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Abstract— This paper addresses the design of mobile

sensor networks for optimal data collection. The develop-

ment is strongly motivated by the application to adaptive

ocean sampling for an autonomous ocean observing and

prediction system. A performance metric, used to derive

optimal paths for the network of mobile sensors, defines

the optimal data set as one which minimizes error in a

model estimate of the sampled field. Feedback control laws

are presented that stably coordinate sensors on structured

tracks that have been optimized over a minimal set of

parameters. Optimal, closed-loop solutions are computed

in a number of low-dimensional cases to illustrate the

methodology. Robustness of the performance to the in-

fluence of a steady flow field on relatively slow-moving

mobile sensors is also explored.

I. INTRODUCTION

The coupled physical and biological dynamics [1], [2]

of the oceans have a major impact on the environment,

from marine ecosystems to the global climate. In or-

der to understand, model and predict these dynamics,

oceanographers and ecologists seek measurements of

temperature, salinity, flow and biological variables across

a range of spatial and temporal scales [3], [4], [5].

Small spatial and temporal scales drive the need for a

mobile sensor network rather than a static sensor array.

For example, a static sensor network designed to measure

an eddy that is localized and moving will necessarily

be very refined and require many sensors. On the other

hand, mobile sensor networks, comprised of sensor-

equipped autonomous vehicles, can exploit their mobility

to follow features and/or monitor large areas with time-

varying, spatially distributed fields, assuming that the
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number of vehicles and their speed and endurance are

well matched to the speeds and scales of interest [6].

Our goal is to design a mobile sampling network

to take measurements of scalar and vector fields1 and

collect the “best” data set. A cost function, or sampling

metric must be defined in order to give meaning to the

term “optimal data set”. For example, the performance

metric that we consider in this paper defines an optimal

data set as one in which uncertainty in a linear model

estimate of the sampled field is minimized. A comple-

mentary approach to defining a synoptic performance

metric is presented in [9]. Alternate metrics emphasize

the sampling of regions of highest dynamic variability

or focus on areas of high economical or strategical

importance. Clearly the coordination of the sensors in

the network is critical to maintain optimal data col-

lection, independent of the metric chosen. Accordingly,

coordination and collective motion play a central role in

the development here. We note further that the fields to

be sampled are three-dimensional, but it is reasonable

to consider two-dimensional surfaces as we do in this

paper. Justification for this choice is discussed further in

Section IV-B.

One effective way to enable a mobile sensor network

to track and sample features in a field is to use coordi-

nated gradient climbing strategies. For instance, in ocean

sampling problems, the sensor network could be used to

estimate and track maximal changes in the magnitude of

the gradient in order to find thermal fronts or boundaries

of phytoplankton patches. Such feature-tracking strate-

gies are particularly useful for sampling at relatively

small spatial scales. Boundary tracking algorithms are

1The results and methods in this paper focus on a single scalar

field but can be applied to multivariate fields by using appropriate

weights in the cost function [7], [8].
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developed, for example, in [10], [11], [12].

On the other hand, strategies best suited for larger

spatial scales are those that direct mobile sensors to

provide synoptic coverage. Typically, the goal is to

control the sensor network so that error in the estimate of

the field of interest is minimized over the region in space

and time. In this case, sensors should not cluster else

they take redundant measurements. Coordinated vehicle

trajectories should be designed according to the spatial

and temporal variability in the field in order to keep the

sensor measurements appropriately distributed in space

and time.

In Section II we motivate the ocean sampling problem

and state our central objective. This objective, aimed at

collecting the richest possible data set with a mobile

sensor network, is representative of sampling objectives

in an number of domains. We describe some of the

challenges that distinguish adaptive sampling networks

in the ocean from networks on land, in the air or in

space.

Before developing our ideas further, we next describe

in Section III an ocean sampling network field ex-

periment. The intention is both to provide inspiration

for future possibilities and to illustrate a number of

the practical challenges. Coordinated control strategies

and gradient estimation for small-scale problems (ap-

proximately 3 kilometers) were tested on a group of

autonomous underwater gliders in Monterey Bay, Cali-

fornia in August 2003 as part of the Autonomous Ocean

Sampling Network (AOSN) project [13]. The method,

based on artificial potentials and virtual bodies, proved

successful despite limitations in communication, control

and computing and challenges associated with strong

currents and great uncertainty in the relatively harsh

ocean environment. We present results from this effort

and discuss some of the operational constraints particular

to this kind of ocean sampling network.

In a field experiment planned for August 2006 in

Monterey Bay, a larger fleet of underwater gliders with

similar operational constraints as those from 2003, will

be controlled to maintain synoptic coverage of a fixed

region. One primary ocean science objective is to un-

derstand the dynamics of three-dimensional cold water

upwelling centers. In the remainder of this paper, we

examine robust, optimal broad-scale coverage perfor-

mance that we consider integral to achieving this and

other science objectives. Our effort focuses on design

of coordinated, mobile sensor trajectories, optimized for

sampling, and stabilization of the collective to these

trajectories.

In Section IV we catalog general and significant issues

and challenges in sensor networks, collective motion

and ocean sampling. We then summarize the issues and

outline the problem addressed in this paper.

In Section V we derive and define a sampling metric

based on the classical objective mapping error [14],

[15], [16]. This sampling metric can be used to evaluate

the sampling performance of a mobile sensor network.

Likewise it can be used to derive sensor platform trajec-

tories that optimize sampling performance. We consider

coordinated patterns that are near optimal with respect

to the sampling metric; that is, we select a parametrized

family of solutions and define a near-optimal solution

as one which optimizes the sampling metric over the

parameters. In Section V we present a parametrization

of solutions consisting of sensors moving in a coordi-

nated fashion around closed curves. We parametrize the

relative position of the sensors (and thus the coordinated

motion of the sensors) using the relative phases of the

sensors. Here the phase of a sensor refers to its angle,

relative to a reference, around the closed curve on which

it moves. This choice of parametrization motivates our

approach to stabilization of collective motion which is

tightly connected to coupled phase oscillator dynamics.

In Section VI we present models for collective motion

based on a planar group of self-propelled vehicles (our

mobile sensors) with steering control. We exploit phase

models of coupled oscillators to stabilize and control

collective motion patterns where vehicles move around

circles and other closed curves, with prescribed relative

spacing. We then discuss in Section VII the performance

of these coordinated patterns with respect to the sampling

metric. We express our sampling metric as a function

of non-dimensional sampling numbers (parameters that

determine the size, shape and scales in the field of

interest in space and time, the speed of the vehicles and

the level of measurement noise), and we determine the

smallest set of parameters needed for the optimal sam-

pling problem. We present results on optimal solutions in

the case of a single vehicle moving around an elliptical

trajectory in a rectangular field and in the case of two

vehicles, each moving around its own ellipse. In the case

of two vehicles we study the optimal sampling solution

in the presence of a steady flow field with (and without)

the coordinated feedback control laws of Section VI. We

conclude in Section VIII and provide some discussion of

ongoing and future directions.

II. CENTRAL OBJECTIVE

Developing models and tools to better understand

ocean dynamics is central to a number of important

open problems. These include predicting and possibly

helping to manage marine ecosystems or the global

climate and predicting and preparing for events such as
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red tides or El Niño. For example, phytoplankton are

at the bottom of the marine food chain and are there-

fore major actors in marine ecosystems. They impact

the global climate because they absorb enough carbon

dioxide to reduce the regional temperature [17]. El Niño

disrupts conditions in the ocean and atmosphere which

in turn affect phytoplankton dynamics [18]. Therefore,

phytoplankton can be viewed as indicators of change

in the ocean and atmosphere. However, the dynamics

of phytoplankton are inherently coupled to the physical

ocean dynamics [19]. For example, upwelling events in

the ocean bring nutrient-rich, cold water from the sea

bottom to the surface where phytoplankton, which need

to consume iron but also need the sun for photosynthesis,

can gather and grow. Accordingly, understanding the

physical oceanography and how it couples with the

biological dynamics is necessary for tackling a number

of important open problems [1], [2].

At present there are many effective ways to collect

data on the surface of the ocean. These include, for

instance, sea surface temperature measurements from

satellite (or airplanes) using thermal infrared sensors,

surface current measurements using high frequency radar

and temperature and salinity measurements from surface

drifters carrying CTD (conductivity-temperature-depth)

sensors. Limited measurements under the sea surface

can be made with stationary moorings or with floats that

move up and down in the water column and drift with

the currents. Ships that tow sensor arrays can also be

used to collect data under the surface.

Autonomous underwater vehicles (AUVs), equipped

with sensors for measuring the environment, are among

the newest available underwater, oceanographic sampling

tools [20]. With AUVs come compelling new opportu-

nities for significantly improved ocean sensing; recent

advances in technology have made it possible to imagine

networks of such sensor platforms scouring the ocean

depths for data [21]. Underwater gliders, described in

Section III, are a class of endurance AUVs designed

explicitly for collecting such data continuously over

periods of weeks or even months [22], [23], [24].

What makes AUVs particularly appealing in this con-

text is their ability to control their own motion. Using

feedback control, AUVs can be made to perform as an

intelligent data-gathering collective, changing their paths

in response to measurements of their own state and

measurements of the sampled environment. A reactive

approach to data gathering such as this is often referred

to as adaptive sampling. Naturally, with new resources

and opportunities come new research questions. Of par-

ticular importance here is the question of how to use

the mobility and adaptability of the network to greatest

advantage.

Our central objective is to design and prove effective

and reliable a mobile sensor network for collecting the

richest data set in an uncertain environment given limited

resources. This is a representative objective for mobile

sensor networks and adaptive sampling problems over

a number of domains. One such domain is the Earth’s

atmosphere where airplanes, balloons, satellites and net-

works of radars are used to collect data for weather

observation and prediction. In space, clusters of satellites

with telescopes can be used to measure characteristics of

planets in distant solar systems. Sensor networks are also

being developed in numerous environmental monitoring

settings such as animal habitats and river systems [25].

Many of these networks use stationary sensors, although

even if not mobile, the sensors can be made reactive,

as in the network that was tested in Australia for soil

moisture sensing and evaluation of dynamic response to

rainfall events [26].

An ocean observing mobile sensor network is dis-

tinguished from many of these other applications by

two significant factors. The first factor is the difficulty

in communicating in the ocean. On land or in the

air, it is relatively easy to communicate using radio

frequency. However, radio frequency communication is

not possible underwater, and it is not yet practical to

use underwater acoustic communication in the settings of

interest, where underwater mobile sensor platforms may

be tens of kilometers apart. Communication is possible

when underwater vehicles surface, which they typically

do at regular intervals to get GPS updates and to relay

data. However, the intervals between surfacings can be

long and therefore challenging for the navigation of a

single vehicle and the control of the networked system.

