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Abstract

We review the rich phenomena associated with neutrino flavor transforma-

tion in the presence of neutrino self-coupling. Our exposition centers on

three collective neutrino oscillation scenarios: (a) a simple bipolar neutrino

system that initially consists of monoenergetic νe and ν̄e , (b) a homogeneous

and isotropic neutrino gas with multiple neutrino/antineutrino species and

continuous energy spectra, and (c) a generic neutrino gas in an anisotropic

environment. We use each of these scenarios to illustrate key facets of collec-

tive neutrino oscillations. We discuss the implications of collective neutrino

flavor oscillations for core-collapse supernova physics and for the prospects

of obtaining and/or constraining fundamental neutrino properties, such as

the neutrino mass hierarchy and θ13 from a future observed supernova neu-

trino signal.
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1. INTRODUCTION

1.1. Neutrino Mixing and Astrophysics

Neutrinos and the phenomena associated with neutrino flavor transformation stand at the nexus

of two exciting recent developments: the success of experimental neutrino physics and the tremen-

dous growth of astronomy and astrophysics. The former enterprise has provided key insights into

neutrino mass and vacuum mixing and promises more (1), and the latter has provided fundamental

cosmological parameters and is revealing how structure and elemental abundances emerge and

evolve in the universe (2–5). Moreover, there is feedback between these subjects. For example,

observations of large-scale structure and the cosmic microwave background radiation currently

provide our best limits on the neutrino rest masses (6, 7). Both the early universe and the massive

star core-collapse and supernova explosion environments can be dominated by neutrinos. Neu-

trino flavor transformation in each of these environments may give insights into astrophysics and

even into fundamental neutrino properties. Obtaining these insights requires confident model-

ing of neutrino flavor evolution in environments where neutrino-neutrino interactions produce

vexing nonlinearity. The neutrino mass and mixing data already gathered from the experiments

make a compelling case that we must solve this problem.

Experiments and observations have established that the neutrino energy (mass) states |νi 〉 (i = 1,

2, 3) are not coincident with the weak interaction states |να〉 (α = e, μ, τ ). The relation between

these bases is given by |να〉 = ∑

i U ∗
αi |νi 〉 (8), where the Maki-Nakagawa-Sakata (MNS) matrix
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elements Uαi are parameterized by three vacuum mixing angles (θ12, θ23, and θ13) and a CP-violating

phase (δ). Two of these, sin2 θ12 ≈ 0.31 and sin2 θ23 ≈ 0.5, are measured outright, whereas there

is a firm upper limit on the third, sin2 θ13 < 0.04 at 2σ (9). Observations of solar neutrinos

show flavor conversion in the νe ⇋ νμ/τ channel with characteristic mass-squared splitting �m2
⊙ ≈

7.6 × 10−5 eV2. Atmospheric neutrino measurements show near-maximal vacuum mixing in the

νμ ⇋ ντ channel with corresponding mass-squared splitting �m2
atm ≈ 2.4 × 10−3 eV2. However,

experiments do not reveal the absolute neutrino rest masses mi (i = 1, 2, 3), nor do they show

whether these neutrino mass eigenvalues are ordered in the normal mass hierarchy (m3 > m2 > m1)

or in the inverted mass hierarchy (m2 > m1 > m3).

Future terrestrial neutrino experiments (10–15) will be directed primarily toward measuring

θ13 and, if θ13 is big enough, the neutrino mass hierarchy and possibly even the CP-violating

phase δ. Planned reactor and long-baseline experiments may be able to measure θ13 if it satisfies

sin2 θ13 > 10−4. This limit ultimately is set by constraints on the neutrino flux and detector mass.

To find significantly larger neutrino fluxes we must turn to cosmic sources, such as core-collapse

supernovae (16–23).

Stars whose masses are greater than ∼8 M ⊙ end their lives in gravitational collapse and the pro-

duction of a neutron star or, if they are massive enough, a black-hole remnant (24–27). Neutrinos

play a role in nearly every aspect of the evolution of these core-collapse supernovae, from domi-

nating lepton number and entropy loss from the epoch of core carbon/oxygen burning onward,

to providing the bulk of energy and lepton number transport during collapse itself. Neutrinos

may provide the heating necessary to engender convection (28–35) and, for instance, the standing

accretion shock instability, which may create an explosion (36, 37).

A key point is that gravitational collapse causes an appreciable fraction of the rest mass of the

Chandrasekhar mass (∼1.4M ⊙) core to appear as seas of trapped neutrinos, which subsequently

diffuse out of the core on timescales of seconds (38–40). At core bounce, the energy in the neutrino

seas trapped in the core is ∼1052 ergs, but by ∼10 s after core bounce an energy of some 1053 ergs,

or ∼10% of the rest mass of the core, has been radiated away as neutrinos of all kinds. The emer-

gent neutrino and antineutrino energy spectra and fluxes at the neutrino sphere vary with time

post–core bounce, but there are epochs in which the energy spectra and/or the luminosities in the

various neutrino flavors differ. Moreover, charged-current, flavor-specific neutrino interaction

processes such as νe + n ⇋ p + e− and ν̄e + p ⇋ n + e+ are important both for energy and elec-

tron lepton number deposition as well as for determining neutrino transport physics (41–43). It is

therefore interesting and necessary to assess whether interconversion of neutrino flavors in the su-

pernova environment affects explosion physics and neutrino-heated nucleosynthesis and how such

flavor transformation might affect a supernova neutrino burst signature in a terrestrial detector.

1.2. Brief History of Collective Neutrino Oscillations

Early studies of neutrino flavor transformation centered on solar neutrinos, especially after it was

recognized first by Wolfenstein (44), and then by Mikheyev & Smirnov (45), that the medium

through which the neutrino propagates could alter the effective neutrino mass and mixing

properties. Almost immediately after the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism

was understood, it was realized that the forward coherent scattering of neutrinos with other

neutrinos, somewhat misleadingly termed neutrino self-coupling or neutrino self-interaction,

could generate a similar effect (46, 47). Subsequently, the effects of neutrino self-interaction

were investigated independently in the core-collapse supernova and the early universe scenarios.

The studies of the supernova environment first focused on MSW-like effects (41, 46, 48–51).

However, the neutrino self-interaction potential is very different from the matter potential in
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that it can have nonvanishing off-diagonal elements in the interaction basis (52, 53). Studies

using the complete neutrino self-interaction potential showed that neutrinos could experience

self-maintained coherent oscillations or collective oscillations in lepton-degenerate early universe

scenarios (54–64). By collective oscillations we mean a significant fraction of neutrinos oscillating

coherently with respect to one another.

