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Collective Motion of Particles at Finite Temperatures*l 
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Research Institute for Fundamental Physics, Kyoto University, Kyoto 

(Received May 11, 1962) 

A quantum-statistical theory of frequency spectra and damping constants of the col

lective motion of interacting particles at finite temperatures is presented, and used to clarify 

several problems. The formulation is based on the explicit recognition of the fact that a 

set of collective variables , properly chosen describe the collective motion in such a way 

that the average values of the collective variables at a time determine their average values 

thereafter. 

The frequency distribution of the density fluctuations in fluids is thus analyzed, and 

molecular expressions for the intensities and widths of the spectral lines are obtained. The 

widths are written in terms of generalized transport coefficients which depend upon the 

wavelength of the collective oscillation or the frequency spectrum. The expressions are 

valid even in the case in which the hydrodynamical description is inapplicable, and turn 

out to be useful for describing the sound attenuation in liquid helium II at low temperatures 

and the inelastic scattering of neutrons by liquids. 

The transport coefficients of fluids are formulated in terms of equilibrium fluctuations 

from a new point of view without the use of the local equilibrium ensemble. The results 

for the shear viscosity and thermal conductivity agree with those obtained by the author 

previously. A new term, however, is found to be added to the dynamical flux determining 

the bulk viscosity. This term arises as a result of subtracting a pressure fluctuation as

sociated with the fluctuation of the mass and energy densities to define a random force. 

§ 1. Introduction 

In spite of atomic random motion, a macroscopic body exhibits a variety of 

types of collective organized motion, such as sound waves and thermal conduc

tion. The hydrodynamical equations are known to describe the collective motion 

of fluids. A number of investigationst-uJ have been devoted to the statistical

mechanical foundation of these equations with the purpose, in particular, of 

deriving molecular expressions for the transport coefficients involved, and with 

the hope of finding a general prescription for dealing with the collective motion 

of interacting particles. If the macroscopic state of fluids can be described by 

one local velocity, one local temperature, and one local mass density, then the 

usual hydrodynamical equations were shown to hold in the limitation of linear 

dissipative process, and molecular expressions for the transport coefficients were 

derived in terms of the time fluctuation of dynamical fluxes in equilibrium.3l 

In the derivation it was assumed that the collective motion takes place slowly 

*l A preliminary report of this work was published in Prog. Theor. Phys. 27 (1962), 427. 
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764 H. Mori 

so that the transport coefficients are independent of the frequency of the collective 

oscillation. However, there are a number of important phenomena not satisfying 

this assumption ; for instance, sound attenuation in liquids and solids at very 

low temperatures, and transport in plasmas. The treatment of the second sound 

waves in liquid He II also requires a more general theory of collective motion. 

Recently the method of two-time Green's function has been developed to 

study many-body systems.6>' 7> However, the existing approximations suffer from 

several defects/>,B> and there is no powerful approximation found for truncating 

the hierarchy equations for the Green's functions of different orders which is 

generally valid for treating the damping of collective motion. For instance, the 

treatment of the sound waves with this method has not been successful}> 

The collective motion of ferro- and antiferromagnetic spins ~as been studied 

on the basis of the statistical mechanics of irreversible processes to clarify the 

dynamical cooperative phenomena of spins below and above the Curie points.10> 

In this paper, the collective motion of fluids will be studied ftom a similar, but 

more refined, point of view. 

Since Kubo's complete formulation of the linear response of macroscopic 

systems to mechanical disturbances,11> the importance of obtaining the time

fluctuation expression for a transport coefficient has been fully recognized. 

However, there still remains an ambiguity in the formulation of transport coef

ficients for thermodynamical disturbances. For instance, thermodynamical pa

rameters, such as pressure and chemical potential, have been introduced in the 

theory without deriving them explicitly from the nonequilibrium density matrix 

of the system. One of the aims of the present paper is to remove such an 

ambiguity by avoiding the use of the local equilibrium ensemble. 

In § 2, a set of relaxation functions are discussed to describe a disturbed 

state of a fluid. It is pointed out that the use of the relaxation function is 

particularly convenient for determining the collective motion at finite tempera

tures. In § 3, we present a method for calculating the relaxation functions of 

the collective variables. For illustration, the damping constant of the plasma 

oscillation is calculated. An expression for the isothermal sound attenuation is 

derived, and its application to the problem of the first sound attenuation in 

liquid He II at low temperatures is suggested. In § 4, the density fluctuation 

in liquids is studied, and three normal modes and their frequencies and damping 

constants are determined. In § 5, the damping constants are calculated for small 

wave numbers, and a new theory of transport coefficients is obtained. The last 

section is devoted to a summary and discussions. 

§ 2. A set of relaxation functions 

A collective motion is produced by the excitation of the system by an ex

ternal disturbance, being able to be determined by studying the corresponding 
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Collective Motion of Particles at Finite TemperatU?·es 765 

response of the system. 

Let us take the inelastic scattering of neutrons by a monatomic liquid with

out spin. According to van Hove/2) the scattering cross section is simply related 

to the time correlation function of the number density of the liquid, <nk (t) nit), 

where 

<A>= Tr pA, p = e-.en /Tr e-13H, 

H being the Hamiltonian of the liquid, and 

nk= \ dr exp(ik·r) n(r) =l.:f=l exp (ik·r1), 
.,v 

(2·1) 

(2·2) 

where the liquid has been assumed to consist of N particles in a volume V, 

and r1 denotes the coordinate of the j-th particle. The wave vector k corresponds 

to the momentum transfer of the scattered neutron, nk (t) is the Heisenberg 

operator p.:fter time t, and the asterisk * means the Hermitean conjugate. The 

time dependence of the correlation function determines the collective excitfition 

produced by the neutron scattering, and has been studied by many authors.12l'13l 

However, it is more convenient to consider the relaxation matrix 

where 

[ 

(nk(t), nk *) 

x"' (t) = (Hk (t), nk *) 

(nk (t)' nk *) 

(nk (t) , Hk *) 

(Hk (t), Hk *) 

Cnk (t), Hk *) 

(n,,. (t)' nk*) ] 

CH" Ct), nk *) , 

Cnk(t), nk*) . 