A second distinguishing factor is the influence of the

ocean currents on the mobile sensor platforms. In the

case of gliders which move at approximately constant

speed relative to the flow, ocean currents can sometimes

reach or even exceed the speed of the gliders. Unlike an

airplane which typically has sufficient thrust to maintain

course despite winds, a glider trying to move in the direc-

tion of a strong current will make no forward progress.

Since the ocean currents vary in space and in time,

the problem of coordinating mobile sensors becomes

challenging. For instance, two sensors that should stay

sufficiently far apart may be pushed toward each other

leading to less than ideal sampling conditions.

III. A FIELD EXPERIMENT IN MONTEREY BAY

The goal of the Autonomous Ocean Sampling Net-

work (AOSN) project is to develop a sustainable,



4

portable, adaptive ocean observing and prediction sys-

tem for use in coastal environments [21]. The project

uses autonomous underwater vehicles carrying sensors

to measure the physics and biology in the ocean together

with advanced ocean models in an effort to improve

our ability to observe and predict coupled biological

and physical ocean dynamics. Critical to this research

are reliable, efficient and adaptive control strategies that

ensure mobile sensor platforms collect data of greatest

value.

A. AOSN Field Experiment

In summer 2003, a multi-disciplinary research group

produced an unprecedented in situ observational capa-

bility for studying upwelling features in Monterey Bay

over the course of a month-long field experiment [27].

A highlight was the simultaneous deployment of more

than a dozen, sensor-equipped, autonomous underwater

gliders [28], including five Spray gliders operated by

Russ Davis of Scripps Institution of Oceanography and

up to ten Slocum gliders operated by David Fratantoni

of Woods Hole Oceanographic Institution (Figure 1).

Autonomous underwater gliders are buoyancy-driven,

endurance vehicles. They control their volume (Spray)

or mass (Slocum) to change their net buoyancy so that

they can move up and down in the ocean. Fixed wings

and tail give them lift and help them to follow sawtooth

trajectories in the longitudinal plane. Gliders can actively

redistribute internal mass to control attitude. For heading

control, they shift mass to roll, bank and turn (Spray)

or use a rudder (Slocum). During the field experiment

the gliders were configured to maintain a fixed velocity

relative to the flow. Their effective forward speed was

approximately 25 cm/s (Spray) to 35 cm/s (Slocum);

this is of the same order as the stronger currents in and

around Monterey Bay. Accordingly, the gliders do not

make progress in certain directions when the currents

are too strong.

The Spray gliders, rated to 1500 meter depth and

operated to 400 meters and sometimes 750 meters during

summer 2003, were deployed in deep water, traveling as

far as 100 km offshore. The Slocum gliders, operated

to 200 meter depth, were deployed closer to the coast.

The gliders surfaced at regular intervals (although not

synchronously) to get GPS fixes for navigation, to send

data collected back to shore and to receive updated

mission commands. The communication to and from

the shore computers, via Iridium satellite and ethernet,

was the only opportunity for communication “between”

gliders; the gliders were not equipped with means to

communicate while they were underwater because of

power and other constraints.

Fig. 1. Two Slocum gliders in summer 2003. Each is about

1.5 meters long. Motion in the vertical plane follows a sawtooth

trajectory. A rudder is used to steer in the horizontal plane. Maximum

depth is 200 meters and average forward speed relative to the flow

is approximately 35 cm/s. During the AOSN 2003 experiment, the

gliders were configured to surface and communicate as frequently as

every two hours.

On a typical single battery cycle, the Slocum gliders

performed continuously for up to two weeks between

deployment and recovery while the Spray gliders re-

mained in the water for the entire experiment (about six

weeks). Collectively, the gliders delivered a remarkably

plentiful data set. Figures 2 and 3 show locations of

the data collected by all of the gliders over the course

of the month-long field experiment. Each point on the

plots refers to the location in the horizontal plane of

a data profile taken, i.e., a series of measurements

(including temperature, salinity, chlorophyll fluorescence

– for concentration of phytoplankton) as a function of

depth. Together the points illustrate the paths of the

gliders. Figure 2 shows the paths of the five Spray gliders

traveling back and forth along lines approximately per-

pendicular to the shore. As seen in Figure 3, the Slocum

gliders, traveled around trapezoidal racetracks closer to

shore, other than when used for coordination experiments

as described next.

B. Cooperative Control Sea Trials

In this section we summarize results of sea trials,

run as part of the field experiment, with small fleets

of Slocum underwater gliders controlled in formations

[13]. The focus was on relatively small scales in the

region (on the order of 3 kilometers) and feature tracking

capabilities of mobile sensor networks. The sea trials

were aimed at demonstrating strategies for cooperative

control and gradient estimation of scalar sampled fields

using a mobile sensor network comprised of three gliders

in a strong flow field with limited communication and

feedback.
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Fig. 2. Sensor measurement locations (Spray). Each point

represents a vertical profile of data as a function of depth.

Fig. 3. Sensor measurement locations (Slocum). Each point

represents a vertical profile of data as a function of depth.

The control strategy was derived from the virtual body

and artificial potential (VBAP) multi-vehicle control

methodology presented in [29]. VBAP is a general strat-

egy for coordinating the translation, rotation and dilation

of a group of vehicles and can be used in missions

such as gradient climbing in a scalar, environmental

field. A virtual body is a collection of moving reference

points with dynamics that are computed centrally and

broadcast to vehicles in the group. Artificial potentials

are used to couple the dynamics of vehicles and a virtual

body so that desired formations of vehicles and a virtual

body can be stabilized. Each vehicle uses a control law

that derives from the gradient of the artificial potentials;

therefore, each vehicle must have available the position

of at least the nearest neighboring vehicles and the

nearest reference points on the virtual body. If sampled

measurements of a scalar field can be communicated

to a central computer, the local gradients of a scalar

field can be estimated. The speed of the virtual body

is controlled to ensure stability and convergence of

the vehicle formation. Gradient climbing algorithms can

also prescribe virtual body direction. For example, the

virtual body (and consequently the vehicle group) can be

directed to head for the coldest water when temperature

gradient estimates computed from vehicle measurements

are available.

The control theory and algorithms described in [29]

depend upon a number of ideal assumptions on the

operation of the vehicles in the group, including contin-

uous communication and feedback. Since this was not

the case in the operational scenario of the field exper-

iment, a number of modifications were made. Details

of the modifications are described in [30]; these include

accommodation of constant speed of gliders, relatively

large ocean currents, waypoint tracking routines, com-

munication only every two hours when gliders surface

(asynchronously) and other latencies.

For the Slocum vehicles, each glider has on-board

low-level control for heading and pitch which enables it

to follow waypoints [31]. A waypoint refers to a vertical

cylinder in the ocean with given radius and position.

When a sequence of waypoints is prescribed, the glider

follows the waypoints by passing through each of the

corresponding cylinders in the prescribed sequence using

its heading control. Heading control requires not only

that the glider know the prescribed waypoint sequence,

but also that it can measure (or estimate) its own po-

sition and heading. Heading is measured on-board the

glider (as is pitch and roll). Depth and vertical speed

are estimated from pressure measurements. ¿From these

measurements and some further assumptions, the glider

estimates its linear velocity. Position is then computed by

integration, using the most recent GPS fix as the initial

condition. This deduced reckoning approach also makes

use of an estimate of average flow, computed from the

error on the surface between the glider’s GPS and its

dead-reckoned position.

In the cooperative control sea trials of 2003, the gliders

used their low-level control to follow waypoints as per

usual; however, the waypoint sequences were updated

every two hours using the VBAP control strategy for

coordination. VBAP was run on a simulation of the

glider group using the most recent GPS fixes and average

flow measurements as initial conditions. The trajectories

generated by VBAP were then discretized into waypoint

lists which were transmitted to the gliders when they

surfaced. The approach is discussed further in [30], [13].
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Fig. 4. Snapshots in time of glider formation starting at 18:03 UTC

on August 6, 2003 and moving approximately northwest. The vectors

show the estimate of minus the temperature gradient at the group’s

center of mass at 10 meters depth. The gray-scale map corresponds

to temperature measured in degrees Celsius. The three smaller black

circles correspond to the initial positions of the gliders.

On August 6, 2003, a sea trial was run in which three

Slocum gliders were commanded to move northwest in

an equilateral triangle with inter-glider distance equal to

three kilometers. The desired path of the center of mass

of the vehicle group was pre-planned. The trial was run

for sixteen hours, with gliders surfacing every two hours

(although not at the same time). The orientation of the

group was unrestricted in the first half of the sea trial

and constrained in the second half of the sea trial so that

one edge of the triangle would always be normal to the

path of the center of mass of the group.

Snapshots of glider formations as well as glider group

estimates of temperature gradient are shown in Figure 4

for the August 6, 2003 sea trial. The group stayed in

formation and moved along the desired track despite

relatively strong currents. Further, the gradient estimate,

as seen in the figure, is remarkably smooth over time

and points to the colder water, as verified from indepen-

dent temperature measurements. In a second sea trial,

described in detail in [13], three gliders again were

controlled in an equilateral triangle formation. In this sea

trial the inter-glider distance was commanded initially to

be six kilometers and then reduced to three kilometers

to demonstrate and test the influence of changing the

resolution of the mobile sensor array. The glider network

performed remarkably well despite currents with magni-

tude as high as 35 cm/s, which is the effective speed of

the gliders.

IV. SAMPLING, CONTROL AND NETWORK ISSUES

The knowledge and skills accumulated during the field

experiment and the success of the coordinated vehicle

sea trials in 2003 provide a great deal of inspiration for

further possibilities in ocean sampling networks. Indeed,

another field experiment is planned for August 2006,

again in Monterey Bay, in which a fleet of sensor-

equipped, autonomous underwater gliders will be oper-

ated continuously for a month as an adaptive sampling

network. The fleet will include on the order of ten

underwater gliders and a focus will be on broad-scale

coverage of an area including the upwelling center at

Point Año Nuevo (just north of Santa Cruz).

The field experiment brought experience with a num-

ber of practical challenges associated with sensor net-

works in the ocean, including the relatively strong flow

field that pushes the vehicles around and the delays and

constraints on communication.

In Section IV-A, we reflect on the broad central ob-

jective stated in Section II and list some of the important

and challenging issues in sampling, control and mobile

networks. In Section IV-B we clarify which issues we

address in this paper and we define the boundaries of

the problem addressed.