Early research on MSW-like evolution, where the flavor off-diagonal potentials were mini-

mal, as well as the first paper (65) to point out that collective effects could occur in supernovae,

focused on relatively large neutrino mass–squared differences. However, neutrinos and antineu-

trinos can be transformed collectively and simultaneously even for the small, measured neutrino

mass–squared differences (66, 67). Additionally, ordinary matter does not necessarily suppress

collective neutrino oscillations, at least in homogeneous and isotropic environments (68). As a

consequence, collective neutrino oscillations may occur deep in the envelope of a supernova (69,

70). These studies showed that the neutrino energy spectra would be modified differently for the

normal and inverted neutrino mass hierarchies (Figure 1).
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Figure 1

Survival probabilities Pνν for (a,c) neutrinos and (b,d ) antineutrinos as functions of both neutrino energy E
and emission angle ϑR in a numerical calculation using the neutrino bulb model (see Figure 3) and the
two-flavor mixing scheme. The most prominent features are (a,c) the approximately angle-independent
step-like changes in the neutrino survival probabilities—these are the spectral swaps/splits first shown in
Reference 70. The energy spectra of νe and νμ with energy below (above) E ≃ 9 MeV in this calculation are
almost completely swapped in panel a (c), which employs the normal (inverted) neutrino mass hierarchy.
Spectral swaps/splits are the result of a collective neutrino oscillation mode known as the precession mode.
The vertical fringes (the energy-dependent features in the figure) are the result of Mikheyev-Smirnov-
Wolfenstein flavor transformation, which is energy dependent. The horizontal fringes (the angle-dependent
features) are the result of the kinematic decoherence of bipolar neutrino oscillations (72). The movie version
of these calculations is available in Reference 87. Figure adapted from figure 3 of Reference 69. Copyright
2006 by the American Physical Society.
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Over the past few years, many papers have been written on the collective neutrino oscillation

phenomenon and its physical effects (71–111). Following this literature can be bewildering. For

example, synchronized and bipolar neutrino oscillations are frequently perceived as the two most

important collective neutrino oscillation modes in supernovae. However, numerical studies suggest

that supernova neutrinos are probably never synchronized because of the nonvanishing matter

density (76), and the bipolar oscillation is not a collective neutrino oscillation mode in anisotropic

environments such as supernovae (72).

1.3. Goal and Organization of This Review

The purpose of this review is to provide a relatively short but in-depth exposition of the properties

of collective neutrino oscillations that are reasonably well understood. Specifically, we elucidate

the physics behind striking features such as the swaps of supernova neutrino energy spectra caused

by collective oscillations, as shown in Figure 1. Our strategy is to illustrate key facets of collective

neutrino oscillations by describing three increasingly complex models.

The rest of the review is organized as follows. In Section 2 we try to make the connection

between the so-called wave function language and the spin language, which are commonly used

for studying noncollective and collective neutrino oscillations, respectively. In Section 3 we dis-

cuss the flavor evolution of a homogeneous and isotropic neutrino gas that consists initially of

monoenergetic, pure νe and ν̄e . This simple model can be solved analytically and offers important

insights into the behavior of more complicated systems. In Section 4 we discuss homogeneous

and isotropic gases that consist of neutrinos with continuous energy spectra. We explore adiabatic

solutions to the neutrino flavor evolution equations and demonstrate how the spectral swap/split

phenomenon can be explained by one of these solutions. In Section 5 we discuss some of the

important neutrino oscillation properties that are unique to anisotropic environments and explain

why the spectral swap/split phenomenon may occur in these environments despite the anisotropy

in neutrino fields. In Section 6 we apply the current understanding of the collective neutrino

oscillation phenomenon to supernova environments. In Section 7 we give a summary and identify

several issues in collective neutrino oscillations that remain to be understood.

2. NEUTRINO MIXING IN DENSE NEUTRINO GASES

2.1. Equations of Motion

Here we focus on two-flavor neutrino mixing scenarios, namely α = e, μ and i = 1, 2, where

|νμ〉 is a linear combination of the physical |νμ〉 and |ντ 〉. We do this for pedagogical purposes,

although our choice is physically justifiable because the physical νμ and ντ are nearly maximally

mixed in vacuum and experience nearly identical interactions in the supernova environment (112,

113). We discuss collective neutrino oscillations with the full three-flavor mixing machinery in

Section 4.3.

We consider only coherent neutrino flavor evolution, in which the effects of neutrino inelastic

scattering and associated quantum decoherence can be neglected. This is generally applicable in

the region well above the neutron star in supernova models. [Solution of the complete problem

of neutrino flavor evolution with both elastic and inelastic neutrino scattering would necessitate

the use of the full quantum kinetic equations (7, 43, 114–116).] We also assume that neutrinos are

relativistic and that general relativistic effects can be ignored. With these assumptions, a mean-field

Schrödinger-like equation,

i
d

dx
ψ = Hψ, 1.
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is taken to describe flavor evolution along a neutrino world line (117). Here � = c = 1, x is the

distance along the world line of the neutrino; ψ is the neutrino flavor wave function, taken to be

a vector in (neutrino) flavor space; and

H = �m2

2E
B + λL + Hνν = �m2

2E
B +

√
2GFne L +

√
2GF

∫

d3p′(1 − p̂ · p̂′)(ρp′ − ρ̄p′ ) 2.

is the Hamiltonian. (See References 118–122 for discussions of the applicability of the one-particle

effective approximation assumed in Equation 1.) The wave function for an antineutrino also obeys

Equation 1, but with the replacements λ → −λ and Hνν → −H∗
νν in Equation 2. The flavor space

is spanned by the neutrino interaction basis or, equivalently, by the mass basis. We use the word

flavor in a more general sense, and we avoid using the phrase flavor state, which in the literature

can mean either the interaction state |να〉 or the flavor quantum state |ψ〉. (We use symbols in sans

serif font, such as H, to denote basis-dependent matrices in flavor space.)

The first term in Equation 2 induces neutrino flavor transformation because in the interaction

basis,

B = U

(

1

2
diag[−1, 1]

)

U
† = 1

2

[

− cos 2θv sin 2θv

sin 2θv cos 2θv

]

3.

is nondiagonal. In Equation 3, U is the MNS matrix and θ v is the so-called vacuum mixing angle

within the range (0, π/4]. In Equation 2, �m2 is the mass-squared difference appropriate for

|ν2〉 and |ν1〉, and E is the energy of the neutrino. Here �m2 > 0 and �m2 < 0 correspond

to the normal neutrino mass hierarchy (NH) and the inverted neutrino mass hierarchy (IH),

respectively, as discussed above for the full three-flavor mixing case. Although this formalism is

completely general, one of the most interesting supernova cases is where |�m2| ≃ �m2
atm and

θv ≃ θ13 ≪ 1.

The second term in Equation 2 arises from coherent neutrino-electron forward exchange

scattering (44). In this term, which is referred to as the matter term, GF is the Fermi constant, ne

is the net electron number density, and L = diag[1, 0] in the interaction basis. Note that adding

or subtracting a multiple of the identity matrix to or from H (e.g., the contribution of neutral-

current neutrino-electron scattering) gives only an overall phase to ψ and, therefore, does not

affect neutrino oscillations.

The last term in Equation 2 stems from coherent neutral-current neutrino-neutrino forward

exchange scattering (46–48, 52), where p̂ and p̂′ are the unit vectors for the propagation directions

of the test neutrino and the background neutrino or antineutrino, respectively. In the interaction

basis, at location x and at time t, the (flavor) density matrices for neutrinos and antineutrinos with

momentum p′ and with our assumptions can be written as

[ρp′ (t, x)]αβ =
∑

ν′
nν′,p′ (t, x)〈να|ψν′,p′ (t, x)〉〈ψν′,p′ (t, x)|νβ〉 4a.

and

[ρ̄p′ (t, x)]βα =
∑

ν̄′
nν̄′,p′ (t, x)〈ν̄α|ψν̄′,p′ (t, x)〉〈ψν̄′,p′ (t, x)|ν̄β〉, 4b.

respectively, where |ψν′(ν̄′),p′ 〉 is the state of a neutrino ν ′ (antineutrino ν̄ ′) with momentum p′ and

nν′,p′ (nν̄′,p′ ) is the corresponding number density of the neutrino (antineutrino). Note that the

order of the indices on the matrix representation of ρ̄ in Equation 4b follows the convention in

