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Flocking birds, fish schools, and insect swarms are familiar exam-

ples of collective motion that plays a role in a range of problems,

such as spreading of diseases. Models have provided a qualitative

understanding of the collective motion, but progress has been hin-

dered by the lack of detailed experimental data. Here we report

simultaneous measurements of the positions, velocities, and orien-

tations as a function of time for up to a thousandwild-type Bacillus

subtilis bacteria in a colony. The bacteria spontaneously form

closely packed dynamic clusters within which they move coopera-

tively. The number of bacteria in a cluster exhibits a power-law

distribution truncated by an exponential tail. The probability of

finding clusters with large numbers of bacteria grows markedly

as the bacterial density increases. The number of bacteria per unit

area exhibits fluctuations far larger than those for populations in

thermal equilibrium. Such “giant number fluctuations” have been

found in models and in experiments on inert systems but not ob-

served previously in a biological system. Our results demonstrate

that bacteria are an excellent system to study the general phenom-

enon of collective motion.
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Despite differences in the length scales and the cognitive abil-
ities of constituent individuals, collective motion in systems

as diverse as bird flocks, mammal herds, swarming bacteria, and
vibrating granular particles (1–8) produces similar patterns of ex-
tended spatiotemporal coherence, suggesting general principles
of collective motion. One approach to unveil these principles
has been to model individuals as interacting self-propelled
particles, which align their motions with neighbors (8–13). Some
models also include repulsive and attractive interactions between
particles in addition to the local alignment of velocities. With
empirically chosen parameters such as the range over which
the local alignment occurs, self-propelled particle models pro-
duce motions qualitatively similar to the observations. For exam-
ple, within certain parameter regimes, models (8, 13) predict that
collectively moving individuals form dynamic clusters, as often
seen in fish schools or mammal herds (1); these clusters lead
to large fluctuations in population density. Quantitatively, analy-
tic theories based on liquid crystal physics (14–16) have predicted
that these density fluctuations should scale with system size
differently from fluctuations in thermal equilibrium systems.

In contrast to numerical models and analytical theories, quan-
titative experiments have been limited (2–8), though decisive
experiments are urgently needed to test the theoretical assump-
tions, determine sensitive modeling parameters, and verify theo-
retical predictions. The lack of experimental data is mainly due to
technical difficulties. In conventional macroscopic systems, such
as bird flocks, it is exceedingly challenging to track individual mo-
tions of a large population over long periods of time, and studies
with systematic parameter variation are rarely possible.

Recent studies (17–22) have shown that concentrated swim-
ming bacteria, which can be considered as self-propelled polar
microrods, under well-controlled conditions exhibit collective
motion. These studies suggest that bacterial systems can serve
as a promising alternative to the macroscopic systems to investi-

gate general phenomena of collective motion. However, in pre-
vious studies, bacteria were so closely packed that it has not been
possible to identify and simultaneously track many individual bac-
teria in collective motion for a long period of time.

In this article, we investigate collective bacterial motion in
wild-type Bacillus subtilis colonies growing on agar substrates.
Inside colonies, bacteria swim in a micrometer-thick film of liquid
on the agar surface (23, 24); the bacteria are not observed to
swim over one another. By tracking many individual bacteria,
we quantify the correlations among bacteria, statistical properties
of dynamic clusters, and the scaling of density fluctuations.

Results

Spatial Correlations. Movies of bacterial motion are recorded at
various bacterial densities. Each movie contains 6,000 consecu-
tive images in which bacteria appear as white elongated objects.
From the movies, we extract center-of-mass ~ri, instantaneous
velocity ~vi, and cell body orientation ŷi for 95% of all bacteria
in the imaging window (A ¼ 90 × 90 μm2). Typical instantaneous
configurations at two densities are shown in Fig. 1.

Bacteria aggregate in clusters and move collectively as shown
in Fig. 1 (also Movies S1 and S2). To quantify the local correlation
of individual motions, we compute spatial correlation functions
(18–20, 25–27) in a “local coordinate frame” with axes along
(ŷi) and perpendicular (x̂i) to the cell body, as defined in the inset
of Fig. 1A. The two-dimensional correlation functions, defined in
Materials and Methods, for two densities are shown in Fig. 2 A–F,
and their transverse profiles along y ¼ 0 are shown in Fig. 2 G–I.