A. Catalog of Challenges and Constraints

There are a number of challenges and constraints

to be investigated in order to address our central ob-

jective. The interest in optimization of data collected,

management of uncertainty and extension of resources

introduce conflicting demands which require tradeoffs.

Further, it is a goal to make the design methodology as

systematic as possible since the ocean observation and

prediction system should be autonomous and portable.

This motivates simpler and less computationally inten-

sive approaches. Major issues involving the performance

metric, optimization of the metric and feedback control

design for robustness are listed as follows.

• Sampling metric definition. A metric should be

selected that defines what is meant by the “best”

or “richest” data set. The selected metric should be

studied to evaluate how well it serves the range of

goals.

• Multiple fields. When there are more than one field

to be sampled, a choice needs to be made as to how

to weight the importance of different fields in the

sampling metric.

• Multiple scales. A complete approach to optimal

ocean sampling needs to address the range of scales

critical to understanding, modeling and predicting

ocean dynamics. For example in the context we
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study, the spatial scale ranges from 25 kilometers

for the synoptic picture down to 3 to 5 kilometers

for features of the upwelling and even as small as

hundreds of meters for some of the biology.

• 2D versus 3D. In the event that sampling in three-

dimensional space is desired, any methodologies

derived for two dimensions need to be extended.

• Sampling metric computation and adaptation. A

methodology should be developed for computing

the metric with minimal computational burden and

for computing inputs to the metric that are not

directly measured and/or that change over time.

The tradeoff between optimization of the metric

versus computation of the metric may need to be

considered in the design and real-time control of

optimal collective motion.

• Optimal, collective motion. An approach to opti-

mizing the sampling metric should be developed so

that optimal, collective motion for the mobile sensor

network can be designed. Low frequency feedback

measurements can be used to adapt the optimal

collective motion to the changing fields, changing

ocean processes, changing operational conditions

and health of the sensors in the network.

• Flow field. Whether or not its components are scalar

fields of specific interest, the flow field directly

influences sampling performance because it can

push the sensors around and prevent them from car-

rying out optimal sampling strategies. Accordingly,

the flow field must be considered in the design

of optimal, collective motion. A methodology to

exploit available estimates or predictions of the flow

field is of significant interest.

• Feedback control of collective motion. Relatively

high rate feedback control strategies that stabilize

optimal collective motion are necessary to ensure

robustness of optimal sampling strategies not only

with respect to the external flow field but also to

other disturbances and uncertainties in the ocean

environment.

Additionally, there are a number of issues associated

with the sensor platforms themselves and their network

operation. A list of these such issues follows.

• Constant speed. Strategies for collective motion

must take into account that gliders effectively op-

erate at constant speed (relative to the flow field).

Otherwise, patterns may be designed that are not

realizable. Gliders can also be operated as virtual

moorings which may be applicable to the adaptive

sampling problem but is not considered here.

• Transit and irregular events. There will be a sig-

nificant period of time when mobile sensors are “in

transit,” meaning that they are on their way between

optimal strategies. For example, when gliders are

first deployed they should transit to locations where

they will initiate their optimal strategy. However,

gliders are slow and the period of time it will take to

get to these locations may be significant. Therefore,

their paths should be designed both to optimize

sampling during transit and to minimize transit time.

Similar strategies should be developed in case a

mobile sensor encounters a region it must avoid

(e.g. due to fishing), is taken out of the water for

whatever reason, experiences a debilitating failure,

etc.

• Heterogeneous groups. In case mobile sensors in

the network differ in speed, endurance, sensors, etc.,

methodologies should be developed to exploit the

differing strengths and potential roles of the sen-

sors in the network. For instance, slow, endurance

vehicles might be more useful for larger scales

whereas faster, shorter-lived vehicles might serve

better collecting data over smaller scales.

• Extending lifetime of sensors. Underwater gliders

are designed to be endurance vehicles, a central

objective being to collect data continuously over

weeks or even months at a time. Accordingly,

keeping energy use to a minimum is critical. This

implies also keeping volume (and therefore mass)

to a minimum. There is a direct tradeoff here with

improving sensing, navigation, communication and

control. For example, communication on the ocean

surface makes possible coordinated control of the

sensors. However, surfacings that are too frequent

can be costly in terms of energy expenditure and

loss of time collecting data, whereas surfacings that

are too infrequent yield very long feedback sam-

pling periods which can diminish the performance

and robustness of the control.

• Communication. Communication between gliders

is done above the surface on a central computer.

Coordinated control strategies for the network of

sensors that are originally designed assuming con-

tinuous control will need to be revisited. Since

minimizing the frequency of surfacings is desir-

able to minimize energy and maximize time spent

collecting undersea data and minimize exposure, it

is of interest to determine the maximum tolerable

feedback sampling period that does not degrade

overall sampling performance.

• Asynchronicity. Strategies will need to accommo-

date asynchronicity in time of surfacing and com-
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munication. Because the gliders will not surface

at the same time, information communicated to a

glider about any of the other gliders will necessarily

be old.

• Latencies. It may not always be possible to close

the feedback loop on the surface. For example, in

the sea trials of 2003, described in Section III-

B, data retrieved from a glider at its surfacing

could not be used in the mission update to the

glider at that same surfacing. Instead the data was

used to compute new instructions communicated

to the glider at the next surfacing. This introduces

significant delays that need to be accommodated.

• Computing. While low-level control is computed

on board the gliders, coordinated control of the

network is computed on the central shore computer

where inter-glider communication occurs. Possibili-

ties for further exploiting on-board computation and

local measurements should be investigated.

B. Problem Definition

In this paper we assume a single, scalar, dynamic

field (e.g., temperature or salinity) is to be sampled. We

consider a sampling metric, defined in Section V-A, that

derives from objective analysis and a simple model of the

environment. This metric provides a measure of model

uncertainty as a function of where and when data is

collected. Since reduced model uncertainty implies better

coverage, we also refer to this sampling performance

metric as a coverage metric. The choice of a sim-

ple model for determining sampling performance keeps

complexity and computational burden to a reasonable

level. The approach also provides a complement to high

resolution ocean forecasting models that run on data

assimilated from the mobile sensor network as part of

the ocean observation and prediction system [32], [33],

[34]. The high resolution ocean forecasting models use

quasi-3D dynamic modeling, meaning that the 3D region

of the ocean is treated as layered 2D surfaces. The

typical operation of the gliders is consistent with this

approach; their motion in the vertical plane follows a

regular (sawtooth) trajectory. To be consistent, we focus

on fields defined on a 2D surface, i.e. a single layer.

Although the tools we develop are useful in multi-

scale problems, we assume a dominant spatial scale

and temporal scale of interest. We further take the 2D

region over which the field is defined to be rectangular

and homogeneous, i.e., the correlation between any two

values in the field depends only on their separation in

space and time. We take the corresponding spatial scale

σ and temporal scale τ as given since they are computed

in the high resolution ocean forecasting models and

therefore, in principle, available in real time. In this

paper, the values we use have been computed from glider

data collected in the 2003 AOSN field experiment.

We frame the optimal collective motion problem and

define our approach to design of a (near) optimal mobile

sensor network in Section V. By near optimal solutions,

we mean that we optimize over a parametrized family of

structured solutions. For example, we consider a family

of closed curves parametrized by number, location, di-

mension and shape as well as the relative phases of the

vehicles moving around these curves. This parametriza-

tion is discussed in Section V-D. The relative phases

provide a low-dimensional parametrization of relative

position of the vehicles and they make a connection

between the optimized trajectories and the coupled phase

oscillator models that we use in our coordinated control

law. We pay particular attention to gliders moving around

ellipses. In the case of gliders moving with constant

speed around circles, the difference in heading for any

pair of gliders can be interpreted as the relative phase of

that pair of gliders. For example, if for a pair of gliders

moving around the same circle, the difference in heading

is 180 degrees, then the relative phase is 180 degrees

and the gliders are always at antipodal points on the

circle. For ellipses, the relative phase is not necessarily

equivalent to the relative heading.

In Section VI we present feedback control laws that

stabilize these kinds of collective motions for gliders

moving at constant (unit) speed on the plane. We focus

on the case that there may be multiple ellipses and

multiple vehicles per ellipse. The objective is to ensure

that gliders move around their (optimally located, ori-

ented, sized) ellipses with optimal relative phases. In

Section VII we compute and study optimal solutions and

we discuss robustness of the solutions with respect to the

coverage metric. We also investigate the influence of the

flow field on the design and control of optimal sampling

trajectories.

In this paper we assume a homogeneous group of

mobile sensors. We do not address the issue of transit and

irregular events; preliminary results on minimal time and

minimal energy glider paths computed using forecasts of

ocean flow fields are presented in [35]. We also do not

address the problems in communication, asynchronicity,

latency and computing described above. In [30], [13] it

is discussed how these issues were handled in AOSN

2003. In [36] a control law is presented that explores

extended sensing, computing and control on-board a

glider. In this paper we let each sensor compute its own

control law locally and we assume continuous feedback

control with continuous communication without delay or
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asynchronicity. Because communication is not limited

to neighboring gliders in the operational scenario, we

assume an all-to-all interconnection topology.

A number of the issues listed in Section IV-A remain

important open problems and a number are the subject

of ongoing work.

V. SAMPLING METRIC AND OPTIMALITY

A. Sampling Metric

In this section, we derive a metric to quantify how well

an array of gliders samples a given region. Recall that

an objective is to assimilate the data in an ocean model.

Therefore, the metric should reflect how a particular

collected data set reduces the error in the model. This

notion is necessarily dependent on the specific model

or assimilation scheme used. During AOSN 2003, the

data was assimilated in several high resolution ocean

models [32], [33], [34] and the performance of the

sampling array was different (but very similar) for each.

