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Collective modes ofr=2 quantum Hall bilayers in tilted magnetic fields
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We use the time-dependent Hartree Fock approximation to study the collective-mode specttadfan-
tum Hall bilayers in tilted magnetic fields, allowing for charge imbalance as well as tunneling between the two
layers. In a previous companion paper to this work, we studied the zero-temperature global phase diagram of
this system, which was found to include symmetric and ferromagnetic phases as well as a first-order transition
between two canted phases with spontaneously brokénsymmetry. We further found that this first-order
transition line ends in a quantum critical point within the canted region. In the current work, we study the
excitation spectra of all of these phases and pay particular attention to the behavior of the collective modes near
the phase transitions. We find, most interestingly, that the first-order transition between the two canted phases
is signaled by a near softening of a magnetoroton minimum. Many of the collective-mode features explored
here should be accessible experimentally in light-scattering experiments.

DOI: 10.1103/PhysRevB.70.115326 PACS nuniber73.43.Lp

[. INTRODUCTION also the spin degrees of freedom are important. Indeed, in
everal of the phases of2, the spin and isospin degrees of
reedom are actually entangled.

In perpendicular magnetic field,=2 bilayers exhibit the
many-body canted phase at finite tunnelfrithis phase is a
Spontaneously-broken(ll) symmetry phase, despite the fi-
nite tunneling. This is in marked contrast with the 1 bi-
layers, in which a 1) symmetric phase is possible only in
the absence of tunneling. Things change when a finite volt-
age bias is added: In this cases2 bilayers can exhibit a
%any—body phase in the absence of tunneling. This phase is

Scattering experiments have provided extremely powerfu
and important probes of two-dimensional electron systems.
A particularly nice application of light scattering was a re-
cent set experimert$ on quantum Hall bilayers with equal
densities in each layer. An apparent mode softening at tot
filling fraction »=2 was identified with the existence of a
Goldstone mode which fit well with prior predictions of a
canted phase in these bilayer systémdhe experiments
were conducted using the tilted-field technique for sweepin

across awide_ range of Zeeman e”er@“&?"‘.u- Interesting!y, somewhat akin to the many-body phasevefl bilayers, as
tilted magne:-tlc fields also have a nontrl\{lal effect on inter-, -« pointed out by MacDonald, Rajaraman, and JungWirth.
layer tunne(lslr_lg. Furthermore, as noted first by Burkov andrpese authors therefore mused that, in the presence of a fi-
MacDonald; in »=2 bilayer systems with a charge imbal- hjte jn-plane magnetic field component=2 bilayers may
ance between the layers, tilting the magnetic field can inducgso undergo a commensurate incommensurate transition.
a first-order quantum phase transition embedded in the Byrkov and MacDonaRiexplored this possibility. Indeed,
canted phase. As shown by the current authors in the preceghey found that charge-unbalanced? bilayers can undergo
ing companion paper to this wofkihe first-order transition a phase transition driven by the in-plane field component.
separates two phases with the same symmetry which are tetowever, the phase transition was between two commensu-
pologically connected in the phase diagram. Similar to aate phases, instead of a between a commensurate and an
liquid-gas transition, the first-order phase transition line terincommensurate phase. One of the commensurate phases
minates at a quantum critical point. In our preceding paperwas akin to the commensurate phase of #¥ bilayers—
we discussed the phases and phase transitions=@f in  the isospin component followed the magnetic field. The other
detail, accounting for both charge imbalance and in-planeommensurate phase, however, was more peculiar: in this
magnetic field. The purpose of the present work is to examphase, both isospin and spin components were commensu-
ine the excitation spectra of these different phases in order tte with the in-plane field. In our previous publication, we
make connection with possible future experiments. Particulaattempted to understand the physics behind this spin com-
attention will be paid to the evolution of the collective-mode mensuration. We explored the phase transition further, and
dispersions across the first-order transition induced by théund that it terminates at a critical point within the canted
tilted magnetic field. phase(see Fig. 1

Bilayer quantum Hall systems in general have been the As mentioned above, one way of experimentally distin-
focus of a great deal of recent stutiyhe already rich phys- guishing between the many phases of w2 bilayers is to
ics of quantum Hall effects is further enhanced in bilayers byprobe the collective excitatiorfs’ In this paper we therefore
the added degree of freedom. The most studied of the bilayeset out to explore this phase transition further by finding the
quantum Hall state is certainly the=1 state® At v=1 the  collective modes. The many-body phag€l andC2, as
spin degrees of freedom are effectively frozen out, and allvell asl, which occurs in the absence of tunnelirgf the
the interesting physics occurs in the isos@ayer degrees of v=2 bhilayers are characterized by spontaneously broken
freedom). In contrast, forv=2 systems, not only the layer but symmetries, which result in the formation of low-energy
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FIG. 1. Global phase diagram of charge-unbalaneea bilay-
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The proportionality coefficient between the change in the
density expectation value as a result of the perturbation
(9psvs (K, w)) and the perturbing field,,, . (k, ) is the
density response function that can be obtained in the TDHF
approximation. The presence of a pole at a particular fre-
quency and wavevector indicates resonant resp@resethe
presence of a collective mode

ers in tilted magnetic field. The phase diagram is calculated for bare We therefore start the derivation of the collective-mode

tunneling gapA2,=0.062/(¢l), Zeeman energh2=0.01?/ (¢l),
and the distance between the layerd. The axes are the amplitude

of the in-plane field wave vecto@H:ix é,‘/(BLIZId) and the ex-
ternal bias voltage\,. This choice of axes is particularly suitable,

dispersion of thev=2 bilayers by obtaining general expres-
sions for the density response function. First, in Sec. Il we
review the unrestricted Hartree-Fock approximation through
which the ground states of the=2 bilayers were obtained in

since current experimental techniques allow to vary the bias voltaggr previous companion papeWe then continue in Sec. IlI

and the in-plane fieléh situ over a wide range of values. SC is the
spin-singlet commensurate phas€l is the simple, isospin-
commensurate phase, af@? is the spin-isospin commensurate
phase. Solid lines represent the second-order quantum phase tral
tions and the dashed line represents the first-otde€2 transition.

Goldstone modes. In fact, the first theoretical and experime
tal evidence of the canted phase in charge-balanced

bilayers was obtained by observing a softening spin-densit

mode in time-dependent Hartree-Fq@DHF) analysié and
in inelastic light-scattering experimerfts.

More generally, the TDHF approximation allows one to

predict the response of the system to any one of a number
possible experimental prob&5! A general perturbation can

be introduced into the system by the addition of a smal

time-dependent termiH:

do [ d*k ‘
SH = 2’ f o f Z—W(D;w’mr(k,w)e_""tplmw,(k,w)

HOVO
1

to the total Hamiltonian9). The operatoryp,,,,, are the
density operators

1 v 2
p,uzr,vo-’(kvo) = _E € X Ikxkyl /ZCLJ,XCVO",X+kyI2 (2)
X

(whereg is the Landau level degenergayhose time evolu-

tion can be obtained using the Heisenberg equation of mo-

tion (27);'* the external time-dependent field,,, . (k ,®)
in Eq. (1) must turn into its complex conjugate when
po—vo' and k,w<——-k,—» so that the Hamiltonian re-

n-

to derive the TDHF approximatiol?-*23which is tailored to
match the unrestricted Hartree-Fock of our prior study, and
results in a general matrix equation or the density response

nsi-

unction.

