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Collective neutrino flavor transformation in supernovae

Huaiyu Duan* and George M. Fuller†

Department of Physics, University of California, San Diego, La Jolla, California 92093-0319, USA

Yong-Zhong Qian‡

School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
(Received 9 November 2005; revised manuscript received 23 October 2006; published 12 December 2006)

We examine coherent active-active channel neutrino flavor evolution in environments where neutrino-
neutrino forward scattering can engender large-scale collective flavor transformation. We introduce the
concept of neutrino flavor isospin which treats neutrinos and antineutrinos on an equal footing, and which
facilitates the analysis of neutrino systems in terms of the spin precession analogy. We point out a key
quantity, the ‘‘total effective energy,’’ which is conserved in several important regimes. Using this concept,
we analyze collective neutrino and antineutrino flavor oscillation in the synchronized mode and what we
term the bi-polar mode. We thereby are able to explain why large collective flavor mixing can develop on
short time scales even when vacuum mixing angles are small in, e.g., a dense gas of initially pure �e and
��e with an inverted neutrino mass hierarchy (an example of bi-polar oscillation). In the context of the spin
precession analogy, we find that the corotating frame provides insights into more general systems, where
either the synchronized or bi-polar mode could arise. For example, we use the corotating frame to
demonstrate how large flavor mixing in the bi-polar mode can occur in the presence of a large and
dominant matter background. We use the adiabatic condition to derive a simple criterion for determining
whether the synchronized or bi-polar mode will occur. Based on this criterion, we predict that neutrinos
and antineutrinos emitted from a protoneutron star in a core-collapse supernova event can experience
synchronized and bi-polar flavor transformations in sequence before conventional Mikhyev-Smirnov-
Wolfenstein flavor evolution takes over. This certainly will affect the analyses of future supernova
neutrino signals, and might affect the treatment of shock reheating rates and nucleosynthesis depending on
the depth at which collective transformation arises.

DOI: 10.1103/PhysRevD.74.123004 PACS numbers: 97.60.Bw, 14.60.Pq

I. INTRODUCTION

In both the early universe and in core-collapse super-
novae, neutrinos and antineutrinos can dominate energetics
and can be instrumental in setting compositions (i.e., the
neutron-to-proton ratio). However, the way these particles
couple to matter in these environments frequently is flavor
specific. Whenever there are differences in the number
fluxes or energy distribution functions among the active
neutrino species (�e, ��e, ��, ���, ��, and ���), flavor mixing
and conversion can be important [1–8].

In turn, the flavor conversion process becomes compli-
cated and nonlinear in environments with large effective
neutrino and/or antineutrino number densities [1,3,5,9–
11]. In these circumstances, neutrino-neutrino forward
scattering can become an important determinant of the
way in which neutrinos and antineutrinos oscillate among
flavor states.

Two of the three vacuuming mixing angles for the active
neutrinos are now measured. The third angle (�13) is con-
strained by experiments and is limited to values such that
sin22�13 & 0:1 (see, e.g., Ref. [12] for a review). In addi-
tion, the differences of the squares of the neutrino mass

eigenvalues are now measured, though the absolute masses
and, therefore, the neutrino mass hierarchy remains
unknown.

Both the solar and atmospheric neutrino mass-squared
differences are small, so small in fact that conventional
matter-driven Mikhyev-Smirnov-Wolfenstein (MSW) evo-
lution [13–15] would suggest that neutrino and/or antineu-
trino flavor conversion occurs only far out in the supernova
envelope. On the other hand, it has been shown that plau-
sible conditions of neutrino flux in both the early shock
reheating epoch and the later neutrino-driven wind,
r-process epoch, could provide the necessary condition
for neutrino-neutrino forward scattering induced large-
scale flavor conversion deep in the supernova environment
[16].

The treatment of the flavor evolution of supernova neu-
trinos remains a complicated problem, and the exact solu-
tion to this problem may only be revealed by full self-
consistent numerical simulations. However, physical in-
sights still can be gained by studying somewhat simplified
models of the realistic environments. For example, one
source of complication is that there are three active flavors
of neutrinos in play. As the measured vacuum mass-
squared difference for atmospheric neutrino oscillations
(�m2

atm ’ 3� 10�3 eV2) is much larger than that for solar
neutrino oscillations (�m2

� ’ 8� 10�5 eV2), the general
problem of three-neutrino mixing in many cases may be
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reduced to two separate cases of two-neutrino mixing, each
involving �e ( ��e) and some linear combination of �� and
�� ( ��� and ���). This reduction allows the possibility of
visualizing the neutrino flavor transformation as the rota-
tion of a ‘‘polarization vector’’ in a three-dimensional
flavor space [17]. Different notations have been developed
around this concept (see, e.g., Refs. [3,18]). However, none
of these notations fully exhibits the symmetry of particles
and antiparticles in the SU(2) group that governs the 2� 2
flavor transformation.

The equations of motion (e.o.m.) of a neutrino ‘‘polar-
ization vector’’ are similar to those of a magnetic spin
precessing around magnetic fields. One naturally expects
that some collective behaviors may exist in dense neutrino
gases just as for magnetic spins in crystals. Indeed, it was
observed in numerical simulations that neutrinos with
different energies in a dense gas act as if they have the
same vacuum oscillation frequency [10]. This collective
behavior was later explained by drawing analogy to atomic
spin-orbit coupling in external fields and termed ‘‘synchro-
nization’’ [6].

Another, more puzzling, type of collective flavor trans-
formation, the ‘‘bi-polar’’ mode, has been observed in the
numerical simulations of a dense gas of initially pure �e
and ��e [19]. This type of collective flavor transformation
usually occurs on time scales much shorter than those of
vacuum oscillations. Although the analytical solutions to
some simple examples of bi-polar systems have been found
[20,21], many aspects of these bi-polar systems still remain
to be understood. In particular, it seems counterintuitive
that, even for a small mixing angle, large flavor mixing
occurs in both the neutrino and antineutrino sectors in a
dense gas initially consisting of pure �e and ��e for an
inverted mass hierarchy.

Both synchronized and bi-polar flavor transformation
were discovered in the numerical simulations aimed at
the early universe environment. It has been shown that
synchronized oscillation can also occur in the supernova
environment [22]. However, it is not clear if supernova
neutrinos can also have bi-polar flavor transformation. If
supernova neutrinos can have collective synchronized and/
or bi-polar oscillations, the questions are then where these
collective oscillations would occur and how neutrino en-
ergy spectra would be modified.

In this paper we try to answer the above questions. In
Sec. II we will give the general equations governing the
mixing of two neutrino flavors in the frequently used forms
and introduce the notation of neutrino flavor isospin, which
treats neutrinos and antineutrinos on an equal footing. We
will also point out a key quantity, the ‘‘total effective
energy,’’ in analogy to the total energy of magnetic spin
systems, which is conserved in some interesting cases. In
Secs. III and IV we will analyze the synchronized and bi-
polar neutrino systems using the same framework in each
case. We will first describe and explain the main features of

these collective modes using the concept of total effective
energy. We then generalize these analyses by employing
‘‘corotating frames.’’ We will derive the criteria for the
occurrence of these collective modes, and discuss the
effects of an ordinary matter background. In Sec. V we
will outline the regions in supernovae where the neutrino
mixing is dominated by the synchronized, bi-polar, and
conventional MSW flavor transformations. We will also
describe the typical neutrino mixing scenarios expected
with different matter density profiles. In Sec. VI we will
summarize our new findings and give our conclusions.