The pair correlation function gðx;yÞ quantifies the probability
per unit area (normalized by the area density ρ) of finding
another bacterium at the location ðx;yÞ away from the reference
bacterium. The transverse profiles of the pair correlation func-
tion gðx;y ¼ 0Þ in Fig. 2G show strong peaks at x ¼ 1.44 μm
for Ntotal ¼ 343 and x ¼ 1.08 μm for Ntotal ¼ 718; thus bacteria
in a cluster are positioned very close to a nearest neighbor. Peaks
corresponding to the second and third nearest neighbors are
also discernible for Ntotal ¼ 718. As shown in Fig. 2 A and D,
such bacterial aggregation in the flank extends in the longitudinal
direction up to y ≈ 3.8 μm, which is roughly the length of the
excluded volume. Close neighbors have similar orientation and
velocity as the reference bacterium, as evidenced by the high cor-
relation in orientation (Fig. 1 B, E, and H) and velocity (Fig. 1 C,
F, and I). The positional, velocity, and orientational correlations
are evident, for example, in the cluster at (20 μm, 30 μm)
in Fig. 1B.
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The strong correlations shown in Fig. 2 confirm the core as-
sumption of local alignment in self-propelled particle models
(8–13) and demonstrate that short-range correlations extending
to the third nearest neighbor are sufficient to produce collective
motion. The spatial correlations observed in our system originate
from hydrodynamic (25–29) and excluded-volume (29–31) inter-
actions between bacteria, and from physical intertwining of
flagella of neighboring bacteria (20, 32–34). It has been shown that
both excluded-volume (35) and hydrodynamic (28) interactions
can lead to local orientational order. Physical intertwining of fla-
gella has been directly demonstrated with fluorescent imaging (33,
34), but the interaction due to intertwining has not been quantified
in experiments. Such an interaction also needs to be added to cur-
rent models, and its role needs to be explored. The interactions
between bacteria differ from the cognitive coordination of animals
and birds, yet these systems all exhibit collective motions.

Dynamic Clusters. The two-dimensional pair correlation functions
in Fig. 2 A and D show no bacterial aggregation along the cell
body (ŷ) direction beyond y ≈ 3.8 μm. However, the velocity
correlation function at Ntotal ¼ 718 (see Fig. 2F) exhibits high

correlation along the (ŷ) direction over a distance up to y≈
8 μm. Such along-body velocity correlation is due to the forma-
tion of dynamic clusters, which are illustrated by color coding in
Fig. 1. Clusters are long-lived (see Movies S1 and S2). Large clus-
ters can cruise through the imaging window while maintaining
their integrity, which prevents us from accurately measuring their
lifetimes. Dynamic clusters continuously evolve, merge with
others and split into smaller ones. This leads to a wide range
of cluster sizes n, defined as the number of bacteria in a cluster.
Representative configurations of clusters with various sizes n can
be found in Fig. S1.We find the average speed of isolated bacteria
in colonies is 15 μm∕s. The speed increases with increasing
cluster size, saturating at 40 μm∕s for bacteria in clusters with
more than 20 bacteria.

Bacterial motion within a cluster is strongly correlated. To
characterize these intracluster correlations, we first compute
spatial correlation functions within each cluster and then average
these intracluster correlation functions over the ensemble of clus-
ters within a given size range. In Fig. 3 A–C, we show cluster-
size-dependent pair correlation gðx;y;nÞ, orientational correlation
Cθðx;y;nÞ, and velocity correlation Cvðx;y;nÞ functions for the
cluster size ranges 81 ≤ n ≤ 110 obtained under the density con-
dition Ntotal ¼ 718. To measure the physical dimensions of clus-
ters, we identify the contour of gðx;y;nÞ ¼ 0.1 as the “statistical”
edge of a cluster and extract longitudinal (λy) and transverse (λx)
dimensions (see Fig. 3A). In Fig. 3D, λx and λy are plotted as a
function of cluster sizes n. Clusters are elongated in the longitu-
dinal direction: λy ≃ 1.4λx. Both λy and λx scale with a cluster’s size

Fig. 1. Instantaneous configurations at two densities with the average total

number of bacteria in the imaging window Ntotal ¼ 343 (A) and Ntotal ¼ 718

(B). Velocity vectors are overlayed on the raw images of bacteria. The length

of the arrows corresponds to bacterial speed, and nearby bacteria with

arrows of the same color belong to the same dynamic cluster. (A Inset) A

laboratory coordinate frame (X̂ Ŷ) and a local frame (x̂i ŷ i) are defined.

The cell body and flagella of the ith bacterium are shown by solid and dashed

lines, respectively (the flagella are not visible in our images); the local frame is

centered at the center of mass ~ri , with x̂i and ŷ i pointing at the transverse and

longitudinal axes respectively. See Movies S1 and S2 for temporal evolution

of the system.