In Secs. IV and V, collective modes of the charge-
unbalancedv=2 bilayers in perpendicular field are obtained
(collective modes in charge-balanced?2 bilayers were dis-

ussed in Refs. 4 and 5. In Sec. 1V, the collective-mode dis-
ersions(i.e., the poles of the density response functioh
the charge-unbalanced=2 bilayers with no interlayer tun-
neling are obtained in closed form. The symmetry properties

(5lf[1at simplify the(complicated general equations for the den-

sity response function are discussed. In Sec. V, the
ollective-mode dispersions of the charge-unbalance@
bilayers in the presence of a small amount of interlayer tun-
neling are obtained numerically and compared to the
collective-mode dispersions of the system without tunneling
(Figs. 2—4.

Section VI presents our main result: the collective-mode
dispersions of thev=2 bilayer systems in tilted magnetic
field. A set of collective-mode dispersion curves calculated
as the tilt-angle is increased and the system undergoes the
C1-C2 transition is exhibited in Fig. 5. Figure 6 shows the
dispersion curves of the=2 bilayers at the critical end
point. A dramatic softening of the Goldstone mode at this
point is observed.

II. “UNRESTRICTED” HARTREE-FOCK
APPROXIMATION: AN OVERVIEW

We review here the “unrestricted” Hartree-Fock first dis-

mains Hermitian. Different experimental probes will couple cussed previously in Refs. 6 and 7. Our system consists of a

to different combinations of the density matri,, ,, (K).

disorderless zero-temperature bilayer quantum Hall system

For example, a surface acoustic wave experiment mighwith tunneling between the layers and both perpendicular

couple to the total charge densiyy,p,, .., Whereas certain

and in-plane magnetic fields. Three terms of the

spin-polarized light scattering experiments might couple toHamiltonian—H;, the Zeeman energy,, the bias voltage

the spin-flip density ,p,; .
If the perturbing external fiel®,,, . (k, ) is small, one
can assume that the response of the system to it is linear:

between layers; and,, the tunneling—couple to single elec-
trons and comprise the noninteracting part of the
Hamiltonian
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COLLECTIVE MODES OFv=2 QUANTUM HALL BILAYERS IN . . . PHYSICAL REVIEW B 70, 115326(2004

A AS=0.00 AS AS=O.02 AS AS=O.00 AS AS=0.02
osl 0.0 | 0.0 oslt / Joos 0l61] L7 Joos 0760]
’ / / ’ -//o‘oz ; {0.02
04f 1t ; 04r T
0
0 1 1 1 1 1 1 i) ]
—  0.3|— 0.3 08 /..
~ 08} 1F 1 -
NQ 0.4 00707 0 11 g
2 04} 1t ]
8 0 1 1 1 1 1
S 038 j -_’/1'0-
o
~ 04F F
é /
0 1 1 1 1 1 1
R Toos 1.2
081 111 {o.02 7
00204 0
04 '_/ -_/_/
FIG. 2. The collective-mode dispersions of the charge- 0 > 1:41 — 1:38
unbalancedv=2 bilayers in perpendicular fieldferromagnetic 0.8 -__/:g'g‘z‘ T -/g'g; e
phaseé. The dispersions in the left column are given for a system = 1o N
with A%AS 0.0€?/¢l); in the right column, for a system with 04F 0204 {00204 4
A2,.=0.02€?/¢l); the Zeeman energy in all panels i, / __/
=0.01(€?/¢l); the bias voltage is given in the upper right corner of 0 i P
each panel in units d&?/¢l). Some collective-mode dispersions are 0 05 1 15 0 05 1 15
degenerate. The low-energy, low-wave-vector region is shown in ql
the insets.
FIG. 3. The collective-mode dispersions of the charge-
Ho=H,+Hy +Hr unbalanced'=2 bilayers in perpendicular fielgnany-body phase
The dispersions in the left column are given for a system with
0 _ i ; ia1a O
-3 ASSE+ A+ SAS(elQHXI iQHXI)_() , Ad,g=0.0€?%/el); in the right column, for a system with2,g

=0.02€?/¢l); the Zeeman energy in all panelsAs=0.01(€?/&l);

the bias voltage is given in the upper right corner of each panel in
(4) units of (€?/&l). Some collective-mode dispersions are degenerate.

The low-energy, low-wave-vector region is shown in the insets.

whereS and| are the spin and isospin operators
2
M=o 3 S ewdaroe T (@)

20 XX q
S< 2 CIU,SX(TSS'C,U,S’X’ (5 vy,
,uSS’ 01,09
c ¢ ¢ 2C 7)
/,Lllr1X1+qy|2 oOoXo ,u2¢72X2+qu 101 X"
X = 2 CousxTurCusXs (6)  where intralayer and interlayer Coulomb interactions are
S/u}
27782 27e?
- - . . . ~dq
whereg and 7 are sets of Pauli matrices. Here, the subscript Vrr(@) = o » Vri(Q) = : (8

X represents the momentum index of the electron state in
Landau gauge, and the subscstakes on the values +1 and
-1 corresponding to spin up and spin down whereasd v
take on the values +1 and -1 corresponding to different lay
index (up and down “isospiry’ mply

The Coulomb interactions between the electrons are taken
into account by an additional term H=Hgy+H,. 9

respectivelyd is the distance between the layers, dads
eﬁhe area of the sample. The total Hamiltonian is therefore
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FIG. 4. The collective-mode dispersions of the charge- 04_' ' T " 0.9621[ ' 1
unbalanced =2 bilayers in perpendicular fiel@dpin-singlet phage ’ \ /
The dispersions in the left column are given for a system with 02k
A2,.=0.0€?/¢l); in the right column, for a system witth2,¢ N . "
=0.02€?/¢l); the Zeeman energy in all panelsAs=0.01(€?/¢l); 0 T T T T T
the bias voltage is given in the upper right corner of each panel in 04T \‘ 1.1 / 7
units of (¢?/¢l). Some collective-mode dispersions are degenerate. o2k h F
The low-energy, low-wave-vector region is shown in the insets. )
O 1 1 1 1 1
The Coulomb-interacting Hamiltonian in E) is not 04T ] 1.54F ]
tractable exactly, and we solve it using the Hartree-Fock ap- 02 1 L
proximation. In the usual manner, we assume that the many-
body ground statdG) is a Slater determinant of single- 0_'2 _'1 o '1 éo '1 é
particle states and perform a functional minimization of the 1 ]
expectation value(G|H|G) with respect to these single- q, q

particle states. As was described in Refs. 6 and 7, under the
assumption of translational invariance in thelirection, the
trial ground statéG) can be written in the form

FIG. 5. The collective-mode dispersions of the charge-
unbalancedr=2 bilayers in tilted field—evolution across th&l
-C2 phase transition. The dispersions are given for a system with
1G) =TT . £5,0), (10) AZ=0.01€/sl), Agxs=0.08€/el), and Ay=0.8€/el). The
X strength of the in-plane component of the tilted magnetic field is
given by the wave vecto®,, which, for every set of dispersion

where curves, is represented by a number in the units df When Q|
I =0.96, the system is in th€l phase; wher| >0.96, it is in the
fox= E (Z,w) € 'QWXCMX- (11) C2 phase. In the bottom left panel, the dotted line is for comparison
Ko of the dispersion curves in the2 phase to those in thephase.
A ground statgEqg. (10)] with nonzeroQ,,,, possesses spin- MZ" = €7 (12)
=eZ",

isospin-wave order, discussed at length in Ref. 7.