II. GENERAL EQUATIONS GOVERNING
NEUTRINO FLAVOR TRANSFORMATION

We consider the mixing of two neutrino flavor eigen-
states, say j�ei and j��i, which are linear combinations of
the vacuum mass eigenstates j�1i and j�2iwith eigenvalues
m1 and m2, respectively:
 

j�ei � cos�vj�1i � sin�vj�2i; (1a)

j��i � � sin�vj�1i � cos�vj�2i; (1b)

where �v is the vacuum mixing angle. We take �v <�=4
and refer to �m2 � m2

2 �m
2
1 > 0 as the normal mass

hierarchy and �m2 < 0 as the inverted mass hierarchy.
When a neutrino with energy E� propagates in matter,
the evolution of its wave function in the flavor basis

  � �
a�e
a��

� �
(2)

is governed by a Schrödinger-like equation

 i
d

dt
 � � �H v �H e� �; (3)

where a�e and a�� are the amplitudes for the neutrino to be
in j�ei and j��i at time t, respectively. (This equation is
‘‘Schrödinger-like’’ because, unlike the Schrödinger equa-
tion, we are here concerned with flavor evolution at fixed
energy and with relativistic leptons.) The vacuum mass
contribution H v to the propagation Hamiltonian in the
flavor basis is

 H v �
�m2

4E�

� cos2�v sin2�v

sin2�v cos2�v

� �
; (4)

and the contribution H e due to forward scattering on
electrons in the same basis is

 H e �
A
2

1 0
0 �1

� �
; (5)

where A �
���
2
p
GFne with ne being the net electron number

density. Equation (3) also applies to the antineutrino wave
function
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  �� �
a ��e
a ���

� �
(6)

if A in H e is replaced by �A.
When a large number of neutrinos and antineutrinos

propagate through the same region of matter, their forward
scattering on each other makes another contribution to the
propagation Hamiltonian for each particle. For the ith
neutrino, this contribution is [1,3,5,9,23]

 H ��;i �
1

2
B Be�
B	e� �B

� �
; (7)

where
 

B �
���
2
p
GF

X
j

�1� cos�ij�fn�;j
���;j�ee � ���;j����

� n ��;j
�� ��;j�ee � �� ��;j����g; (8a)

Be� � 2
���
2
p
GF

X
j

�1� cos�ij�
n�;j���;j�e� � n ��;j�� ��;j�e��:

(8b)

In the above equations, �ij is the angle between the
propagation directions of the ith neutrino and the jth
neutrino or antineutrino, and n�;j (n ��;j) and ��;j (� ��;j) are
the number density and single-particle flavor-basis density
matrix of the jth neutrino (antineutrino), respectively.
Specifically,

 �� �
ja�e j

2 a�ea
	
��

a	�ea�� ja�� j
2

 !
; (9a)

and

 � �� �
ja ��e j

2 a	��ea ���
a ��ea

	
��� ja ��� j

2

 !
; (9b)

where we have adopted the convention for the density
matrix of an antineutrino in Ref. [3]. The neutrino-neutrino
forward scattering contribution for an antineutrino can be
obtained by making the substitution B! �B and Be� !
�B	e� in H ��;i.

The single-particle density matrices in Eqs. (9a) and (9b)
can be written in the form

 � � 1
2�1� P � ��; (10)

where P is the polarization vector in the three-dimensional
(Euclidean) flavor space and � represents the Pauli matri-
ces. Explicitly, the polarization vectors in column form are

 P� �

2 Re�a	�ea���
2 Im�a	�ea���
ja�e j

2 � ja�� j
2

0
B@

1
CA; (11)

and

 P �� �

2 Re�a ��ea
	
����

2 Im�a ��ea
	
����

ja ��e j
2 � ja ��� j

2

0
B@

1
CA: (12)

By straightforward algebra, it can be shown that the
Schrödinger-like equation

 i
d

dt
 �;i � �H v �H e �H ��;i� �;i (13)

and a similar equation for an antineutrino lead to [3]
 

d

dt
P�;i � P�;i �

2
64�m2

2E�;i

� sin2�v

0

cos2�v

0
BB@

1
CCA� ���

2
p
GFne

0

0

1

0
BB@

1
CCA

�
���
2
p
GF

X
j

�1� cos�ij��n�;jP�;j � n ��;jP ��;j�

3
75;
(14a)

d

dt
P ��;i � P ��;i �

2
64� �m2

2E ��;i

� sin2�v

0

cos2�v

0BB@
1CCA� ���

2
p
GFne

0

0

1

0BB@
1CCA

�
���
2
p
GF

X
j

�1� cos�ij��n�;jP�;j � n ��;jP ��;j�

375:
(14b)

The three real components of the polarization vector
contain the same information as the two complex ampli-
tudes of the wave function except for an overall phase
which is irrelevant for flavor transformation. Therefore,
Eqs. (14a) and (14b) are equivalent to the Schrödinger-
like equations. Equations (14a) and (14b) appear to suggest
a geometric picture of precessing polarization vectors. This
picture has been discussed quite extensively in the litera-
ture (see, e.g., [6,24,25]) and shown to be especially help-
ful in understanding flavor transformation when neutrino
self-interaction (i.e., neutrino-neutrino forward scattering)
is important. To facilitate the use of this picture, we briefly
discuss the physics behind it and introduce some notations.

For simplicity, we first consider only the contributions
H v and H e to the propagation Hamiltonian H for a
neutrino. In this case, we can write

 H �H v �H e � �
�

2
� ��VHV �He�; (15)

where

 �V �
�m2

2E�
; (16)

 HV � �êf
x sin2�v � êf

z cos2�v; (17)

COLLECTIVE NEUTRINO FLAVOR TRANSFORMATION IN . . . PHYSICAL REVIEW D 74, 123004 (2006)

123004-3



 He � �êf
z

���
2
p
GFne; (18)

with êf
x and êf

z being the unit vectors in the x and z
directions in the flavor basis, respectively. Equation (15)
takes the form of the interaction between the ‘‘magnetic
moment’’ � � �s of a spin- 1

2 particle and an external
‘‘magnetic field’’ H � Heff=� with

 Heff � �VHV �He: (19)

Here � is the ‘‘gyromagnetic ratio’’ and can be chosen
arbitrarily. Classically, the spin s would experience a
torque � � ��H � s�Heff and its e.o.m. would be
given by the angular momentum theorem:

 

d

dt
s � � � s�Heff : (20)

By Ehrenfest’s theorem, the quantum mechanical descrip-
tion of a system has the same form as the classical
e.o.m. provided that all physical observables are replaced
by the expectation values of their quantum mechanical
operators. In the present case, if we replace s in Eq. (20) by

 s� �  y�
�

2
 � �

P�
2
; (21)

then neutrino flavor transformation governed by H �
H v �H e can be described quantum mechanically by

 

d

dt
s� � s� �Heff ; (22)

which is the same as Eq. (14a) in the absence of neutrino
self-interaction. Clearly, the operator �=2 in Eqs. (15) and
(21) represents a fictitious spin in the neutrino flavor space,
which may be appropriately called the neutrino flavor
isospin (NFIS). The flavor eigenstates j�ei and j��i corre-
spond to the up and down eigenstates, respectively, of the
z-component of �=2. We will loosely refer to the expec-
tation value s� of this operator as the NFIS and use it
instead of the polarization vector P� to describe neutrino
flavor transformation. The z-component of a NFIS s� is of
special importance as it determines the probability for the
corresponding neutrino to be in j�ei:

 sf
�z � s� � êf

z �
ja�e j

2 � ja�� j
2

2
� ja�e j

2 �
1

2
: (23)

Therefore, for a neutrino, sf
�z � 1=2, �1=2, and 0 corre-

spond to j�ei, j��i, and a maximally mixed state,
respectively.

Adiabatic MSW flavor conversion has a simple expla-
nation in this ‘‘magnetic spin’’ analogy. For illustrative
purposes, we assume �m2 > 0 and �v  1. As a �e prop-
agates from a region with large matter density, e.g., the
core of the sun, to a region of very little ordinary matter,
Heff changes its direction from �� êf

z to HV � êf
z. If the

density of electrons ne changes only slowly along the way
(adiabatic process), Heff also changes slowly, and the NFIS

s� corresponding to the neutrino is always antialigned with
Heff . Therefore, the neutrino originally in the �e eigenstate
(s� � êf

z=2) is now mostly in the �� eigenstate (s� ’
�êf

z=2).
It is useful to illustrate the criterion for adiabaticity of

this process in the ‘‘magnetic spin’’ analogy. First, we note
that the probabilities for a neutrino to be in instantaneous
mass eigenstates �L (light) and �H (heavy) are
 

ja�L
j2 �

1

2
� s� � êm

z �
1� cos2�

2
; (24a)

ja�H
j2 �

1

2
� s� � êm

z �
1� cos2�

2
; (24b)

respectively, where 2� is the angle between the directions
of s� and êm

z � Heff=jHeffj, and êm
i are the unit vectors for

the instantaneous mass basis. In the MSW picture, � is the
instantaneous matter mixing angle. In an adiabatic process,
ja�L
j2 and ja�H

j2 are constant, and so is �. Using Eq. (22)
we have

 

1

2

d

dt
�cos2�� �

d

dt
�s� � êm

z � � s� �
d

dt
êm
z : (25)

On a time scale �t * 2�=jHeffj, s� has rotated by at least
one cycle around Heff . If Heff changes its direction only by
a small angle �	 � jdêm

z =dtj�t 2� during �t, then s�
in Eq. (25) averages to �s� � êm

z �êm
z . Noting that êm

z �
�dêm

z =dt� � �1=2�d�jêm
z j

2�=dt � 0, one can see that the
angle � is unchanged in this process. Therefore, the crite-
rion for a MSW flavor transformation to be adiabatic is

 

�������� d

dt
êm
z

��������� j _Heff �Heff j

jHeff j2
 jHeffj; (26)

which is equivalent to saying that the rate of change of the
direction of the ‘‘magnetic field’’ Heff is much smaller than
the rotating rate of the ‘‘magnetic spin’’ s� around Heff .

