formal ly prove that yicCOO) is still g iven by Eq. (20) with c„ interpreted as the 

spécif ie heat at constant d-Y^ v o l u m e . W i t h thèse assumptions the dispers ion 

équat ion (18) can be s h o w n to possess small-A solutions corresponding t o 

weakly damped modes , w h i c h will n o w be displayed. 

3 .1 . T h e D i f f u s i v e M o d e 

Div id ing Eq. (18) by the first factor in its Ihs and rearranging terms, w e 

obta in the dispersion équat ion in the f o r m 

z = —/^«^(kz) 1 
k^yiÂ^z) 

(21) 
z^ - w\k) + zik^Diikz) 

w h i c h w e solve for z = z(k). U s i n g the assumpt ions stated above , w e c a n 

reduce Eq. (21) to 

k^Y,ÀKz(k))] 
z{k) = -ik^a,{\i,z(k)) 1 + 

\ k ) r (22) 

which takes the f o r m o f a di f fus ive m o d e , Zr(A:) = -ik^Drik), with a thermal 

diflfusitivity D^ik) g iven t o d o m i n a n t order in k by 

Drik) = a , (0 , Zrik)) 1 + S{k) (23) 

where w e have used Eq. (20) a n d cj\k) = (kvoYISik) [see Eqs. (7), (10)]. F o r 

a neutral fluid we obta in f r o m Eqs . (7) a n d (23) 

Djik) = a,iO,-ik^JDT(k))cJc„ for = 0 (24) 

whereas for the d-D O C P Eqs. (16) and (23) lead to 

Drik) = a,{0, -ik^Drik)) for e<j # 0 (25) 
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A s s ta ted a b o v e , w e will n o t further e laborate o n the weak z dependence o f 

«((0, z) still retained in Eqs. (24), (25) . Let us o n l y recall that in the 3 D case 

aç(0, 0 ) can b e related to the thermal conduct iv i ty K by «^(0, 0) = K\nmc^. 

T h i s t h e n brings us t o our main po in t here, that b o t h the charged (e^ # 0) and 

u n c h a r g e d (e^ = 0 ) fluid exhibit a thermal d i f fus ion m o d e , but wi th différent 

t h e r m a l diffusitivities, as seen f r o m the absence o f the c„/Cp factor o f Eq. (24) 

f r o m E q . (25). In the présence o f C o u l o m b interact ions the coupl ing o f the 

e n e r g y and densi ty f luctuat ions has thus b e e n w e a k e n e d b o t h in t w o and 

three d i m e n s i o n s . Th i s ef îect , wh ich w a s k n o w n previously'^*' for the 3 D 

O C P , h a s been s h o w n here t o persist a l so for the é lectron surface layer 

b e c a u s e the static structure factor S(k) as it appears in Eq. (23) is vanishingly 

smal l f o r smal l k in b o t h cases. Th i s C o u l o m b effect is on ly weakly dépendent 

o n t h e d imens iona l i ty [S(k) = O^k"^-^)]. 

3 .2 . T h e P r o p a g a t i n g M o d e s 

T h e s i tuat ion is quite différent for the remain ing density m o d e s , wh ich 

w e o b t a i n by rewriting the dispers ion é q u a t i o n (18) in the f o r m 

z2 = oj^(k) - zik'D,{kz) + zk''yu(kz)l[z + ik^a,(kz)] (26) 

and s o l v i n g o n c e m o r e for z = z(k). T h e small-A: so lut ion o f Eq. (26) is n o w 

seen t o be control led by u){k), which , accord ing t o Eq. (19), is o f order k for a 

neutra l fluid, o f order k° for the 3 D O C P , and o f order k^"" f or the 2 D O C P . 

I n ail cases w e obta in f r o m Eq. (26) t w o oppos i t e ly propagat ing m o d e s , 

z±(jfc) = ±5J(A:) - ^ik^r(±w(k)), w i t h S(k) de f îned by 

âi^(k) = co^k) + k^yuiO, 0 ) i f f ) 

a n d w i t h r ( + tô) g iven by 

y , .(0, ±^ik)) - yu(O.O) . 38 ) 
+ i(ô{k) 

Let u s cons ider n o w the différent cases m o r e explicit ly. First, for the neutral 

case (e<, = 0) , w e obta in f r o m Eqs . (27) and ( 1 9 ) - ( 2 0 ) 

w^k) = { k c f ; = c^Cp/c» for = 0 (29) 

s h o w i n g that the coupl ing o f the energy and dens i ty fluctuations described by 

y,e h a s shi f ted the s o u n d speed f r o m its i so thermal (c ) t o its i sentropic (c) 
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value according t o Eq. (27). T h e damping of thèse sound m o d e s is then further 

described by Eq. (28), leading t o 

r(±â;) = ̂ 1 - ^j«,(0, ±^{k)) + A ( 0 , ±œ{k)) 