As was mentioned in Ref. 7, the proposed ground statehereZ"=(zz;,zg;,2.1,2.)) andM is a 4x 4 matrix, which
[Egs.(11) and (10)] is not the most general Slater determi- is just the mean-field single-particle Hartree-Fock Hamil-
nant(Hartree-Fock state. However, our analysis of the col- tonian
lective modes around the ground states obtained by the mini- 1
mization of (G|H|G) indicate the stability of these states M,g.,s=~Az8,,0% —AvﬁsgiV—ASAsésg[—E cog(Q,
against second-order transitions that cannot be described 9x
within the Hilbert space defined by our ansatz. We note that 1 .
the possibility of phase transitions into a soliton-lattice state - Q)X) 7, + 52 sin(Q - Q|)X]wa]
cannot be ruled out in this work. X

To obtain the approximate Hartree-Fock ground state for +2H D 5,04 D 12" 2-1|-F
the v=2 bilayer system, we minimize the expectation value PP KS -
of the Hamiltonian in Eq(9), (1/g){G|H|G), with respect to
the variational parameteg§,, andQ,,,.. As was demonstrated X{=[Q2(n~v) +Qd2s~5)]at X (Zy) Z)s
in Ref. 7, the resulting set of minimization conditions can be n=1.2
arranged in the form of a Schrédinger equation (13

s’ m=1,2
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fixed values ofQ, and Qs, we minimize the expectation
value of the ground-state energy with respedlzfg)*. Then,

we minimize the ground-state energy with respectand

Qs Thus, we obtain the phase diagrams thouroghly dis-
cussed in Ref. 7, a representative example of which is given
in Fig. 1.

It is crucial to begin our study of the excitation spectrum
with an exact ground-state solution of the HF Hamiltonian.
This is worth noting being that a great deal of intuition of
these complicated states has previously been obtained by us-
ing variational ansatz to approximately find the ground
state? Unfortunately, such variational solutions only provide
a good starting point for studying the excitation spectrum in

FIG. 6. The collective-mode dispersions of the charge-the casegferromagnetic and spin-singlet phagedere they
unbalanced=2 bilayers in tilted field at a critical point terminating happen to coincide with the exact ground state of the HF
the C1-C2 transition. The dispersions are given for a system withHamiltonian.

A%=0.01(€?/¢l) and A2,4=0.06€?/¢l). The critical point for this

system occurs ah,=0.5328 andQ,=0.9362;Qg~0.474 for these lIl. THE DENSITY RESPONSE FUNCTION

parameters. The tog plot zooms in on the long-wavelength region, We start our analysis of the response of the system to

to demonstrate the’, dependence of the Goldstone-mode disper-external perturbations by considering the possible excitations

sions in the positivey, direction. of electrons between the subbands. The presence of the layer
and spin degrees of freedom of electrons in bilayer systems

Here, a further simplification of the problem is made byresults in the splitting of each Landau level into four such

making an assumption that subbands. When the filling fraction is=2, the lowest two
subbands are filled, i.e., the Fermi energy lies between the
Q,, = EQI + ng (14) second and the third subbands. An elementary transition of a
mT2 27 noninteractingy=2 bilayer system occurs when a particle is

h fini indi h f . . moved from one of the filled levels into one of the empty
where a finiteQ, indicates the presence of an ISOSpin-wave|g, s resulting in a particle-hole pair. Four such transitions

order_, while a finiteQg reflects the_ real spin-wave qrder. The gre possible in the=2 bilayers(provided the cyclotron en-

functionsH_(q) andF,,,(q) used in Eq(13) are defined as  grgy is assumed to be much larger than all the other relevant
Kk 2 S energy scales1— 3, 2—4, 2— 3, and 1~ 4. The energy of

F.a) :J ———e 172y, (k)eaK an unbound particle-hole pair is the difference between the

(2m) energy gained by inserting the particle into an empty level
dk 20 €5, Where=3,4, and theenergy lost by removing it from a
=f —e 72y (KkJ(kgP), (15)  filled level €,, wherea=1,2: Ae=€z—¢,. In a real system,

2m the particles and the holes they leave behind interact. The

&2 _dq interactions lower the energy of the particle-hole pairs and

H.(q) = L[V (@) = Vel (@)] = e€l-¢e (16 Make it wave-vector dependent. The energies of the unbound

- 472" R RL el 2ql particle-hole pairs show up as the poles of the HF density

) . response function, which is, diagrammatically, the bare den-
These functions arise from the Hartree and exchange parts @fty response function dressed with self-energy corrections.

the interaction Hamiltonian7) treated in the Hartree-Fock The self-energy corrections represent the effect of the renor-
approximation. malization of the single-particle levels by the interactions,
The Schrédinger equatiofi2) is solved iteratively. At accounted for in the HF approximation. In order to account
each iteration, the two eigenstates corresponding to the lowfor the particle-hole interactions, the HF density response
est eigenvalues are fillg@e., chosen to be the states 1 andfunction is dressed with vertex corrections. In the charge-
2). These lowest-energy eigenstaisand Z? are then used unbalanced=2 bilayers both the Hartree “bubbles” and the
to obtain the matrixM for the next iteration. The procedure exchange “ladders” contribute to the collective-mode
is repeated until a self-consistent solution is achieved. Thiglispersions.
solution—a set of eigenspino®' sorted according to their ~ As was discussed in Ref. 7, we frame our problem so that
eigenvalues—defines the lowest-energy trial state among tHee v=2 bila¥er ground state can have a very simple form
Slater determinants defined by E@g0) and(11) subject to  |G)=IIxf1 F3,/0) in the basis of the creation-annihilation
fixed values of theQ,ss. The eigenvalues, give the bind- ~ OPeratorsfyy [Eq. (11)]. It is therefore convenient to define
ing energy of a particle in the subbangdi.e., it is the energy  9eneralized density operators
lost when the particle is taken out of the system. The sum of 1 Lo
individual binding energies does not give the ground-state Pap(k) = =2 @iy /Zf;xfﬂ,x+ky|2- (17
energy; the ground-state energy is calculated frmg) 9x
X(G|H|G) (see Ref. J. The minimization of the energy of Note that the expectation values of the generalized density
the ground state over th@,¢s is done lasf. Thus, we find  operators are always diagonal in the ground state ofithe
the Hartree-FockHF) ground state in two steps: First, for =2 bilayer systems

115326-5
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<paﬁ(k)> = 5k,05a,8(5a1 + 6012) . (18) Xaﬁy&(kl T) == g<TﬁalB(k! T)ﬁ;&(k! O)>! (24)

Since in tilted magnetic fields, in the gauge of our choice, thevherep,s=p,s—(p.pz)- The imaginary-time density response
operators‘z contain the creation operatars, with different  function can be Matsubara transformed to ggg,s(k,i€2)
position-dependent phase factef$:*, the generalized den- (where i), are bosonic frequencigshat, in turn, can be
sity operatorsp,; are related to the physical density opera-transformed into the retarded density-response function
tors p,...0+ [EQ. (2)], not only through a linear transforma- Xféw(k,w) by a Wick rotationiQ) — w+i9.
tion but also by a shift of wave vector: Following Cété and MacDonaldCM),!* we proceed by
_ ) . calculating the Hartree-Fock density response function
papk) = 2 € QuetQul /ZZZU(Zf(,/) Puovo' K = (Que Xopys(K,iQ) from its equation of motion

,Lw,o’o"
1d
=~ Quo)8. (19 = garXess(kim) = AK(pag(k, 0.9}k, 0]
Now, to perturb the system so as to determine its re- P
sponse, we rewrite the external perturbation Hamiltoigign + T—paﬁ(k,r)p‘;g(k,O) . (25
in terms of the generalized density operators as 7
q Pk The commutation relations of the generalized density opera-
H=S Jo [ Ox tors p,g(k,0) are