The full version of Eq. (14a) can be obtained by extend-
ing the Hamiltonian in Eq. (4) to include

 H ��;i � �
�

2

X
j

�ij

�
n�;j

P�;j
2
� n ��;j

P ��;j

2

�
; (27)

where

 �ij � �2
���
2
p
GF�1� cos�ij�: (28)

We define the NFIS for an antineutrino as1

 s �� � �
P ��

2
; (29)

so that the terms related to neutrinos and antineutrinos

1The two fundamental representations 2 and �2 of the SU(2)
group generated by the Pauli matrices are equivalent. These
representations are related to each other by the transformation

y, and ~ �� � 
y �� transforms in exactly the same way as does
 � under rotation. Defining s �� � ~ y����=2� ~ ��, one naturally
obtains the minus sign in Eq. (29).
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appear symmetrically in H ��;i. The probability for an
antineutrino to be in j ��ei is determined from

 sf
��z � s �� � êf

z �
ja ��� j � ja ��e j

2

2
�

1

2
� ja ��e j

2: (30)

For an antineutrino, sf
��z � 1=2,�1=2, and 0 correspond to

j ���i, j ��ei, and a maximally mixed state, respectively.
Now Eqs. (14a) and (14b) can be rewritten in terms of

the NFIS’s in a more compact way:

 

d

dt
si � si �

�
�V;iHV �He �

X
j

�ijn�;jsj

�
; (31)

with the understanding that

 �V;i �

�
�m2=�2E�;i� for a neutrino;
��m2=�2E ��;i� for an antineutrino;

(32)

and that the sum runs over both neutrinos and antineutri-
nos. We also define a total effective energy (density) E for a
system of neutrinos and antineutrinos that interact with a
matter background as well as among themselves through
forward scattering:

 E � �
X
i

n�;isi �Heff
i �

1

2

X
i;j

�ijn�;in�;jsi � sj; (33)

where

 Heff
i � �V;iHV �He: (34)

We note that this effective energy should not be confused
with the physical energies of neutrinos and antineutrinos. It
can be shown from Eq. (31) that E is constant if ne and all
the n�;i’s and �ij’s are also constant. The concept of the
total effective energy will prove useful in understanding
collective flavor transformation in a dense neutrino gas.

In the early universe the neutrino gas is isotropic, and

 �ij ! �� � �2
���
2
p
GF: (35)

For illustrative purposes we will assume this isotropy
condition in most of what follows. We will discuss the
effects of the anisotropic supernova neutrino distributions
in Sec. V.

III. SYNCHRONIZED FLAVOR
TRANSFORMATION

In a dense neutrino gas, NFIS’s are coupled to each other
through self-interaction and may exhibit collective behav-
iors. As discovered in the numerical simulations of
Ref. [10], neutrinos with different energies in a dense gas
act as if they are oscillating with the same frequency. This
collective behavior was referred to as ‘‘synchronized’’
flavor oscillations in the literature and explained in
Ref. [6] by drawing analogy to atomic spin-orbit coupling
in external magnetic fields. In this section we will first
review the characteristics of a simple synchronized NFIS

system from the perspective of the conservation of the total
energy E of the NFIS system. We will then extend the
discussion to more general synchronized NFIS systems
using the concept of a ‘‘corotating frame’’ and demonstrate
the criteria for a NFIS system to be in the synchronized
mode. We will show that the stability of a synchronized
system is secured by the conservation of the total effective
energy. In the last part of the section, we will look into the
problem of synchronized flavor transformation in the pres-
ence of ordinary matter, which is relevant for the supernova
environment.

A. A simple example of synchronized flavor
transformation

We start with a simple case of a uniform and isotropic
neutrino gas with no matter background (ne � 0). The gas
initially consists of pure neutrinos with a finite energy
range corresponding to j�V;ij � j�V;ijmax, and all the
n�;i’s stay constant. The e.o.m. of a single NFIS is

 

d

dt
si � si � ��V;iHV ���S�; (36)

where

 S �
X
j

n�;jsj (37)

is the total NFIS (density) of the gas. (The NFIS density for
an individual ‘‘spin’’ sj is just n�;jsj.) Summing Eq. (36)
over all neutrinos, we obtain

 

d

dt
S �

X
i

�V;in�;isi �HV: (38)

Following the discussion at the end of the preceding sec-
tion, the evolution of the individual (si) and the total (S)
NFIS obeys conservation of the total effective energy
 

E � �
X
i

�V;in�;isi �HV �
1

2

X
i;j

�ijn�;in�;jsi � sj (39a)

� �
X
i

�V;in�;isi �HV �
��

2
S2: (39b)

An interesting limit is

 j��Sj � j�V;ijmax: (40)

Noting that each si has a magnitude of 1=2 and HV has a
magnitude of unity, we see that

 E ’ �
��

2
S2 ’ const (41)

in the above limit. Therefore, a gas with a large initial total
NFIS S evolves in such a way that it roughly maintains the
magnitude of its S. For such a gas, Eq. (36) reduces to

 

d

dt
si ’ ��si � S; (42)
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which means that each si precesses around the total NFIS
with a fixed common (angular) frequency

 !� � j��Sj: (43)

Equation (38) shows that S evolves on a time scale *

2�=j�V;ijmax. Consequently, over a period �t satisfying

 

2�
!�
 �t

2�
j�V;ijmax

; (44)

si averages out to be �si � S�S=S2 and Eq. (38) effectively
becomes

 

d

dt
S ’ !syncS�HV; (45)

where

 !sync � h�Vi �
X
i

�V;in�;isi � S
S2 : (46)

It can be shown from Eqs. (38), (41), and (42) that !sync ’

const. Therefore, S precesses around HV with a fixed
frequency !sync while the individual si’s precess around
S with a fixed common frequency !�. This collective
behavior of a dense neutrino gas is usually referred to as
synchronized flavor oscillations [6].

B. General synchronized systems

Synchronization can occur not only in dense neutrino
gases but also in dense antineutrino gases and gases in-
cluding both neutrinos and antineutrinos. Noting that the
NFIS’s for neutrinos and antineutrinos essentially only
differ by the signs in �V;i’s [see Eq. (32)], one can repeat
the same arguments in Sec. III A for these more general-
ized cases. Instead of doing so, we want to proceed from a
new perspective, which demonstrates some of the benefits
of the NFIS notation.

We consider a reference frame rotating with an angular
velocity of ��HV. In this corotating frame, Eqs. (36) and
(38) take the form
 

_~si � ~si � � ~�V;iHV ���
~S�; (47a)

_~S �
X
i

~�V;in�;i~si �HV; (47b)

where ~si (~S) and _~si ( _~S) are si (S) and its time derivative in
terms of their x-, y-, and z-components in the corotating
frame, and

 ~�V;i � �V;i ��: (48)

It is clear that one can set ~�V of a NFIS to any value by
choosing an appropriate corotating frame, and a NFIS for
an antineutrino in the lab frame becomes a neutrino in
some corotating frame. For example, the NFIS in the lab
frame with s � �êf

z=2 and �V � ��m2=2E corresponds
to a ��e with energy E. In a corotating frame with � �

��m2=E, the NFIS has ~s � �êf
z=2 and ~�V � �m2=2E,

which corresponds to a �� with energy E. Therefore, the
NFIS notation really treats neutrinos and antineutrinos on
an equal footing.

Because ~S and S are the same vector in two different
frames, the synchronization of the NFIS’s in one frame
means the synchronization in any frame. Consequently,
synchronization can occur in dense antineutrino gases
and gases of both neutrinos and antineutrinos just as it
can occur in pure neutrino gases as long as Eq. (40) is
satisfied in some corotating frame.