(A, B) = r: dJ..<e'H Ae-'-HB)- f3<A)<B) 

= (B, A)= (A*, B*) *, 

(2·3) 

(2·4) 

(2·5) 

and Hk is the Fourier component of the Hamiltonian density, and izk denotes 

the time derivative of nk, (i/ft) [H, nk]. The relation between the correlation 

function <nk (t) n1;'t) and the relaxation function (nk (t), n"n can be obtained from 

the fluctuation-dissipation theorem.11l In the classical limit, we have (A, B) 

=f3<AB). 

The reason for taking the relaxation matrix x"' (t) is the following. When 

a density fltJ.ctuation nk occurs, a flow nk is produced according to the equation 

of continuity. A work due . to the expansion and compression of mass elements 

is described by Hk. Thus nk, izk, and Hk are strongly coupled, and form a set 

of collective variables for describing the density fluctuation. Then we can as

sume the following relation for small wave numbers : 

(2·6) 

where 

(2·7) 
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766 H. Mori 

The only nonsingular solution for (2 · 6) is E1c (t) = exp (tt9Tc) for t>O. t9Tc is a 
constant matrix, and the imaginary and real parts of its eigenvalues give the 
eigenfrequencies and damping constants of the collective modes involved in the 

density fluctuation. Explicit expressions for t9lc and its eigenvalues will be de
rived later. 

The translation-operator property (2 · 6) is the fundamental relation in the 
present theory. To clarify its meaning, let us consider a nonequilibrium mon
atomic liquid with local temperature T (r), velocity potential ¢ (r), and local 

chemical potential fJ. (r). In the linear approximation, the local equilibrium 
ensemble then becomes 

Pt=P{l+ L:qr dJ...e'H[Tq'Hq*+¢qnq*+ (fJ.q-fJ.Tq')n:Je-'H}, (2·8) 

where T~"=- T,jT, and Tq, ¢q, and /J.q are the Fourier components of the devia
tions of the corresponding parameters from the equilibrium values. The precise 
density matrix p (t) of the liquid deviates from the local equilibrium ensemble 
(2·8). However, since the temporal development of a macroscopic system is, 

except an initial transient period of a microscopic time scale r ,., independent 
·of the way of the initial preparation of the system as far as the initial values 
of the macroscopic state variables are fixed to be the same, we take p (O) = Pt~o 
as the initial condition to know the noneq_uilibrium state of the liquid after time 

t>r m·3l Since the average value at time t is given by (A) (t) = Tr p (0) A (t), we 
thus obtain 

(2·9) 

Since the collective variables · nk, H 1"' and nk become the constants of motion as 
k goes to zero, the relaxation time of (2 · 9) is, for small values of k, much 

larger than the initial transient time r m so that (2 · 9) can be used to study the 
time dependence of the normalized relaxation matrix E1c (t). The average values 
of the collective variables at a time determine their average values thereafter. 
This prediction property of the average behavior is formulated in the form of 
(2 · 6) . Thus the translation-operator property (2 · 6) represents the deterministic 

property of the macroscopic laws. 

It is instructive to consider a Gaussian random process and see a parallelism 
between our theory and the Gaussian Markoff process. For a system performing 
small fluctuations around an equilibrium state, it is assumed that the macroscopic 
variables defining a state are Gaussian random variables.14l'15l As is well known, 

a classical Gaussian random process is determined by a set of the time-correlation 

functions of the random variables. The average behavior of the process, defined 
by the conditional average values of the state variables with their initial values 
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Collective Motion of Particles at Finite Temperatures 767 

given, is described by the time-correlation functions.14l On the other hand, since 

the average regression of spontaneous fluctuations in equilibrium is equivalent to the 

macroscopic motion of disturbed states, the conditional average values should obey 

the same laws as the corresponding nonequilibrium average values described by 

the relaxation functions, (2 · 9) . This situation implies taking the relaxation 

functions rather than the time-correlation functions in defining a quantum Gaussian 

random process. In the quantum-mechanical case; a Gaussian random process 

in aged systems is thus given by the Gaussian probability distributions whose 

covariance matrices are defined by the relaxation functions (divided by {3) of the 

random variables, and the average behavior of the state variables is described by 

the corresponding relaxation matrix. Therefore, if one assumes a Gaussian 

random process for describing the spontaneous fluctuations of the collective 

variables nk, H 1" and nk, then the translation-operator property (2 · 6) corresponds 

to Doob's condition for the process to be MarkoffianYl 

We note some properties of the relaxation function. Let Fk and Gk be the 

Fourier components of Hermitean density operators ; F 11 = F -k· Since the liquid 

is isotropic, (F k (t), Gk*) is invariant with respect to the inversion k--"? - k and 

turns out to be real. In the absence of an external parameter odd with respect 

to the time reversal, the Hamiltonian and the dynamical motion of the system 

are invariant with respect to the time reversal so that we have 

(Fk(t), Gk*) =cFca(Fk(-t), Gk*) =cFca(Gk(t), Fi:.), 

(Fk, Gk*) =0, if cFca= -1, 

(2·10) 

(2·11) 

where cF is + 1 for an even variable and -1 for an odd variable with respect 

to the time reversal. 

§ 3. Normal modes at finite temperatures 

The dynamical behavior of the collective variables was shown to be de

scribed most conveniently by the relaxation functions. In this section, we shall 

first formulate mathematical techniques required for the study of the relaxation 

functions, taking a simple example, and secondly discuss a few applications. 

Let us consider a collective motion which is described by two variables Q 

and P. The variables are assumed to have the following properties : denoting 

the time-reversal operator by K/ 6) 

The relaxation matrix is then 

[ 
(Q(t)' Q*) 

'X (t) = 

(P(t), Q*) 

(Q (t), P*) ]·. 