5 2w ) 2w T
Apap(K),py5(K)] = 8550a)(0) = 8aypps(0).  (26)

& ot T
XD, sk, )€™ py k), (20 The time-evolution of the density operator is determined,
where within the Hartree-Fock approximation, from the mean-field
Hartree-Fock Hamiltoniaft{"":

D skw)= > e—i(QM’fQW')zaa(zfg,)*CD oo K= (Quy P
g 8 8 g —paplk,7) =M (k. ]
- Q)X 0]. (21)

- ei(HHF—,uN)T[HHF’ paﬁ(k,o)]e—i(HHF—,uN)r’
Thus, application of an external potentidl,, ,,, which (27)
couples to the physical density at wave vedtocan gener-

ate perturbation® that couple to the generalized density at
other wave vectors. For calculational simplicity, and for sim-
plicity of presenting our results, we will focus on calculating HHF= ¢ ff (28)

the response of the system&bwhich couples to the gener- @

alized density. From this result, one can simply determine th%lsing the Hartree-Fock equation of motion for the density

physical response of the system to an arbitrary perturbatio . .
(in terms of the physical densityHowever, these wave- qperators, and Matsubara transfor.mmg the equation of mo-
' ion for the density response function, we get

vector shifts between the physical density and the generaf—

where the mean-field Hamiltonian is diagonal in thebasis,
and can simply be written gsee Sec. VI

ized density must be kept in mind as they can be nontrivial, iangﬁyg(k,iQn) = 855(Pay(0)) = B p3p(0))
as we will see belowSec. VI A and Eq(74)]. 0 _
To determine the response of the system to the time- * (€~ €2) XapyaKii Q). (29)

dependent perturbation in ERO), we use standard linear The single-particle density response function is therefore
response theoryKubo formulg, in which the resulting

. . : . ; i 8,,05s510N€5— €,)
change in the expectations of generalized density operator is Xgﬁya(kalﬂn) — Pay9B5 B _ (30)

assumed to be proportional to the perturbation iQn—egte,
<5Paﬂ(k,w)>=Xf,§75(k,w)q’75(k,w)- (22) gﬁep;gilzs are, as expected, at the single-electron excitation

The proportionality coefficient is the retarded density re- To take into account the interactions between the single-

sponse function particle excitations, following Refs. 11 and 10, we introduce

. the vertex corrections. The vertex corrections in TDHF are
ret . ot + Hartree “bubbles” and exchange “ladders,” which have to be
Xagyo(Ko) = 'gfo e Xpag(k.0.pys(k, O] (23) related to the Hartree-Fock self-energies through Ward
identities® Using the interaction constants
We obtain the collective-mode dispersions of the2 bilay- 1
ers by finding the poles of this response function. Hopsk)=—5 > z, (;ﬁa )*z), (zfa ) *
It is convenient to obtain the retarded density response Fy 22| jaone, LY 272
function (23) from a corresponding imaginary-time density 21212 ik (Q 2
. A Qi a. Qi 0. )l
response function X V'llz(k)e € ey o (31)
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(SE 2 Zﬁul(ziﬁ ) * Ziyzaz(zi& )* particle-hole pairs, and four corresponding transitions that

i1in 01,0 171 272 recombine the particles and the holes.

XFi i ([k,—(Q . -Q )x+k§) (32
o[k (Qiger, = Q) RHKY) - (32) IV. COLLECTIVE-MODE DISPERSIONS OF CHARGE-

we dress the single-particle density response function to in- UNBALANCED »=2 BILAYERS Agag=0

clude the interactions between the single-particle excitations In the most general case, the solution to B as to be

Xapys(K,in) :X?y/gya(kaiﬂn) found numerically. The situation simplifies considerably
0 ) - . when either the bias voltage or the tunneling is zero. The
~ Xapab(K:1 Q) Feand K)Xcayo(K, 1), former case has been studied in Refs. 4 and 5, who obtained

(339 the spin-density wave branches of the collective modes in
perpendicular magnetic fieldheir analysis can be easily ex-

s K1 Q1) = Yagrs(K,1Qp) tended to the case of tilted fie)dS'he latter case is consid-
Xaps " Xfy's _n ) ered in this section: Using the symmetry properties of the
*+ Xapab(K, 120 Hpacd K) Xedys(K,1Qn); v=2 bilayers in the absence of tunneling, we show that dif-

(34) ferent inter-subband single-particle excitations are indepen-
) o o ) dent of each other im=2 bilayer systems in the absence of
summation over repeated indices is implied, and the exgnneling and the vertex corrections simply result in addi-
change interaction functiors ; (k) are defined in Eq15).  {iona| (g-dependentrenormalization of the excitations.

To solve for the dressed density response function, |n this section, we present the analytical calculation of the
Xapys(K,i€dy), it is convenient to cast Eq$29~(34) into  collective-mode dispersions in=2 bilayer systems in the
matrix form. With the definitions absence of tunneling in perpendicular field. We explain the
main features of the dispersion curves and, in the second part

Xagsp- 5= k,iQ,), 35 . . . .
dact-5,7+5-5 = Xapyo( K. 1) (35 f this section discuss the evolution of these features as the
_ interlayer tunneling is turned on. The=2 bilayers in titled
Raat-5,47+6-5= 955 Par(0)) = Oar{p5(0)) magnetic fields are considered in the next section.
= 8uyPp6 24 (8un= Spn), (36)
n=1,2 A. Parametrized Agas=0 ground state
M = 5, Ssslen—€s) 37) We start the calculation of the collective-mode dispersions
4a+p-5,47+5-5 = CayOpo\€a ™ €p) by finding the ground state of the system. As was discussed
B in Sec. Il, the ground state of the=2 bilayers is obtained
Haatp-5,4y+5-5 = Hpaye(K), (38 within the Hartree-Fock approximation by solving the
Schrodinger-like equatiofil2). In the absence of tunneling,
Faatp-54y+5-5= Fyaps(K), (39 the mean-field solutiong" can be parametrized by two pa-
we have rameters, so that a transformation matgjxhat can be con-
structed of the four eigenspinog8, has the form
ianO =R- MXO, (40)
1 0 0 0
~ ~ ; )
X = Xo = XoF X, (41) S= (2122 7.7% = 0 _Sln 0 €?%cosfd O
B 0 €'%cos§ -sing 0|
X=X = XHX. (42 0 0 0o 1
The density response functiog,s,s(k,i{2,) is represented (45)
by the 16< 16 matrix X: whereZ" are defined after Eq12). The two subbands with
X=[iQ,~ M -R(H - F)]"'R. 43) the lowest binding energies are filled. By construction, for

positive bias voltage and Zeeman coupling, the lowest are
The poles of the density response function are the solutionthe bands 1 and 2, so that the general form of the ground
to the secular equation state isIIyckx(sin fck x+€¢ cosoz ¢l ,,)|0). When cosy
v - =1, the ground state is the ferromagnetic state; whergcos
de(i, =M -R(H -F)]=0. (44) =0, it is the spin-singlet state; the intermediate values of
The 16X 16 matrix equations can be reduced t& 8 by  cosé indicate that the system is in the many-body so-called
eliminating the forbidden single-particle excitations, such asstate(see Ref. J. It is easy to see that the Hamiltonian is
2—2, or 3—4. Even though the effective “energies” of invariant with respect to change of the phase-this is the
these transitions are solutions to the secular equaidy it U(1) symmetry that results in the formation of a Goldstone
is easy to show that the weights of these modes are alwaysrdode in thel phase. To simplify our calculations, we choose
and they do not show up in the density-response functiorp=0, so that the matri is now real andS=S.
matrix. The remaining & 8 matrix equation includes the When the parametetis such that the ground-state energy
interactions between the four transitions that create thés minimized, the S matrix diagonalizes the mean-field
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Hamiltonian matrixM [recall that the Schrédinger-like equa- B. Symmetry properties of the Asas=0 ground states
tion (12) is the result of a formal minimization of the