Reference 114. The advantage of this definition is that ρ̄ transforms in the same way as does ρ

when transforming from the interaction basis to the mass basis or vice versa.
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2.2. Neutrino Flavor Polarization Vector

It becomes more difficult to analyze neutrino oscillations using the wave function formalism when

Hνν is significant because Hνν is a sum of density matrices that involve bilinear forms of the wave

functions. The density matrices contain all the physical information about the neutrino mixing

problem. The diagonal elements of the density matrices give the number densities of neutrinos in

the weak interaction states or the mass states, depending on the basis used, and the off-diagonal

elements of the density matrices contain the neutrino mixing information. For simplicity let us

first take a working example, a homogeneous and isotropic neutrino gas whose flavor content can

vary with time t. Homogeneity and isotropy imply that the factor (1− p̂ · p̂′) in Equation 2 averages

to one. Therefore, the neutrino propagation direction does not matter, and ρp(t, x) → ρE (t) and

ρ̄p(t, x) → ρ̄E (t). These density matrices obey the equations of motion (EoMs)

iρ̇E =
[

�m2

2E
B + λL +

√
2GF

∫ ∞

0

dE ′(ρE ′ − ρ̄E ′ ), ρE

]

5a.

and

i ˙̄ρE =
[

−�m2

2E
B + λL +

√
2GF

∫ ∞

0

dE ′(ρE ′ − ρ̄E ′ ), ρ̄E

]

. 5b.

Because ρE and ρ̄E are 2 × 2 Hermitian matrices, they can be mapped into vectors in a three-

dimensional Euclidean space, which we also refer to as flavor space. We define the components

of the (neutrino flavor) polarization vector �Pω to be

Pω,a =
(

1

nν

) ( |�m2|
2ω2

)

×
{

Tr(ρEσa ) for neutrinos,

−Tr(ρ̄Eσa ) for antineutrinos,
6.

where the (angular) vacuum oscillation frequency is ω = �m2

2E
for neutrinos and �m2

(−2E)
for

antineutrinos, and σ a (a = 1, 2, 3) are the Pauli matrices. (We use symbols with the vector hat,

such as �P , to denote vectors in flavor space and symbols in the bold font, such as p, to denote

vectors in physical three-dimensional coordinate space.) Note that �Pω can be normalized by an

arbitrary factor. For example, if �Pω is normalized to unity, then ρE ∝ (1 + 1
2

�Pω · �σ ) for neutrinos

and ρ̄E ∝ (1 − 1
2

�Pω · �σ ) for antineutrinos. In Equation 6 we defined �Pω to be normalized by nν , the

initial total number density of a certain neutrino species ν, which is chosen to be ν̄e in the rest of

this review. However, we usually take μ =
√

2GFnν as a measure of the strength of neutrino self-

interaction. Therefore, in some cases it is more appropriate to normalize �Pω by the number density

of other neutrino species, for instance, when nν̄e is negligible. If all neutrinos and antineutrinos

are in the interaction states, then �Pω ∝ (nνe ,ω −nνμ,ω)ê (I)
3 for neutrinos and �Pω ∝ −(nν̄e ,ω −nν̄μ,ω)ê (I)

3

for antineutrinos, where nν,ω (ν = νe , νμ, ν̄e , ν̄μ) is the corresponding number density in the

neutrino or antineutrino mode ω, and ê (I)
3 is one of the interaction-basis vectors.

Because the Pauli matrices are traceless, the trace of the density matrix is not contained in the

polarization vector. According to Equation 5, the traces of the density matrices do not change with

time. (This corresponds to one of our assumptions that neutrinos are not created or annihilated.)

These terms can be easily reintroduced in, for example, the calculation of the neutrino energy

spectra. Use of Equations 5 and 6 shows that

�̇Pω = (ω �B + λ �L + μ �D) × �Pω, 7.

where vectors �B = Tr(B �σ ) and �L = Tr(L �σ ) are parallel to the (vacuum) mass and interaction-

basis vectors ê (V)
3 and ê (I)

3 , respectively (Figure 2), and �D =
∫ ∞

−∞
�Pω dω is the total polarization

vector. In the absence of neutrino self-coupling, �Pω can be considered a “magnetic spin.” In this

analogy, the “magnetic spin” is coupled to two “magnetic fields,” �B and �L, with gyromagnetic
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B = – ê3
(V)→

B = –ê3
(V)→

ê3
(V) = L

→

B = –ê3
(V)→

ê3
(V)ê3

(V) ê3
(I ) = L

→

ê3
(I )ê 3

(I ) = L
→

a b

Vacuum oscillation Adiabatic MSW �avor transformation

| νe|ψ |2 = ½
Pω · ê3

(I )

|Pω|
→

1 +

Pω

→

Pω

→

H = ωB
→

H = ωB + λL
→ →→

2θv

λ slowly decreases

→

Pω

→

Figure 2

Geometric pictures for (a) vacuum oscillation and for (b) Mikheyev-Smirnov-Wolfenstein (MSW) flavor
transformation. The flavor Hilbert space spanned by |να〉 (α = e, μ) or |νi 〉 (i = 1, 2) can be mapped onto the

flavor Euclidean space that is spanned by ê
(I)
a or ê

(V)
a (a = 1, 2, 3). The interaction-basis vectors ê

(I)
1,3 can be

obtained by rotating the (vacuum) mass-basis vectors ê
(V)
1,3 by 2θv about ê

(I)
2 = ê

(V)
2 . (a) The polarization vector

�Pω , which describes a neutrino initially in |νe 〉, and its precession about �B. The projection of this precession
motion onto the ê

(I)
3 axis represents the flavor oscillation of the neutrino. (b) The precession of �Pω in the

presence of ordinary matter. If the matter density varies slowly, the angle between �Pω and �H = ω �B + λ �L
remains constant. This represents adiabatic MSW flavor transformation of the neutrino. Also see Reference
123 for a more detailed discussion on this geometric interpretation.

ratios of −ω and −λ, respectively. (Note that a real magnetic spin s with the gyromagnetic ratio

γ in the presence of magnetic field B obeys the EoM ṡ = −γ B × s.) Equivalently, �Pω behaves as

a “magnetic spin” coupled to the total “magnetic field” �H = ω �B + λ �L with the “gyromagnetic

ratio” of −1. This picture allows geometric interpretations for both vacuum oscillations and MSW

flavor transformation (Figure 2).

We give a few comments about the polarization vector notation before we consider neutrino

self-coupling. First, the polarization vector notation is fully equivalent to the neutrino flavor

isospin notation (68), where the neutrino flavor isospin for a neutrino or antineutrino is �sω = 1
2

�Pω

| �Pω | .

Second, in Equation 6 �Pω is defined with a minus sign for the antineutrino. Although the physics

is not changed by the choice of notation, our definition of �Pω is convenient for analyzing collective

neutrino oscillations when both neutrinos and antineutrinos are present (see Section 2.3). This

notation has been adopted in the most recent literature.

2.3. Synchronized Neutrino Oscillations, Corotating Frames, and Matter Effects

The neutrino self-coupling is represented as the coupling between polarization vectors in

Equation 7. Let us consider a homogeneous and isotropic neutrino gas with λ = 0 and μ constant.

Use of Equation 7 shows that the so-called total energy of the “magnetic spins,”

E =
∫ ∞

−∞
ω( �Pω · �B)dω + μ

2
�D2, 8.

is constant in this case (68). Here the first term is the total energy of coupling between the so-

called “magnetic field” and “spins,” and the second term is the total spin-spin coupling energy.