(P(t), P*) 

(3·1) 

(3·2) 

The matrix elements are assumed to be real in accordance with the relaxation 
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768 H. Mori 

function (F1 •• (t), Gl) defined just before (2 ·10). It is also assumed that ·any 

external parameter odd with respect to the time reversal is not present. Then, 

from (2 ·11) we have 

(Q, P*) = (Q, Q*) = (P, P*) = 0. 

The normalized relaxation matrix thus takes the form 

l (Q(t)' Q*) 

(Q, Q*) 
E(t) =x(t) ·x-1 (0) = 

(P(t), Q*) 

(Q, Q*) 

(Q(t), P*)j 
(P, P*) 

(P(t), P*) 

(P, P*) 

(3·3) 

(3·4) 

Now the problem is to determine the time dependence of (3 · 4) or the 

following moments of the normalized relaxation matrix : 

"' 
((J)n)=) d(J) (J)nE((J)) = ( -i)n[dnE(t) ldtn]t=~· (3·5) 

The first moment matrix has the form 

iw=i<(J)>=[ o o1], 
-Q2 

(3·6) 

where . 
!22 = (P, Q*) I (Q, Q*) = (P, P*) I (Q, Q*)' (3·7) 

and P has been assumed to be normalized so that 

(Q, P*) I (P, P*) = 1. (3·8) 

The first moment matrix can easily be diagonalized. Namely, 

[ 
i.Q 0 ] 

U·iw·U-1 = 0 -i.Q . (3·9) 

The diagonal transformation U is found to be 

[ 
i.Q 

U= 
-i.Q 

[ 
1 

u-1=_1_ 
2i.Q i.Q 

-1 ]· 
i.Q 

(3 ·10) 

Equation (3 · 7) for Q provides us with the eigenfrequencies of the collective 

motion. The higher moments ((J)n), n>2, yield a damping and a shift of fre

quency. To proceed further, it is convenient to define the normal coordinates 

by 

[ ~ ]=u·[ Q ]=[ P+i.SJQ ], 
I P P-z.QQ 

(3·11) 
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Collective Motion of Particles at Finite Temperatures 769 

(I, I*)= (l, l*) = 2 (P, P*), 

(I, l*) = (l, I*) = 0. (3·12) 

The transformation of E(t) by U thus leads to 

where 

E(t) =U·E(t) ·U-1 =[ Ht) 
r; (t) 

Ht) = (I(t)' I*) I (I, I*)' 

r;(t) ] ' 

~* (t) 
(3 ·13) 

(3 ·14) 

= [(P(t), P*) +.!22 (Q(t), Q*) -2i.Q(P(t), Q*)]f2(P, P*), 
(3·15) 

r; (t) = (I (t), l*) I (l, l*), (3·16) 

= [(P(t), P*) -.!22 (Q(t), Q*)]I2(P, P*), (3 ·17) 

where, in deriving (3 ·15) and (3 ·17) , use has been made of the relation 

(P(t), Q*) =- (Q(t), P*) which is obtained fn:>m (2·10). The function Ht) 

represents the time-dependent autocorrelation of the normal modes, and r; (t) 

provides us with a measure of coupling between the two normal coordinates. 

The inverse transformation of (3 ·13) leads to 

,..,. [ Rent) -r; (t) 
.t!, (t) = 

-.Qlm~(t). 

Im~ (t) 1.!2 ] 

Re~(t) +r;(t) 
(3·18) 

E(t) represents the transformation between the normal coordinates at dif

ferent times. If one could guess the normal coordinates from the beginning, 

one would at once obtain (3 ·13) instead of (3 · 4), the frequency being given 

by 

.!J=(i; I*)li(I, I*)=-<[1, I*])lh(I, I*). (3·19) 

If one neglects the dynamical coupling between the normal modes, r; (t), the 

damping and shift of frequency of the normal modes can be calculated in the 

same way as in the case of the ferromagnetic spin waves.10J The result is 

~(t) =exp[t(i.Q-T)], (3. 20) 

where 

"' 
T= J dt e-it!J (K(t), K*) I (I, I*), (3. 21) 

0 

K=I-i.QI. (3· 22) 

Here it has been assumed that 1>rrc, where r IS the real part of r and rc 
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770 H. Mori 

denotes the correlation time of the force K(t) in which the integrand of (3·21) 

vanishes. The time rr=r-1 represents the relaxation time of the normal mode, 

and r c is a microscopic time in which a dynamical coherence disappears. This 

assumption is a formulation of the fact that a collective coordinate is an ap

proximate constant of motion. From (3 ·19) and (3 · 22) we have (K, I*) = 0. 

This means that the force K acting on the collective mode is nearly statistically

independent of the normal coordinate. The fluctuation of this force thus de

termines the damping and shift of frequency. It should be noted here that, 

when 52-r c ~ 1, the imaginary part of (3 · 21) vanishes, thus leading to no shift 

of frequency. 

A general formulation including the coupling between the normal modes is 

obtained in the following manner. The transformed normalized relaxation matrix 

(3 ·13) is written as 

(3· 23) 

where S denotes a column vector consisting of the normal coordinates and the 

asterisk * means the Hermitean conjugate, S* being thus a row vector. Let us 

denote the diagonal matrix of eigenfrequencies by fJ. With the aid of the 

identity 

t 

S (t) = exp (itfi) · [S +) ds exp (- is!J) · J{(s)], (3· 24) 

0 

where J{ denotes the corresponding column vector of the forces, we obtain 

t 

E (t) = exp (itfi) [1-) ds exp (- isfi) · f'. · exp (isfi)], (3· 25) 

0 

where 

8 

f'. =) dr(J{ (r), J{*) · (S, S*) - 1 • exp (- ir Q), (3. 26) 

0 

and it has been used that (S, S*) is a diagonal matrix. Let us assume that 

the matrix elements of the integrand matrix of (3 · 26) vanish in a short time 

interval r c· When time intervals t of interest are much longer than the cor

relation time r c, we replace f. in (3 · 25) by f' "'' neglecting terms newly pro

duced. The neglect is valid for time intervals much smaller than the relaxation 

time r r = r 1 • Then (3 · 25) is equal to the first two terms in the ordered ex

ponential expansion of the following expression in terms of f' : 

E(t) =:exp[t(iQ-T)], (3· 27) 

where 

t = r dt (J{ (t), J{*) · (S, S*) - 1 • exp (- itfi), (3· 28) 
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Collective Motion of Particles at Finite Temperatures 

JC=j-ifi-s. 
Equation (3 · 27) fulfills the translation-operator property 

E(t+s) =E(t) ·E(s). 