Hartree-Fock d-stat ith t 10 th In Ref. 7, we pointed out that the ground states realized in
artree-ock ground-state energy with respect 1o the parany,_, p;5ver systems in the absence of tunneling and with
eters(zlw) ]. We can therefore find by forcing the matrix

ositive Zeeman field and bias voltage are eigenstates of the
A=S'MS to be diagonal—i.e., equating the off-diagonal P g J

. X Lo operatorl?+ S with the eigenvalug (whereg is the Landau
terms of the matrixA to 0. The resulting minimization con- |5y degeneracy, i.e., +1 per flux quanfuriihe operator
dition can be written as TN

I2+S* commutes with the bilayer Hamiltonian and therefore

Ko(6)sin 20=0 (46) provides a good quantum number to classify the eigenstates
0 ' of the Hamiltonian. Thus, the ground state belongs to the
where the functiorKy(6) is defined as class of states with thd*+S)-quantum number equal @

N So does the lowest-energy excited state, which is the result
Ko(6) = - v ; ~ 4+ (H.-F_cos. (47) gf the 2—3 transmo?; that is to say, the transition—23
oes not change th@?+$)-quantum number of the system

. , - i i . 0(I*+$)=0.The excitations 3 and 2—4, on the other
Equation(46) is satisfied automatically in the ferromagnetic hand, lower the(I?+S)-quantum number by 1, i.e&(1?

and spin-singlet phases, where @) and 1, respectively, | o, __ ; ’ o
so that sin 2=0. In thel phase, the equation is solved by (IZS-ZF)SZ)—;;JZESU::en:ﬁgitb;?ﬁrgé?:?tzauomﬂ lowers the

1 Ay-Ay-2H_ Modes characterized by the sai@*+S’) can be mixed
cos = >~ W (48) by the Coulomb interactions, unless they can be classified
-7 further by other quantum numbers. For the excitations 1
where —3 and 2-4, simply the operatonm:cgqcm provides a
good quantum numbéit commutes with the zero-tunneling

1 dq 22 Hamiltonian): the excitation 2-4 possesses the same eigen-
i_ﬁfwe TIVRA() £ Vru ()] value g as the ground state, while the excitation~B
changes it byong, =—-1. Therefore, all the four single-particle
_ 6_2} \/E 1 + e22Erfe i (49) intersubband modes are decoupled from each other as states
Tel2 V2| T [ with different conserved quantum numbers. Only the

particle-hole interactions within the same mode therefore ap-
and H_ is defined in Eq(16). Equation(48) as a solution pear in the calculation of the collective modes, and matrix of
when its right-hand side takes a value between 0 and 1. Thigie density response function thus separates into foug 2
region is the region of stability of thephase[Note that, in  matrices.
the absence of anisotropy between the interlayer and intra-
layer interactions(48) would have no solution, sindd_=0 ) ) _
andF_=0 in this casd.|f the right-hand side of Eq48) is C. Asas=0 collective-mode dispersions—general
negative, the ground-state energy is minimized by’ <0 Reduced to include only one excitation mode- 3, and
and the system is in the ferromagnetic phase. If the rightits counterpart3— a, the 2x2 density-response-function
hand side of Eq48) is greater than 1, then co8=1 and the  matrix obeys a matrix equation of the same general form as
system is in the spin-singlet phase. Intermediate values ahe full equation(43). The matrices comprising the reduced
cog 6 give the | state. Note that the functioiy(6)=0 Eq. (43) are
throughout thd phase and takes on finite values in the fer-

romagnetic and spin-singlet phases. €3~ €, 0
The resulting binding energies are the eigenvalues of the M= 0 —(eg-e))’ (54)
matrix M, and can be read off the diagonal of the matkix B e
=SMS
1 0
e=—A,+F_cos B+Ky(0) - (F,+F_), (50) R= 0 -1/) (59)
e=F_+Ky(f)cos H-(F.+F.), (51)  The Hartree part of the vertex-correction matrix is
e3= —F_—Ko(6)cos 2, (52) e (Hﬁaaﬁ Hgaﬁa) _ (Ho Ho) 56
Haﬁa,B Ha,ﬁ',Ba HO HO

€,=A,—F_cos 2-Ky(6). 53
2=4; o(6) 53 here Ho=H saqp and we used the symmetries Kz, in

Note that, in the many-body region, whekg(6)=0, the Eg.(31) with respect to the exchange of indicggven that,
smallest single-particle gap depends only on the interactiowithout loss of generality, the coefficier#§ can be assumed
constantses—e,=F,—F_ and is constant throughout the re- to be real in the absence of tunneljnyVe use the same
gion. This is again a manifestation of the many-body naturesymmetriegEq. (32)] to obtain the general form of the ex-
of thel phase. change contribution to the vertex corrections
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Foaps Fpapa Fo Fu Coulomb interaction in bilayer systems. As the bias voltage
F = = (57) . . . . -
E.E.)’ is increased, the gap is reduced, until it becomes zero when
1o Ay=A,+2F_. The transition to thel state occurs at this
where Fo=F 45 and F1=F 4,5 The solution to Eq(44) point, consistently with Eq(48). The dispersion of the 2
gives the dispersion curve of the collective excitatian — 3 mode in the spin-singlet phase is
— B
S ~ ~
| wy3=Ay—A;—4H_+2F_+[F_(q) - F . (65
o= VFo— F1— (€5- €\ 2Ho+ Fo+ F1— (€5 €, 23~ Ay~ Az . [F-(9) .+(Q)]. (. )
(58) In the absence of tunneling, the system is driven into the

spin-singlet phase by the external bias voltage and against
where thee, are given in Egs.(50—(53). The resulting the renormalized interlayer charging energy2t2_-F_).

Fapap Fppaa

collective-mode dispersions are given in Figs. 2—4. Again, consistently with Eq(48), the system undergoes a
mode-softening phase transition between the spin-singlet
D. Goldstone mode phase and thé phase whem\,=A,+2(2H_-F_).