Since reliable nowcasts and forecasts of the ocean re-

quire concurrent ocean models mutually validating their

results and the data requirements of these models are

similar, it is natural to derive the performance metric on

a simpler, more general assimilation scheme. This ap-

proach also has the advantage of avoiding the complexity

and computational effort required to study specific high

resolution models [37], [38]. We consider a simple data

assimilation scheme called Objective Analysis2 [39],

[40]. In this framework, the scalar field (e.g., temper-

ature, salinity) observed at each point r and at each time

t is viewed as a random variable T (r, t) or an ensemble

of possible realizations. The algorithm keeps track of

an estimate for the average and second moment of this

distribution

T̂ (r, t)=E [T (r, t)] ,

B(r, t, r′, t′)=E

[[

T (r,t)−T̂ (r,t)
][

T (r′,t′)−T̂ (r′,t′)
]]

where E [·] represents the expected value of a random

variable. Notice that T̂ (r, t) is the best estimate of the

state and the diagonal elements B(r, t, r, t) represent the

uncertainty or error at a given point (r, t). The data col-

lected by the gliders is a sequence of M measurements

Tk at discrete points (rk, tk). The objective analysis

scheme consists of finding linear increments ζk such that

the new estimate of the state,

T̂A(r, t) = T̂ (r, t) +
M
∑

k=1

ζk(r, t)
[

Tk − T̂ (rk, tk)
]

,

2Objective Analysis is also commonly referred to as Optimal

Interpolation and is equivalent to 3D-Var. It was originally developed

by Eliassen et al [14] in 1954 and independently reproduced and

popularized by Gandin [15] in 1963.

minimizes the least square uncertainty of the new es-

timate T̂A. In other words, the ζk must minimize the

a-posteriori error
∫

dr

∫

dtA(r, t, r, t)

=

∫

dr

∫

dtE
[[

T (r,t)−T̂A(r,t)
][

T (r,t)−T̂A(r,t)
]]

.(1)

An extensive analysis of the assimilation scheme, equa-

tions and generalization (e.g., multivariate, discrete, non-

stationary systems) can be found in [39], [40]. Assuming

that the measurement noise n is uniform and uncorre-

lated, the solution that minimizes (1) is

ζk(r, t) =
M
∑

l=1

B(r, t, rl, tl)
(

C−1
)

kl
, (2)

where C−1 is the inverse of the M ×M matrix (C)kl =
nδkl+B(rk, tk, rl, tl) and δkj is the Dirac delta function.

The corresponding a-posteriori error (substitution of (2)

in (1)) is given by

A(r, t, r′, t′) = B(r, t, r′, t′)

−
M
∑

k,l=1

B(r, t, rk, tk)
(

C−1
)

kl
B(rl, tl, r

′, t′) . (3)

The remaining error in the best estimate can be used as

a quantitative measure of the impact of the sequence of

measurements on the error in the assimilation scheme.

Substitution of (3) in (1) gives

φ =

∫

dr

∫

dtA(r, t, r, t)

=

∫

dr

∫

dtB(r, t, r, t)

−
∫

dr

∫

dt
M
∑

k,l=1

B(r,t,rk,tk)
(

C−1
)

kl
B(rl,tl,r,t)(4)

and is elected as the sampling performance metric to

compare and optimize sensor paths.

B. Ocean Statistics

The coverage metric defined in (4) contains an un-

known term, B(r, t, r′, t′), an estimate of the background

statistics. It represents the estimated statistics of the

ocean before data assimilation. The diagonal elements

B(r, t, r, t) describe our confidence in the initial state.

The non-diagonal elements represent the covariance

between points at different locations and times. They

are closely related to the correlation length and the

correlation time in the domain [16].

The metric in (4) has a broad range of application

and can be used with any positive-definite covariance
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Fig. 6. Sampling metric (solid curve) in units of entropic information

and number of profiles (shadowed area) for AOSN 2003. Each cross

correspond to a panel of Fig. 5. On August 10th (day 223), the

number of profiles is still high but the metric indicates relatively poor

coverage. The second panel of Fig. 5 explains this loss of performance

by a poor distribution of the gliders in the bay on that day.

function B(r, t, r′, t′). For the purpose of illustrating

the use of the metric, we assume that the background

covariance is given by

B(r, t, r′, t′) = σ0 e
−
‖r−r

′‖2

σ2
−
|t−t′|2

τ2 . (5)

The parameters σ ≈ 25 km and τ ≈ 2.5 days are the

spatial and temperature decorrelation scales of Monterey

Bay during AOSN 2003, determined empirically using

glider data [28]. Notice that the scaling factor σ0 has no

effect on the sampling paths, provided that the measure-

ment noise n is scaled by the same factor. This fact is

discussed and exploited in Section VII.

Figure 5 shows the a-posteriori error at different times

during AOSN 2003 using the Gaussian covariance. The

data used correspond to the Spray gliders [22], [28]

and the Slocum gliders [13], [28] that patrolled the bay

during the summer of 2003 (as plotted in Figures 2 and

3). The metric per unit of time (derivative of (4) with

respect to time) is shown on Fig. 6 in units of entropic

information [41].

C. Optimal and Near-Optimal Collectives

In the context of ocean sampling, not only can (4) be

used to quantify the performance of a particular array

or formation, but it also provides a means to search for

optimal sampling strategies. The glider array is viewed

as a set of N trajectories rk(t) satisfying the constraint

ṙk(t) = v, k = 1, . . . , N , (6)

where v is velocity relative to the flow and speed

‖v‖ = v is fixed. Each glider generates a sequence of

measurement (rlk, tl) = (rk(l∆t), l∆t), where ∆t is the

sampling period, i.e. the time between profiles. The set

of all measurements at a particular depth gathered by

the N gliders can be substituted in (4) to determine the

performance of the array that we write as φ(~r), where

~r = (r1, . . . , rN ). A set of optimal trajectories for these

gliders is a set of N curves satisfying (6) and such that

φ(~r) is minimum.

Such optimal trajectories are usually complicated and

unstructured. In addition, their computation requires a

minimization in a large functional space, which is not

suitable for real-time applications. In this work, instead

of optimizing individual trajectories, we consider the

optimization of collectives parametrized by a restricted

number of parameters. For example, Sections VI and VII

focus on arrays of vehicles moving around ellipses.

For such trajectories the parameters are the number

of ellipses and the number of vehicles per ellipse, the

position, size and eccentricity each ellipse as well as

the relative position of each pair of vehicles as they

move around their ellipses (formulated below as relative

phases). Clearly, the computation of the minimum in

parametrized families is a much more tractable prob-

lem. However, the interest of optimizing the sampling

performance over parametrized collectives rather than

over individual trajectories extends beyond the numerical

convenience. Parametrized collectives are essential to

achieve the following:

• Closed-loop control. For each proposed collective,

a feedback control is designed that makes it an

exponential attractor of the closed-loop dynamics.

Feedback control of the collective motion provides

robustness for the relative motion of the vehicles in

contrast to a decentralized tracking control of each

vehicle along its individual reference trajectory.

• Robustness. The robustness of an optimal collec-

tive can be studied in terms of the derivatives of the

metric with respect to the parameters of the family

(see Section VI and VII). Small second derivatives

indicate flat minima and solutions that are more

robust to perturbations such as uncertainty in GPS
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Fig. 5. Error map at different times during the AOSN 2003 experiment. Blue represents small error (good coverage) and red and white

represents high error (poor coverage). The purple line encloses all the points where the error has been reduced from its initial state by at

least 85%. The sampling metric is shown on Fig 6. Notice that all the gliders are clustered near the coast on August 10th explaining the

drop in coverage performance visible on Fig. 6.

measurements, deviations due to the flow field or

communication problems.

• Interpretation of the data. By restricting the

choice of collectives to specific geometries, the

data collected along these paths can more easily

be interpreted in terms of curved oceanographic

sections [42].

In Section VI, we present the development of coor-

dinated control for gliders on circles and on ellipses.

In Section VII, we investigate a parametrized family of

elliptical collectives in more detail and determine the

optimal collective within this parametrized family.

D. Parametrization of collectives

Parametrized families of collectives over closed curves

involving the least number of parameters are circles.

If we specialize to circles, the optimal parameters to

be computed are the number of circles, the number

of gliders per circle, the origin and radius of each

circle and the relative positions of the gliders on their

respective circles. The relative position of two gliders

moving around the same circle can be represented by the

difference in their headings; this difference is fixed since

the gliders move at constant speed. The difference in

the headings is equal to the relative phase of the gliders

around the circle. To see this suppose the gliders move at

unit speed around a single circle of radius ρ0 = |ω0|−1

and centered at the origin. The position of the kth glider

at time t is rk(t) = (ρ0 cos(ω0t+γk), ρ0 sin(ω0t+γk)),
where γk is the phase of the kth glider. The velocity of

the glider is ṙk = (cos θk, sin θk) where θk is the glider’s

heading angle. Since for circular motion about the origin

rk ⊥ ṙk, the relative heading of two vehicles is equal to

their relative phase, i.e., θj − θk = γj − γk. In the top

left panel of Figure 7, two vehicles move around circles

with γ2 − γ1 = 0. In the top right panel, γ2 − γ1 = π.

Suppose now that two gliders move at unit speed

about two different circles, each with radius ρ0 but

with noncoincident centers. In this case the relative

heading (and therefore relative phase) of the two gliders

remains constant and the relative position of the gliders

is periodic. The periodic function can easily be described

by the relative phase and relative position of the circle

origins. Let the distance between the circle origins be
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Fig. 7. Cartoons of vehicles moving around closed curves with

prescribed relative phases; a) Two vehicles with relative phase equal

to zero move around a circle; b) Two vehicles with relative phase

equal to π move around a circle; c) Two vehicles with relative phase

equal to π and each vehicle moving around a different circle; d) A

closed curve with rotational order of symmetry L = 4. Four vehicles

move around it with fixed relative phase.

d0. Then, if the relative phase is zero, the gliders are

synchronized and their relative distance remains constant

and equal to d0. If the relative phase is π then the

relative distance of the vehicles varies from its minimum

at d0−2ρ0 to its maximum at d0+2ρ0. This is illustrated

in the bottom left panel of Figure 7.

Because relative phase is constant for vehicles moving

at constant speed around circles of the same radius, we

parameterize relative position of a pair of gliders by

their relative phase. This makes the stabilizing control

problem one of driving vehicles to circles of given ra-

dius with prescribed, fixed, relative phases (equivalently,

relative headings). For example, suppose N gliders are to

move around the same circle. An example of an optimal

solution in a homogeneous field is one in which the

gliders are uniformly distributed around the circle (called

the splay state). This is equivalent to phase locking

with relative phase between neighboring gliders equal

to 2π/N , which we study in the next section.

Relative phase can be useful as a prescription of

relative position even for closed curves of more general

shape. The choices of relative phase that can be kept

constant for constant speed vehicles moving around a

given shape depend on the rotational order of symmetry

of the shape. The rotational order of symmetry of a

shape is equal to L ∈ N0 if the shape looks unchanged

after it is rotated about its center by angle 2π/L. For

example, a hexagon has rotational symmetry of order

six, a square has symmetry of order four, a rectangle

and an ellipse have symmetry of order two. A shape

with rotational order of symmetry equal to one has no

rotational symmetry.