+ ' � ^ ^ 1 ; e , = 0 (30) 

where in three dimensions , «^(0, 0) and Z),(0,0) + / dyi^(0, 0)/dz can be 

further identified as, respectively, the damping due to the thermal conductivity 

{Kjnmc^ and t o the viscosity [(f i j + è)lnm] o f the fluid. Second, for the 3 D 

OCP, Eqs. (27) and (19) s h o w that w(k = 0) = m(k = 0) is finite and equal 

t o tog, the standard plasma frequency. Hence the thermal conductivity con-

tribution to r , i.e., the first term in the rhs o f Eq. (28), drops o u t for small k, 

whereas the last term in the rhs o f Eq. (28), which is part of the bulk viscosity 

contribution, recombines with the second term in the rhs o f Eq. (27), yielding 

finally 

2±(K) = ± tosi 1 + ^ 
tU3 

I y A ( 0 , ±^"3); e 3 # 0 

(31) 
where the contribution stems from Eq. (19). A s observed elsewhere,*^*' the 

f a c t \ h a t here y,£ and £>, have t o be evaluated at the finite frequency tog makes 

them complex quantities and prevents us from relating them further t o the 

standard thermodynamic and transport coefficients. Finally, for the 2 D O C P 

we get an intermediate behavior between the two previous cases. From Eqs. 

(27) and (19) w e get n o w 

l^ik) = oi^^'lclk^ + k^c'; ̂ 2 ^ 0 (32) 

e . ( . ) = ± ( | ) ^ ' ^ . . ( l + i ^ 5 ) (33) 

which when substituted into Eq. (28) yields 

r ( ± œ{k)) = A ( 0 , ± ^(k)) + i <fy„(0, 0)1 dz; # 0 (34) 

F r o m Eq. (33) we see that the p lasma mode has now become a low-frequency 

m o d e [ôi{k) = 0{k^'^)], and hence the dispersive corrections t o the plasma 

frequency can again be expressed in terms o f thermodynamic quantities (c). 

The plasma frequency, Eq. (33), is, however, still t o o high for the thermal 

conductivity contribution t o Eq. (28) to remain, so that the damping o f this 

plasma m o d e has the same f o r m as the sound absorption coefficient, but 

without the thermal conduct iv i ty contribution [compare Eqs. (34) and (30)]. 
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3 .3 . T h e D y n a m i c S t r u c t u r e F a c t o r 

Bes ides the nature o f the collective m o d e s , it is a l so o f interest t o k n o w 

the strength w i t h which they contribute to the d y n a m i c structure factor or the 

V a n H o v e f u n c t i o n G„„(k, t). Returning to Eq. (9), it is easily established 

wi th the aid o f the results o f the preceding sect ions that for small k w e can 

Write 

gnn(k2) ^ / k^YuiO, zr{k)) 1 ^ / / , _ A:V„(0, ±^{k))\ 

S{k) z - z r i k ) w\k) 2i> z - z^ik)\ Ui\k) } 

(35) 

where the diflFusive m o d e Zi-(A;) and the propagat ing m o d e s z±(A:) have been 

d iscussed in Sect ions 3.1 and 3.2, respectively. T h e inverse Laplace transform 

o f Eq. (35) y ie lds then the Van H o v e funct ion G„„(k, t ) w h o s e Fourier trans-

f o r m is the d y n a m i c structure factor. W e can thus cont inue our discussion o n 

the bas is o f Eq. (35). Let us first consider the strength, say ÛTik), o f the thermal 

m o d e , which , according t o Eq. (35), is g iven by = k^yijâi'^. For the neutral 

fluid w e obta in f r o m Eqs. (20), (29) 

a^(k = 0) = 1 - cjc^; 6^ = 0 (36) 

whereas for the d-D O C P we get f r o m Eqs. (19) , (20) 

F o r the strength o f the propagat ing m o d e s 2a^{k) = 1 — k^yu(0, ±£ô)/c5^ 

w e get, s imilarly, 

2a ^{k = 0) = cjc^; 6^ = 0 (38) 

f o r t h e neutral fluid a n d 

2a.ik)=l-[l-y-'ri^^^^; e^'^O (39) 

for the charged fluid. In ail cases we find that ûJ. + 2 ± ^± = 1 for small k, 

i .e., the co l lect ive m o d e s we have f o u n d exhaus t the small-Â: port ion o f the 

zeroth-order s u m rule o f the dynamic structure factor. There is, however , a 

definite diff'erence be tween the neutral and charged fluid, in that the propagat-

ing p l a s m a m o d e s o f the d-D O C P exhaust the s u m rule by themselves , the 

d i l îus ive thermal m o d e contributing only an order k"''^ term. 

