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Neutrinos in supernovae, neutron stars, and in the early Universe may change flavor collectively and
unstably, due to neutrino-neutrino forward scattering. We prove that, for collective instability to occur,
the difference of momentum distributions of two flavors must change sign, i.e., there is a zero crossing.
This necessary criterion, which unifies slow and fast instabilities, is valid for Hamiltonian flavor evolution
of ultrarelativistic standard model neutrino occupation matrices, including damping due to collisions in the
relaxation approximation. It provides a simple but rigorous condition for collective flavor transformations
that are believed to be important for stellar dynamics, nucleosynthesis, and neutrino phenomenology.
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Introduction.—Supernovae and neutron star mergers
produce enormous numbers of neutrinos that carry away
a bulk of the energy. These neutrinos travel through the
dense material of the star, and crucially influence stellar
dynamics and nucleosynthesis [1–6]. The precise impact
can depend on the flavor states of the neutrinos, because the
different flavors interact with the background medium with
unequal interaction rates. Naturally, a characterization of
the neutrino flavor evolution in such environments is of
interest and importance.
The flavor evolution of dense neutrino clouds can be

very complex [7–9]. Neutrinos produced in the core of
these sources initially remain trapped due to frequent
collisions. They leak out via diffusion, before eventually
free-streaming. If the density of background matter is high,
flavor mixing is suppressed due to forward and nonforward
scatterings [10–12]. However, large collective flavor con-
version can occur even for vanishingly small mixing. This
novel instability arises when neutrinos forward scatter off
each other and influence each other’s flavor evolution.
As a result, the flavor evolution becomes intricately
coupled, i.e., collective, and creates nonlinear routes of
exponentially growing flavor conversion.
In the last two decades, a lot of insight has been

obtained into the origin and impact of a variety of collective
flavor transformations. Collective flavor transformations
stem from neutrino-neutrino forward scatterings [13,14],
and come in three variants. The simplest type are synchron-
ized, occurring for all neutrino energies with the
average oscillation frequency hωEi, but not seeded by an

instability [15]. These are usually suppressed in dense
matter, though there is also the possibility of synchronized
resonance that can cause large effects [16]. The next type
are slow instabilities, leading to evolution with a frequency
proportional to ðhωEiGFnνÞ1=2 [17–22], where nν is the
neutrino density. At heart, these are analogous to the
tipping of an inverted pendulum [22–24]. Despite being
dubbed slow, they are faster than the usual neutrino
oscillations in vacuum or matter, or even the synchronized
oscillations, because nν ≫ G−1

F hωEi deep in the star. As the
neutrino density drops below G−1

F hωEi, typically at a radius
of a few ×100 km in a supernova, these slow instabilities
tend to produce a swap of two flavors across a broad
range of energies [23,24]. The edges of these swaps could
appear as sharp spectral splits in the energy spectrum and
potentially observable in the signal reaching Earth. Finally,
there are fast instabilities that cause flavor evolution with a
very high frequency proportional to GFnν [25–31]. These
can occur very deep in a star at radii of few ×10 km or so
[32–34], and may impact stellar heating and nucleosynthesis
in a more nontrivial fashion. Fast instabilities correspond to,
at their simplest, motion in a quartic potential [35] or tipping
of a pendulum [36,37], and initially give wavelike propa-
gation of flavor disturbance [38]. The eventual impact of
these fast instabilities is not fully established yet, but a
number of studies hint that they cause partial flavor
equilibration in some range of neutrino velocities for all
energies [39–42]. This is called depolarization, and may be a
key observable of fast instability. The large flavor conversion
encoded in spectral splits or depolarization affects neutrino
transport, thus affecting stellar evolution [43,44] and nucleo-
synthesis [45–47], in addition to giving unique signals at
detectors [48].
A critical problem has been to determine the condition

for collective instabilities. One belief has been that insta-
bilities occur only if the flavor-difference distribution
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(FDD), i.e., the momentum distribution of the difference
in the initial number densities of two neutrino flavors,
changes sign at some momentum [24,28]. The importance
of such FDD crossings was first pointed out in a study of
multiple spectral splits [24]. Several subsequent investiga-
tions have further strengthened this notion for slow [49] and
fast [30,50–52] instabilities. Recently, a proof was pro-
posed for a necessary and sufficient condition for a fast
instability [53].
In this Letterwe show that “FDD crossings are necessary