If μ is large, then | �D| ≃
√

2E/μ is approximately constant. This implies that a dense neutrino
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gas can experience self-maintained coherent oscillations (58). For example, if a dense neutrino

gas consists initially of neutrinos of the same flavor (so that all �Pω are initially aligned), then the

flavor evolution of these neutrinos is coherent (i.e., all �Pω remain aligned) even when they have

different energies. This phenomenon has been termed synchronized neutrino oscillation because

all neutrinos (and antineutrinos) in such a system oscillate collectively with (angular) frequency

�sync. The synchronized oscillation frequency is an average of all ωs (62):

�sync = | �D|−2

∫ ∞

−∞
( �D · �Pω)ωdω. 9.

Consider another neutrino system that is similar to the synchronized system discussed above

except that the oscillation frequency ω of each neutrino or antineutrino is shifted by a common

value ω0. Any polarization vector, say �Pω, in this system should move in a way similar to �Pω−ω0

in the synchronized system, except for an extra precession about �B with frequency ω0. In other

words, this system behaves just like the synchronized system in a reference frame that rotates

about �B with frequency ω0. Indeed, in this noninertial corotating frame (68), each polarization

vector is coupled to a nonphysical field −ω0
�B, and Equation 7 (with λ = 0) becomes

�Pω = [(ω − ω0) �B + μ �D] × �Pω. 10.

Therefore, this neutrino system experiences synchronized flavor transformation, just like the one

discussed above, but with �sync shifted by ω0. Because the oscillation frequency ω can be shifted

to any value by using an appropriate corotating frame, the criterion for synchronization should

not be μ ≫ |〈ω〉| but rather μ ≫ �ω (68), where 〈ω〉 and �ω are the average value and the spread

in ω for the neutrino system, respectively. Note that the reversal of the direction of �Pω for the

antineutrino (Equation 6) is important when the corotating frame is used. If this reversal is not

incorporated into the definition of �Pω, then the direction of �Pω also changes if the sign of the

corresponding vacuum oscillation frequency changes on transformation to the corotating frame.

Note that if �B is parallel to �L, the matter effect can be completely removed by transforming

to an appropriate corotating frame. For a general case, on transforming to the corotating frame

Equation 7 becomes

�̇Pω = (ω �B + μ �D) × �Pω and �̇B = −λ �L × �B. 11.

The matter effect does not disappear here but rather causes �B to rotate in the corotating frame. If

the matter density is large (λ ≫ |ω|), however, the fast-rotating �B in Equation 11 can be replaced by

( �B · �L) �L for collective neutrino oscillations (68). In other words, for collective neutrino oscillations

and in the presence of large matter density, matter effects may be ignored and the effective neutrino

mixing parameters become θeff ≃ 0 and �m2
eff = �m2 cos 2θv.

2.4. Solving for Supernova Neutrino Flavor Evolution

Although collective neutrino oscillations may occur in any environment in which neutrino fluxes

are significant, recent studies of this phenomenon have focused on the core-collapse supernova

environment. The supernova environment is far more complex than the early universe, in part

because of its inhomogeneity and anisotropy. This complexity is enhanced because neutrinos of

different flavors and energies and propagating in different directions are coupled by neutrino self-

interaction (50). Full simulations of neutrino oscillations with neutrino self-interaction in a general

supernova environment are beyond current numerical capabilities. Here we briefly discuss two

schemes commonly used in investigating collective neutrino oscillations. Both of these schemes

employ the neutrino bulb model, in which the supernova environment is spherically symmetric
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PNS

R

r
ν

ϑR

ϑ

Figure 3

The geometric layout of the neutrino bulb model. In this model all neutrinos are emitted half-isotropically
from the surface (neutrino sphere) of the protoneutron star (PNS), which has radius R. Spherical symmetry
and isotropic emission on the neutrino sphere imply that all neutrinos with the same initial flavor, energy,
and emission angle ϑR have identical flavor evolution histories. The neutrino polarization vector �Pω,ϑR (r) is
uniquely determined by ω, ϑ (or ϑR), and r. Here ϑ is the angle at radius r between the neutrino trajectory
direction and the radial direction. Figure adapted from figure 1 of Reference 70. Copyright 2006 by the
American Physical Society.

around the center of the protoneutron star (PNS) (Figure 3). The polarization vectors in this

model obey the EoM

cos ϑ
d

dr
�Pω,ϑR (r) = [ω �B + λ(r) �L + �H νν,ϑR (r)] × �Pω,ϑR (r), 12.

where

�H νν,ϑR (r) =
√

2GFnν̄e (R)

∫ ∞

−∞
dω′

∫ 1

cos ϑmax

d(cos ϑ ′) (1 − cos ϑ cos ϑ ′) �Pω′,ϑ ′
R
(r). 13.

Note that ϑ = arcsin(R sin ϑR/r) and has the maximum value ϑmax = arcsin(R/r) in the neu-

trino bulb model (Figure 3). Also note that here we choose to normalize �Pω by nν̄e (R) =
Lν̄e /(2π R2〈Eν̄e 〉), the total number density of ν̄e at the neutrino sphere, where Lν̄e and 〈Eν̄e 〉 are the

energy luminosity and the spectrum-averaged energy of ν̄e at the neutrino sphere, respectively.

For the neutronization-burst epoch where the νe flux is much larger than the fluxes of all other

neutrino species, �Pω should be normalized by nνe (R) instead. In typical numerical simulations, R

is in the range of 10 to 60 km, and the luminosities and the average energies of neutrinos are in

the ranges of 1050 to 1053 erg s−1 and 10 to 30 MeV, respectively.

Equation 12 can be solved numerically without any further assumptions. This is known as

the multiangle scheme. The other scheme is the so-called single-angle scheme (50). In this latter

scheme it is assumed that �Pω,ϑR (r) = �Pω(r) is the same for different neutrino trajectories. There

are several variants of the single-angle scheme that lead to qualitatively similar results. In one of

the variants, �Pω(r) is computed along the radial direction (ϑR = 0), and Equation 12 becomes

d

dr
�Pω(r) = [ω �B + λ(r) �L +

√
2GFnν̄e D(r/R) �D] × �Pω(r), 14.

where the geometric factor D(r/R) = 1
2
[1 −

√

1 − ( R
r

)2]2 partially accounts for the angle ef-

fect and geometric dilution of the neutrino fluxes in the neutrino bulb model. Comparing

Equations 7 and 14 shows that the flavor evolution of neutrinos in the single-angle scheme is

equivalent to that of a homogeneous and isotropic neutrino gas expanding with “time” r. In this

analogy, the strength of the neutrino self-coupling is μ(r) =
√

2GFnν̄e (R)D(r/R). The radial

direction is a rather special direction in the neutrino bulb model. In another variant of the single-

angle scheme, it is assumed that all neutrinos are emitted with ϑR = π/4 (75). Alternatively,
�H νν,ϑ can be averaged over neutrino trajectories (70, 90). Each of these variants also leads to
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Equation 14 when r ≫ R. However, in this limit D(r/R) → 1
4

(

R
r

)4
for these variants instead of

1
8

(

R
r

)4
in the single-angle scheme that employs the radial trajectory. These variants can improve

the agreement between the results of the single-angle and multiangle calculations (90). Although

the single-angle scheme is frequently used for its simplicity, it must be emphasized that it misses

some of the important properties (e.g., anisotropy) of the neutrino bulb model and can lead to

incorrect results when such properties play important roles in collective neutrino oscillations (see

Section 5).