We start by considering the lowest-energy mode, which The last interesting feature of the-23 mode we consider
softens when the system enters tighase. Using the param- is the roton minimum that this mode develops in thghase
etrization of the coefficientg, given by Eq.(45), we get (see Fig. 3. The roton minimum appears deep in thehase

_ _ ; and disappears close to the boundaries with the ferromag-
Ho = Hazze= H-sir? 20, B9 fetic and spin-singlet phases. It occurgjlat 1, a wave vec-
tor characteristic of interaction effedtéIn the present case,

Fo=Fa233=F, — F_cos 26, 60 the roton minimum indicates a tendency toward formation of
_ _ . an interlayer spin-density wavg=ormally, it is the nontrivial
F1 = Fosps= F_sin’ 20. (61) wave-vector dependence &f_(q)—F_(q) in Eq. (62) that
The resulting collective mode dispersion is causes the roton minimum to appéar.
w23= V0 (6,9)[0(6,0) + T(6,0)], (62 _
E. Spin-wave modes
where . .
5 5 The dispersions of the modes—43 and 2—4 have the
0(6,0) = 2Ky(h)cos 2+ F_(q) - F.(q), form given by Eq.(58). It is clear from the parametrization
of the Z,, [Eq. (49)] that Hy=F,=0 for the excitations 1
I'(6,9) = 2[H_(q) - F_(q)]sir? 26, —3 and 2-4. The 2x 2 interaction matrice$l andF are

- therefore diagonal, and the dispersion curves have the simple
andF ,(Q) =F ,(a) ~F ,(0). (F+(q) = 5[Fre(@) £ Fr(a)], where  form
F..(q) is def|ne9|n Eq(15); H_(q.) is defined in Eq(16).) 0= (- ) ~Fy. 66)

The functionsF (q) are proportional t@f at small values £
of g, while H_ approaches a finite constant. When the systeni/nlike the dispersion of the Goldstone mode-3, the dis-
is in thel phase, wheré&(0)=0 and sif26+ 0, the disper- persions of the -3 and 2—+4 modes are analytical in all
sion curve becomes gap|ess a%oc|q| at Sma”q_ Indeed, the phases of the=2 bilayers in the absence of tunneling.
this is the linearly dispersing Goldstone mode that appears ihhe only relevant interaction constafy is the same for both
the | phase as a result of the spontaneously broke( )y Mmodes -3 and 24
symmetry of the ground state. The Goldstone mode disperses _ _ -
Iizearly s)i/nce theggenerator of symmetry does not Con?mute Fo=F1135= F2204= F.(0) ~F-(q)cos 2, 67)
with the Hamiltonian. The velocity of the Goldstone mode isand so are the binding-energy differenegs e;=¢,—€,. The

> collective-mode dispersions are therefore degenerate and
: d e d
vg=Ilsin20N2(H--F.) E_I_ 1+|—2 Fro |,
&

W13= Wy = AZ - E+(q) - E_(q)COS 29— 2K0( 0)S|r]2 0.
(63) (69)

whereFg =F,—F_is calculated in Eq49). The Goldstone- The dispersion is always gapped; the gap is equal to the
mode velocity is proportional to sing2—it is zero at the Zeeman splitting in the ferromagnetic ahghases. The sys-
phase boundaries and the greatest near the middle df thetém possesses a finite magnetization in these phases, so that
phase. the modes 1> 3 and 2—4 correspond to spin-wave modes.

In the ferromagnetic and spin-singlet phases, the dispeln the spin-singlet phase the magnetization is zero, and the
sion curve of the mode is gapped and analytical arognd 9ap of 13 and 2-4 modes departs from the Zeeman
=0. In the ferromagnetic state the dispersion is splitting linearly with Ay:

why=Az+ 2F_— Ay +[F_(q) - F.(a)], (64) 033= w3y =Ay—4H_+2F_+[F_(q) —F.(@)]. (69

consistently with the fact that the ferromagnetic state is staThat the gap ofw3; is equal to the Zeeman splitting at the
bilized by the magnetic field and by the anisotropy of theboundary of the spin-singlet anigphases is more clear if one
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compares this dispersion curved§3, given in Eq.(65). The  numerical results can be gained by comparing the collective-
difference betweems; and w3, equals the Zeeman splitting mode dispersions in the systems with tunneling to the ana-
at anyA,, andq. This is because the excited state producedytical results for the systems without tunneling. The com-
by the excitation 2-3 is a spin-triplet state witt&=+1.  parison is presented in Figs. 2—4 for the ferromagnetic,
The excited states that result from-13 and 2—4 are su- many-body, and spin-singlet phases, respectively. The sets of
perpositions of a spin-singlet state and a spin-triplet stat@lots in each figure are arranged in two columns: In the left
with §=0. The excitation + 4, which we consider below, column, we plot the dispersion curves of a system with no
in the spin-singlet state results in a spin-triplet excited statéunneling. The dispersions of a system with tunneling are
with §'=-1. given in the right column. In all the plots, the Zeeman energy
The degeneracy of the modes-~13 and 2—4 is a conse- is set atA,=0.01(€?/¢l); the external bias voltage is given in
quence of the up-down, left-right symmetry of the Hamil- the upper right corner of each panel.
tonian that reverses the sequence of subbands: the transfor-

mation that exchanges the levels 1 and 4, and 2 and 3— A. Ferromagnetic phase
—=Az, Ay—-Ay, Asas—-Asas and c,,—€*%c_, In Fig. 2, we present the dispersion curves obtained in the
leaves the Hamiltonian invariant. This symmetry maps theerromagnetic phase. While the ferromagnetic ground state
transition 1—3 to 4—2. does not change as the bias voltage is increased, the
collective-mode dispersions demonstrate the evolution of the
F. Highest-energy mode intersubband energetics that eventually leads to a phase tran-

. . . . sition. The top two panels of Fig. 2 show the dispersion
For the highest-energy mode-i4 the interaction matri- curves in the absence of bias voltage. In the absence of tun-

ces also turn out to be diagon&lg=F;=0 in Eqgs.(31) and . . .
. . . neling, we can identify the lower curve as the degenerate 1
32). The collective-mode dispersion therefore has the same o
gorr)n as that for the 153 and pz_)4 modes[Eq. (68)]. The =3 and 2—4 excitations that have a gap equal to the de-
remaining exchange interaction constiigtis : ' man energy ag— 0. The Zeeman gap is hard to discern in
the figure, since the scale of the Zeeman energy is very small

Fo=F1144= F.(q) - F_(q), (70) in comparison with the energy scales of the other excitations.
) ) ) ) The upper curve represents the excitatiors 4 and 2— 3
and the dispersion relation, therefore, is that are degenerate in the absence of tunneling and bias volt-

_ ~ ~ age. When a small amount of tunneling is present, the degen-
®14=Az+Ay = 2(H-~F.) - 2H.cos ¥-F.(q) + F-(q). eracy of the dispersion curves is lifted, and the curves are
(71)  split by an energy of orde®(A%,s/F_)—a minute energy

When A,=0, the mode +-4 is degenerate with the-23 difference, not visible on t.he scale of the f|gur_e. .

. : . As the bias voltage is increased, as was discussed in the
mode[Eq. (65]. The modes are split when a bias voltage is revious section, in the absence of tunneling, the splittin
applied to the system, and the splitting grows as, 2intil b ' 9, PIting

. between the dispersions of the-14 and 2—3 modes in-
the system enters thephase(at the point where the 23 . ;
dispe);sion becomes gpaplazs(ﬁ'he gaF[)) of the -4 mode  Creases linearly with the voltage. ThusAqt=0.3(€?/¢l), the

starts decreasing as the system is brought deeper intb the?_ﬂgtglgercga:'%rgﬁgﬁr_bbéa;ﬁg%if i\ée{r%elzrge and apparent.
- ystems without
girr]%sl; :‘;;2; l:'[)r?gngdaegyi sz:\/\i’fselr:)\fg? 3:}”2”:&25 tshp;n Funneling, remains degengrate for any bia_s voltage. Note that
spin-singlet pﬁase the dispersion is in the absence of tunneling, the dispersion curve of the 2
' — 3 mode crosses the Zeeman branch clearly without inter-
03, = Ay+ Ay - 4H_+ 2F _+ [INZ_(q) —I~:+(q)] (72) acting with it. The situation changes when tunneling is
present: thgapproximately 2— 3 mode develops an anti-
and continues linearly witi,, as it did in the ferromagnetic crossing with one of the modes of the Zeeman branch. The
phase. The dispersian3, is simply relatedw3; and w3, as  interactions between different excitations are allowed in the
the excitation resulting in the thir@S’=-1) of the triplet  presence of tunneling by the broken symmetry of the Hamil-