for collective instability.” The argument is agnostic to
whether the instability is slow or fast, to the number of
neutrino flavors, and to whether damping due to collisions
are present. This simple but rigorous criterion boxes in the
astrophysical circumstances where collective neutrino fla-
vor transformations may be important. In the following, we
derive a linearized evolution equation including damping
to prove the above claim, and then conclude with a brief
summary and remarks.
Dispersion relation with damping.—We consider sce-

narios where neutrino flavor evolves as [54,55]

vα∂αρp ¼ −i½Hp; ρp� þ Cp; ð1Þ

where vα ¼ ð1; vÞ is the neutrino four velocity with
v ¼ p=jEj, and a summation over the spacetime indices
α ¼ 0;…; 3 is implied. The ρp, Hp, and Cp are matrices in
flavor space, with ρp (and ρ̄p) encoding the occupation
density and flavor coherence for neutrinos (and antineu-
trinos) in their diagonal and off-diagonal entries;Hp andCp

the Hamiltonian and collision matrices, respectively. The
problem is nonlinear because Hp contains terms involving
ρp and ρ̄p, as does Cp. The equation of motion (EOM) for
ρ̄p is the same except for a sign change in the mass-mixing
term in Hp.
In the following, we will derive a linearized equation

for the off-diagonal elements ρijp in the flavor basis, where
i; j ∈ fe; μ; τg in the usual three-flavor scenario. Our
derivation remains essentially unchanged from Ref. [56],
except for the inclusion of damping due to collisions.
The Hamiltonian matrix Hp has the usual contributions

from neutrino mass-mixing as well as the refractive effects
of other neutrinos and background leptons:

Hp ¼ M2

2E
þ Hνν

p þ Hbkg
p : ð2Þ

Explicitly, the neutrino-neutrino refractive term has the form
Hνν

p ¼ ffiffiffi
2

p
GFvαFα

ν with the neutrino flux matrix Fα
ν ¼R

đpvαðρp − ρ̄pÞ, where đp ¼ d3p=ð2πÞ3. The ordinary

matter contribution is Hbkg
p ¼ ffiffiffi

2
p

GFvαFα
bkg, which is diago-

nal and has the elements ðFα
bkgÞii ¼

R
đpuαi ðfi;p − f̄i;pÞ, for

the ith charged lepton with phase space distribution fi;p and
a four-velocity uαi ¼ ½1;p=ðp2 þm2

i Þ1=2�. With only at-rest

electrons in the background, one finds the familiar matter
potential diagð2 ffiffiffi

2
p

GFne; 0; 0Þ for three flavors. The expres-
sion used here is more general and includes other (anti)
leptons as well as their currents. The mass-mixing term does
not depend on v and the refractive term does not depend
on E, but only on v. We may define an overall matter effect
caused by both neutrinos and charged leptons as

Hmatter;eff ¼ vαΛα; ð3Þ

where Λα ¼ diagðΛα
e;Λα

μ;Λα
τ Þ to represent the diagonal part

of
ffiffiffi
2

p
GFðFbkg þ FνÞα.

Collisions usually lead to damping of the off-diagonal
flavor coherences [57–62]. This is because off-diagonal
elements can be enhanced only when neutrinos are pro-
duced or scattered into flavor nondiagonal states. Charged-
current production or scattering leads to neutrinos in flavor
eigenstates. Only neutral-current mediated scattering, with
cross sections relatively suppressed by powers ofM2

W=M
2
Z,

can lead to nondamping terms; e.g., a Z-mediated pair-
production (scattering) can give a flavor-mixed neutrino
in the final state. We draw attention to the d, c, and C terms
in Sec. III of Ref. [55]; see also Refs. [63–67]. Nearly
isotropic distributions will suppress the nondamping effects
of scattering. In general, however, collisions can produce
coherence that may mimic an instability.
We will restrict this work to include collisional processes

in the relaxation approximation. For any pair of neutrino
flavors, say e and μ, one has

Ceμ
p ¼ −jΔeμ

p jρeμp ; ð4Þ

with the damping rate jΔeμ
p j being non-negative. Similarly

for any other pair of flavors.
In the limit of vanishing neutrino mixing, the linearized