Consider a shape with rotational order of symmetry

equal to L. If we choose the relative phase for a pair

of gliders moving at constant speed around the shape to

be an integer multiple of 2π/L, the relative phase will

remain constant. An example for L = 4 is shown in

Figure 7. In the case of circles, as discussed above, any

relative phase can be selected. In the case of ellipses,

only two choices of relative phase can be selected; these

are either relative phase equal to zero or equal to π,

when the gliders are synchronized or anti-synchronized,

respectively, as they move around a single ellipse or up

to N identical ellipses with noncoincident centers.

In Section VI we describe steering control laws for

stabilization of gliders to circles and ellipses with phase

locking.

VI. COORDINATED CONTROL

This section describes feedback control laws that sta-

bilize collective motion of a planar model of autonomous

vehicles moving at constant speed. Following Section V,

we consider vehicles moving around closed curves with

given, fixed relative phases. As described in Section V-D,

relative phases determine, in part, the relative positions

of the vehicles. In the case of collective motion around

circles of equal radius, the relative phase is identical to

relative heading and is also constant. For more general

shapes, prescribed relative phases are chosen as an

integer multiple of 2π/L where L is the rotational order

of symmetry of the shape. For example, in the case of

coordinated motion of gliders around ellipses, L = 2 and

we design stabilizing controllers that fix relative phases

to 0 or π.

Each glider is modeled as a point mass with unit

mass, unit speed and steering control. We first provide a

feedback control law that stabilizes circular motion of the

group of vehicles about its center of mass. This control

law depends on the relative position of the vehicles.

Next, we address the problem of stabilizing the relative

phases of the circling vehicles. An additional control

term, depending only on the relative headings of the

vehicles, stabilizes symmetric patterns of the vehicles

in the circular formation.

As long as the feedback control is a function only

of the relative positions and headings of the vehicles,

the system is invariant to rigid rotation and translation

in the plane. This corresponds to the symmetry group,

SE(2) = R
2 ⊗ SO(2) ≡ R

2 ⊗ S1, where ⊗ is the

semidirect product. We show how breaking this symme-

try can lead to useful variations on circular formations.

First, we introduce a fixed beacon to break the R
2

symmetry. Second, we introduce a reference heading
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which breaks the S1 symmetry. In addition, we introduce

block all-to-all interconnection topologies for the spacing

and orientation coupling in order to stabilize collective

motion of subgroups of vehicles. This includes the case

in which there are multiple circles with a different

subgroup of vehicles moving around each circle.

Finally, we describe a control law to stabilize collec-

tive motion on more general shapes. More specifically,

we stabilize a single vehicle on an elliptical trajectory

about a fixed beacon. Additionally, we couple vehicles

on separate ellipses using their relative headings in order

to synchronize the vehicle phases about each ellipse.

A. Circular Control

The vehicle model that we study is composed of N
identical point-mass vehicles subject to planar steering

control. The vehicle model is

ṙk = veiθk

θ̇k = uk, k = 1, . . . N (7)

where rk = xk + iyk ∈ C ≡ R
2 and θk ∈ S1 are the

position and heading of each vehicle, v is the vehicle

speed relative to the flow, and uk is the steering control

input to the kth vehicle. In this section, we assume

unit vehicle speed, i.e. v = 1, and ignore the flow. In

Section V, the position rk of the kth vehicle was a vector

in R
2. In this section, we exploit the isometry between

R
2 and C and we view rk as an element of the real3

vector space C. The real vector spaces C and C
N give

us more flexibility in chosing an inner product4.

For the sake of brevity, we often stack identical vari-

ables for each vehicle in a common vector. For example,
~θ = (θ1, . . . θN ) ∈ TN contains all the headings and

~r = (r1, . . . rN ) ∈ C
N contains all the positions.

To help understand the model (7), consider the fol-

lowing two examples of constant control input. For

uk = ω0 ∈ R0, the vehicles travel on fixed circles of

radius ρ0 = |ω0|−1. The sense of rotation is given by

the sign of ω0. For uk = ω0 = 0, each vehicle follows a

straight trajectory in the direction of the initial heading.

Due to the unit speed and unit mass assumptions

we can relate the coherence of vehicle headings to the

motion of the group. Let the center of mass of the

group be R = 1
N

∑N
j=1 rj . Also, let the order parameter

3By real vector space, we mean a vector space for which the field

of scalars is R. Complex vector spaces are defined with complex

scalars. For example, C
N is both a real and a complex vector space.

In this paper, we consider C
N as a real vector space only.

4〈z1, z2〉 = Re
˘

z̄
⊤

1 z2

¯

is not an inner product for the complex

vector spaces C because it violates sesquilinearity. However, it is a

valid inner product for the real vector spaces C and C
N .

p~θ ∈ C, denote the centroid of the vehicle headings on

the unit circle in the complex plane. The order parameter

is equivalent to the velocity of the center of mass of the

group, i.e.

p~θ =
1

N

N
∑

k=1

eiθk =
1

N

N
∑

k=1

ṙk = Ṙ.

Notice that we have
∣

∣p~θ

∣

∣ ≤ 1. We define a potential

function U1 by

U1(~θ) =
N

2
|p~θ|

2. (8)

Notice that certain distinguished motion of the group

correspond to critical points of U1. For instance, U1(~θ)
is maximum for parallel motion of the group (∀ k :
θk = θ0) and minimum when the center of mass is

fixed (p~θ = Ṙ = 0). We refer to solutions for which

p~θ = Ṙ = 0 as balanced solutions since the headings

are distributed around the unit circle in such a (balanced)

way that the center of mass of the group is fixed. Letting

~1 = (1, · · · , 1) ∈ R
N , we have that

〈

∇U1,~1
〉

= 0; this

corresponds to the S1 rotational symmetry of the system.

To stabilize circular motion of the group about its

center of mass, we introduce a dissipative control law

that is a function of the relative positions rkj = rk− rj .

Let the vector from the center of mass to vehicle k be

r̃k = rk − R = 1
N

∑N
j=1 rkj . We propose to control the

vehicles using

uk = ω0 (1 + κ 〈r̃k, ṙk〉) , k = 1, . . . N (9)

where κ>0 is a scalar gain. We define the inner product

by

〈z1, z2〉 = Re{z̄⊤1 z2} , (10)

where z̄T1 represents the conjugate transpose of z1 and

Re {·} is the real part of a complex number. We view

z1 and z2 as the elements of the real vector space C
N

(i.e., isomorphic to R
2N ), for which (10) is a valid inner

product.

The stability of the circular motion of the group about

a common point can be studied using standard Lyapunov

functions. Consider the function

S(~r, ~θ) =
1

2

N
∑

k=1

|eiθk − iω0r̃k|2, ω0 6= 0 , (11)

which has minimum zero for circular motion around the

center of mass with radius ρ0 = |ω0|−1 and direction

of rotation determined by the sign of ω0. Differentiating

S(~r, ~θ) along the solutions of the vehicle model gives

Ṡ =
N

∑

k=1

〈ω0r̃k, ṙk〉 (ω0 − uk).
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Therefore, using the circular control (9), we find that

Ṡ = −κ
N

∑

k=1

〈ω0r̃k, ṙk〉2 ≤ 0 ,

and S is an acceptable Lyapunov function for this

system. Consequently, solutions converge to the largest

invariant set, Λ, for which Ṡ = 0. This yields the

following result.

Theorem 6.1: Consider the vehicle model (7) with

the circular control (9). All solutions converge to a

circular formation of radius ρ0 = |ω0|−1. Moreover,

the asymptotic heading arrangement is a critical point

of the potential U1(~θ). In particular, balanced circular

formations form an asymptotically stable set of relative

equilibria.

The technical details of the proof can be found in [43].

Notice that solutions in Λ have the dynamics ~̇θ = ω0~1,

i.e. vehicles follow circles of radius |ω0|−1. The set

of balanced circular solutions for which all circles are

coincident corresponds to the minimum of the potential

S(~r, ~θ). Simulations suggest that this set of equilibria

has almost global convergence.

B. Control of Relative Headings

If, in addition to the relative positions, we feed back

the relative headings of the vehicles, we can stabilize

particular phase-locked patterns or arrangements of the

vehicles in their circular formation. Let the potential

U(~θ) satisfy
〈

∇U,~1
〉

= 0. This potential is invariant

to rigid rotation of all the vehicle headings. We combine

the circular control (9) with a gradient control term as

follows:

uk = ω0 (1 + κ 〈r̃k, ṙk)〉 −
∂U

∂θk
. (12)

The circular motion of the group in a phase-locked

heading arrangement is a critical point of U(θ). The

stability of the motion can be proved by showing the

existence of a Lyapunov function. For instance take,

V (~r, ~θ) = κS(~r, ~θ) + U(~θ), (13)

where S(~r, ~θ) is defined in (11). The time derivative of

V (~r, ~θ) along the solutions of the vehicle dynamics is

given by

V̇ =
N

∑

k=1

(

κ 〈ω0r̃k, ṙk〉 −
∂U

∂θk

)

(ω0 − uk). (14)

Substitution of the composite control (12) in (14) gives

V̇ = −
N

∑

k=1

(

κ 〈ω0r̃k, ṙk〉 −
∂U

∂θk

)2

≤ 0.

Therefore, solutions converge to the largest invariant set,

Λ, for which V̇ = 0. A detailed proof can be found

in [43] and yields the following theorem

Theorem 6.2: Consider the vehicle model (7) and a

smooth heading potential U(θ) that satisfies
〈

∇U,~1
〉

=

0. The control law (12) enforces convergence of all

solutions to a circular formation of radius ρ0 = |ω0|−1.

Moreover, the asymptotic heading arrangement is a

critical point of the potential κU1 + U . In particular,

every minimum of U for which U1 = 0 defines an

asymptotically stable set of relative equilibria.

This result enables us to stabilize symmetric pat-

terns of the vehicles in circular formations. Symmetric

(M,N)-patterns of vehicles are characterized by 2 ≤
M ≤ N collocated clusters of vehicles with headings

separated by a multiple of 2π
M . There is a one-to-one

correspondence between these symmetric patterns and

global minima of specifically designed potentials [43].

In order to define these potentials, we extend the notion

of the order parameter of vehicle headings to include

higher harmonics, i.e.

p
m~θ

=
1

mN

N
∑

k=1

eimθk .