As we have seen, j�V;ijmax is not uniquely determined
and can have different values in different corotating
frames. However, we note that the relative spread of the
individual values of the �V;i’s of the NFIS’s is an intrinsic
property of a NFIS system and is corotating frame invari-
ant. For a corotating frame with

 � �
��V;i�min � ��V;i�max

2
; (49)

one has

 j ~�V;ijmax � ��V; (50)

where

 ��V �
��V;i�max � ��V;i�min

2
(51)

measures the spread of the �V;i’s in the NFIS system.
Synchronization can be obtained if

 j��Sj � ��V: (52)

When applying this condition to astrophysical environ-
ments such as the early universe and supernovae, we must
consider the meaning of ��V as neutrinos in these envi-
ronments formally have an infinite energy range. One
interesting scenario is where the distribution of NFIS
density as a function of �V has a single dominant peak.
An example is the neutronization burst in a core-collapse
supernova event where the neutrinos emitted are domi-
nantly �e with a Fermi-Dirac-like energy distribution
f�e�E�. For this case a natural estimate of ��V is the
half-width of the distribution function f�e��V�, where
f�e��V� is obtained from f�e�E� using the relation
�V�E� � �m2=2E.

Another interesting scenario is where the distribution of
NFIS density as a function of �V has two dominant peaks.
An example of this scenario is the Kelvin-Helmholtz cool-
ing phase of a protoneutron star in a core-collapse super-
nova event where the neutrinos emitted are mostly (in
number) �e and ��e. For this scenario one can take

 ��V ’

���������m
2

2E�e
�
�m2

2E ��e

��������; (53)
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where E�e and E ��e are the peak energies of the �e and ��e
energy spectra, respectively.

For more complicated scenarios, the criterion to obtain
synchronized flavor oscillations can be compared to the
criterion for an adiabatic MSW flavor conversion. If a
NFIS system has been tested to be in a synchronized
mode using the analyses in Sec. III A in some corotating
frame, each individual NFIS ~s should precess around the
total NFIS ~S with a fixed angle. This is the same ‘‘track-
ing’’ behavior as in the adiabatic MSW flavor transforma-
tion process discussed in Sec. II except that ~S now takes the
place of Heff in Eq. (26). Because ~S slowly rotates around
HV with angular frequency ~!sync � h ~�Vi, the adiabatic
criterion yields

 j��
~Sj * jh ~�Vij � j sin�j; (54)

where � is the angle between the directions of ~S and HV.
Equation (54) provides a necessary condition for synchro-
nization. Practically one may use

 j��Sj * jh�Vij (55)

as the criterion for synchronization, where h�Vi is eval-
uated using Eq. (46) with all the relevant neutrino and
antineutrino energy distributions.

We now make some comments on the stability of the
synchronized mode. Because neutrinos with different en-
ergies have different vacuum oscillation frequencies, one
may think that the NFIS’s will develop relative phases and
that the resulting destructive interference will break the
synchronization, i.e., reducing S to approximately 0.
Indeed, using Eq. (38) one can see that
 

d

dt
S2 � 2S � _S (56a)

�
X
ij

n�;in�;j��V;i ��V;j��sj � si� �HV (56b)

is generally not zero, and therefore, jSj varies with time.
However, Eq. (36), from which Eq. (38) is derived, can be
used to show that the total effective energy E is conserved
and the total NFIS S roughly maintains constant magnitude
if the n�;i’s do not vary with time [see Eq. (41)]. In this
case, destructive interference stemming from the relative
phases of different NFIS’s cannot completely destroy syn-
chronized flavor oscillations. On the other hand, if jSj ’ 0
initially, no significant synchronization of NFIS’s can oc-
cur spontaneously. This result is in accord with the lengthy
study in Ref. [26].

C. Synchronized flavor transformation with a matter
background

We now discuss the effects of a matter background on
synchronized flavor transformation in dense gases of neu-
trinos and/or antineutrinos. The relevant evolution equa-
tions are

 

d

dt
si � si � ��V;iHV �He ���S�; (57a)

d

dt
S �

X
i

�V;in�;isi �HV � S�He: (57b)

First, we assume a fixed matter background with net elec-
tron number density ne. For high ne, corresponding to
jHej � jh�Vij, Eqs. (57a) and (57b) reduce to
 

d

dt
si ’ si � �He ���S�; (58a)

d

dt
S ’ S�He: (58b)

The above equations correspond to perfectly synchronized
flavor oscillations: in a frame rotating with an angular
velocity of �He, the total NFIS stays fixed and the indi-
vidual NFIS’s precess around it with a common frequency
j��Sj. However, for neutrinos and antineutrinos initially in
pure flavor eigenstates, si and S start out aligned or anti-
aligned with He � �êf

z

���
2
p
GFne. Therefore, the above per-

fect synchronized flavor oscillations reduce to a trivial case
where all si’s remain in the initial state (i.e., all neutrinos
stay in their initial flavor states). This trivial case is of no
interest to us and will not be discussed further.

For jHej � jh�Vij and j��Sj � jh�Vij, the discussion
is similar to the case with no matter background. All si’s
precess around S with a frequency j��Sj and Eq. (57b)
becomes

 

d

dt
S ’ S� �h�ViHV �He�: (59)

Therefore, the total NFIS of the gas precesses around the
effective field Heff � h�ViHV �He and behaves just as
does a single NFIS with s � S=�2jSj� and �V � h�Vi in
the same matter background [see Eq. (22)]. For the cases
with �m2 > 0 and h�Vi> 0 or with �m2 < 0 and h�Vi<
0, this representative NFIS corresponds to a neutrino with
energy

 Esync �

�������� �m2

2h�Vi

��������: (60)

For the other cases, this representative NFIS corresponds to
an antineutrino with energy Esync. For an initially pure �e
neutrino gas, E�1

sync is simply the neutrino energy
distribution-averaged value of E�1

�e :

 E�1
sync �

Z f�e�E�

E
dE; (61)

where f�e�E� is the energy distribution of �e. For more
general cases, Esync is evaluated using Eqs. (46) and (60)
with all the relevant neutrino and antineutrino energy
distributions.

The above discussion can be extended to the case of a
slowly varying matter background in a straightforward

COLLECTIVE NEUTRINO FLAVOR TRANSFORMATION IN . . . PHYSICAL REVIEW D 74, 123004 (2006)

123004-7



manner. We note that this is again an adiabatic process as
discussed in Sec. II except that S takes the place of s� this
time. The angle between S and Heff is therefore constant. A
gas of initially dominantly �e with j��Sj � jh�Vij acts
just like a single neutrino with energy Esync propagating in
this matter background. For a normal mass hierarchy
(�m2 > 0), there may be an MSW resonance that can
enhance flavor transformation. In contrast, no MSW reso-
nance exists and flavor transformation is suppressed by the
matter effect for an inverted mass hierarchy (�m2 < 0).

Obviously, for a neutrino and/or antineutrino gas with
j��Sj  jh�Vij, there is no synchronized flavor
transformation.

IV. BI-POLAR FLAVOR TRANSFORMATION

The astrophysical environments where neutrino flavor
transformation is of interest do not always provide con-
ditions which are favorable for synchronization. For a
neutrino gas to be in the synchronized mode, the neutrinos
have to be prepared in such a way that the corresponding
NFIS’s are strongly aligned in one direction. There are
important regimes where this does not occur.

For example, consider the 2� 2 mixing channels �e �
�� and ��e � ��� in the late-time, shocked region above the
protoneutron star. By definition, si � êf

z=2 for a �e or ���
and si � �êf

z=2 for a ��e or ��. Therefore �e, ��e, ��, and ���
form two NFIS blocks pointing in opposite directions when
they leave the neutrino sphere. The subsequent behavior of
these neutrinos is interesting. We show below that under
the right conditions large-scale collective ‘‘swapping’’ of
flavors �e � �� and ��e � ��� can occur in a mode in which
the NFIS blocks remain more or less oppositely-directed.
This is an example of the bi-polar mode.

In Ref. [19], numerical simulations of a homogeneous,
dense neutrino-antineutrino gas in the absence of a matter
background showed that the flavor swapping in the bi-polar
mode occurred at a higher frequency than would vacuum
oscillations. Reference [20] gave an analytical solution to a
simple bi-polar system, a gas initially consisting of equal
numbers of monoenergetic �e and ��e, for a normal mass
hierarchy. Reference [21] generalized the solution to a gas
of unequal numbers of �e and ��e with different energies,
again for a normal mass hierarchy scenario, and found that
the system exhibits bimodal features (dual frequencies).

In this section we again adopt a physical, analytical
approach and use a simple example to illustrate neutrino
flavor transformation in bi-polar systems from the energy
conservation perspective. For the first time, we explain
why large flavor mixing can develop in some bi-polar
systems even with a small mixing angle. We will then
extend the discussion to more general bi-polar systems
using the corotating frame, and discuss how bimodal fea-
tures can appear in such systems. We will propose criteria
under which a NFIS system can be in the bi-polar mode,
and show that a bi-polar system is at least semistable. We

will conclude this section with some discussion on the
effects of the matter background on bi-polar flavor
transformation.