EoMs for the off-diagonal elements of ρp (and their
complex conjugates) decouple, leading to equations of
the form

ivα∂αρ
eμ
p ¼

�
M2

ee −M2
μμ

2E
− ijΔeμ

p j þ vαðΛe − ΛμÞα
�
ρeμp

−
ffiffiffi
2

p
GFðfνe;p − fνμ;pÞvα

Z
đp0v0αðρeμp0 − ρ̄eμp0 Þ;

ð5Þ

and analogous for the other pairs of flavors.
In this approach the three-flavor system corresponds to

three independent two-flavor cases. There are three non-
trivial cases only if the distributions of the three flavors are
different, as recently considered [68]. Extension to more
than three flavors is obvious.
All flavor coherence effects depend only on the differ-

ence of the original neutrino distributions and the diagonal
parts of all matrices in flavor space drop out. In particular,
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we may write the effective two-flavor neutrino matrices of
occupation numbers in the form

ϱeμp ¼ fνe;p þ fνμ;p
2

1þ fνe;p − fνμ;p
2

�
sp Sp
S�p −sp

�
; ð6Þ

whose off-diagonal element equals ρeμp , where sp is a real
number, Sp a complex one, and s2p þ jSpj2 ¼ 1. To linear
order in jSpj, one has sp ¼ 1, so in our linearized study we
focus on the space-time evolution of Sp alone which holds
all the information concerning flavor coherence.
Defining the two-flavor matter effect through Λα ¼

ðΛe − ΛμÞα, the vacuum oscillation frequency through
ωE ¼ ðM2

ee −M2
μμÞ=ð2EÞ, and the damping as jΔpj, the

EOM in Eq. (5) becomes

ivα∂αSp ¼ ðωE þ vαΛα − ijΔpjÞSp
− vα

Z
đp0v0αðSp0gp0 − S̄p0 ḡp0 Þ: ð7Þ

An analogous equation applies to the antineutrino flavor
coherence S̄pwith a sign-changeofωE. Hereweuse the FDD,

gp ¼ ffiffiffi
2

p
GFðfνe;p − fνμ;pÞ and ḡp ¼ ffiffiffi

2
p

GFðfν̄e;p − fν̄μ;pÞ,
where we have absorbed

ffiffiffi
2

p
GF for notational convenience.

These equations become more compact and physically
transparent in a convention where we interpret
antiparticles as particles with negative energy and
describe their FDD with negative occupation numbers.
Thus the modes are labeled by −∞ < E < þ∞ and
their direction of motion v with p ¼ jEjv. The two-flavor
FDD is

gΓ ¼
ffiffiffi
2

p
GF

� fνe;p − fνμ;p for E > 0;

fν̄μ;p − fν̄e;p for E < 0;
ð8Þ

with Γ ¼ fE; vg. There is no sign change in the definition
of S. The EOM thus reads

½vαði∂α − ΛαÞ − ωE þ ijΔΓj�SΓ ¼ −vα
Z

dΓ0v0αgΓ0SΓ0 ; ð9Þ

where the phase-space integration is over

Z
dΓ ¼

Z þ∞

−∞

E2dE
2π2

Z
dv
4π

; ð10Þ

with
R
dv an integral over the unit sphere, i.e., over the

polar and azimuthal angles of p.
The vacuum oscillation frequency ωE, in this convention,

automatically changes sign for antineutrinos. For positive
E, it is positive for inverted mass ordering (M2

ee > M2
μμ) and

negative for the normal mass ordering (M2
ee < M2

μμ).

As usual, for a linear EOM we search for space-time
dependent solutions of Eq. (9) in terms of its independent
Fourier components

SΓ;r ¼
X
K

QΓ;Ke−iðK0t−K·rÞ; ð11Þ

where rμ ¼ ðt; rÞ and Kμ ¼ ðK0;KÞ. The quantity QΓ;K is
the eigenvector in Γ space for the eigenvalue K. To find
the eigenmodes we insert the ansatz of Eq. (11) into Eq. (9)
and find