771 

(3·29) 

(3. 30) 

From this property, it turns out that (3 · 27) is valid for any time interval much 

longer than the correlation time -r;,. Equation (3 · 27) is thus an asymptotic equa

tion derived on the basis of the macroscopic prediction property and the fact 

that the relaxation time of the collective motion -r r is much larger than the cor

relation time of the forces r •. If one neglects the off-diagonal elements of (3 · 28) 

arising from the coupling between the different forces, then (3 · 27) leads to the 

previous results (3 · 20) and (3 · 21). 

Equations (3 · 20) and (3 · 27) correspond to the Lorentzian limit well known 

in the theory of line shape.17J Thus the Lorentzian limit is valid for a good 

collective mode. However, we often meet with the situation that a collective 

coordinate ceases to be a good constant of motion, as in the case of large 

momentum transfers in the neutron scattering. Such a case would be described 

very well by the assumption of Gaussian random process. Corresponding to 

this phenomenological treatment, (3 · 25) may be written as 
t 

E(t) =exp<+l[J ds(ifi-f.)], (3. 31) 

0 

where expc+l denotes the ordered exponential (time ordering from the right). 

In the Lorentzian limit in which -r r~'t ., (3 · 31) agrees with (3 · 27). In the 

Gaussian limit in which 'tr~r. and !J-rr~1, (3·31) leads to 

E(t) =exp(itfi) ·exp[- (t2/2) (J(, J(*) · (S, S*)-1], (3·32) 

which does not fulfill the translation-operator property (3 · 30) . 

As an application, we consider an isothermal density fluctuation. Taking 

Q=nk and P=nk, we obtain 

Ik = nk + i!J"nk, (3 · 33) 

where Q" is the eigenfrequency ; from (3 • 7) , 

· !J"2 =(nk,nk*)/(nk,nk*), (3·34) 

~ [k 2/mS (k)] (h!J"/2) coth ({1h!J"/2), (3 · 35) 

where S (k) =(nknk*)/ N, k=/=0, is the pair correlation function of particles. 

Equation (3 · 35) is obtained by neglecting the coupling between the normal 

modes r; (t) and the quantity r". *l This neglect would be justified for small 

*l From (3·18) and (3·20), we obtain 

(nk (t), nk *);;::; (nk, nk *) cos (!lkt). 

The fluctuation-dissipation theorem11l thus leads to 

(nk, nk *);;;(nknk *>f}zh!l" coth(tSh!l"). 

Therefore, we obtain (3·35) by using the relation 

(nk, izk *) =- (i/h) ([nk, nk *]> =Nk2fm. 
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772 H. Mm-i 

wave numbers. Since (h, Il) =2(n,.., n,..*) =2Nk2/m, (3·21) leads to 

(3· 36) 

where 

(3·37) 

The real part r 1c of (3 · 36) provides us with the damping of the isothermal 

density oscillation. 

A calculation of (3 · 34) and (3 · 36) leads to approximate expressions for 

the plasma frequency and damping for an electron gas with a uniform back

ground of positive charge ensuring the overall neutrality of the system. It would 

be interesting to see how the Landau damping comes out from these expressions. 

The use of the equation of motion for n,.. yields 

where 

(3. 38) 

(3. 39) 

(3·40) 

(3. 41) 

Here we have neglected the Coulomb interaction terms other than that of yielding 

the first term of (3 · 38) . Equation (3 · 39) comes out from the kinetic energy 

of electrons, and represents an effective force acting on the plasma oscillation 

as a result of thermal motion of electrons. This thermal motion produces the 

plasma damping. Inserting (3 · 39) into (3 · 36) and calculating the time depend

ence and the ensemble average with the free electron Hamiltonian, we obtain 

nm 1 
r~c= --- -:E [h- f~crq] W(k, q) (J (!J~c+ cq/h- c~crq/h), 

2Nk2 h!J~c '1 

(3 ·42) 

where fq=(aiaq) is the Fermi distribution, and cq= (hq) 2/2m. In the classical 

limit h = 0, the integration region of (3 · 42) is limited to oo >P > (m!J~c/ k) in 

the momentum space due to the energy conservation k·p/m=!J~c. Taking the 

Boltzmann distribution, we thus obtain 

(3·43) 

where ra = (ksT / m!J~c 2 ) 112 is the De bye shielding radius. Equation (3 · 43) is 

just equal to that obtained first by Landau.18> In order to clarify the problem 

of the k2 term in the plasma frequency, however, we would have to consider 

the possibility of existence of a better normal coordinate than (3 · 33) , and the 

coupling with the heat flow. 