Fig. 2. Two-dimensional pair correlation (A andD), orientational correlation

(B and E), and velocity correlation (C and F) functions at two bacterial

densities: Ntotal ¼ 343 (A–C) and Ntotal ¼ 718 (D–F). The dashed gray lines

in A–F near the origin mark the border of the excluded volume. Transverse

profiles, gðx;y ¼ 0Þ, are shown inG–I, where black and red lines correspond to

Ntotal ¼ 343 and Ntotal ¼ 718, respectively.
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as n0.5, which means the packing density within a cluster depends
weakly on its size. AsNtotal increases from 513 to 718, the physical
dimensions of a cluster with a given size decrease slightly; this is
consistent with the shift of peaks in pair correlation functions
(Fig. 2G). Cluster-size-dependent velocity Cvðx;y;nÞ and orienta-
tion Cθðx;y;nÞ correlation functions show a high level of coher-
ence within a cluster. Their numerical values at a point on the
edge of clusters, plotted in Fig. 3E, decrease slightly from 0.85 to
0.7 as n increases from 3 to 125.5. Furthermore, correlation func-
tions computed in clusters of the same size exhibit little depen-
dence on Ntotal, as shown by data with different colors in Fig. 3E.

The probability to find a cluster with size n is described by the
cluster size distribution function, PðnÞ, as shown in Fig. 4 for three
density conditions. PðnÞ first decays as a power law (see Inset),
then evolves into an exponential tail (main plot). Quantitatively,
PðnÞ is well described by

PðnÞ ¼ An−be−n∕nc ; [1]

where the cutoff size nc characterizes the transition from
power law to exponential behavior. We treat b and nc as fitting
parameters, and prefactor A is determined by a normalization
condition: ∑nPðnÞ ¼ 1, where the summation over n runs from
1 to the size of the largest cluster observed. We find that the ex-
ponent b is independent of bacterial density (b ¼ 1.85), whereas
nc increases with bacterial density, nc ¼ 6.5 for Ntotal ¼ 343 and
nc ¼ 75 for Ntotal ¼ 718. The rapid increase of the cutoff size nc
with Ntotal means that the probability of finding large clusters
grows markedly as the density of bacteria increases, which is pre-
sumably the reason for the larger correlation length in Fig. 1 for
Ntotal ¼ 718. The prefactor A decreases from A ¼ 0.75 for
Ntotal ¼ 343 to A ¼ 0.57 for Ntotal ¼ 718; the change in A value
is small enough that we can rescale and collapse all data onto a
single curve as shown in the inset of Fig. 4. Beyond our system,
the cluster size distribution described by Eq. 1 has been observed
in fish schools and buffalo herds (8, 36, 37), which suggests
general principles of collective motion across many length scales.

Density Fluctuations. Bacteria in clusters are closely packed, which
leads to high local density. Clusters are mobile and they often
leave empty space in regions they just pass; this leads to low den-
sity in those regions. Consequently, mobile clusters cause large
density fluctuations, as shown by a temporal record of the total
number of bacteria in the whole imaging window in Fig. 5A. This
record exhibits a maximum about twice as large as the minimum
and has a standard deviation ΔN ¼ 71 about 10% of the mean.
Besides being large in amplitude, these density fluctuations scale
with the mean differently from fluctuations in systems in thermo-
dynamic equilibrium (7, 12–14, 16, 35, 38). For systems in thermal
equilibrium where fluctuations obey the central limit theorem,
ΔN is proportional to

ffiffiffiffi

N
p

; therefore ΔN∕
ffiffiffiffi

N
p

should be a con-
stant for all N. However, Fig. 5B shows that, for Ntotal ¼ 343,
where the cluster sizes remain small, ΔN∕

ffiffiffiffi

N
p

initially increases,
then saturates. For higher density (Ntotal ¼ 718), the data show
anomalous density fluctuations, sometimes called giant number
fluctuations (7, 13). Here, the standard deviation ΔN grows more
rapidly than

ffiffiffiffi

N
p

and scales as ΔN ∝ N0.75�0.03. Such anomalous
density fluctuations have been observed in a numerical model of
self-propelled polar particles that move unidirectionally like bac-
teria but interact differently according to phenomenological rules
(13). The scaling exponent 0.8 found in the simulations is close to
0.75� 0.03 measured for bacteria, which suggests that general
statistical properties of collective motion might be independent
of the details of microscopic interactions. Systems of apolar
(bidirectionally moving) particles also exhibit anomalous density
fluctuations but with a scaling exponent closer to 1, as found in
theory (16), numerics (12), and experiments (7, 38). Thus the
scaling exponent seems to depend on the mode of motion of
the individual particles.