excited states. tonian: when the tunneling term is present, the opertor
+& does not commute with the Hamiltonian; the eigenvalues
V. COLLECTIVE-MODE DISPERSIONS OF CHARGE- of the operator are, therefore, no longer good quantum num-
UNBALANCED »=2 BILAYERS A#0, Q=0 bers of the excited states. Nevertheless, one mode always

stays independent of other excitations: One can see that, in

The Hamiltonian of the charge-unbalanced?2 bilayer the states with finite magnetization, Figs. 2 and 3, the spin-
systems in the presence of interlayer tunneling does not conwave mode, identified by the Larmor minimum at the Zee-
mute with thel?+S operator. The symmetry considerations man energy, is always decoupled from the other modes. This
that we used to obtain an analytical solution for the densityis a consequence of the up-down, left-right symmetry of the
response function of the=2 bilayers in the absence of tun- Hamiltonian mentioned in the Sec. IV E and preserved in the
neling cannot be used to simplify E@4) when tunneling is  presence of tunneling. This symmetry maps the excitation
present. We therefore use numerical techniques to calculate— 3 to 4— 2. The mapping results in a special form of the
the dispersion relations of the charge-unbalanced bilay-  density-response matrix that always separates out one Zee-
ers with finite interlayer tunneling. Much insight into the man mode.
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B. Many-body canted andl phases C. Spin-singlet phase

As the voltage is incyeas_ed further, the gap of _thefZ When the bias voltage is around, =~ 1.4(€?/¢l), the sys-
mode decreases until it disappears. The softening of thgym undergoes a phase transition from the many-body to the
mode signals the onset of a many-body phase-+gif@se in  gpin_singlet phase. At this point the Goldstone branch devel-
the system without tunneling and the canted phase in thgys 5 gap. The Goldstone mode becomes the lowest of the
presence of tunneling. The critical voltage is higher in theyhree spin-triplet excitations above the spin-singlet ground
system without tunneling, since, when the tunneling issiate As can be seen in the insets, the three modes are sepa-
present, it works in concert with the bias voltage to stabilize,5taq byA,. In the absence of tunneling ti&=0 spin triplet
the spin-singlet phase and destabilize the ferromagnetig gegenerate with the only allowed spin-singlet excitation.
phase. The details of the collective mode dispersions as thg/pen tunneling is present, the energy of the spin-singlet
gap of the 2-3 mode approaches zero arounll,  gycitation is affected by the interactions; it slowly ap-
~0.6(¢?/zl) are given in the insets of the bottom two panelsproaches the energy of tig=0 spin triplet as the increasing
of Fig. 2. In both insets, one can clearly see the Zeemapjas yoltage turns the interlayer-phase coherent spin-singlet

branch with the gap at the Zeeman enefgy=0.01€’/el).  state atAgas#0 into a »=2 spin-unpolarized monolayer
In the absence of tunneling, the Zeeman branch is degenesiate.

ate; when tunneling is finite, the degeneracy is lifted by the
interaction with the 2-3 branch neag=0. The interaction
of the 2— 3 excitation with the superposition of the-13
and 2— 4 excitations result in an earlier onset of the many-
body phase and a mixed mode with a large gap araynd  As we discussed in Sec. Il above and in Ref. 7, tilting the
=0. When the bias voltage is increased a little abdye  magnetic field away from the normal to the plane of the
~0.6(€’/¢l), the system undergoes a phase transition iﬂt(b"ayer system leads to new phases and, in charge-
the many-body phase. The collective-mode dispersions foiinbalanced systems, phase transitions. In the charge-
the »=2 bilayers in the many-body phase are given in Fig. 3balancedv=2 bilayers, the tilted fields do not change the
Right after the transition the velocity of the Goldstone modetopology of the phase diagram. The interlayer phase coherent
is very low, but it rapidly increases as the system is takerphases—spin-singlet and canted—become commensurate,
deeper into the many-body phase by an increasing bias voland the ferromagnetic state is not affected by the in-plane
age. Near the transition, the velocity of the mode increasefield. In commensurate interlayer phase coherent phases, the
faster in the canted phase, than in thghase. In the canted interlayer exchange interactions are effectively destabilized
phase, however, because of the intermode interactions, thg the in-plane field, and the phase-space volume of the
velocity soon reaches nearly a constant, while inltpbase  canted phase decreases as the magnetic field is tilted. The
it continues increasing until approximately the middle of theweakening of interlayer exchange interactions renormalizes
| phase. As the system gets closer to the transition to theollective mode dispersions of the charge-balance@ bi-
spin-singlet phase, the Goldstone-mode velocity goes to 0 itayers but does not result in interesting new features.
the reverse fashion. The presence of a finite in-plane component of the mag-
Another effect of the broken symmetry of the Hamil- netic field produces more interesting effects in charge-
tonian in the presence of tunneling is the further widening ofunbalanced systems. When tunneling is strong enough, the
the gap that develops in the mode that splits off the Zeemam-plane field induces a phase transition between the simple
branch as a consequence of the mixing with the other modegommensurate phagsel, stable at low in-plane fields, and
This gap is much larger thakisas and is therefore due to the the spin-isospin commensurate ph&2 more favorable at
interactions. FiniteAsas in this case mainly serves to break higher in-plane fields. As is shown in Fig. 1 and discussed in
the symmetry of the Hamiltonian. This “third” mode devel- depth in Ref. 7, the phas&l andC2 are connected to each
ops a nonanalyticity atj=0 and a ring of shallow roton other, and the first-order transition between them terminates
minima, degenerate for all directions qf at a critical point. To further study this first-order transition,
The roton minimum that, as we showed in the previouswe obtain a series of collective-mode dispersions, calculated
subsection, characterizes thphase is inherited by the low- for the C1 andC2 states as the in-plane field is increased. We
tunneling canted phase. Itis, however, less deep in the cantedso obtain the collective-mode dispersions at the critical
phase, and gradually disappears as tunneling is increased yseint terminating theC1-C2 transition.
til it becomes more important than the bias voltage.,
when the bias voltage does not result in a significant charge
imbalance within the many-body phasénother feature to
observe is the lowering of the energy of the highest-energy
mode. Its energy scale changes dramatically as one sweeps The evolution of the dispersion curves within the canted
across the many-body phase by increasing the bias voltagghases as the magnetic field is tilted is given in Fig. 5. We
Around the boundary between the ferromagnetic phase arghoose a system with A3=0.01€*/el) and A2q
the many-body phase, the gap of the highest-energy mode #&0.06€?/¢l), and hold the external bias voltage At
two orders of magnitude larger thah, [it is rather of =0.8€%/el), so that the system is approximately in the
O(Ay)], but at the boundary of the many-body phases andniddle of the canted phassee Fig. 1. For each probed
the spin-singlet phase, the gap decreases\to 2 point on the phase diagram in Fig. 1, we plot in Fig. 5 the