3. SIMPLE BIPOLAR NEUTRINO SYSTEMS

3.1. Bipolar Systems and the Flavor Pendulum

To illustrate another important example of collective neutrino oscillations, let us consider a homo-

geneous and isotropic gas that initially consists of monoenergetic νe and ν̄e . This neutrino system

is represented by two polarization vectors, �Pω and �P−ω, for the neutrino and the antineutrino,

respectively. We assume that λ = 0, that μ is fixed, and that | �Pω| = (1 + ε)| �P−ω|, where ε is the

fractional excess of neutrinos over antineutrinos. At t = 0, �Pω points in the direction of ê (I)
3 , which

is tilted away from ê (V)
3 by 2θv, and �P−ω points in the direction opposite to �Pω. Neutrino systems that

are represented by two nearly oppositely directed polarization vector groups are termed bipolar

systems. Using the corotating frame technique, the discussion in this section easily can be applied

to, for instance, a gas consisting initially of νe and νμ with energies Eνe �= Eνμ
.

A peculiar case is one in which ε = 0 and �Pω is initially aligned with ê (V)
3 = − �B (i.e., θv = 0). On

the one hand, use of energy conservation (Equation 8) demonstrates (68) that if ω > 0, neither �Pω

nor �P−ω can move, and so the initial configuration of the system is absolutely stable. On the other

hand, if ω < 0 and μ ≫ |ω|, �Pω and �P−ω can nearly swap their directions (but with a slight bend

toward each other). This implies that the initial configuration of the system is unstable. Therefore,

the νe − ν̄e system may experience insignificant flavor oscillations when �m2 > 0 and θv ≪ 1.

However, this system can experience significant flavor oscillations when �m2 < 0 and θv ≪ 1.

Such collective neutrino oscillations are known as bipolar oscillations.

The EoMs of the simple bipolar system,

�̇Pω = (ω �B + μ �D) × �Pω, and �̇P−ω = (−ω �B + μ �D) × �P−ω, 15.

have been solved analytically (58, 59). Instead of presenting this solution, let us rewrite Equation

15 as (71)

�̇D = μ−1 �q × �g and �D = μ−1 �q × �̇q + σs �q , 16.

where �q = �Q/| �Q| = ( �Pω − �P−ω − ω

μ
�B)/| �Q|, �g = −μω| �Q| �B, and σs = �q · �D is constant. Equation 16

describes the motion of a fictitious gyroscopic pendulum, or flavor pendulum, with total angular

momentum �D in a uniform gravitational field in which the acceleration of gravity is �g. The

pendulum consists of a massless rod with a point particle of mass μ−1 and spin σ s attached to the

end of the rod at position �q . The flavor pendulum that represents a symmetric bipolar system

(ε = 0) has no internal spin. The stable and unstable configurations of the system discussed above

correspond to the lowest and highest positions, respectively, that the pendulum can reach.

Generally, the flavor pendulum can experience two kinds of motion: a precession about the
�B axis and a nutation around the average precession track. The nutation motion corresponds to

bipolar neutrino oscillations. However, like a child’s top, the flavor pendulum can “defy gravity”

and precess almost uniformly if μ is large enough. Specifically, the flavor pendulum can become

www.annualreviews.org • Collective Neutrino Oscillations 579

A
n
n
u
. 
R

ev
. 
N

u
cl

. 
P

ar
t.

 S
ci

. 
2
0
1
0
.6

0
:5

6
9
-5

9
4
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 U

n
iv

er
si

ty
 o

f 
C

al
if

o
rn

ia
 -

 S
an

 D
ie

g
o
 o

n
 0

3
/2

5
/1

9
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



a so-called sleeping top and does not fall from its highest position if (71, 73)

μ > μcr ≡ 2|ω|
(
√

1 + ε − 1)2
. 17.

This precession behavior of the flavor pendulum in the large μ limit represents synchronized

oscillations of the bipolar system with �sync = (1 + 2ε−1)ω.

3.2. Bipolar Systems with Slowly Decreasing Neutrino Density

Let us now focus on the IH case with θv ≪ 1. Significant neutrino oscillations can occur in this

case. If the neutrino density decreases, the mass μ−1 of the pendulum becomes larger. The swing

amplitude of the pendulum that represents a symmetric bipolar system decreases as μ decreases.

The maximum swing amplitude of this pendulum can be found in the adiabatic limit where μ

changes slowly (73). In this case, �Pω and �P−ω become aligned and antialigned, respectively, with
�B (i.e., νe → ν2 and ν̄e → ν̄2) as μ decreases toward 0.

The asymmetric bipolar system is more interesting. Neutrino oscillations in this case are

synchronized, and the flavor pendulum precesses uniformly in the limit μ ≫ |ω|. If μ decreases

very slowly, the flavor pendulum can still experience a nearly pure precession motion for any

given μ. In this case, �Pω and �P−ω lie in the same plane with �B, and their directions can be readily

solved for (Figure 4) (73, 79). Assuming ε > 0, �P−ω becomes antialigned with �B (i.e., ν̄e → ν̄2) as

μ → 0. Meanwhile the direction of �Pω can be determined from the constancy of �D · �B (71; also see

Equation 16, where �g ∝ �B).

00.20.40.60.81.0
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c
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µ /µ
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cosθv

(

Figure 4

Evolution with decreasing μ for a simple bipolar system that consists initially of monoenergetic νe and ν̄e . The neutrino excess is
ε = 0.25, and the mixing parameters are θv = 0.01 and �m2 < 0. (a) The configuration of the polarization vectors, where θν (θν̄ ) is the

angle between �Pω ( �P−ω) and �B = −ê
(V)
3 . The thick colored lines represent an assumed pure precession motion for the flavor pendulum,

and the thin wavy red lines represent a case where μ decreases slowly and linearly with time. At μ � μcr the flavor pendulum is a
so-called sleeping top, and there are no flavor oscillations. When μ < μcr, the flavor pendulum experiences precession as well as
nutation around the average precession track. (b) The precession frequency � of the flavor pendulum, assuming that it is executing pure
precession. In this case, the value � approaches �sync and ω in the limits μ → ∞ and μ → 0, respectively. The analytical solution for
the pure precession motion of the polarization vectors can be found in Reference 79. This figure is adapted from figures 3a and 4 in
Reference 73. Copyright 2007 by the American Physical Society.
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4. ISOTROPIC AND HOMOGENEOUS NEUTRINO GASES

4.1. Static Solutions for the Neutrino Flavor Evolution Equation

Here we consider a homogeneous and isotropic gas that consists of neutrinos with continu-

ous energy spectra. Let us first seek static solutions to the EoM for the polarization vectors

(Equation 7) for the case in which both the matter density and the neutrino densities are constant.

One possibility is that the solution is stationary and that the �Pωs do not evolve with time t. This

solution is only possible if the “spin” �Pω is parallel to the corresponding total “magnetic field”
�H ω = ω �B + λ �L + μ �D. For this case, and noting that �H ω does not depend on �Pω, we can obtain

the following equations for the total polarization vector �D (76):

D1 = (λ sin 2θv + μD1)

∫ ∞

−∞

ǫω| �Pω|
| �H ω|

dω, 18a.