The isothermal. sound frequehcy and attenuation are also obtained. from 
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Collective Motion of Particles at Finite Temperatures 773 

(3·35) and. (3·36). The attenuation constant is given by a~c=rdc, c being 

the speed of sound. Equation (3 · 35) gives us the energy spectrum of excita

tions with small wave numbers in liquid He II. The result is in agreement 

with the quantum theory of weakly excited states.7l'19l Therefore, the present 

theory is expected to be useful for the investigation of transport phenomena in 

liquid He II. The first sound attenuation at temperatures below 1 o K has been 

measured at a frequency of 12 Me/sec by Chase and Hedin and by others, and 

Khalatnikov's theory turned out to yield values too much smaller than those 

observed.20J According to Landau's theory, liquid He II at low temperatures is 

described as being a gas of elementary excitations, phonons and rotons. The 

interactions between them result in various transport phenomena. Since an 

explicit expression for the interaction, however, is not completely fixed, the study 

of the sound attenuation is of particular interest. Let us write the Hamiltonian 

in the form 

H = Ho + H1, Ho = "L,q' h!Jq a: aq, 

[aq, a:,J =iJq,q'' aq: ivqli, 

(3·44) 

(3. 45) 

where Vq= (m/2t{hSJqN) 112, and H 1 is the. interaction Hamiltonian between pho

nons. Equation (3 · 45) can be derived by applying the random phase approxi

mation [to the commutation relations for nq and nq. The random force Kk is 

then written as 

(3·46) 

A method for determining the dynamical interaction between phonons is 

obtained by incorporating the hydrodynamical investigation of the force Kk. 

The use of the conservation laws of mass and momentum densities leads, for 

small values of k, to 

K~r.=- (kk/m): Ilk- (ck)k·j~r.-iSJ~clk, (3·47) 

where Ilk is the momentum flux and jk the mass flux. The third term cancels 

the contribution from the collective isothermal fluctuation of the mass density, 

Kk thus repres·enting the effective force ·responsible for the random fluctuations 

of density. Namely, linear terms of Ilk and i~< in ai and aq cancel out the 

third term so that the parts of the fluxes II~r. and jk, which enter into the force, 

can be assumed to consist of terms of higher order than the bilinear in the normal 

coordinates. The main part of (3 · 47) thus have the form 

(3·48) 

and U may be determined from the quantum-hydrodynamical study of the fluxes 

in phonon gases. From (3 · 46), this approximation is equivalent to the following 

effective Hamiltonian : 

(3 ·49) 
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774 H. Mori 

Thus we can determine the dynamical interaction responsible for the sound at

tenuation. This program has been carried out by Kawasaki and the author.21> 

It will be shown that the matrix elements of three phonon process of the con

fluence form have the form 

u~'+l'./2k/2= k~ [p( ~~) T + c( k~:) + c( k~: r ], q>k, (3 ·50) 

p being the mass density, and the attenuation constant obtained by the pertur

bational calculation of (3 · 36) is in quantitative agreement with the observed 

values below 0.4°K, being proportional to Q"T 4• 

As will be seen in § 5, (3 · 36) can be written in terms of generalized coef

ficients of viscosity, and becomes proportional to £2"2 in the high temperature 

region where S2~c-rc~l. Thus (3·36) can be used to calculate the attenuation 

constant beyond 0.4°K. This problem will also be studied, and excellent agree

ment with the observed values will be obtained up to about 0.8°K by the use 

of a simple approximation.21> 

§ 4. Density fluctuation in fluids 

Sound wave propagation, inelastic scattering of neutrons, and the Rayleigh 

scattering of light are directly related to the density fluctuation. In this and 

the following sections, we shall study the density fluctuation in fluids by calcu

lating the relaxation matrix (2 · 3) . 

From (2 ·11) we have 

The normalized relaxatiQn matrix thus takes the form 

where 

[ 

(nk(t), [n%]) (nk(t), [HZ]) 

E" (t) = (Hk (t), [nt]) (HT<(t), [Ht]) 

(izk(t), [ni]), (izk(t), [Ht]) 

(nk(t), [izt]) ] 

(Hk(t), [izt]) . , 

(izk (t)' [izi]) 

[ni] = {nt(Hk, HZ) -Ht(Hk, ni)} /D~c, 

[HZ]={Hi(nk, nZ)-nt(nk, Ht.)}/D~c, 

[ .. *J - . *I C. . *) nk -nk. nk, nk , 

(4·1) 

(4·2) 

(4·3) 

(4·4) 

(4·5) 

(4·6) 

Calculation of the normalized relaxation matrix can be carried out in the 

same way as in § 3. Namely, diagonalizing the first-moment matrix of the 

normalized relaxation matrix, we obtain 
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Collective Motion of Particles at Finite Temperatures 775 

where 

0 

0 

!2~c 2 =- (iik, [ni]) -h~c(iik, [Ht]), 

h~c= ciik, n%) 1 Cnk, nt) 0 

It is convenient to introduce the following quantities : 

Wtlc = {(ilk, nk) (Hk, H%) - (ilk, Ht,) (Hk, nt)} I DlcQTc, 

(1)21, = hd (ilk, HZ) (n,o nt) - (ilk, n t) (nk, H%)} I Die !2~c, ' 

in terms of which 

The normal coordinates are then obtained as 

[ ~1] [ nk] [ ~k+~wt~cnk+~(w2ljh~c)Hk ] ' 
1t = Uo Hk = nk-zwunk-z Cw2dh~c)Hk 

12 nk Hk-h~c nk 

which satisfy the following relations : 

(I I *) c---:· ~*) c. . * 2 
1, 1 = 11>11 =2 nk,nk)=2Nklm, 

CI2, 12*) =D~c!2,/ICnk, nt), 

Cit. L*) = Cit. 12 *) = CL, 12 *) = oo 

(4·7) 

(4o8) 

(4·9) 

(4°10) 

(4oll) 

(4o12) 

(4o13) 

(4o14) 

(4·15) 

(4·16) 

Neglecting the dynamical correlation between the normal modes, we obtain from 

(3o27) 

where 

Cit (t)' 11 *) = Cit. 11 *) exp [t (iQ/c- rlTc)]' 

(h(t)' l;_*) = Cit (t) ' 11 *) *' 

(12 (t) , 12*) = (12, 12 *) exp (- tT21c) , 

ro 

T11c = 2";;k2 j dt exp (- it!J ~c) (K1 (t) , K 1 *) , 
0 

(4o17) 

(4o18) 

(4o19) 

(4o20) 

(4 ° 21) 

where use has been made of ( 4 ·14) and ( 4 o15) 0 The forces acting on the 
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normal modes are given by 

K1 = /1- i!21c !1, 

H. Mori 

=n,,+!2~c[wllc nk+ (w2~c/h~c)Hk] +iCw2dh~c)K2, 

K2=I2=Hk-h1c izk. 