ðvαkα − ωE þ ijΔΓjÞQΓ;k ¼ vαAα
k; ð12Þ

where Aα
k ¼ −

R
dΓvαgΓQΓ;k and kα ¼ Kα − Λα. Fully

analogous to the fast-flavor case, we have shifted the
original four-wave vector Kμ to the redefined four-wave
vector, kμ ¼ ðk0;kÞ, by subtracting the matter-effect four
vector Λμ. Solving the EOM in Fourier space allows the
diagonal parts of all matter effect to be included as an origin
shift in the four-wave vector space.
In the absence of neutrino-neutrino interactions, the

rhs of Eq. (12) vanishes and nontrivial solutions require
vαkα − ωE þ ijΔΓj ¼ 0, i.e., the propagation relation
Rek0 − v · k ¼ ωE and the damping Imk0 ¼ −jΔΓj, where
each neutrino mode labeled by fE; vg evolves independ-
ently. In the presence of neutrino-neutrino interactions,
collective oscillations become possible where this
dispersion relation changes. Therefore, we consider sol-
utions with vαkα − ωE þ ijΔΓj ≠ 0 for any fE; vg so that
Eq. (12) implies

QΓ;k ¼
vαAα

k

vγkγ − ωE þ ijΔΓj
: ð13Þ

Inserting this form on both sides of Eq. (12) yields

vαAα
k ¼ −vαAβ

k

Z
dΓ0gΓ0

v0αv0β
v0γkγ − ωE0 þ ijΔΓ0 j : ð14Þ

In more compact notation this can be written in the form

vαΠ
αβ
k Ak;β ¼ 0; where; ð15Þ

Παβ
k ¼ hαβ þ

Z
dΓgΓ

vαvβ

vγkγ − ωE þ ijΔΓj
; ð16Þ

with hαβ ¼ diagðþ;−;−;−Þ being the metric tensor. This
equation must hold for any vα and thus consists of four
independent equations Παβ

k Ak;β ¼ 0. Nontrivial solutions
require

DðkÞ≡ detΠαβ
k ¼ 0; ð17Þ
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establishing a connection between the components of
k ¼ ðk0;kÞ, i.e., the dispersion relation of the system. It
depends only on the neutrino FDD gΓ, which itself contains
the neutrino density, the vacuum oscillation frequency ωE,
and the damping rate jΔΓj.
If the imaginary part of k0 is positive, for any k that

satisfies Eqs. (17) and (11) tells us that it leads to exponential
growth of the off-diagonal flavor coherence between the two
flavors under consideration, i.e., Seμ ∼ etImk0 . In the limit of
vanishing flavor mixing, as relevant in dense matter, such
flavor conversion is surprising and called a collective
instability.
Proof that crossings are necessary.—Now we prove that

collective instabilities can arise only if there is an FDD
crossing. Technically, our proposition is that if any solution
of the dispersion relation DðkÞ ¼ 0 has Imk0 ≡ σ > 0 and
k ∈ R3, then the FDD (i.e., gΓ) cannot have the same sign
everywhere. We will prove the proposition by contra-
diction, following Morinaga [53], but cover a potential
singular case.
In the following, we omit explicitly noting the k

dependence of the matrix Πk and its eigenvector Ak.
Also we separate the real and imaginary parts of
k0 ¼ κ þ iσ, where κ; σ ∈ R, and write the Π matrix as

Παβ ¼ Mαβ − iNαβ; ð18Þ

where M and N are real-symmetric matrices

Mαβ ¼ hαβ þ
Z

dΓgΓ
ðκ − v · k − ωEÞvαvβ

ðκ − v · k − ωEÞ2 þ ðσ þ jΔΓjÞ2
;

Nαβ ¼
Z

dΓgΓ
ðσ þ jΔΓjÞvαvβ

ðκ − v · k − ωEÞ2 þ ðσ þ jΔΓjÞ2
: ð19Þ

The matrix N can be diagonalized by a real orthogonal
matrix O as

Oα
μO

β
νNμν ¼ Dαβ; ð20Þ

where D is a diagonal matrix whose components are

Dαα ¼
Z

dΓgΓ
ðσ þ jΔΓjÞðOα

μvμÞ2
ðκ − v · k − ωEÞ2 þ ðσ þ jΔΓjÞ2

: ð21Þ

In this basis where N becomes diagonal, the matrix M
becomes M̃ and the dispersion relation DðkÞ ¼ 0 becomes
detðM̃ − iDÞ ¼ 0, which implies that there exists a non-
trivial four-eigenvector A such that

M̃αβAβ ¼ þiDαβAβ: ð22Þ

Note that M̃ − iD is a complex-symmetric matrix, so, in
general, A is a complex vector. We multiply the above
equation by A�

α and sum over α to get

M̃αβA�
αAβ ¼ þiDαβA�

αAβ; ð23Þ

whose complex conjugate is given by

M̃αβAαA�
β ¼ −iDαβAαA�

β: ð24Þ

Using the fact that α and β are dummy indices and can be
renamed β and α, respectively, and that M̃ is symmetric,
i.e., M̃βα ¼ M̃αβ, we get

M̃αβA�
αAβ ¼ −iDαβA�

αAβ: ð25Þ

Subtracting Eq. (25) from Eq. (23) gives

X
α

DααjAαj2 ¼ 0: ð26Þ

In Eq. (26) above, jAαj2 are non-negative and not all of
them vanish. As proposed, we have σ > 0 and gΓ has the
same sign everywhere, so Eq. (21) dictates that allDαα have
the same signature as gΓ.
There would appear to be two possibilities for Eq. (26).

First, the singular case where Dαα ¼ 0 for all α for which
jAαj2 ≠ 0. However, in this case Eq. (21) requires that
for those α, the integral of ðOα

μvμÞ2 times an everywhere-
same-sign function vanishes identically. This is possible
only if ðOα

μvμÞ2 ¼ 0 for all points in Γ or if gΓ ¼ 0. That is,
the same O makes the α component of any v vanish or that
there are no collective effects at all, respectively. These are
either impossible or trivial, and therefore excluded. Second
is the nonsingular case, where Dαα ≠ 0 for some Aα ≠ 0.
In this case, in Eq. (26) at least one term is nonzero and
all terms are of the same sign. But then Eq. (26), which
algebraically followed from our original assumptions,
cannot be satisfied. The only resolution is that gΓ must
change sign if there exists a σ > 0. This completes the
proof of the proposition. As a corollary, setting ωE → 0 and
ΔΓ → 0, one recovers the necessary condition for collision-
less fast instability [53].
Discussion and outlook.—We have shown that collective

flavor instability requires an FDD crossing in momentum
space. Observation of signatures of collective neutrino
flavor instabilities, such as spectral splits, depolarization,
and their impact on stellar heating and nucleosynthesis,
will therefore provide information on neutrino distributions
deep inside stars. The criterion presented in this work gives
a rigorous foundation for this physical expectation. It also
makes it eminently sensible to rule out collective flavor
instabilities in supernova simulations by simply ruling out
FDD crossings [69–71]. We note that this criterion unifies
the origin of slow and fast instabilities, and is distinct from
the crossing criterion for fast instabilities where one
demands a crossing in the energy-integrated FDD [53].
Also, note that the proof does not depend on any detailed
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features of gΓ; thus it cannot be violated by invoking
azimuthally non-symmetric distributions, for example.
We now outline some limitations of the necessary

criterion. Our framework considers evolution of the occu-
pation matrices, ρ ∼ ha†ai and ρ̄ ∼ hb†bi, related to field-
theoretic expectations of the fermion bilinears. Other
correlations, e.g., ha†bi, encode coupling of helicity, spin,
lepton-number. While much tinier, these demand an
expanded Hilbert space [63–67], which could invalidate
the proof. Similarly, going beyond the mean-field approxi-
mation [72,73] needs a more sophisticated treatment.
Beyond the Standard Model, even certain kinds of forward
interactions render the linearized EOM to not remain an
eigenvalue equation [74], and the proof ceases to apply.
Also, note that our analysis is limited to linear instability.
Finally, within the assumed framework, the collision term
could have nondamping parts that we have ignored. These
extensions may reveal novel collective oscillation effects
that are not accounted for by the crossing criterion that was
proved here.
One could ask if an FDD crossing is also sufficient for a

collective instability? In the fast limit, it has been proposed
that a crossing in the energy-integrated FDD spectrum must
lead to some solution k of the dispersion relation DðkÞ ¼ 0

with a complex k0 and real k [53]. The proof in effect
recasts the dispersion relation as a quartic polynomial,
which we could not reproduce. Note also, even if a crossing
guarantees instability, the rate of the instability can be
very small.
The exploration of collective effects over the past three

decades has revealed many novel phenomena. The pro-
posed necessary criterion hopefully provides an organizing
principle, and its violations may reveal yet newer secrets of
collective neutrino flavor transformations.
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