D2 = μD2

∫ ∞

−∞

ǫω| �Pω|
| �H ω|

dω, 18b.

and

D3 =
∫ ∞

−∞
(−ω + λ cos 2θv + μD3)

ǫω| �Pω|
| �H ω|

dω, 18c.

where Da = �D · ê (V)
a (a = 1, 2, 3) and ǫω = +1 (−1) if �Pω is aligned (antialigned) with �H ω. The

stationary solution to the EoM for �Pω can be found from Equations 18a–c and the alignment

condition. We note that Equations 18a and 18b generally imply that D2 = 0 if λ �= 0, which in

turn implies that �Pω · ê (V)
2 = 0 for any ω.

Equations 18a and 18b become equivalent when λ = 0, and �D is underconstrained by

Equations 18a–c in this case because when λ = 0, the EoM for �Pω possesses a rotational symmetry

about �B. In other words, if { �Pω(t)|∀ω} (meaning the polarization vectors for all frequencies ω at

a given time t) solves the EoM, then { �P ′
ω(t)|∀ω} also solves the EoM, in which �P ′

ω(t) is obtained

from �Pω(t) by rotation about �B by an arbitrary angle φ. Here φ is independent of ω and t. This

is a generalization of the rotational symmetry of the flavor pendulum about the “gravity” vector

�g ∝ �B. Such a continuous symmetry in the EoMs generally implies the existence of collective

motion and a conservation law. For example, a translational symmetry of a group of particles along

some direction implies the possibility of the collective motion of the particles in that direction

and the conservation of the total momentum of the particles in the same direction. As discussed

in Section 3, for the simple bipolar system this rotational symmetry implies the possibility of a

pure precession of the flavor pendulum in which both polarization vectors of the system precess

with the same frequency �. Therefore, it is natural to seek a static solution to the EoM in which

λ = 0, and μ is a constant, and all the �Pωs precess about �B with the same frequency �. In this

case, all the �Pωs are stationary in a corotating frame, which rotates about �B with frequency �. In

this corotating frame, �Pω is either aligned or antialigned with �̃H ω = (ω − �) �B + μ �D, and the

components of �D in the corotating frame can be found from equations similar to Equations 18a–c.

These equations can be recast as the following two simple sum rules (74):

1 =
∫ ∞

−∞

ǫω| �Pω|
√

[(� − ω)/μ + D3]2 + D2
⊥

dω 19.

and

� =
∫ ∞

−∞

ǫωω| �Pω|
√

[(� − ω)/μ + D3]2 + D2
⊥

dω, 20.
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where D⊥ is the component of �D that is perpendicular to ê (V)
3 . The rotational symmetry of the

system about �B implies that D3 = − �D · �B is constant.

4.2. Adiabatic Solutions and the Spectral Swap/Split

If λ and μ vary slowly with time, adiabatic solutions that correspond to the static solutions discussed

above can be obtained. We term them the (adiabatic, ν-enhanced) MSW solution and the (adia-

batic) precession solution. Figure 5 shows these two adiabatic solutions for a single-angle scheme,

together with the corresponding numerical solutions for Equation 14. In these calculations it is

assumed that (a) the most abundant neutrino species at the neutrino sphere are νe and ν̄e and

(b) θv ≪ 1. For the precession solution the matter field is removed with an appropriate corotating

frame. The flavor pendulum model provides insight into how the numerical solution evolves from

the MSW solution toward the precession solution. In the IH case, a large matter density essen-

tially keeps the flavor pendulum (with ε > 0) near its highest position. This configuration becomes

unstable when μ < μcr. In the NH case, the ν-enhanced MSW flavor transformation raises the

flavor pendulum to near its highest position, and the configuration again becomes unstable when

μ < μcr.

0

0.1

0.2

Precession
MSW
Numerical

–0.3

–0.2

–0.1

0

–0.3

–0.2

–0.1

0

0.1

0

0.1

0.2

s   
s   s z

s z

r (km)r (km)

a

c

b

dd

IH

NH

NH

NH

100 200 300100 200 300

Figure 5

Comparison of the numerical solution, the ν-enhanced Mikheyev-Smirnov-Wolfenstein (MSW) solution, and the precession solution
in a single-angle scheme, where θv = 0.1, 〈s⊥〉 ∝ D⊥, and 〈s z〉 ∝ D3. The numerical solution initially follows the MSW solution. (a) In
the inverted neutrino mass hierarchy (IH) case, the MSW solution becomes unstable at r ≃ 88 km, and thereafter the numerical
solution shows oscillations around the precession solution. (b) In the normal neutrino mass hierarchy (NH) case, the numerical solution
follows the MSW solution through the resonance (where 〈s z〉 ≃ 0) before it shifts to follow the precession solution track. Figure
adapted from figure 1 of Reference 76. Copyright 2007 by the American Physical Society.
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Spectral swap

2ω
δm2

Eν   = –
2ω

δm2
Eν  = +

ƒ v
ve ' initial
vµ ' initial
ve ' �nal
vµ ' �nal

a b

∞

Ω0 0

0 20 40 60
E (MeV)

1

P vv

ω

Figure 6

Illustration of the stepwise spectral swap phenomenon in the two-flavor mixing case with �m2 < 0 (inverted
neutrino mass hierarchy) that was discovered by Duan et al. (70). (a) The stepwise swapping of νe and νμ

energy spectra about Es ≃ 9 MeV in a single-angle scheme. The spectra of ν̄e and ν̄μ are nearly fully
swapped in this calculation. (b) The corresponding survival probability Pνν , which is a step-like function of
ω. For the normal neutrino mass hierarchy case, the step-like structure of Pνν (ω) is pushed rightward to
�0 > 0. Because Es = | �m2

2�0
| splits a neutrino spectrum into two parts with different flavors, this

phenomenon is also sometimes termed spectral split. Reprinted with permission from Reference 124.
Copyright 2009, American Institute of Physics.

Just as in the conventional adiabatic MSW flavor transformation case (Figure 2), in the adia-

batic precession solution �Pω follows �̃H ω, whose direction (and magnitude) changes as μ decreases.

This induces neutrino flavor transformation. Specifically, as μ → 0, �̃H ω → (ω − �0) �B, where

�0 = �(μ = 0). This means that the adiabatic collective precession mode converts the initial

νe into the mass state |ν1〉 or |ν2〉, depending on whether ω is smaller or larger than �0 (70).

This phenomenon, known as the stepwise spectral swap or spectral split, is most dramatic when

θv ≪ 1 (Figure 6). The swap/split energy Es = |�m2

2�0
| can be determined from the constancy of

�D · �B (74).

4.3. Precession Solution in the Three-Flavor Mixing Scenario

The neutrino polarization vector defined in Equation 6 can be easily generalized to the three-flavor

mixing scenario by replacing the Pauli matrices with the Gell-Mann matrices �a (a = 1, 2, . . . , 8)

(83, 123). However, because an eight-dimensional polarization vector, or Bloch vector, cannot be as

easily visualized as its three-dimensional counterpart, we discuss the collective precession mode by

using the matrix formalism. To this end, we define the polarization matrix Pω = 1
2

∑8
a=1 (Pω,a�a ),

where Pω,a is the ath component of the Bloch vector �Pω. We note that here the definition of

the Bloch vector �Pω follows the same sign convention for antineutrinos as in Equation 6. The

polarization matrix obeys the EoM

iṖω = [ωLBL + ωHBH + μD, Pω], 21.

where D =
∫ ∞

−∞ Pωdω is the total polarization matrix. In Equation 21, ωL = ± δm2

2E
and BL = − 1

2
�3

(in the mass basis) correspond to the small mass splitting, which we define as δm2 ≡ m2
2 − m2

1 ≃
�m2

⊙. Also in Equation 21, ωH = ω = ±�m2

2E
and BH = − 1√

3
�8 (in the mass basis) correspond to

the large mass splitting, which we define as �m2 = m2
3 − 1

2
(m2

1 + m2
2) ≃ ±�m2

atm. For simplicity
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we have ignored the matter field because it can be removed by employing the corotating frame

technique (84).