4. R E L A T I O N T O M E A N - F I E L D T H E O R Y 

T h e results obta ined in the previous sect ion d o n o t invo lve any assump-

t ion c o n c e r n i n g the strength o f the coupl ing a n d are restricted only by the 
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l ong-wave length l imit and the i sotropy o f the fluid phase. It is thus o f interest 

t o c o m p a r e t h e m with the results obta ined previously by var ious authors*^' in 

the mean-f ie ld approximat ion . Th i s approx imat ion can be easily recovered 

f r o m the kinetic équat ion (3). Indeed, let us recall that the memory func t ion 

S o f Eq. (3) can be spht into three terms,<^»> L = S" + + the free- f low 

term S", the se l f -consistent field term S", and the col l i s ion term T h e 

mean-f ie ld approx imat ion corresponds , then, t o neglect ing ail col l is ional 

efFects, i .e., S " ^ ^ = S ° + In this approx imat ion n o diffusive heat m o d e 

(cf. Sect ion 3.1) is obtained, as the col l i s ions are essential for establishing this 

transport process. For the p la sma m o d e s o f the d-D O C P we obtain f r o m 

Sect ion 2 in a straightforward manner and for small k 

z,{k) = ±{klkar-^^<^œ,[\ + mkaY-'] - i^aik) (40) 

where r^(A:) is the L a n d a u d a m p i n g 

^Âk) = {nisr^œ.ikjky-^expi-iikjky-' - î ] 

A s Eq. (40) reduces to the resuit obta ined by previous authors'^* f r o m the 

random-phase approx imat ion t o the dielectric constant , w e can skip its 

dérivat ion here. T h e contr ibut ion f r o m the électron col l i s ions to the damping , 

say r2'^(A:), w a s calculated by Totsuji'*"' f rom the B o l t z m a n n équation. H e 

f o u n d 

r^%k) = i37r^'^ll6)kvo (41) 

which, when added to the L a n d a u d a m p i n g r2ik) o f Eq . (40), is seen t o 

d o m i n a t e the latter for small k. 

F o r the 3 D O C P w e have s h o w n elsewhere*^*' that Eq. (40) with d = 3 

is the weak coup l ing limit, Ag 0, o f Eq. (31) except that the Landau d a m p i n g 

r3(A:) is domi nate d for small A: by a small col l i s ional d a m p i n g term V^'^ik), 

which w a s obta ined there as 

r3^(A:) = (l/157r3'2)(A:/A:3)2a,3A3 In X^' (42) 

where w e recall that = Voka and A3 = {ksYjn^. Hence , as expected, the 

mean-f ie ld approx imat ion is seen to describe correctly the p lasma m o d e s o f a 

weakly coup led 3 D O C P in the l imit A3 - > G. In the 2 D case, however, this is 

n o t the case, i.e., Eq. (40) wi th d = 2 \s no t équivalent to the weak coup l ing 

l imit , A2 0, o f Eqs . (33) - (34) . Indeed, as Ag 0, w e obta in from Eq. (33) 

uiik) = tikik^yi'w^ii + kjk^y, A 2 - > o (43) 

because as Ag 0, C^IVQ^ 1 a n d Cp/c„ 2. C o m p a r i n g Eq. (43) wi th Eq. 

(40) for û? = 2, w e see that the dispersive correct ion to the p lasma m o d e as 
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computed by the mean-field approximation is 3/2 times the weak coupling 

limit,® Eq. (43), of the exact resuit given by Eq. (40). Moreover, Eq. (34) can 

be compared neither with r2(A:) of Eq. (40) nor with r2''(k) of Eq. (41). The 

reason for this discrepancy in the 2 D case is twofold. First there is the fact 

that a rough estimate o f the collision frequency ~ E"̂  indicates that 

u>c ~ {^dY'^<"i- This enhancement of the collision frequency in two dimen-

sions was first pointed out by Totsuji.**"' This then implies that the mean-field 

approximation (coc — 0 ) is a weak coupling approximation (A^ - > 0) for 

d — Il ~ Agcog), but not for d = 2 (w^ ~ toj)- This is in fact already indi-

cated by the fact that Fg'̂  o f Eq. (42) vanishes with A3, whereas Fa" of Eq. (41) 

is independent of Aj. The second reason is that in the présence of a low-

frequency mode such as the 2 D plasma mode (but not the 3 D plasma mode) 