VI. COLLECTIVE-MODE DISPERSIONS OF CHARGE-
UNBALANCED »=2 BILAYERS IN TILTED FIELD

A. Collective-mode dispersions across th€1-C2
phase transition
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cross sections of the collective-mode dispersions in twaight in Fig. 5, while the roton minima “tilt” to the left. An
directions—perpendicular to the in-plane figid the X di-  effective theory of coupled superfluids that would explain the
rection in our calculationsand in the direction parallel to it behavior of the collective modes, as well as tG&-C2
(the ¥ direction); these plots are given side by side. The superfluid-superfluid phase transition, is a potential direction
measure of the magnitude of the in-plane component of thef future research.
magnetic field, the wave vectqy;, is given as the number in In addition to the anisotropies, the application of the in-
the left panel. plane field results in an increased Zeeman mode f§ap
The top two panels show the collective-mode dispersions-A9\1+QfI4/d?. It is also apparent, especially at higher in-
in perpendicular magnetic field. In perpendicular field, theplane field, that the minimum of the Zeeman mode shifts
dispersions are the same in all directions, so the dispersioifom q, =0 to q, =Qs. This effect is also a consequence of
curves in the left and the right panels coincide. One can sethe our choice of the gauge. As was mentioned in Sec. IlI,
the features discussed for the canted phase in the chargéwe density response functign,s(k; 7) that we calculate is
unbalancedv=2 bilayers(Sec. IV): the linearly dispersing gauge dependent, because it is the response of the system to
Goldstone mode that has a roton minimum arowpeF1,  the excitation with the density operatpgg(k). This density
characteristic of charge-unbalanced systems; the spin-wavsperator is related to the physical density operators not only
mode that decouples from the other three modes and hastarough a linear transformation, but also through a shift of
gap equal to the Zeeman energ@lye resolution of the figure the wave vectofEq. (19)]. A real excitation therefore will
does not allow us to see the Zeeman splitting because of thﬁck out signals from different dispersion curve branctees
relatively small Zeeman energythe large interaction- cording to allowed symmetrigsat different wave vectors.
induced gap ay=0 of the third mode. The highest-energy Thus, for example, the physical response function for a real
mode is not visible in this figure. spin-flip excitation of wave vectd is a superposition of the
When the magnetic field is tilted, the collective modesxaﬁyé(q;T) at wave vectok +QgX
start changing: they become asymmetric with respect,to
——q,. The velocity of the Goldstone-mode in the negative __ +
q, direction becomes greater than that in the positiye Xostptipat st (K 7) = 9<TP;WT(k’T)Pmm(k*O)>
direction. The roton minima also become asymmetric—they =grQk™ (Z5)* 220 * 2 Xapys
develop a lowest point in the negativg direction. This aBys
behavior is reminiscent of the behavior of the collective- -
mode dispersions of &charged superfluid under the influ- X (k+Qgk, 7). (74)
ence of an external electromagnetic gauge fieldn a su- The dispersion curves in the direction parallel to the in-
perfluid, much as in the=2 bilayers in the canted phase, a plane field stay symmetric with respect ¢g— —q,. As the
U(l) symmetry is spontaneously broken. The symmetrytilt angle is increased, they change mainly because the mini-
breaking results in the formation of a linearly dispersingmum of the Zeeman and other branches shift away from the
Goldstone mode. When an external field is applied to &j, =0 plane plotted in the right column of Fig. 5.
charged superfluid, the superfluid order parameter acquires a As the magnetic field is tilted further, the anisotropy of
twist € @9AX and the Goldstone mode acquires an anisotropghe Goldstone-mode velocity becomes greater, and the en-
ergy of its roton minimum around, | =-1 decreases. Near
B , 1(#he\? ., tfe the C1-C2 phase transitionQ,=0.96, the roton minimum
o= K| Yo" 5\ me Al - &A' K, (73 phecomes lower than the Zeeman energy. However, before it
reaches zero and the system becomes unstable, the phase
whereuy, is the initial velocity of the Goldstone mode. While transition to theC2 phase occurs, marked by an abrupt
the in-plane field does not couple to the symmetry-breakinghange in the collective-mode dispersions. The entire picture
order parameters in=2 bilayers in the same way it does in is effectively shifted byQs_—Qs_, (see Fig. 3 in the posi-
a superfluid, it does result in winding phase factef$*,  tive g, direction. A Goldstone mode appears in place of the
QX andé€@stQ)X Because of the gauge symmetry of our roton minimum, and a roton-minimum replaces the Gold-
system, an equivalent picture can be drawn up, in whictstone mode. The minimum of the Zeeman mode jumps from
fictitious gauge fields proportional Qs Q,, and QsxQ, Qs to Qs as expected from Eq74) and Fig. 5.
couple to the correspondin@niform) order parameters. In As the in-plane field is increased further, the roton mini-
fact, this is exactly what we have done, when we chose tanum of the Goldstone branch becomes less deep—it ap-
work in the basis of the creation-annihilation operatbfs proaches the Zeeman enerdy from below. When the in-
[see Sec. lll and Eq17)], in terms of which the ground state plane component of the magnetic field becomes laf@ge,
is uniform. ~2, theC2 phase becomes very close tolgohase. This is
Because the in-plane field generates different phase faceflected in the collective mode dispersions. In the bottom
tors (€95X, &%, and €@s*)X) for different order param- panels of Fig. 5, aQ, we can see the symmetry of the Gold-
eters, thev=2 bilayer system is somewhat more complicatedstone branch reappearifidpe dotted line in Fig. 5 is given as
than a model superfluid. It is clear in Fig. 5, that differenta guide to the eye One of the Zeeman branches of the
collective-mode branchegand different parts of the phase forms an anticrossing with the Goldstone branch at
branchegdo not respond to the presence of an in-plane fieldy, =1. WhenQ,=~2 the Zeeman modes and the Goldstone
in the same way. Thus, the Goldstone mode “tilts” to thebranch become nearly decoupled. The Zeeman branches in
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our calculation have a minimum &= Q, in high magnetic 7, is signaled by a near softening of a roton minimum.
fields. This is again the gauge effect we described above. The collective-mode dispersions of the=2 hilayers in
Zeeman modes shifted byQs, as they would be in terms of tilted fields exhibit behavior suggestive of a system of
physical densities, would restore th@hase-like appearance coupled superfluids under the influence of an external gauge

of the collective-mode dispersions deep in €2 phase. field. Thus, when the magnetic field is tilted, i.e., a finite
in-plane magnetic field is added to the system, the modes
B. Collective-mode dispersions at the critical point become Doppler shiftefEqg. (73)]. The Doppler shift varies

for different modes, reflecting the fact that the in-plane mag-

m I(r; th d? Ias: F?ar:t oftt?rl]s sericttiloq, W(iani:o'z&di(ra]r tvr\}e CO”eCt'\t’)?netic field couples to the order parameters of itk bilayer
ode dispersions at e critical point. /Again, we Use a 'systems in different way&ee Sec. VI A

layer system ‘_’V'thAg:Q'OKez/SD and Ag,s=0.06€/z). An interesting direction for future research, therefore,
The critical point for this sample occurs a,=0.5328 and \,5|d be the construction of an effective model with two
Q=0.9362;Qs~0.474 for these parameters. The spin-wave,qer parameters that spontaneously bregk) dymmetry.
wave vectorQs is hard to define precisely at the critical Ap eyternal gauge field can couple to the order parameters
point, since the energy p”rof|le as a function@fis very flat: ifarently, so that when the breakdown of one superfluid
(Qs~Qs)" The "flatness” of the energy as a function of the o0\, the other superfluid is stable. Such a superfluid tran-

spin-wave wave vectas implies the existence of very soft sjtion would be an interesting model for tB4-C2 transition
spin-wave fluctuations. Indeed, as shown in Fig. 6, the Ve the y=2 bilayers.

locity of the Goldstone mode in the positivgg direction
becomes Qand the next-order i emergesmocqi).
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