The objective is to consider potentials of the form

Um(~θ) =
N

2
|p
m~θ

|2,

which satisfy
〈

∇Um,~1
〉

= 0. These potentials are used

to prove the following [43]:

Lemma 6.1: Let 1 ≤M ≤ N be a divisor of N . Then
~θ ∈ TN is an (M,N)-pattern if and only if it is a global

minimum of the potential

UM,N =

⌊N

2
⌋

∑

m=1

KmUm

where
⌊

N
2

⌋

is the largest integer less than or equal to N
2

and Km are arbitrary coefficients satisfying
{

Km < 0 if m
M ∈ N ,

Km > 0 otherwise.

Theorem 6.2 together with Proposition 6.1 yield a

prescription for stabilizing symmetric patterns. Of par-

ticular interest for mobile sensor networks is stabilizing

the circular formation in which the vehicles are evenly

spaced, i.e. the (N,N)-pattern or splay state formation

[44]. This formation is characterized by p
m~θ

= 0 for

m = 1, . . . N − 1 and |p
N~θ

| = 1
N . Consequently, we

define the splay state potential to be

UN,N = K

⌊N

2
⌋

∑

m=1

Um, K > 0. (15)
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Fig. 8. A numerical simulation of the splay state formation using

the control (16) with ω0 = 0.1 and K = 1 starting from random

initial conditions. Each vehicle and its velocity is illustrated by a

black circle and an arrow. Note that the center of mass of the group,

illustrated by a crossed circle, is fixed at steady-state.

The splay state formation control law has the form (12)

with U(~θ) given by (15) and can be written

uk = ω0(1+κ 〈r̃k, ṙk〉)+
K

N

N
∑

j=1

⌊N/2⌋
∑

m=1

sinmθkj
m

. (16)

A simulation of the splay state formation for N = 12
vehicles is shown in Figure 8. Twelve vehicles start from

random initial conditions and the controller (16) enforces

convergence to a circular orbit with uniform spacing (i.e.,

the phase difference between adjacent vehicles is 2π
12 ).

C. Planar Symmetry Breaking

The feedback control laws in sections VI-A and VI-B

require only the relative positions and headings of the

vehicles and, consequently, they are invariant to rigid

translation and rotation in the plane. This corresponds to

the symmetry group, SE(2) = R
2 ⊗ S1. In this section,

we introduce variations of these control laws which break

the translation and rotation symmetries. First, we break

the R
2 translation symmetry by stabilizing the circular

formation about a fixed beacon. Secondly, we break the

S1 rotational symmetry by coupling the vehicles to a

heading reference.

The position of the fixed beacon is referred to as

R0 ∈ C. The relative position from the beacon is defined

as r̃k = rk − R0. A formal proof uses the Lyapunov

function S(~r, ~θ) defined in (11) with the new definition

of r̃k. Furthermore, Theorem 6.2 continues to hold for

circular motion about the fixed beacon [43]. That is, the

control (12) can be used to stabilize circular motion to

the set of heading arrangements that are critical points

of the potential U(~θ), where
〈

∇U,~1
〉

= 0. Clearly, this

applies to the splay state potential (15).

Next, we introduce a heading reference θ0 where θ̇0 =
ω0. Let uk, k = 1, . . . , N − 1 be given by (12) where

U(~θ) is a potential that satisfies
〈

∇U,~1
〉

= 0. The N th

vehicle is coupled to the heading reference using

uN = ω0(1 + κ(r̃k, ṙk)) −
∂U

∂θk
+ d sin(θ0−θN ), (17)

where d > 0. Critical points of U(~θ) that satisfy θN = θ0
define an asymptotically stable set [43]. To prove this

resut, we use the composite Lyapunov function

W (~r, ~θ) = V (~r, ~θ) + d(1 − cos(θ0 − θN ))

where V (~r, ~θ) is given by (13). The complete analysis

can be found in [43]. The set of circular formations that

minimizes U(~θ) and satisfy θN = θ0 are the global

minima of W (~r, ~θ). For ω0 = 0, the control (17) can

be used to track piecewise linear trajectories [45].

D. Coordinated Subgroups

In this section, we design control laws to coordinate

vehicles in subgroups using block all-to-all interconnec-

tion topologies. In other words, the vehicles can be dis-

tributed among subgroups, each subgroup corresponding

to vehicles moving on a different circle or ellipse. First,

we introduce a block all-to-all interconnection topology

for the circular control term that depends on the relative

positions. This restriction on the coupling yields stability

of subgroups of vehicles in separate circular formations.

Similarly, block all-to-all coupling applied to the gradient

control term that depends on relative headings yields

heading arrangements within subgroups of vehicles. We

illustrate the use of block all-to-all couplings on a

scenario of practical interest. The vehicles are divided in

three subgroups that minimize the splay state potential

such that each subgroup is in a splay state formation.

We refer to each vehicle subgroup by its block index

b = 1, . . . , B, where B is the total number of blocks.

Let N b be the number of vehicles in block b. Note that

N b ≥ 2 except in the case of fixed beacons in which

N b ≥ 1.

We assume that each vehicle is assigned to one and

only one block, so that
∑B

b=1N
b = N . Also, let F b =

{f b1 , . . . , f bNb} be the set of vehicles indices in block B.

The center of mass of block b is given by

Rb =
1

N b

Nb

∑

k=1

rfb
k
.
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Similarly, the m-th moment of the heading distribution

of block b is

pb
m~θ

=
1

mN b

Nb

∑

k=1

e
imθ

fb
k , m = 1, 2, . . . . (18)

Using (18), we can also define block-specific heading

potentials such as

U bm(~θ) =
1

2
|pb
m~θ

|2. (19)

Note that
∂(Ub

m)
∂θk

= 0 for k /∈ F b and
〈

∇U bm,~1
〉

= 0.

Using this notation, we summarize the following

corollaries to Theorems 6.1 and 6.2 [43]. First, consider

block all-to-all coupling for the circular control term

only. In this case, the control law (12) with r̃k = rk−Rb

and k ∈ F b enforces convergence of all solutions to

circular formations of radius ρ0 = |ω0|−1 in phase

arrangements that are critical points of the potential

κU b1 + U as in Theorem 6.2, where U(~θ) is a potential

that satisfies
〈

∇U,~1
〉

= 0. In particular, the circular

motion of all the vehicles in a block have coincident

centers. Alternatively, suppose we use block all-to-all

coupling only in the gradient control term that depends

on relative headings. In this case, the control law is (12),

where U(~θ) =
∑B

b=1 U
b(~θ) and U b(~θ) is a potential

depending only on the headings in block b that satisfies
〈

∇U b,~1
〉

= 0. This control enforces convergence of all

solutions to circular formations of radius ρ0 = |ω0|−1

in phase arrangements that are critical points of the

potentials κU1 + U b.
To demonstrate the use of the control law (12), we

present the result of a useful case of block all-to-all

spacing coupling with fixed beacons. In this example,

the phase coupling is both all-to-all and block all-to-all

with

U = U (N,N) +
B

∑

b=1

U b (Nb,Nb) (20)

where N b = N/B for b = 1, . . . , B and is U b (Nb,Nb)

is given by (15). This potential is minimized by the

phase arrangement in which the entire group, as well

as each block, are in the splay state of vehicle headings.

Simulation results for N = 12 and B = 3 are shown in

Figure 9. The twelve vehicles start from random initial

positions and organize themselves in the splay states

using (12).

E. Shape Control: Elliptical Beacon Control Law

In this section, we modify the circular control law and

we stabilize a single vehicle on an elliptical trajectory

about a fixed beacon. We use a generalization of the

−40 −20 0 20 40 60
−40

−20

0

20

40

x

y

Fig. 9. Simulation results for N = 12 and B = 3 starting from

random initial conditions with block all-to-all spacing coupling and

three fixed beacons at (R1

0,R
2

0,R
3

0) = (−30, 0, 30). Phase coupling

is all-to-all and block all-to-all with the potential (20). The simulation

parameters are κ = ω0 = 1/10.

potential S(~r, ~θ) in (11) to prove Lyapunov stability of

this trajectory. Additionally, we couple several vehicles

via their relative headings as in Section VI-B in order to

synchronize the vehicle phases on each ellipse.

Let R0 ∈ C and µ0 ∈ S1 represent the center and

orientation of an ellipse with the lengths of the semi-

major and -minor axes given by a and b. The positions

of the focii are R0 ± c eiµ0 , where c =
√
a2 − b2. Let

d ∈ C and d′ ∈ C be the relative positions of the vehicle

from each focus, defined by

d , ρ ei(ψ+µ0) = r − R0 − c eiµ0 (21)

d′ , ρ′ ei(ψ
′+µ0) = r − R0 + c eiµ0 (22)

and shown in Panel (a) of Figure 10.

For a single vehicle whose position and heading

are r and θ, respectively, motion along the ellipse is

characterized by
ρ+ ρ′

2
= a (23)

and
ψ + ψ′

2
= θ − µ0 ±

π

2
. (24)

Condition (23) requires that the average distance to the

focii remains constant. Condition (24) requires that the

average angular position measured from both focii must

be separated by ±π
2 from the angle made by the velocity

vector and the major axis. Notice that the term ±π
2

corresponds to either clockwise or counter-clockwise

motion around the ellipse. For vehicles moving contin-

uously in the plane, ψ and ψ′ are continuous functions.

Therefore, the average (ψ + ψ′)/2 in condition (24)

is moving on only one branch (clockwise or counter-

clockwise) and can never switch continuously from one
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Fig. 10. a) The vectors d and d
′ used to identify the position of

the vehicle (white circles) relative to the focii (black circles) for an

ellipse centered at R0 and rotated by µ0. b) Depicts the angles ψ,

ψ′, α, and φ used in the control design. Note that φ = 0 for stable

elliptical motion with positive rotation.

branch to the other. The physical interpretation of this

property is the following: a vehicle moving along an

ellipse with a constant speed cannot change its sense of

rotation and keep a continous motion. Without loss of

generality, we will only consider the positive (counter-

clockwise) branch of condition (24). Building on these

geometrical considerations, we define the shape coordi-

nates (ξ, η, α, β, φ) given by

ξ =
ρ+ ρ′

2
(25)

η =
ρ− ρ′

2
(26)

α =
ψ + ψ′

2
(27)

β =
ψ − ψ′

2
(28)

φ = α+
π

2
− θ + µ0. (29)

The angles α and φ are shown in Figure 10.b. In these

coordinates, the conditions for elliptical motion (23) and

(24) are equivalent to (ξ, φ) = (a, 0) and ξ̇ = φ̇ = 0. We

choose the Lyapunov function candidate

S(ξ, η, α, β, φ) =
1

2
|ξ − ae−iφ|2 (30)

which has minimum at zero for an elliptical trajectory

centered at R0 and rotated by µ0 with major and minor

semi-axes (a, b).
The time derivative of the Lyapunov function (30)

along the trajectories of (48)-(52) is

Ṡ = (ξ − ae−iφ, ξ̇ + iae−iφφ̇)

= (ξ − a cosφ)ξ̇ + ξa sinφ(α̇− u).