(4·22) 

(4. 23) 

It should be noted that ( 4 ·17) and ( 4 ·19) are the asymptotic equations valid 

for time intervals larger than the correlation time r c in which the integrands 

of (4 · 20) and ( 4 · 21) vanish. In the Gaussian limit, we should employ (3 · 32). 

The relaxation function of the mass density is obtained as 

where 

(nk (t), nk*) = Cn1r. nk *) {~~c exp (- tr11c) cos [t (!2~c + .:1!2~c)] 

+ (1- ¢~c) exp ( -tr21c) }, 

and r and .:1!2 denote the real and imaginary parts of r, respectively. 

(4·24) 

(4· 25) 

The three eigenfrequencies of ( 4 · 7) correspond to the three resonance lines 

observed in the Rayleigh scattering of light by liquids, the first two leading to 

the Brillouin doublet. The widths of the lines are given by r11c and Y 2 ~c, and 

the intensities by cfi~c and (1- ¢~c) . In the limit of small wave numbers, these 

results will be shown later to agree with the hydrodynamical treatment. Recently 

de Gennes studied the moments of the time correlation function of the mass 

density, and clarified the inelastic scattering for large momentum transfer.13> 

However, his method was not successful in covering the case of small momentum 

transfer. Our expressions, however, are valid for the intermediate as well as 

small values of k. Schofield has recently criticized the diffusion model of the neu

tron scattering in the quantum-mechanical case, and introduced a modified time cor

relation function for describing the diffusive motionY> However, our theory 

leads to taking the relaxation function for this purpose. The analysis of the 

widths and intensities will be discussed on a future occasion. 

§ 5. Dynamical fluxes determining the transport coefficients 

With the main purpose of removing the ambiguity in the previous formu

lations of the time-fluctuation expressions for transport coefficients discussed in 

§ 1, ,we shall derive explicit expressions for the coefficients of viscosity and 

thermal conductivity by calculating ( 4 · 20) and ( 4 · 21) for small values of k. 

Let us assume the conservation law of momentum density in the following 

form: 

(5 ·1) 
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Collective Motion of Particles at Finite Temperatures 777 

For instance, the plasma gases are thus excluded. For the values of k satisfying 

the relation ak<I, a being the mean linear range of the intermolecular force, 

the momentum flux tensor takes the form 

Ilk= (I/4m)~ 1 {p 1 p 1 exp (ik·r1) +p1 exp (ik·r1) p1 

+[p1 exp (ik·r1) p1Jf+exp(ik·r1) p1 p1} 

+ (1/2) ~J, 1 FJ! (r1 - r 1) exp (ik · r1), (5·2) 

where F11 denotes the intermolecular force between j and l, and t means the 

transpose of the tensor. Since the intermolecular force is spherically symmetric, 

the momentum flux becomes a symmetric tensor. According to the virial theorem, 

the pressure p is given by 

(5·3) 

Therefore we obtain 

(5·4) 

where (F k)' denotes the procedure of taking the ensemble average after ex

panding F k in powers of the wave vector k and retaining the lowest order term. 

Now we calculate various quantities involved for small values of. k. First 

consider (nk, nl) and let k tend to zero. The thermal fluctuation of the number 

and Hamiltonian densities nk and Hk arises due to the interaction between 

macroscopic portions in the liquid whose linear dimension is of the order of 

magnitude of k-1 • This thermal fluctuation can be calculated with the aid of 

the grand canonical ensemble in the following way. Let k tend to zero after letting 

the volume of the liquid to be infinity, and consider a large portion V of ma

croscopic dimension in the liquid. We denote the Hamiltonian and the number 

operator of particles of this portion by $£ and Jl, respectively, and redefine the 

density and flux operators in this portion. Then (nk, nk*) for small values of 

k can be replaced by {3( (Jl- N) 2), N = (JZ), where the angular brackets mean 

the grand canonical average defined in this portion. Jl and $£ change in time 

· due to the interaction with the surroundings, performing thermal fluctuations. 

This interaction corresponds to the above-mentioned interaction between .macro

scopic portions in the liquid. Thus, taking the limiting procedure of k----'>0, we 

obtain 

(nk, Ht) =N[hn XT-aT], 

(Hk, Ht) =N[cv T+ (hn XT-aT) 2/nxT], 

(5·5) 

(5·6) 

(5·7) 

where n=N/V, and xT is the isothermal compressibility, h the enthalpy per 

molecule, a the coefficient of thermal expansion at constant pressure, and cv the 

heat capacity per molecule. With the aid of (5 · 4) we also obtain 
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778 H. Mori 

(ilk, nt) =NW/m), 

(nk, in) =N(k2/m)h. 