we can not freely commute the long-wavelength limit {k -y 0) and the col-

lisionless limit (S'^ ~ 0). This is most clearly seen by recalling the 

relation which exists**' between the transport matrix of Eq. (4) and the 

memory function S of Eq. (3). For concreteness we focus on Qii(kz) = 

— ik^Diikz), which appears in Eq. (34). We have then 

a„(kz) = </|S'^|/> + </|(i:° + soe(z - Qi,°Q - es-0-iô(2» + so|/> 
(44) 

where Q projects out the hydrodynamic states,*^' and where, for simplicity, 

we did not indicate the k and z dependence of ^°ik) and 2'^(kz). For weak 

collisional effects (to^ 0) we can neglect the first term in the rhs of Eq. (44) 

and rewrite 0„(k , wik)) as needed for Eq. (34) as 

D„(k, œ(k)) = </|S°Ô(5I(A:) - QI^OQ - QE^Q)-^QI.o\iy (45) 

where ôj(k) is given by Eq. (33). From Eq. (45) we see that as S'' 0, for 

given k, there develops a singularity in the propagator [ôj(k) — — iO] ' ^ 

of Eq. (45). This singularity is well known to lead to the Landau damping 

term of Eq. (40). If, on the contrary, we let k ^0, for given S"̂  however small 

but différent from zéro, then as both cô{k) and 2 ° vanish with k the propagator 

in Eq. (45) reduces to (— Q^'Q)'^, i.e., a différent resuit. We can rephrase 

this somewhat differently. A s here ôj(k) = 0{k^'^) we can neglect Q^°Q in 

front o f ôj{k) in Eq. (45) and expand [û){k) — Q^'^Q]'^ for weak "Z" as 

(tô)"^(l + QïfQjw). The contribution of the â>"^ term to Eq. (34) can then 

be shown to operate exactly the transition from Eq. (43) to Eq. (40), while the 

Ql.'^QIcô^ term reproduces exactly Eq. (41) if S'̂  is approximated by the 

linearized Boltzmann collision operator.' This then indicates how the mean-

* This resuit, Eq. (43), has also been obtained by Onuki,"°' who applied the method of 
the hydrodynamical modes"'" to a model-Boltzinann équation. We thank H. Totsuji 
for calling our attention to this unpublished resuit. 

' An équivalent resuit can also be obtained from the linearized Landau collision operator 
with an appropriate large-wavevector cutoff. 
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field resuit can be obtained from our gênerai formulat ion. The validity o f this 

collisionless approximation thus rests o n an expans ion in Ql,'^QIû}{k) ~ cjjîô 

and is valid when 

c o J c o 2 « {hlk^Y"" « 1 (46) 

while our resuit o f Section 3 will be vaUd when 

(klk^yi^ « (47) 

Whereas Eq. (47) can aiways be satisfied for small enough k values, this is not 

so for Eq. (46). W e can rephrase now our objections against the mean-field 

results as fol lows. The mean-field or coll isionless approximation of the 2 D 

O C P never describes a weakly coupled System (Aj 0), because remains 

finite as 0. When for some as yet unspecified reason the collisional effects 

are weak, the mean-field approximation can only describe that portion o f the 

k spectrum satisfying Eq. (46), but not the longest wavelengths satisfying 

Eq. (47). 

5. C O N C L U S I O N S 

In an attempt to describe the électrons trapped at the surface o f liquid 

dielectrics, we have considered the collective modes and the dynamical struc-

ture factor o f a classical, two-dimensional , one -component plasma with 1 jr 

interactions. W e found it i l luminating to treat bo th the charged and un-

charged particle system as well as the two- and three-dimensional system 

from a unified microscopic viewpoint. A s a resuit o f the weak intensity o f the 

coupl ing o f the energy and density fluctuations, the thermal conductivity 

m o d e o f the two-dimensional électron fluid has been shown to differ by a 

factor Cp/c„ from the corresponding m o d e o f uncharged fluids. For the same 

reason, the thermal conductivity m o d e contributes only weakly to the 

dynamical structure factor (Rayleigh's central peak) and to the damping o f 

the plasma oscil lations o f the électron surface layer. Because o f the restricted 

dimensionality, the plasma modes o f the layer are s h o w n t o be low-frequency 

modes . A s a conséquence of this, the damping o f the plasma modes can be 

expressed in terms o f the same quantity, except for the thermal conductivity 

contribution, as the one giving the absorption o f the sound waves o f un-

charged particle Systems. Comparing our results, which only require the 

long-wavelength approximation, with previous results, which ail rely o n the 

mean-field approximation, we found that the mean-field approximation o f 

this two-dimensional électron fluid does not describe the long-wavelength 

région correctly, whereas, contrary to a current statement, the mean-field 

approximat ion is, in the présent case, not équivalent t o a weak coupl ing 

approximation. 
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