The dynamics of the single vehicle in the shape co-

ordinates are derived in the Appendix. Using these

calculations and choosing the control, u, with scalar gain,

κ > 0,

u = α̇+ κ
ξ

a
sinφ+

1

ξa
(ξ − a cosφ) cosβ (31)

gives

Ṡ = −κξ2 sin2 φ ≤ 0. (32)

Note that for the circular case a = b = |ωo|−1, the

control reduces to the circular beacon control law (9),

which can be expressed in the shape coordinates (ρ, φ)
as

u = ω0(1 + κρ sinφ).

We obtain the following result:

Theorem 6.3: Almost all trajectories of (7) for a sin-

gle vehicle subject to the control (31) converge to an

elliptical trajectory centered at R0 and rotated by µ0.

The size of the ellipse is parameterized by the length of

its semi-major and -minor axes, a and b.
Proof: By the Lasalle invariance principle, all tra-

jectories converge to the largest invariant set for which

Ṡ = 0. Using (32), the invariance condition becomes

sinφ = 0 since ξ > 0. Subject to this condition, the

dynamics of the shape variables (ξ, φ) from equations

(48) and (52) in the appendix become

ξ̇ = 0 (33)

φ̇ = − 1

ξa
(ξ − a cosφ) cosβ. (34)

Setting equations (33) and (34) equal to zero, we obtain

the solutions (ξ, φ) = (a, 0) and sinφ = cosβ = 0. The

latter corresponds to trajectories on the major axis of

the ellipse (between the focii) and does not constitute an

invariant set due to the singularities in (31) at the focii.

As a result, all trajectories which do not originate at a

focus of the ellipse asymptotically converge to the set for

which (ξ, φ) = (a, 0). This set corresponds to elliptical

motion with parameters (a, b).
We briefly discuss how to extend this result to coordi-

nate groups of vehicles on (separate) ellipses by coupling

their headings as in Section VI-B. Let R1
0, . . . ,R

N
0 and

µ1
0, . . . , µ

N
0 be the location and orientation of N ellipses

with parameters (ak, bk). Also, let uek

k be the ellipse

control (31) corresponding to the kth ellipse. We assume

that the ellipses’ circumferences are all the same. Then,

in order to stabilize each vehicle to its ellipse and to

synchronize the phases of all the vehicles, we propose

the control

uk = uek

k +K
∂U1

∂θk
, k = 1, . . . , N, (35)
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for K > 0, where U1 is the potential function (8). The

convergence analysis of this control law is not pursued in

the present paper but simulations suggest good conver-

gence properties. In Section VII, we compute the optimal

sampling ellipses for a group of two gliders. The optimal

ellipses have the same circumferences and the controller

derived here is applied to this case (see Fig. 15).

VII. OPTIMAL COORDINATED SOLUTIONS

In this section, we use the sampling metric defined

by (4) to compute near-optimal vehicle trajectories con-

strained to ellipses. The objective of this section is to

determine the optimal ellipse parameters as a function

of the size, shape and characteristic scales of the region

of interest and the capabilities of the sensor platforms.

We start by introducing a convenient formalization of

the adaptive sampling problem using non-dimensional

parameters. Next, we present the results of numerical

optimization experiments for a single vehicle on an

elliptical trajectory and for a pair of vehicles on separate

ellipses. Lastly, we consider the influence of a uniform

flow field on the sampling performance of the ellipse

feedback control from the previous section. We antici-

pate that the insights from these numerical results will

extend to larger groups of vehicles.

A. Sampling Numbers

We consider a rectangular domain B of size Ba × Bb
in which we would like optimal sensor coverage during

a finite duration of time T . The trajectories of the

N vehicles, given by rk(t), and the sampling metric,

φ(~r) (see (4)), determine the locations and effectiveness

of the sensor measurements, respectively. The optimal

trajectories, r∗k(t), and the value of the metric at the

optimum, φ∗ , φ(~r∗), are obtained by minimizing

the metric φ among all acceptable sets of curves, rk,

k = 1, . . . , N , satisfying the constant velocity constraint

in (6).

We decrease the number of dimensions of the opti-

mization problem by applying the Buckingham π theo-

rem [46] to reduce the number of parameters. Let Av{·}
represent the space-time average over the domain B×T .

Then the initial uncertainty on the field, σ0, is given by

σ0 = Av{B(r, t, r, t)} . (36)

Recall from Section V-A, the measurement noise is

denoted by n. In addition, we define the correlation

Name Description Dist. Time Temp.

σ0 Initial Uncertainty, (5), (36) 0 0 1

σ Correlation Length, (5), (37) 1 0 0

τ Correlation Time, (5), (38) 0 1 0

n Measurement Noise 0 0 1

v Speed of Sensors 1 -1 0

Ba Width of Domain 1 0 0

Bb Height of Domain 1 0 0

T Duration of Experiment 0 1 0

r∗k(t) Optimal Traj. for kth Veh. 1 0 0

φ∗ Minimum Metric 2 1 1

TABLE I

RELEVANT PHYSICAL QUANTITIES AND THEIR DIMENSIONS

length and the correlation time by

σ , Av

{
∫

R2

dr′
B(r, t, r′, t)

B(r, t, r, t)

}

(37)

τ , Av







+∞
∫

−∞

dt′
B(r, t, r, t′)

B(r, t, r, t)







. (38)

One can easily check that, for a Gaussian correlation

function given by (5), the equations above an equiva-

lent definition of the correlation length and time. The

advantage of (37) and (38) is that they extend the

definition to arbitrary correlation function B. Notice that,

strictly speaking, the integrals cannot be taken over an

infinite domain (in space and time). The domain of

interest is usually finite and B(r, t, r′, t′) is not defined

outside this domain. In practice, the correlation function

becomes quickly negligable when ‖r − r′‖ or |t− t′|
grows, therefore, integrating over a finite spatial domain

B and finite interval of time [0, T ] gives essentially the

same result as (37) and (38).

We assume that the stochastic component of the field

is well captured by these variables [47], [48]. Note, in

the case of a Gaussian covariance model in the limit

B → R
2 and T → ∞, the definitions (37) and (38)

evaluate to the 1/e ≈ 37% decorrelation scale.

Table I lists the eight relevant variables and their

respective dimensions. We use temperature as a proxy for

the (arbitrary) units of the sensor measurements. Since

we are looking for the minimum value of the metric,

we add the variable φ∗ to the first eight variables. The

rank of the matrix made by the units of this system is 3
(see Table I). According to the Buckingham π theorem

[49], the relationship giving the φ∗ can be reduced to

a relationship between 6 non-dimensional numbers. For

practical reasons, the following choices of these numbers

will be used in this work:

• Φ = φ∗/σ0BaBbT , the normalized metric;

and the sampling numbers,
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• Sz =
√
BaBb/σ, the size of the domain,

• Sh = Bb/Ba, the shape of the domain,

• St = T/τ , the sampling time interval,

• Sp = vτ/σ, the normalized speed of the vehicle,

• Sn = n/σ0, the sensor noise.

A similar development for the optimal trajectories

leads to the definition of the scaled optimal trajectories

r∗k(s) =
1

Ba
r∗k(τ t), k = 1, . . . , N.

where s = τt is the normalized time variable. The

constant speed constraint (relative to the flow) in (6)

translates into

‖v‖ =

∥

∥

∥

∥

dr∗k
ds

∥

∥

∥

∥

=
vτ

Ba
=

Sp

Sz

√

Sh . (39)

Notice that the use of Sz and Sh allows us to study the

system in terms of its size (the area of the box is σ2Sz2)

and its aspect ratio (shape). Both Sp and Sn can be fixed

or limited to a small range for a specific experiment with

a homogenous group of vehicles and sensors. During an

experiment, the survey speed of the sensor platforms,

v, is typically known and fixed and the characteristic

spatial/temporal scales can be estimated. For example,

during the AOSN 2003 experiment, the effective glider

speed, v, (including surface intervals) was between 25
and 35 cm/s. The glider data was used to approximate

the average correlation length, σ≈25 km, and time, τ≈
2.5 days (see [28] for details). Therefore, the sampling

number Sp was between 2 and 3 for this experiment.

Similarly, Sn only depends on the sensor noise and the

a-priori uncertainty of the model.

In the remainder of this paper, we will only consider

experiments that last much longer than the characteristic

time scale. In other words, we assume that T >> τ or,

equivalently, St >> 1. For the AOSN experiment, the

estimated correlation time was 2.5 days (see [28]). The

gliders sampled the region for about a month, so St ≈
12, which is sufficiently high to validate our analysis.

For T >> 1, one expects to get the same normalized

performance for any interval of time T . In other words,

we assume that the metric per unit of area and time, Φ, is

independent of the sampling time, St. We summarize the

functional dependence of the normalized performance

metric on the four remaining sampling numbers by

Φ = Φ(Sz,Sh,Sp,Sn). (40)

In the next subsection, we compute the near-optimal

trajectories of a single vehicle among a family of ellipses.

These racetracks can be pre-computed or, alternatively,

optimized in real-time to maximize the steady-state per-

formance of the array. The feedback control presented

in Section VI is essential to maintain the vehicles on

these optimal tracks in the presence of strong currents

and communication difficulties.

B. Optimal Ellipses in Rectangular Domains

In this subsection, we present optimization results

for a single vehicle following a parameterized elliptical

trajectory in a rectangular domain. The objective is to

find the set of parameters yielding the smallest value of

the metric, (40), as a function of the sampling numbers.

A system with only one sensor moving on an elliptical

path has six degrees of freedom: the position and orien-

tation of the ellipse, the lengths of the semi-major and

-minor axes a and b, and the initial phase, γ(0). One can

easily check that these six parameters determine a unique

trajectory for the vehicle (up to the sense of rotation).

Inspection of (4) directly reveals that the center of the

optimal ellipse necessarily coincides with the middle of

the box B. Moreover, the angle γ(0) has no influence on

the metric for St>> 1 and can be ignored. In addition,

we assume that the ellipse orientation µ0 is parallel to

the long side of the box.