The use of the above equations thus leads to 

{ 
w11,=S.M1- (ha/cp)] = (!2:/mc2) (opjon)E, 

w2~c=!2,.(ha/cp) = (!2~ch/mc) (opjoE)ru 

(5·8) 

(5·9) 

(5·10) 

(5 ·11) 

(5·12) 

(5·13) 

where cp/cv=Xr/X8 =1+ (a2T/ncvXr), and Xs is the adiabatic compressibility, c 

the adiabatic sound speed, and E the internal energy per unit volume. The 

intensity of the Brillouin doublet ( 4 · 25) is calculated to yield ¢~c = cv/ c p· 

In the derivation of (5 ·5-9) we replaced the (A, B) by the static correla

tion function [J(AB), and calculated them by the use of the grand canonical 

ensemble. This is justified when the wavelength k-1 is of the order of magnitude 

of a macroscopic linear dimension and the frequency is small so that 

(5 ·14) 

Insertion of (5 ·12) and (5 ·13) into ( 4 ·13) leads to the following expres

sions for the normal coordinates : 

Il=nk+i(!2dmc2) [(opjon)Enk+ (opjoE)nHk], 

=n~<+i!2~c[nk+ (ajcp)l2], 

(5 ·15) 

(5·16) 

(5·17) 

With the aid of (5 ·1) and the conservation laws of .energy and· number densities, 

nk=ik·jk, 

the normal forces ( 4 · 22) and ( 4 · 23) are written as 

K1=- (kk/m): Jvk- (1/mc) (opjoE)nkk·Jrk, 

K2=i2=ik·Jrk, 

where 

Jvk=Ilk-1[ (ap;an)E n~<+ (opjoE)nHk], 

Jrk=JHk-hjk. 

(5·18) 

(5·19) 

(5· 20) 

(5. 21) 

(5· 22) 

(5· 23) 

A physical picture of the normal mode 12 is obtained as follows. Consider 

(5 · 21) and (5 · 23) . Since h = (E + p) / n, the second term of (5 · 23) expresses 

the sum of a flow of thermal energy carried by the mass flow and a reversible 

flow of energy produced by the expansion and compression of mass elements. 
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Collective Motion of Particles at Finite Temperatures 779 

Thus K 2 = j 2 denotes the rate of increase in time of energy due to the flow of 
energy other than those associated with the mass flow, namely due to the thermal 
conduction of energy associated with a temperature gradient. 

The Jvk and ]Tk are the Fourier components of Hermitean density operators, 
satisfying (2 ·17), (2 ·19) and (2 · 20) . The flux Jvk is even with respect to the 
time reversal, whereas the flux JTk is odd. Therefore, we have 

(J:;k (t)' J :;~~'*) = (J:;k' (t)' J:;k*)' 

(J:;k(t), Jh*) =- (J?k(t), J:;;.,*), 

(5. 24) 

(5·25) 

where the superscripts 11 and v mean the /1, v component of the tensor in the 
coordinate space, and ~ the ~ component of the vector. Using (5·20) and 

(5 · 21) we thus obtain 

(K1(t), K 1*)=(1/m2) :E k,.k.k,.,k.,(J~'k(t), J:;~~'*) 
pv,pJvl 

(5· 26) 

Namely, the dynamical fluxes Jvk and ]Tk do not couple with each other due 
to the time-reversal property (5 · 25). This situation may be regarded as an 
example of the Curie law that a coupling of thermodynamic fluxes whose tensorial 
orders differ by an odd number does not occur in the entropy production.22J 

In fact, the Curie law may be looked as being a result of the time-reversal 
property. A flux results from a Hermitean scalar quantity by taking the time 

derivative. Thus the flux tensor of odd order is odd with respect to the time 
reversal; whereas the flux of even order is even. Therefore, fluxes whose orders 

differ by an odd number fulfill a relation similar to (5 · 25) , which leads to the 

Curie law. 

Since the system is isotropic, the relaxation functions of the fluxes can be 

written in the form 

(J:;;;(t)' J:;k'*) =r;,/ (t) [&,.,,., & •.• ,+&,.,., &.,,.,] 

+ [cp,/ (t) - (2/3) r;/ (t) J & "'. & "'· "'' 

(J';:k(t), J':)k*) = (1/T) K,,/(t)&.,.,, 

(5. 27) 

(5· 28) 

where terms depending on the direction of the wave vector k should vanish. 

The insertion of (5 · 26-28) into ( 4 · 20) leads to 

Tlk=~k 2 [(cp~c+_!r;~:) +m( _l_ _ _l_) .f~:], (5·29) 
2mN 3 Cv Cp 

where Cf?~:, r;~: and K~: are determined from the parameters cp"' (t), r;~c' (t) and ""' (t), 
respectively, and turn out to be 

00 

cp" + _! r;" = __!_ J dt exp (- it12~c) (J~k. (t), J~k.*), 
3 v 0 

(5. 30) 
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780 H. Mori 

"' 
R~c=_l_ f dtexp(-it!2'")(J'iot,(t),J'i-~), rvJ 

00 

7J~<=_l_ \ dt exp( -it12~c) (J:J:(t), J:J/). v J 

0 

(5·31) 

(5·32) 

If one replaces the k dependent transport coefficients rpk, 1Jk and R'" by the 

coefficients of bulk viscosity, shear viscosity and thermal conductivity, respec

tively, then (5 · 29) agrees with the hydrodynamical expression for the sound 

attenuation constant multiplied by the sound speed, being proportional to !2,/. 
Therefore, (5 · 30), (5 · 31) and (5 · 32) define generalized coefficients of vis

cosity and thermal conductivity. Another type of expression for the shear vis

cosity is obtained from (5 · 27): 
00 

_ 1 r d ( · fl ) (J"'"' ( ) JYY ( ) J"'"'* JYY*) 7J~c---- 1 t exp -zt~~'" vk t - vk t , ,k -, vk . 
4V ., 

0 

(5. 33) 

The rpk can thus be expressed in terms of the flux [Jv~k + J$1, + Jv~] /3. 

The insertion of (5 · 21) and (5 · 28) into ( 4 · 21) leads to 

(5. 34) 

where 
00 

IC~c=- 1 r dt CJ'i-k(t), J'ft). 
TV J . 

(5. 35) 

Equation (5 · 35) does not have the factor exp [- it!Jk], being thus different from 

(5 · 31), although both are determined by the thermal conduction flux Irk· The 

difference is due to that of the collective nature of the two normal modes (5 ·15) 

and (5 ·17) , being related to the fact that the fluctuation of the mass density 

has a restoring force due to the pressure, represented by (5 · 4), whereas the 

fluctuation of the ! 2 does not have a restoring force, <12)' = 0. If one replaces 

the IC~c by the thermal conductivity, then (5 · 34) agrees with the hydrodynamical 

expression for the damping constant of isobaric fluctuation of temperature. 