The static precession solution (with constant μ) can be obtained by assuming that {P̃ω, �L, �H |
∀ω} solves the equation

[H̃ω, P̃ω] = [(ωL − �L)BL + (ωH − �H)BH + μD̃, P̃ω] = 0, 22.

where P̃ω, �L, and �H are constant and D̃ =
∫ ∞

−∞ P̃ω dω. In the two-flavor mixing scenario

(BL = 0), Equation 22 corresponds to the condition that the “spin” �̃Pω is stationary in a coro-

tating frame and parallel to the total “magnetic field” �̃Hω in this reference frame. Equation 22

is known as the precession ansatz (84) because it implies a static precession solution to the EoM

(Equation 21). This solution, {Pω(t),�L,�H | ∀ω}, can be written as

Pω(t) = exp[−i(�LBL + �HBH)t]P̃ω exp[i(�LBL + �HBH)t]. 23.

Because P̃ω and H̃ω commute, they can be simultaneously diagonalized by a unitary matrix X.

Therefore, we have XH̃ωX† = diag[h̃ω,1, h̃ω,2, h̃ω,3], where h̃ω,1 < h̃ω,2 < h̃ω,3, and XP̃ωX† =
diag[ p̃ω,1, p̃ω,2, −( p̃ω,1 + p̃ω,2)]. When μ varies slowly with t, the adiabatic precession solution can

be obtained from the static precession solutions (with different μ) by using the adiabatic ansatz

(84)

∂

∂μ
p̃ω,1 = ∂

∂μ
p̃ω,2 = 0. 24.

In the two-flavor mixing scenario, the adiabatic ansatz corresponds to the assumption that �Pω

remains parallel to �̃Hω. If neutrinos follow the adiabatic precession solution, then as μ → 0,

P̃ω becomes a diagonal matrix in the mass basis (see Equation 22). The diagonal elements of

Pω|μ=0 = P̃ω|μ=0 are p̃ω,1, p̃ω,2, and −( p̃ω,1 + p̃ω,2), and these elements have the same order of ap-

pearance as the diagonal elements of Hω|μ=0 = (ωL − �L)BL + (ωH − �H)BH. For example, in the

mass basis we have Pω|μ=0 = diag[ p̃ω,2, p̃ω,1, −( p̃ω,1 + p̃ω,2)] if H̃ω|μ=0 = diag[h̃ω,2, h̃ω,1, h̃ω,3],

where h̃ω,1 < h̃ω,2 < h̃ω,3. The fact that Pω|μ=0 is diagonal in the mass basis implies that

there can be multiple spectral swaps/splits in the final neutrino energy spectra. Because α =
δm2

|�m2| ≪ 1, these spectral swaps/splits form hierarchically and appear at different neutrino densities

(Figure 7).

5. ANISOTROPIC AND/OR INHOMOGENEOUS NEUTRINO GASES

5.1. Kinematic Decoherence of Collective Neutrino Oscillations

The oscillations of neutrinos with different momenta can become out of phase (i.e., collective

oscillations can break down), which is sometimes referred to as kinematic decoherence. Of course,

this is not to be confused with quantum decoherence, which can be induced by any neutrino

scattering process that changes neutrino momentum. In a homogeneous and isotropic neutrino

gas, the condition for kinematic decoherence is �ω ≫ μ. In this limit, the coupling among “spins”

is not strong enough to maintain a collective motion, and �Pω precesses about �B with vacuum

oscillation frequency ω. In Section 2.3 we showed that, when �ω ≪ μ, synchronized neutrino

oscillations do not decohere kinematically, and | �D| is approximately constant because of energy

conservation. Numerical simulations suggest that bipolar neutrino oscillations are also stable (55,

57), although as yet we know of no conservation law that could explain this phenomenon.

If collective neutrino oscillations also exist in an anisotropic environment, then the wave fronts

of the oscillation waves of the neutrinos must coincide with one another. In the neutrino bulb
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Figure 7

The evolution of the diagonal elements of the neutrino density matrices in the mass basis during the hierarchical formation of spectral
swaps/splits in a neutrino gas. Initially Pω , and the density matrix ρω, is the same across the whole energy spectrum ω ∈ [0, 2ω0] (a, thin
blue lines). When μ ≫ ω0, all neutrinos are in the heaviest eigenstate (i.e., the state with the largest eigenvalue) of H̃ω ≃ μD̃. For the
normal neutrino mass hierarchy (NH) case, two spectral swaps/splits form hierarchically at μ ∼ ω0 and μ ∼ αω0, respectively. Curves
in panel a give ρω with various values of ω. At ω0 ≫ μ ≫ αω0, the heaviest eigenstate of H̃ ≃ (ω − �H,0)BH + μD̃ is |ν3〉 for neutrinos
with ω > �H,0. Subsequently these neutrinos no longer participate in collective oscillations. At μ ≪ αω0, the remaining neutrinos are
in |ν2〉 or |ν1〉, depending on whether ωL = αω is larger or smaller than �L,0. In either case, the state corresponds to the heaviest
eigenstate of H̃ω ≃ (ωL − �L,0)BL (ignoring the decoupled state |ν3〉). This leads to two spectral swaps/splits in the final neutrino
energy spectra (b, thick red lines in the NH column). In the inverted neutrino mass hierarchy (IH) case, the ρ33 are initially set to zero for
all ω. As a result, |ν3〉 is completely decoupled from the equation of motion, and no spectral swap/split forms at μ ∼ ω0. The dotted red
lines in panel b are computed by using the constancy of Tr(D · �3) and Tr(D · �8) and by assuming that the spectral swaps/splits are
infinitely sharp. Figure reprinted with permission from Reference 85. Copyright 2008 by the American Physical Society.

model these wave fronts are spheres that cocenter with the PNS. However, in this model a neu-

trino propagating along a nonradial trajectory would travel a longer distance than would a radially

propagating neutrino (50). In other words, a nonradially propagating neutrino appears to have a

larger oscillation frequency ω′ = ω/ cos ϑ along r (see Equation 12). This frequency would enlarge

�ω and would require stronger neutrino self-coupling to maintain collective oscillations among

neutrinos propagating along different trajectories. Note that the “magnetic field” �H νν,ϑ (r) gener-

ated by other “spins” is trajectory dependent, which adds another potential source of kinematic

decoherence.

Raffelt & Sigl (72) pointed out that a neutrino gas with an initially symmetric bipolar config-

uration (i.e., �Pν = − �Pν̄ ) can experience quick kinematic decoherence even in the presence of a

small anisotropy, and in this case, both | �Pν | and | �Pν̄ | evolve toward zero. Later it was found that an

asymmetric bipolar neutrino system [i.e., | �Pν | = (1+ε)| �Pν̄ | with ε �= 0] may or may not experience
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kinematic decoherence, depending on the value of ε (75). For typical choices of other parameters

in a neutrino bulb model, kinematic decoherence is suppressed if ε � 0.3.

In the above discussion, we have ignored ordinary matter. In the presence of a large matter

density, �Pω tends to precess around −�L with frequency ω′ = −λ + ω cos 2θv. In the isotropic

environment, ω′ → ω cos 2θv in the corotating frame that rotates about �L with frequency λ.