For given size Sz, shape Sh, sensor noise Sn and

relative vehicle speed Sp, the problem reduces to a two-

dimensional space where the variables are the lengths

of the semi-major and -minor axes of the ellipse, a and

b. For example, Figure 11 shows the contour levels of

the metric, i.e. the error map, as a function of a and b
for the sampling numbers Sz = 2, Sh = 1, Sn = 0.1
and Sp = 3. There is a unique minimum for a vehicle

moving on a circle of radius a = b = 0.256. The fact

that the optimal ellipse is a circle is consistent with the

square shape of the domain.

Also notice that the minimum in Figure 11 is relatively

“flat”. Small deviations from a prescribed optimal plan

do not have much influence on the metric; this suggests

robustness to disturbances such as strong currents and

intermittent feedback. The error map associated with this

optimal trajectory is shown in the upper left panel of

Figure 12. Next, we investigate the influence of each

sampling number on the optimal elliptical solution.

1) Independence of the Shape Sh: In Figure 13, we

plot the performance of optimal elliptical trajectories

for a single vehicle within the rectangular box B as a

function of the sampling numbers Sz and Sh. The shape

of the optimal trajectory varies with the shape of the

domain; however, the contour levels of Φ in the (Sz,Sh)-
plane reveal that Φ does not depend on Sh. As a result,

the same performance can be achieved on rectangles

with different aspect ratio but with the same area. In

particular, if a complex domain such as Monterey Bay
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Fig. 11. Non-dimensional metric Φ for one vehicle on an elliptical
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0.1 and Sp = 3 with a single vehicle on an elliptical trajectory.

Within numerical accuracy, Φ is independent of Sh, the shape of

the domain. The same performance can be achieved on a rectangle

of any aspect ratio (with the appropriate optimal trajectory that will

vary with shape).

is divided in several sub-regions patrolled by groups of

gliders, the shape of the sub-regions can be chosen freely.

This permits a greater flexibility in designing sampling

plans.

2) Role of Speed Sp and Noise Sn: To study the

influence of the sampling numbers Sp, Sn and Sz on the

optimal trajectories, the optimal ellipses and the mini-

mum value of the metric are computed for several values

of the sampling numbers. For example, see Figure 12 for

typical error maps. We have already determined that the

shape Sh and the time number St do not influence the

solutions so we present results for Sh = 1 and St ≫ 1.

Figure 14 gives the optimal non-dimensionalized radius

(a = b) and the minimum value of the metric, Φ, as

a function of Sz. Each curve corresponds to different

values of Sn and Sp. Notice that, for Sz > Sp, Φ becomes

independent of Sn.

Figure 14 also shows that Sp has no influence on the

performance (although it does determine the perimeter

of the optimal trajectory). The minimum value of Φ is

determined entirely by the noise Sn and the size of the

domain Sz. On the other hand, the optimal trajectory

(i.e., the radius of the circle) is a function of Sz and Sp,

but does not depend on the measurement noise Sn. This

is an important result that allows us to design optimal

trajectories independently of the precision of the sensors.

C. Multiple Vehicle Results

In this section, we study the optimal elliptical trajec-

tories for two vehicles in a square spatial domain. We
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Notice that Φ does not depend on Sp. Moreover, the optimal radius

does not depend on Sn.

also consider the influence of the flow field on the ellipse

feedback control from Section VI using the performance

metric. We assign the sampling numbers Sz = 1 and

Sh = 1 in order to simplify analysis of the results.

We use the feedback control to simulate the vehicle

trajectories on the optimal ellipses. The top panels of

Figure 15 show these trajectories and snapshots of the

resulting error map.

For these sampling numbers, the coverage metric is

minimized for two ellipses that are (nearly) centered

along the horizontal axis. The optimal relative phase

difference between the vehicles is zero, i.e. they are

synchronized. The vehicles remain synchronized despite

the fact that the optimal ellipses have different eccentric-

Sim Flow direction Heading Coupling Metric (< better)

#1 N/A on 0.018

#2 0o on 0.020

#3 90o on 0.054

#4 180o on 0.023

#5 270o on 0.101

#6 N/A off 0.236

TABLE II

METRIC FOR SIMULATED OPTIMAL TRAJECTORIES.

ities because they have the same perimeter5. Any shift

in the respective position of the vehicles (e.g., delay or

current impeding one vehicle) decreases the performance

of the coverage metric [50]. Notice that, in the absence of

inhomogeneities and currents, there are four equivalent

solutions corresponding to the two ellipses of Figure 15

and the same ellipses rotated by 90, 180 and 270 degrees.

1) Influence of Flow Field: To study the robustness

of the solution, we used the controller designed in

Section VI to stabilize the vehicles to the optimal ellipses

in the presence of currents. Table II summarizes these

experiments with the magnitude of the flow speed equal

to 2% of the vehicle speed6. The path of the vehicles

converging toward their optimal ellipses can be seen on

the left panels of Figure 15. The corresponding error

maps are shown in the right panels of Figure 15.

Comparing simulations #2 and #4 in Table II, we

observe that currents in the longitudinal direction (i.e.,

aligned with the major axis of the ellipses) have a

very small effect on the performance. On the other

hand, transverse currents have a dramatic effect on the

sampling metric. This result contradicts the intuitive

result that high eccentricity vehicle trajectories should

not be aligned with the prevailing currents.

2) Role of Heading Synchronization: Clearly, the abil-

ity of the controller to maintain the “synchronization”

of the vehicles is, in large part, responsible for the

performance achieved by simulations #1, #2 and #4. To

demonstrate the influence of the synchronization, a sim-

ulation was run without the heading coupling described

in Section VI. The performance for such an array is

5We attribute the 1.4% difference in the optimal ellipse perimeters

to numerical errors in the computation of the metric as well as to the

finite optimization time (i.e., the solution may not have completely

converged). For the numerical simulation of the ellipse control law,

we perturbed the four optimal ellipse parameters (a1, b1, a2, b2) in

order to more precisely match their perimeters without any apprecia-

ble degradation of the performance metric.
6We limited the flow speed to 2% because larger magnitude

flow velocity significantly distorted the vehicle trajectories due to

singularities in the ellipse control law which occur when the vehicle

passes near a focus of the ellipse. This is a deficiency in the controller

which needs to be addressed in future work.
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dramatically worse than the synchronized case. Table II

shows that, without heading coupling, the network of

vehicles performs even worse in the absence of currents

than the synchronized array in the presence of currents.

VIII. FINAL REMARKS

We present developments on the design of mobile

sensor networks that optimize sampling performance de-

fined in terms of uncertainty in an estimate of a sampled

field over a fixed area. The general problem that we pose,

and thus, the methodology that we develop, pertains to

mobile sensor networks in a number of domains: land,

air, space and underwater.

We address a number of general issues as well as

some of the particular issues that distinguish mobile

sensor networks in the ocean. For example, we make our

solutions robust to strong currents that can push around

slow moving mobile sensors by determining optimal

solutions in the presence of currents, choosing solutions

with performance robust to small deviations and design-

ing feedback control to stably coordinate vehicles.

We determine optimal, coordinated trajectories of

mobile sensors over a parametrized family of trajec-

tories. This family consists of multiple closed curves

(we specialize to ellipses), each with multiple sensors

moving at constant speed. The relative positions of the

sensors on these curves are parametrized by relative

phases. This low-dimensional parametrization simplifies

the optimization problem and motivates the coordinated

feedback control laws that include terms modelled after

coupled phase oscillator dynamics.

We present optimal solutions in several cases. For

example, two sensors, each moving around a different

ellipse, are optimized when their phases are synchro-

nized. Sampling performance is significantly enhanced

for the closed-loop system with the coordinating feed-

back control enabled. In the presence of a constant flow

field, the solution (with feedback control) with the major

axes of the two ellipses aligned with the flow provides

higher performance than in the case the flow is aligned

with the minor axes of the ellipses.

In related work we are investigating inhomoge-

neous statistics and alternative methods for computing

and adapting the sampling metric. We are developing

methodology to further treat and exploit the flow field,

to address a range of scales in the sampled field of

interest and to make use of a heterogeneous sensor

network. We are also investigating how well the data

set that optimizes the coverage metric presented in this

paper serves the needs of specific high resolution ocean

forecasting models.

We describe in the paper a number of practical and

critical challenges of operating mobile sensor networks

in the ocean: limitations on communication, computing

and control, including inherent asynchronicities and la-

tencies. We discuss how we have handled these chal-

lenges in previous field work. However, these and other

problems related to time and energy optimality remain

outstanding open problems of great interest.

Up until recently, our focus has been the optimal de-

sign for Eulerian data assimilation. Recent developments

in data assimilation extend this concept to Lagrangian

data assimilation [51], [52]. In a Lagrangian assimilation

scheme, the paths of passive tracers or drifters (as

opposed to an estimate of the Eulerian velocity) are

assimilated directly into the ocean model. Although it

was developed for float data [53], [52], Lagrangian data

assimilation represents an exciting application for quasi-

Lagrangian (i.e., weakly propelled) gliders. In particular,

a Lagrangian metric and corresponding optimal trajecto-

ries could be substituted into the usual objective analysis

scheme.
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APPENDIX

SHAPE DYNAMICS FOR ELLIPTICAL CONTROL

We first derive the dynamics of a single vehicle in

the coordinates (ρ, ρ′, ψ, ψ′, θ). Differentiating the defi-

nitions (21) and (22) using Ṙ0 = µ̇0 = 0 and applying
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the model (7) for a single vehicle gives

ḋ = ρ̇ei(ψ+µ0) + iρei(ψ+µ0)ψ̇ = eiθ (41)

ḋ′ = ρ̇′ei(ψ
′+µ0) + iρ′ei(ψ

′+µ0)ψ̇′ = eiθ. (42)

Identifying the real and imaginary terms of (41) and (42)

produces the system of equations,

ρ̇ = cos(θ − µ0 − ψ) (43)

ρ̇′ = cos(θ − µ0 − ψ′) (44)

ψ̇ =
1

ρ
sin(θ − µ0 − ψ) (45)

ψ̇′ =
1

ρ′
sin(θ − µ0 − ψ′) (46)

θ̇ = u. (47)

In shape coordinates (ξ, η, α, β, φ), the system of equa-

tions (43)-(47) becomes

ξ̇ =
1

2
(sin(β+φ) − sin(β−φ)) = cosβ sinφ (48)

η̇ =
1

2
(sin(β+φ) + sin(β−φ)) = sinβ cosφ (49)

α̇ =
1

2

(

1

ξ+η
cos(β+φ) +

1

ξ−η cos(β−φ)

)

(50)

β̇ =
1

2

(

1

ξ+η
cos(β+φ) − 1

ξ−η cos(β−φ)

)

(51)

φ̇ = α̇− u. (52)
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