Discussion
Though bacteria have no central nervous system and are orders of
magnitude smaller in physical dimension than macroscopic ani-
mals such as birds or fish (1–6), they locally align their individual
motions like their macroscopic counterparts. Local alignment,
which can arise from different interactions in different systems,
is the essential ingredient responsible for collective motion ac-
cording to models (8–13) and theories (14–16) designed to cap-
ture general principles of collective motion in a wide range of
systems. Locally aligned bacteria move collectively in dynamic
clusters with distinct statistical properties. These clusters lead
to large fluctuations in population density, which exhibit an
anomalous scaling with system sizes.

Our results demonstrate that bacteria are an excellent model
system for studying general principles of collective motion. Their

Fig. 3. Statistical properties of dynamic clusters. (A) Cluster-size-dependent

pair correlation gðx;y;nÞ, (B) orientational correlation Cθðx;y;nÞ, and (C) velo-

city correlation Cvðx;y;nÞ functions. In A, the black line is the contour for

gðx;y;nÞ ¼ 0.1, which intersects the x and y axes at ðλx ;0Þ and ð0;λyÞ. Longi-
tudinal λy and transverse λx lengthscales are plotted in D as functions of the

cluster size n. The black dashed lines in D are fits of λ ∝ n0.5
c . In E, values of

velocity and orientational correlation at ð0;λyÞ are plotted against n. In D and

E, data in blue and red are from Ntotal ¼ 718 and Ntotal ¼ 513, respectively.

More cluster-size-dependent correlation functions computed at various

conditions can be found in Figs. S2 and S3B.

Fig. 4. Size distribution of bacterial clusters for three bacterial densities:

Ntotal ¼ 343 (squares), Ntotal ¼ 539 (circles), and Ntotal ¼ 718 (triangles). Solid

lines are fits to Eq. 1. (Inset) All data collapse onto a master curve by rescaling

and are plotted in a log-log frame with a solid line showing the rescaled fit.
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dynamics can be accurately quantified from the individual to the
population level in the lab, their physical environment can be
systematically controlled, and biological characteristics such as
individual motility can be changed through genetic manipulations
(17, 21, 23).

Materials and Methods
Bacteria Strain and Colony Growth. Wild-type B. subtilis strain 3610 is a

Gram-positive bacterium with a rod-shaped body and multiple flagella,

which generate a propelling force in the direction of its body (21, 22).

They swim with a mean speed about 40 μm∕s in a thin liquid film on the

substrate (24). In our experiments, the bacteria have mean dimensions of

0.72 μm × 7.4 μm (see Fig. S4 E and F).

Colonies grow on soft (0.5%) LB agar substrates. For inoculation, 5 μL of B.

subtilis overnight culture (OD650 ¼ 1) is placed on the agar. The inoculated

gel is stored in an incubator at 30 °C and 90% humidity. After a lag time

of 2 h, a colony starts to expand outward isotropically with a speed 1.4 cm∕

hour (23).

Imaging Procedure. After growing for 1.5 h, the colony (2.1 cm in radius) is

placed under an optical microscope (Olympus IX50 with an LD 60X Phase con-

trast PH2 objective) for measurements. The imaging window (90 × 90 μm2) is

positioned initially at the edge of the colony, and its position in the labora-

tory reference frame is left unchanged throughout the experiments. As the

colony expands, the observed density of bacteria increases as a function of

time due to a gradient of bacterial density from the edge to the interior of

the colony. As shown in Fig. S5, the total number of bacteria Ntotal increases

from 340 to 720 in 35 min, and then Ntotal saturates. The radius of a colony

increases for 0.82 cm in 35 min, from which we estimate the density gradient

near the colony edge is 465∕cm. This means the spatial density variation

within the imaging window is negligible.

At each density condition, we record 60 frame∕s for 100 s, during which

the increase in Ntotal is not significant (about 3%), and the system is in a qua-

sisteady state. As shown in Figs. S6 and S7, the correlation times of density,

velocity, and orientation fluctuations are about 0.2–0.4 s. Therefore, the

number of statistically independent configurations sampled within 100 s is

large enough to yield good statistics.