A. A simple example of bi-polar flavor transformation

We start with a simple bi-polar system initially consist-
ing of monoenergetic �e and ��e with an equal number
density n�, which form two NFIS blocks S1�0� � n�s�e �
êf
zn�=2 and S2�0� � n�s ��e � �êf

zn�=2. This system is
uniform and isotropic and has no matter background. The
evolution of S1 and S2 is governed by [see Eq. (31)]
 

d

dt
S1 � S1 � ��V;1HV ���S2�; (62a)

d

dt
S2 � S2 � ��V;2HV ���S1�; (62b)

where �V;1 � ��V;2 � �V. With the definition of

 S� � S1 � S2 and S� � S1 � S2; (63)

we find
 

d

dt
S� � �VS� �HV; (64a)

d

dt
S� � �VS� �HV ���S� � S�: (64b)

The initial conditions are
 

S��0� � 0; (65a)

S��0� � n�êf
z � n��êv

x sin2�v � êv
z cos2�v�; (65b)

where êv
x and êv

z are the unit vectors in the x- and
z-directions, respectively, in the vacuum mass basis (êv

z �
HV). Using these conditions and Eq. (64), we can show that

 S� � êv
x � S� � êv

z � S� � êv
y � 0: (66)

In other words, S� can only move parallel to êv
y while S� is

confined to move in the plane defined by êv
x and êv

z .
The evolution of S� and S� obeys conservation of the

total effective energy
 

E � ��V;1S1 �HV ��V;2S2 �HV �
��

2
�S1 � S2�

2 (67a)

� ��VS� �HV �
��

2
S2
� � ��Vn� cos2�v; (67b)

which gives

 jS�j cos# � n� cos2�v �
��

2�V
S2
� (68)

with # being the angle between S� and êv
z . Further, it can

be shown from Eq. (63) that

 S 2
� � S2

� � n2
�: (69)

Combining Eqs. (68) and (69), we obtain

 cos# �
cos2�v

s�
�
��n�
2�V

�
1

s�
� s�

�
; (70)
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where

 s� � jS�j=n�: (71)

Noting that �� � �2
���
2
p
GF < 0 and s� � 1, we see that

for a normal mass hierarchy (�V > 0), cos2�v � cos# �
1 and S� is constrained to oscillate around êv

z with�2�v �
# � 2�v. For �v  1, the system stays close to the initial
state and there is very little flavor mixing.

The situation for an inverted mass hierarchy (�V < 0) is
more complicated. We proceed by first rewriting Eq. (70)
as
 

cos# �
�
cos2�v �

��n�
2�V

�
1

s�
�

�
��n�
2�V

�
s� (72a)

� cos2�v

��
1�

n�
ncri
�

�
1

s�
�

�
n�
ncri
�

�
s�

�
; (72b)

where

 ncri
� �

2�V

��
cos2�v (73)

is a positive characteristic neutrino number density for
�V < 0. The evolution of the bi-polar system under con-
sideration falls into the following three categories depend-
ing on the parameter n�=ncri

� . For n�=ncri
� � 1=2,

d cos#=ds� � 0 and S� is constrained to oscillate around
êv
z with �2�v � # � 2�v just as in the case of a normal

mass hierarchy. In this case, the difference between �V;1

and �V;2 is too large for the two NFIS blocks to maintain
strong correlation, and neutrinos and antineutrinos oscil-
late as two separate sectors. For 1=2< n�=n

cri
� < 1,

d cos#=ds� is positive for s� � 1 but becomes 0 and
then negative for smaller s�, and the maximum value
#max corresponding to d cos#=ds� � 0 is given by

 cos#max � 2 cos2�v

�����������������������������
n�
ncri
�

�
1�

n�
ncri
�

�s
: (74)

In this case, # first increases from 2�v for the initial state to
#max as s� decreases and then decreases to 0 as s� further
decreases to its minimum value. Subsequently, the motion
of S� is mirrored in the other half of the plane defined by
êv
x and êv

z . Note that for each complete cycle S� reaches the
position at # � 2�v (� 2�v) twice but with s� � 1 and a
smaller value, respectively. For n�=ncri

� � 1, Eq. (72)
shows that d cos#=ds� is always positive, �1 � cos# �
cos2�v, and S� oscillates around êv

z with 2�v � # �
2�� 2�v (note that for n�=ncri

� � 1, S� shrinks to 0 at
# � �=2 and 3�=2, therefore appearing to skip the range
�=2<# < 3�=2). In the limit n�=ncri

� � 1, s� stays �1
as S� rotates in the plane defined by êv

x and êv
z . This is

particularly interesting because the two NFIS blocks re-
main antialigned and can completely reverse their initial
directions, which means that full conversion of the initial
�e and ��e occurs even for �v  1.

The above results on the evolution of S� and S� can be
adapted easily to describe the evolution of the individual

NFIS’s s1 and s2 of an initial �e and ��e, respectively. Using
Eqs. (63) and (66), we find
 

sv
1x � �s

v
2x �

S� � êv
x

2n�
�
s� sin#

2
; (75a)

sv
1y � sv

2y �
S� � êv

y

2n�
; (75b)

sv
1z � �s

v
2z �

S� � êv
z

2n�
�
s� cos#

2
; (75c)

where, for example, sv
1x is the x-component of s1 in the

vacuum mass basis. As a visual illustration, we show in
Fig. 1 the evolution of s1 in the vacuum mass basis for the
case of a normal mass hierarchy (solid curve) and for the
case of an inverted mass hierarchy with n�=ncri

� > 1
(dashed curve). The trajectory of s1 for each case marks
the intersection between the parabolic surface representing

 �V

�
sv

1z �
cos2�v

2

�
���n��s

v
1y�

2 � 0; (76)

which is equivalent to Eq. (68), and the spherical surface
representing

 �sv
1x�

2 � �sv
1y�

2 � �sv
1z�

2 �

�
1

2

�
2
; (77)

which follows from the fixed magnitude of s2
1 � �1=2�2.

The evolution of s2 can be obtained from that of s1 based
on Eq. (75).

Of course, the flavor evolution of an initial �e is de-
scribed most directly by the z-component sf

1z of s1 in the
flavor basis. The unit vectors in this basis are related to
those in the vacuum mass basis as
 

êf
x � êv

x cos2�v � êv
z sin2�v; (78a)

êf
y � êv

y; (78b)

êf
z � êv

x sin2�v � êv
z cos2�v: (78c)

From the above equations and Eq. (75), we obtain

 

êv
x

êv
z

êv
y

FIG. 1. The solution of s1 for a simple bi-polar system in the
vacuum mass basis for a normal (solid line) and an inverted
(dashed line) mass hierarchy, respectively. The solution of s2 can
be obtained from that of s1 using Eq. (75).
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 sf
1z � sv

1x sin2�v � s
v
1z cos2�v �

�
s�
2

�
cos�# � 2�v�:

(79)

As S� evolves very little from the initial state for �v  1
in the case of a normal mass hierarchy and in the case of an
inverted mass hierarchy with n�=ncri

� � 1=2, there is little
flavor evolution in these cases. In contrast, for the case of
an inverted mass hierarchy with n�=n

cri
� � 1, we have

s� � 1 and 2�v � # � 2�� 2�v, so an initial �e can be
converted essentially fully into a �� even for �v  1.

Taking �v � 0:1 and j��jn�=j�Vj � 10 (n�=ncri
� � 5:1

for �V < 0), we show the time evolution of sf
1z as the solid

lines in Figs. 2(a) and 2(b) for a normal and an inverted
mass hierarchy, respectively. The cases with the same �v

but j��jn�=j�Vj � 40 (n�=ncri
� � 20:4 for �V < 0) are

shown as the dashed lines. [In order to show the small
evolution in the case of a normal mass hierarchy, we have
greatly expanded the vertical scale in Fig. 2(a).]