The correlation time r c of the normal forces represents a molecular time 

characteristic of the dissipative mechanism involved. For dilute gases, the cor

relation time is of the order of magnitude of the mean free time of partides.23l 

If the wavelength k-1 is large so that 

(5. 36) 

we can neglect the k dependence of (5 · 30), (5 · 31), (5 · 32) and (5 · 35), and 

these equations provide us with molecular expressions for the usual coefficients· 

of transport in fluids. The results for the shear viscosity and the thermal con

ductivity agree with those previously obtained.3l.4l However, (5·30) does not 

agree with the previous result for the bulk viscosity, since the second term of 
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Collective Motion of Particles at Finite Temperatures 781 

the flux (5 · 22) is missing in the previous result. The difference can be seen 

more clearly by noting that (5 · 22) leads, in the limit of k~O, to 

J:/.= (Ilo'CJ;_pV) -[ ( :~ t (JZ-<JZ)) + (:~ )n ($£-<$£)) J. (5· 37) 

This new term represents a pressure fluctuation associated with the fluctuation 

of the mass and energy densities, and arises as a result of subtracting the pres

sure fluctuation to define the " random " part K 1 of the force acting on the col

lective motion. , To obtain a physical picture, we denote the pressure fluctuation 

by Pk and write (5 ·15) as 11 = (1/ mc2) [pk + iSJ~cpk] by using the adiabatic approxi

mation. The random force then takes the form K 1 = (1/mc2) [Pk+S2~c 2 Pf,]. Set

ting the random force to be zero, we obtain the collective oscillation without 

damping. The fluctuation of the random force leads to the damping and, there

fore, to the transport coefficients. 

§ 6. Summary and some remarks 

The framework of the present theory may be summarized as follows. Sup

pose that a physical phenomenon of interest is described by a relaxation func

tion (A (t), B*), where A and B are approximate constants of motion. The 

treatment of the relaxation function requires an investigation of the collective 

motion associated. (1) First find the dynamical variables which strongly couple 

with the A, and denote them by AI> ... , An. including A and B. What to be 

obtained in this way depends upon the Hamiltonian and the temperature of the 

system. (2) The dynamical variables .are approximate constants of motion, and 

their dynamical behavior represents a secular motion of the system, being de

scribed by the normalized relaxation matrix 

E (t) = (Jl (t), Jl*) · (Jl, Jl*) -I, (6·1) 

where Jl denotes a column vector of the collective variables A,. (3) The set of 

collective variables are closed in the sense that the temporal development of the 

secular motion are approximately deterministic. Namely, the normalized relaxa

tion matrix fulfills the translation-operator property 

E(t+s) =E(t) ·E(s). (6·2) 

(4) Other degrees of freedom, which weakly couple with the collective variables, 

represent random motion and lead to the damping and shift of frequency of the 

secular organized motion. (5) The normal modes !f are obtained by diagonal

izing the frequency matrix 

iw= cJi, Jl*). (Jl, Jl*) - 1 • (6·3) 

The eigenfrequency matrix fi is assumed to be a nondegenerate and real matrix .. 

Then (!f, !f*) is a diagonal matrix. (6) The damping constants of the normal 
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modes are given by (3·28) and (3·29) in terms of the normal modes S(t) and 

the corresponding random forces J{ (t) . Thus the relaxation function (A (t) , B *) 

is expressed as a superposition of the relaxation functions of the normal modes. 

A similar line of approach has been conceived by Kubo.17l One may notice that 

the above procedure has some resemblance to the method of two-time Green's 

fun~tion. In fact, the above scheme would be helpful for finding a way of trunca

ting the hierarchy equations. It should be noted, however, that the present theory 

is entirely based on the property of the relaxation function (6 · 2) , and uses general 

properties of the many-body systems, such as the laws of conservation. 

Following this line of approach, the density fluctuations in liquids were 

studied, and the line widths and intensities of the normal modes were determined. 

The results are valid even in the high frequency region where the hydrodynamical 

treatment is inapplicable. Application to the problems of the first sound at

tenuation in liquid He II and the inelastic scattering of neutrons by liquids was 

discussed. 

By calculating the sound attenuation constant, we formulated the time

flu~tuation expressions for the transport coefficients of liquids without the use 

of the local equilibrium ensemble. This formulation removes an ambiguity in 

the previous theories. The time-fluctuation expressions provide us with a starting 

point for the study of transport in condensed systems. Recently these expres

sions were used to clarify the transport properties of Fermi particle systems 

around the degeneracy temperature Tc where the transport coefficient is expected 

to have a minimum. 24> It was found that the shear viscosity has a minimum 

at T = 0.6Tc and the thermal conductivity at T = 0.16Tc, which are in agreement 

with recent experiments on liquid He3 below 0.6° K if we take Tc = 2.1 o K 

according to recent experiments on the specific heat. 

What dynamical variables form a good set of collective variables depends 

on the system concerned. To describe a general type of motion of fluids, we 

take (nk, H~.-, jx,.., jyk, j.~<) instead of (nk, Hk, it"'). Then we can derive the hy

drodynamical equations by using a relation corresponding to (2 · 9). To describe 

the zero sound wave in liquid He3 we take Qk= ~qaqai' +k;2aq-k/2 and Pk=Qk, 

where aq may be determined by the condition of minimizing the damping con

stant. Application to the problem of the second sound wave in liquid He II is 

of particular interest. The crucial point is to show the existence of a restoring 

force causing an isobaric temperature wave, which is, according to the two-fluid 

model, given by 

(Qk)'=- W/m) (sTP./Pn) [p-np]V, (6·4) 

where Qk = 12 = Hk- hn1,., and Ps and Pn are the mass densities of the super and 

normal parts, respectively. Thus the second sound wave would be described 

by (nk, Q1" n~.-, Q,..) . 
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