Image Analysis and Bacteria Tracking. A typical raw image (1;000 × 1;000

pixels) is shown in Fig. S4A. The closely packed bacteria are in such close

proximity in the image that simple procedures such as edge detection and

intensity thresholding cannot separate them. In order to “isolate” a bacte-

rium, we first obtain a background image by smoothing the original image

with a moving Hamming window (7 × 7 pixels), and then the background is

subtracted from the original image. A background-removed image is shown

in Fig. S4B. Then a gradient-based edge-detection algorithm is applied to

extract the edges of a bacterium. A binary image, as shown in Fig. S4C, is

constructed such that only pixels inside the extracted edges are set to be

white. Properties of the resultant white objects, such as center of mass,

orientations, and sizes, are extracted by Matlab functions bwlabel and

regionprops. White objects other than bacteria in binary images (cf.

Fig. S4C) are eliminated by requiring each object to be elongated with an

aspect ratio greater than 4. The final results are plotted on top of the original

image in Fig. S4D, where the centers of mass of the bacteria are shown by red

crosses and edges of the bacteria by blue lines.

To construct bacteria trajectories, we use a standard particle-tracking

algorithm based on a minimum distance criterion between bacteria in suc-

cessive frames. From the trajectories, we compute instantaneous velocities,

~vi . Because flagella are not resolved in our experiments, we cannot distin-

guish cell “head” from “tail” (where flagella connect to cell body) from static

images. In order to determine the orientation vector ŷ i uniquely, we assume

the angle difference between ŷ i and velocity ~vi is less than π∕2. All image

analysis and tracking programs are developed in Matlab.

Cluster Identification. First, two bacteria are identified to be connected if the

distance between their center of masses is less than Rd ¼ 5.4 μm and the dif-

ference in their directions of motion is less than Ad ¼ 20 degrees. We then

define clusters recursively: A bacterium belongs to a cluster if it is connected

to any other bacterium belonging to a cluster. Nine representative configura-

tions of clusters are shown in Fig. S1. The majority of the clusters are elon-

gated along the direction of motion.

The two parameters Rd ¼ 5.4 μm and Ad ¼ 20 degrees used to identify

clusters are empirically chosen, based on correlation functions and instanta-

neous fields. We find that, around the chosen values (Rd ¼ 5.4 μm and Ad ¼
20 degrees), the end results depend only weakly on the particular values of

Rd and Ad . As shown in Fig. S3A, the cluster size distributions extracted under

five sets of Rd and Ad are nearly indistinguishable. Higher values for Rd and

Ad lead to slightly greater numbers of large clusters. Further, the cluster-size-

Fig. 5. Anomalous density fluctuations in collectively moving bacteria. (A) Total number of bacteria in the field of view as a function of time. Two snapshots,

corresponding to minimal and maximal instantaneous bacteria density, are shown as insets. (B) The magnitude of the density fluctuations (quantified by the

ratio of ΔN to
ffiffiffiffi

N
p

) against the mean bacterial number N, for interrogation areas of various sizes. Results from three conditions are shown: Ntotal ¼ 343

(squares), Ntotal ¼ 539 (circles), and Ntotal ¼ 718 (triangles). The solid line in B has a slope of 0.25. To obtain the data in B, we define a series of interrogation

areas centered at the imaging window with increasing sizes from Ai ¼ 5.4 × 5.4 μm2 to 90 × 90 μm2. We then construct a temporal record of the number of

bacteria in each interrogation area Ai (similar to the one in A). From these temporal records, we compute the standard deviation ΔNðAiÞ and the mean NðAiÞ
for each Ai .
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dependent correlation functions (for 81 ≤ n ≤ 110) computed for different

parameters in Fig. S3B also exhibit little difference. Lower values of Rd

and Ad naturally lead to slightly higher correlations for velocity and orienta-

tion (first row in Fig. S3B).

Definition of Spatial Correlation Functions. The two-dimensional pair correla-

tion is defined as

gðx;yÞ ¼ 1

ρ

�

∑
j≠i

δ½xx̂i þ yŷi − ð ~ri − ~rjÞ�
�

i

; [2]

where δ is a Dirac function, ρ ¼ Ntotal∕A is the area density, h…ii represents
average over all reference bacteria i, and the position difference Δ ~r ¼ xx̂iþ
yŷ i is expressed in ith local frame, as defined in the inset of Fig. 1A. The ori-

entation correlation function and velocity correlation function are defined as

Cθðx;yÞ ¼ hðŷi · ŷjÞδ½xx̂i þ yŷi − ð ~ri − ~rjÞ�iij [3]

and

Cvðx;yÞ ¼
hð ~vi · ~vjÞδ½xx̂i þ yŷi − ð ~ri − ~rjÞ�iij

h ~vi · ~viii
; [4]

where h…iij represents average over all possible pairs.
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