We note that the period of vacuum oscillations in these
numerical examples is Tvac � 2�=j�Vj. This is longer than
the bi-polar oscillation periods Tbi shown in Fig. 2. In
addition, the bi-polar oscillation periods decrease by a
factor of 2 when the neutrino density n� is increased by a
factor of 4. These observations can be understood from
Eq. (64), even without an outright solution of this equation.
In the limit j��jn�=j�Vj � 1, the second term on the
right-hand side of Eq. (64b) dominates, and S� simply
rotates around S� with roughly a constant magnitude n�
and frequency

 T�1
bi � j��jhjS�ji: (80)

The average value of jS�j in the above equation can be
estimated from Eq. (64a):

 

hjS�ji
Tbi

� j�VS�j ’ j�Vjn�: (81)

Combining Eqs. (80) and (81), we obtain

 Tbi �
1���������������������

j�V��jn�
p : (82)

This simple dimensional analysis agrees with the exact
expression for the bi-polar period in the normal mass
hierarchy case [20]. Therefore, for a large neutrino density
n� � j�V=��j, the bi-polar oscillation period Tbi is much
smaller than Tvac and decreases as �1=

������
n�
p

.

B. General bi-polar systems

We next look at a slightly more complicated neutrino-
antineutrino system. In particular, we consider a system
which is the same as that discussed in Sec. IVA except that
�e and ��e have different energies. We again define S� and
S� as in Eq. (63). Using Eq. (62), we find
 

d

dt
S� � S� �H� � S� �H�; (83a)

d

dt
S� � S� �H� � S� �H� ���S� � S�; (83b)

where

 H� �
�V;1 ��V;2

2
HV: (84)

When viewed in the reference frame rotating with angular
velocity �H�, the e.o.m. of ~S� and ~S� derived from
Eq. (83) are exactly the same as that in Eq. (64) and
must, therefore, have the same solution. When viewed in
the lab frame, this NFIS system not only demonstrates the
bi-polar oscillation as discussed in Sec. IVA, but also
rotates around HV at the same time. We regard this kind

 

0 1 2 3 4 5 6

0.45

0.46

0.47

0.48

0.49

0.5

(a)

sf 1 z

t |µV,1|−1
0 1 2 3 4 5 6

-0.4

-0.2

0

0.2

0.4

(b)

sf 1z

t |µV,1|−1/ /

FIG. 2 (color online). The evolution of the z-component of s1 in the flavor basis for the simple bi-polar system with (a) a normal and
(b) an inverted mass hierarchy. The solid lines are for j�V;1j=j��n�j � 1=10, and the dashed lines are for j�V;1j=j��n�j � 1=40. The
vacuum mixing angle �v is taken to be 0.1.
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of flavor transformation as also being of bi-polar type. Note
that this bi-polar system has two intrinsic periods, i.e., Tbi

and 2�=jH�j. This bimodal feature of the neutrino-
antineutrino system was first discussed in Ref. [21].

Note that the above arguments employing corotating
frames apply not only to systems consisting of �e � ��e,
but also to systems of ��� � ��, �e � ��, or ��� � ��e.
Because �e � ��e systems can develop large flavor mixing
in the case of a small mixing angle and an inverted mass
hierarchy, the other systems also can exhibit the same
phenomenon as long as

 �V;1 <�V;2; (85)

where �V;1 and �V;2 are the vacuum coupling coefficients
of the ‘‘spin-up’’ and ‘‘spin-down’’ NFIS’s, respectively.
For convenience, we have listed these conditions in Table I.

From the simple examples discussed above, we can infer
a general description of a system possessing bi-polar os-
cillations: a system composed of two groups of neutrinos
and/or antineutrinos of roughly equal numbers, where the
corresponding NFIS’s point in two roughly opposite direc-
tions and have different characteristic values of �V.

In Fig. 3 (the solid lines) we illustrate two nonideal bi-
polar systems. These examples consist of gases of initially
pure �e and ��e with n�e � n ��e and E�e � E ��e . One of the
examples [Fig. 3(a)] illustrates neutrino mixing with a
large mixing angle and �m2 ’ �m2

�, and the other
[Fig. 3(b)] uses a small mixing angle and �m2 ’ ��m2

atm.
As the difference between the densities of the two NFIS

blocks becomes larger and larger, one of the NFIS blocks
will eventually dominate the other, and the system will
become synchronized rather than bi-polar. This can be seen
from Eq. (83). For simplicity, we work in the frame rotating
with angular velocity�H� where the e.o.m. of ~S� take the
same form as Eq. (64). We note that a key characteristic of
any bi-polar system is a configuration in which a large and
near constant magnitude ~S� vector rotates about ~S�
[Eq. (64b)]. In this configuration, ~S� typically has a small,
variable magnitude. If one of the NFIS blocks dominates, it

is possible that j��
~S�j will be bigger than j _~S� �

~S�j=j~S�j2, and the adiabatic condition can be satisfied.
(Note that the rate of change of ~S� is bounded by the
intrinsic frequency of the bi-polar oscillation.) If the adia-
batic condition is satisfied, then ~S� will precess rapidly
around ~S�, with a constant relative angle between them. In
this case, ~S� will average out to be �~S� � ~S��~S�=j~S�j2. At
the same time, ~S� will have roughly constant magnitude
and will rotate around HV with an angular frequency
[Eq. (64a)]

 ~!� �
�
�V;1 ��V;2

2

� ~S� � ~S�
j~S�j2

: (86)

Clearly, the dominant oscillation behavior of the NFIS
system is the slow rotation around HV and the synchro-
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FIG. 3 (color online). The evolution of the z-component of s1 (in the flavor basis) for representative bi-polar systems. These systems
consist of monoenergetic neutrinos in initially pure �e and ��e flavor states. The mixing parameters �v and �m2 are 0.56 and 8�
10�5 eV2, respectively, for the calculations in panel (a), and are 0.1 and�3� 10�3 eV2, respectively, for panel (b). The energies of �e
and ��e are taken to be 11 and 16 MeV, respectively. The (effective) number densities of �e and ��e are 1028 and 6:9� 1027 cm�3,
respectively. The solid, dashed, and dot-dashed lines are plotted with electron number density taken to be 0, 1026, and 1029 cm�3,
respectively.

TABLE I. The conditions for a dense neutrino gas starting as
two groups of monoenergetic neutrino species with equal num-
ber to develop large flavor mixing in the small mixing angle
scenario. Combinations of neutrino species other than those
shown here will not develop large flavor mixing in this case.

�e � ��e ��� � �� �e � �� ��� � ��e

�m2 > 0 Never Always E�e > E�� E ��� < E ��e
�m2 < 0 Always Never E�e < E�� E ��� > E ��e
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nized mode obtains in this case. Indeed, one can explicitly
show that ~!� is the synchronization frequency ~!sync of the
system in the corotating frame.

From the above arguments, one can see that the condi-
tion for a bi-polar system to degrade into a synchronized
mode is the same as that for ~S� to adiabatically precess
around ~S�. Therefore, the criterion for a NFIS system to be
bi-polar is that

 j��
~S�j &

j _~S� � ~S�j

j~S�j2
� j ~!syncj � j sin�j; (87)

where � is the angle between the directions of ~S� and HV.
We note that this criterion is exactly the opposite of the
synchronization criterion given in Eq. (54). In many cases,
the criterion for bi-polar flavor transformation can be ex-
pressed as

 j��Sj & jh�Vij: (88)

We now comment on the stability of the bi-polar mode.
Realistic systems of interest usually consist of neutrinos
and/or antineutrinos with continuous energy distributions.
Because neutrinos (antineutrinos) of different energies
have different vacuum oscillation frequencies, one might
suspect that the bi-polar mode eventually collapses as a
result of destructive interference. We have argued above
(Sec. III B) that the conservation of total effective energy E
essentially guarantees the stability of the synchronized
mode. This conclusion does not extend directly to the bi-
polar mode. However, this energy conservation condition
does provide some shielding of the two-oppositely-di-
rected-NFIS-block configuration against rapid destructive
interference-driven breakdown. This is because the effec-
tive energies of the two NFIS blocks (���S2

1=2 ’
���n

2
�;1=8 and ���S2

2=2 ’ ���n
2
�;2=8) and the interac-

tion energy of these blocks (���S1 � S2 ’ ��n�;1n�;2=4)
sum to almost zero, and because each of these ingredient
energies are large in magnitude and not easily altered. If
the bi-polar configuration is ever to break down, the two
NFIS blocks must disassemble simultaneously in a sym-
metric way in order to conserve the total effective energy.
As a result, the bi-polar mode is at least semistable. It has
been observed that the two-oppositely-directed-NFIS-
block configuration is roughly maintained in example nu-
merical simulations [18,27].

C. Bi-polar flavor transformation with a matter
background

In Fig. 3 we present results of numerical solutions to the
e.o.m. for two NFIS blocks [Eq. (31)]. In this figure, we
show examples (the dashed and dot-dashed lines) of flavor
oscillations in gases of initially pure �e and ��e in the
presence of various matter backgrounds. It can be seen
that flavor transformation is suppressed for the scenario
with a large mixing angle and a normal mass hierarchy if

ne * n�. On the other hand, large flavor mixing still occurs
in these systems with small mixing angles and an inverted
mass hierarchy even if the electron density dominates,
although the flavor oscillation period is somewhat longer
than in the case with no matter background.

This phenomenon can be understood qualitatively by
using the concept of corotating frames. In the presence of
a matter background, the motions of S� still are governed
by Eq. (83) except that H� is in this case defined as

 H� �
�V;1 ��V;2

2
HV �He: (89)

We decompose H� into two components: H�;? and H�;k.
These vectors are perpendicular and parallel to H�, re-
spectively. In the reference frame rotating with angular
velocity �H�, we have
 

_~H�;? � � ~H�;? �H�; (90a)
_~H�;k � 0: (90b)

This configuration is illustrated in Fig. 4. If ne is very large,
~H�;? will rotate very rapidly and the NFIS’s are not able to
follow it. In this limit, ~H�;? will have on average negli-
gible influence on the overall evolution of the system, at
least so long as S1 and S2 are not aligned with ~H�;k. Note
that this scenario is similar to the simple small mixing
angle bi-polar example discussed in Sec. IVA. However,
one difference is that here ~H�;k takes the place of�VHV in
the simple case. Bi-polar systems with matter back-
grounds, therefore, behave similarly to those without.

Consider the simple �e � ��e system discussed in
Sec. IVA but now with a large matter background. The
two NFIS blocks formed by neutrinos and antineutrinos are

 

(a) (b)

H ,

H ,

H ,

H ,

H S2

S1

S2

S1

FIG. 4. A bi-polar system in the presence of a large electron
background. (a) H� can be decomposed into two components,
H�;? and H�;k, which are perpendicular and parallel to H�,
respectively. (b) Component ~H�;? will rotate very rapidly and
will have little net effect in the frame rotating with angular
velocity �H�. In the same corotating frame, ~H�;k is static. This
component drives the bi-polar motion of the system.
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initially aligned or antialigned with He � H�. The field
component ~H�;? will perturb the system to break this
alignment. The perturbation by ~H�;? is not enough to
cause ~S1 and ~S2 to deviate much from their original direc-
tions. This is because ~H�;? has negligible net effects once
the angle between ~S1 (~S2) and ~H�;k is significant.
However, the configuration with a misalignment of ~S1

and ~S2 relative to ~H�;k is just like the initial configuration
of the simple �e � ��e system discussed in Sec. IVA.
Therefore, for the normal mass hierarchy (�m2 > 0), ~S1

and ~S2 will oscillate around êf
z � He=jHej �

~H�;k=j ~H�;kj, and no significant flavor mixing occurs. For
the inverted mass hierarchy (�m2 < 0), ~S1 and ~S2 could
completely swap their directions and large flavor mixing
will result.

Dynamically, the configuration with ~S� aligned with
~H�;k is ‘‘stable’’ because ~H�;k acts as a restoring ‘‘force’’
which prevents ~S� from becoming significantly mis-
aligned with it. This is why neutrino-antineutrino gases
of initially pure �e and ��e do not have large flavor mixing if
�m2 > 0 and �v  1. On the other hand, the configuration
with ~S� antialigned with ~H�;k is ‘‘unstable’’ because ~H�;k
acts as a force which drives ~S� toward the (stable) position
of alignment with ~H�;k and then drives it back to the
original (unstable) position. This is why neutrino-
antineutrino gases of initially pure �e and ��e can have
large flavor mixing if �m2 < 0 and �v  1.

V. COLLECTIVE NEUTRINO FLAVOR
TRANSFORMATION IN SUPERNOVAE

To treat neutrino and antineutrino flavor transformation
in a core-collapse supernova event, we must account for
nonuniformity and anisotropy in the neutrino density dis-
tribution. At a radius r which is larger than the neutrino
sphere radius R�, the neutrino number density distribution
is

 

d2n�
dE�d��

�

�

L�f��E���=�4�

2R2
�hE�i�; 0 � � � �0;

0 otherwise;

(91)

where L� is the neutrino (energy) luminosity, f��E�� is the
normalized neutrino energy distribution, hE�i is the aver-
age neutrino energy, d�� is the differential solid angle
around the radial direction with � being the polar angle,
and

 cos�0 �
�������������������������
1� �R�=r�2

q
: (92)

In general, flavor evolution of neutrinos traveling in
different directions above the neutrino sphere will be dif-
ferent due to the anisotropy of the neutrino density distri-
bution. For a qualitative discussion, we will assume the
‘‘single-angle approximation’’ (see, e.g., Ref. [16]) that the

flavor evolution history of a radially propagating neutrino
is representative of all neutrinos. Under this approxima-
tion,

 �ijn�;i ! ��n
eff
� f��E��dE�; (93)

where
 

neff
� �

Z
�1� cos��

d2n�
dE�d��

d��dE� (94a)

�
L�

4�R2
�hE�i


1�
�������������������������
1� �R�=r�2

q
�2: (94b)

We will comment on the validity of the single-angle ap-
proximation at the end of the section.

When they leave the neutrino sphere, the neutrinos and
antineutrinos form two oppositely directed NFIS blocks.
For illustrative purposes we assume that �e and ��e domi-
nate the neutrino species emitted from the protoneutron
star. We will also assume that �e and ��e have the same
luminosity L�, and that the vacuum coupling coefficients
of the two corresponding NFIS blocks are

 �V;1 ’
�m2

2hE�ei
and �V;2 ’ �

�m2

2hE ��ei
; (95)

respectively.
We define a dimensionless quantity

 

� �
j�m2j=2hE�i

j��jn
eff
�

(96a)

�
j�m2j�R2

����
2
p
GFL�


1�
�������������������������
1� �R�=r�2

q
��2 (96b)

’ 3:6� 10�6

�
j�m2j

3� 10�3 eV2

��
R�

10 km

�
2
�
1051 erg=s

L�

�

� 
1�
�������������������������
1� �R�=r�2

q
��2: (96c)

This quantity gives a measure of the inverse of the number
density of either neutrino species. Using Eqs. (88), (94b),
(95), and (96), we find that the rough boundary condition
for supernova neutrinos to transition from the synchronized
mode to the bi-polar mode is

 � * ; (97)

where the dimensionless quantity

  �
�hE�ei � hE ��ei�

2

2�hE�ei
2 � hE ��ei

2�
(98)

measures the disparity between the energy spectra of �e
and ��e. If R� is much smaller than the boundary radius rBS

(Bi-polar Starting) of the two collective modes, we can
estimate
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 rBS ’ �51 km�
�

j�m2j

3� 10�3 eV2

�
�1=4

�
L�

1051 erg=s

�
1=4

�

�
R�

10 km

�
1=2
�


0:01

�
1=4
: (99)

As neutrinos propagate away from the protoneutron star,
the local neutrino density decreases. Beyond some radius
the neutrino density is so low that the collectivity of
neutrino flavor transformation breaks down and neutrinos
undergo conventional MSW flavor evolution. This occurs
if

 ��V1�2� * j��S1�2�j; (100)

where ��V1�2� is the half-width of the distribution
f�e� ��e���V� (see the discussion in Sec. III B). We estimate
that

 ��V1�2� ’
j�m2j

2hE�e� ��e�i
2 �E�e� ��e�; (101)

where �E�e� ��e� is the half-width of the �e ( ��e) energy
spectra. Using Eqs. (94b), (96), (100), and (101), we can
obtain a condition for where collectivity of neutrino flavor
oscillations will break down:

 � *
hE�i

2�E�
: (102)

If R� is much smaller than the boundary radius where
collectivity breaks down, rBE (Bi-polar Ending), we can
show that
 

rBE ’ �193 km�
�

j�m2j

3� 10�3 eV2

�
�1=4

�
L�

1051 erg=s

�
1=4

�

�
R�

10 km

�
1=2
�
�E�=hE�i

0:25

�
�1=4

: (103)

Taking j�m2j � 3� 10�3 eV2, R� � 10 km, L� �
1051 erg=s, and �E�=hE�i � 1=4, we can calculate the
boundary radius between the two collective modes and
the radius of the boundary separating the collective modes
from the regime where conventional MSW evolution domi-
nates. These boundaries are shown in Fig. 5. It is clear that
supernova neutrinos are in the synchronized mode near the
protoneutron star (region I in Fig. 5), but could experience
bi-polar flavor transformation at a moderate distance
(region II). It is only in the region far from the protoneutron
star that neutrinos will undergo conventional MSW trans-
formation (region III). This is very different from the solar
neutrino oscillation case, where neutrinos experience only
MSW flavor transformation. We note that there are actually
no sharp boundaries between these flavor transformation
regions. There will be neutrinos and antineutrinos with
many different energies in any region above the protoneu-
tron star. As a result, a particular region in general could
host superpositions of various neutrino and antineutrino
oscillation modes. Therefore, regions I, II, and III should
be understood as where synchronized, bi-polar, and con-

ventional MSW-type flavor transformations, respectively,
dominate.

In broad brush, the mixing parameters (�v and �m2), the
neutrino and antineutrino energy spectra and luminosities,
and r and R� are the principal determinants of the domi-
nant oscillation mode at a particular location. Of course,
the actual detailed form of flavor oscillation at any point is
also affected by the matter density and electron fraction.
For example, if �e number flux dominates over that for ��e
and �m2 > 0, neutrinos and antineutrinos in the synchro-
nized mode will evolve as if they were one neutrino with
energy Esync [Eq. (60)]. As a result, neutrinos and antineu-
trinos in this case will experience flavor conversion at
radius �rMSW�Esync�, where rMSW�E�� is the MSW reso-
nance radius for a neutrino with energy E�. This radius is
determined by the standard MSW resonance condition,

 

�m2

2E�
cos2�v �

���
2
p
GFne�rMSW�E���: (104)

Governed by the density run in the supernova envelope,
neutrinos and antineutrinos may experience the following
collective flavor mixing scenarios:

(i) If the protoneutron star has a very ‘‘thick’’ envelope,
ne is very large throughout regions I and II and
rMSW�Esync� * rBE. In this case no significant flavor
conversion will occur when neutrinos are in region I.
For �m2 > 0 flavor conversion is also suppressed in
region II. For �m2 < 0, however, large flavor mixing
can occur in region II.

(ii) If the envelope of the protoneutron star is ‘‘thin,’’ ne
is very small in regions II and III, and rMSW�Esync� &

rBS. For �m2 > 0, almost complete flavor conversion
(�e ! �� and ��e ! ���) occurs around radius
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FIG. 5. The regions where the neutrino oscillations in the
supernova environment are dominated by synchronized (I), bi-
polar (II), and conventional MSW (III) flavor evolution. In the
calculations for this figure we have taken j�m2j � 3�
10�3 eV2, R� � 10 km, L� � 1051 erg=s, and �E�=hE�i �
0:25.
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rMSW�Esync� in region I. Entering region II, neutrinos
and antineutrinos are now dominantly �� and ���, and
large flavor mixing will occur (see Table I). For
�m2 < 0, flavor conversion is suppressed in
region I, and large flavor mixing can occur in
region II.

(iii) If the protoneutron star has an envelope of a moder-
ate thickness, ne is large in region I and part of
region II and rBS & rMSW�Esync� & rBE. In this
case, flavor mixing is always suppressed in
region I. For �m2 < 0, large flavor mixing can occur
in region II. The exact flavor oscillation form is not
clear for the �m2 > 0 case in region II. However,
some resonancelike behavior around radius
rMSW�Esync� could be expected.

The typical collective oscillations described above are
idealized. In particular, we have assumed that the gradient
of ne is not so large that the adiabatic condition is violated.
If the adiabatic condition is violated, other interesting
phenomena may occur. For example, the NFIS’s of neu-
trinos and antineutrinos may be kicked into a configuration
where they are aligned or antialigned with êf

x at some
instant. This corresponds to a maximally mixed state. If
this occurs in region I and the adiabatic condition holds
from this point on, the NFIS’s will rotate collectively
around Heff � h�ViHV �He. This nearly maximal mix-
ing will last until radius rBS or rMSW�Esync�, whichever is
smaller. This is the background dominant solution de-
scribed in Ref. [16].

Our analysis of collective flavor transformation assumed
isotropy of the neutrino gases. This is appropriate for the
early universe scenario. In the supernova environment the
neutrino gas is not isotropic. The anisotropy of the super-
nova neutrinos has two major effects. One effect is that the
neutrinos scattering at some particular point have traveled
different distances from the neutrino sphere before they
interact. We note that the propagation distances along
various trajectories are most different near the neutrino
sphere. Close to the protoneutron star, the electron density
is so large that ne � neff

� , and He breaks the correlation of
the NFIS’s on different trajectories. As a result, the NFIS’s
on different trajectories develop relative phases. This ef-
fect, however, does not compromise our analysis because
neutrinos and antineutrinos are essentially kept in their
flavor eigenstates by He, and the effects of destructive
interference are small. After neutrinos propagate away
from the protoneutron star, the distance difference between
any two trajectories becomes small.

The other effect of the anisotropy of supernova neutrinos
is that the neutrino-neutrino forward scattering potential,
and therefore �ij, depends on the angle between the direc-
tions of the neutrino momenta [Eq. (28)]. As a result, the
effective total NFIS

 Seff
i � ��1

�

X
j

�ijn�;jsj (105)

is different for NFIS’s on different trajectories, and one
cannot define a universal total NFIS S in the original
isotropic sense. However, we note that the NFIS’s on
different trajectories are still strongly coupled as a result
of large neutrino density. This is why collective neutrino
flavor oscillations can arise in the first place. Although the
exact neutrino oscillation behavior can only be shown by
the numerical simulations which treat the trajectory issue
self-consistently, we expect that qualitatively similar flavor
oscillations, e.g., large flavor mixing in the �m2 < 0 and
�v  1 scenario, may occur in the real supernova
environment.

VI. CONCLUSIONS

We have introduced a notation for neutrino flavor isospin
which explicitly exhibits symmetry between flavor trans-
formation of neutrinos and antineutrinos. We have pointed
out a key quantity in dense gases of neutrinos and/or
antineutrinos, the total effective energy, which is conserved
in some interesting cases. Using the conservation of the
total effective energy, we have proved the stability of
synchronized flavor transformation in a simple and intui-
tive fashion. We have also demonstrated how corotating
frames can be useful in analyzing collective oscillation in
more general cases.

With the concept of total effective energy, we have for
the first time explained why large flavor mixing occurs for
a dense gas of initially pure �e and ��e with a small mixing
angle and an inverted mass hierarchy. We have estimated
the oscillation periods of bi-polar systems using simple
dimensional analysis. Additionally, we have studied more
complicated and more general bi-polar systems by using
corotating frames. We have also for the first time demon-
strated that a dense gas initially consisting of pure �e and
��e with an inverted mass hierarchy can develop large flavor
mixing, even in the presence of a dominant matter
background.

We have derived a convenient criterion for determining
whether the synchronized or bi-polar type of collective
oscillations may arise in a dense neutrino and/or antineu-
trino gas. Based on this criterion, we have estimated the
regions where various modes of flavor oscillation may
occur in the supernova environment. We have found that
neutrinos emitted from the protoneutron star in a core-
collapse supernova event generally experience synchro-
nized and bi-polar flavor transformations in sequence be-
fore the conventional MSW flavor transformation takes
over. We have also described the typical flavor oscillation
behaviors according to different density runs in the super-
nova envelope.

Although our analysis of neutrino flavor transformation
in the supernova environment is based on crude estimates,
it does suggest a picture of neutrino flavor transformations
dramatically different from that in the solar case. In par-
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ticular, because of the large neutrino luminosities, both
synchronized and bi-polar types of collective flavor trans-
formations are involved in the supernova scenario.

To go beyond this work we would need to drop a number
of the approximations made here and go over to a detailed
numerical simulation starting from realistic conditions of
neutrino and antineutrino luminosity and spectral distribu-
tion. Chief among the requirements of a detailed numerical
model would be a self-consistent treatment of flavor evo-
lution on different trajectories from the neutrino sphere.
This could be especially important for regions near the
neutrino sphere. Even when such detailed numerical simu-
lations are accomplished, the collective behavior of neu-
trino flavors will remain a complicated phenomenon. This
is where our simple physical pictures may be most useful:
delineating the expected qualitative behavior of the self-
interacting neutrino system in various supernova
conditions.

In any case, our results have probably overturned some
of the existing paradigms related to the supernova neutrino
flavor oscillation problem. Among these, the analyses of
future supernova neutrino signals are certainly affected,
because most if not all current analyses are based on the
assumption that the conventional MSW transformation is
valid throughout the supernova environment. Depending
on how deep the collective large-scale flavor mixing of
neutrinos and antineutrinos may occur, the treatment of
shock reheating and nucleosynthesis might also be
affected.
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