In this case, therefore, when neutrinos experience collective oscillations, ordinary matter can be

ignored. In an anisotropic environment, such as the neutrino bulb model, we have a frequency of

ω′ = (−λ + ω cos 2θv)/ cos ϑ along r. Clearly, it is not possible to remove the matter effect for

all neutrino trajectories, which implies that collective neutrino oscillations would not exist in a

region where the net number density of electrons is much larger than that of neutrinos (91).

5.2. Precession Mode in the Anisotropic Environment

In Section 3 we showed that with ε �= 0 the flavor pendulum possesses an internal spin. The

existence of this internal spin makes it possible for the flavor pendulum to experience a precession

motion and a nutation motion simultaneously. These two kinds of motion of the flavor pendulum

correspond to the precession mode and the bipolar mode of neutrino oscillations. The findings

in References 72 and 75 suggest that bipolar neutrino oscillations, which are the most prominent

when ε is small, become noncollective in the anisotropic environment. These findings also suggest

that the precession mode, which becomes important for cases with sufficiently large ε, can remain

collective in the anisotropic environment. This hypothesis is partially supported by the fact that

neutrino oscillations calculated in the single-angle scheme and in the multiangle scheme possess

common features, such as the spectral swap/split phenomenon, which—as explained with the

single-angle supernova scheme or in homogeneous and isotropic environments—results from

neutrino oscillations in the collective precession mode.

The EoM of the polarization vectors in a stationary environment can be written as (114, 116,

125)

p̂ · ∇ �Pω,p̂(x) = [ω �B + �H νν,p̂(x)] × �Pω,p̂(x), 25.

where λ = 0 for now, all the polarization vectors are normalized by nν (x0), the number density

of neutrino species ν at location x0, and

�H νν,p̂(x) =
√

2GFnν (x0)

∫ ∞

−∞
dω′

∫

d2p̂′(1 − p̂ · p̂′) �Pω′,p̂′ (x). 26.

As in the isotropic neutrino gas case, Equation 25 also exhibits rotational symmetry about �B. If

{ �Pω,p̂(x) | ∀ω, p̂} solves the EoM, then { �P ′
ω,p̂(x) | ∀ω, p̂} also solves the EoM; in the latter, �P ′

ω,p̂(x)

is obtained from �Pω,p̂(x) by rotation about �B by an arbitrary angle φ, and φ is independent of ω,

p̂, and x. This symmetry leads to the conservation law (93)

∇ ·
[∫ ∞

−∞
dω

∫

d2p̂( �Pω,p̂ · �B)p̂

]

= 0. 27.

The rotational symmetry of the EoM about �B can lead to a collective precession mode for neutrino

oscillations (Figure 8), even in an anisotropic environment.

Let K be the wave vector of the collective neutrino oscillation wave in a stationary environment.

If �Pω,p̂ experiences pure precession, then this vector must precess about �B with frequency p̂ · K

(in flavor space) as the corresponding neutrino propagates along its world line (in coordinate

space). Similar to the isotropic neutrino gas case, this means that �Pω,p̂ is parallel to �̃H ω,p̂ =
(ω − p̂ · K) �B + �H νν,p̂. Therefore the corresponding neutrino or antineutrino must be in a mass
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Figure 8

The collective precession of �Pω,ϑR in a neutrino bulb model with θv ≪ 1 and the inverted mass hierarchy (�m2 < 0). (b–d ) For most
neutrinos the “spin components” s1 ∝ �Pω,ϑR · ê

(V)
1 and s2 ∝ �Pω,ϑR · ê

(V)
2 oscillate in phase right after collective neutrino oscillations

begin (for this case, at r ≃ 40 km). In-phase oscillations of s1 and s2 and the constant relative phase of these components imply the
collective precession of the polarization vectors. The neutrinos or antineutrinos that drop out of the collective precession mode at
smaller radii are those with vacuum oscillation frequencies that are farther from the collective oscillation frequency and those
propagating along trajectories with larger cos ϑR . (a) The energy-averaged components 〈s1〉 and 〈s2〉. The collective precession mode
stands out when noncollective neutrino oscillations average to zero. Figure adapted from figure 1 of Reference 93. Copyright 2009 by
the Institute of Physics.

eigenstate if (93)

|ω − p̂ · K| ≫ | �H νν,p̂|. 28.

Equation 28 gives the criterion for when neutrinos or antineutrinos drop out of the collective

precession mode and begin to oscillate incoherently with respect to other neutrinos. The neutrinos

or antineutrinos that drop out in this way have oscillation frequencies ω that are so different from

the collective oscillation frequency that neutrino self-interaction is not strong enough to maintain

the corresponding polarization vectors in collective precession.
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With the replacements ω → (ω cos 2θv − λ) and �B → −�L, the above discussion also applies

to the case with a large λ. Including these replacements, Equation 28 indicates that collective

precession is indeed suppressed when the number density of electrons is much larger than that of

neutrinos.

6. COLLECTIVE NEUTRINO OSCILLATIONS IN SUPERNOVAE

6.1. Neutrino Oscillation Regimes

With the picture for neutrino oscillations developed above, we can utilize the strength of neutrino

self-interaction to sketch out neutrino oscillation regimes (Figure 9). We focus the following

discussion on the two-flavor mixing scenario with |�m2| ≃ �m2
atm and θv ≃ θ13. We designate

R−
coll as the radius closest to the PNS where collective oscillations set in. Likewise R+

coll is the outer

radius where collective oscillations cease. In both the NH and IH cases, R+
coll can be estimated

from the condition
√

2GFnν̄e (R+
coll) ≃ �m2

atm

〈Eν̄e 〉
, 29.

where nν̄e (r) is the total number density of the antineutrinos at r that are initially ν̄e at the neutrino

sphere and 〈Eν̄e 〉 is the average energy of these antineutrinos. Here we use ν̄e as the representative

neutrino species and �m2
atm

〈Eν̄e 〉 as an estimate of the frequency spread of the neutrino spectrum.

In the NH case, assuming a fully synchronized neutrino system, R−
coll is approximately where

(65)
√

2GFne (R−
coll) ≃ �sync. 30.

rr
0.0
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Collective oscillation
(bipolar regime)
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(bipolar regime)

P v
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0.0

0.2

0.4

0.6

0.8

1.0

P v
v

MSW/MSW/
vacuumvacuum

oscillationoscillation

MSW/MSW/
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(synchronized (synchronized 
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v-enhanced enhanced 
MSWMSW

(synchronized (synchronized 
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νe

νe

νe

νe

NH IH

Figure 9

Schematic plots of the neutrino oscillation regimes in the core-collapse supernova environment in the two-flavor mixing scenario with
|�m2| ≃ �m2

atm. Near the protoneutron star (PNS), and in the synchronized regime (r � R−
coll), collective neutrino oscillations are

suppressed by either the large matter density or the large neutrino fluxes themselves. In this regime neutrinos can still experience
ν-enhanced Mikheyev-Smirnov-Wolfenstein (MSW) flavor transformation. Far away from the PNS (r � R+

coll), where the neutrino
fluxes are negligible, neutrinos experience either vacuum oscillations or conventional MSW flavor transformation, depending on the
matter density and the energy of the neutrino. If R+

coll > R−
coll, then there is a window (R−

coll � r � R+
coll, known as the bipolar regime)

where neutrinos experience collective neutrino oscillations and where spectral swaps/splits develop. The curves show the
energy-averaged neutrino survival probabilities for electron neutrinos and antineutrinos in single-angle calculations that are chosen to
be representative of some late-time supernova conditions.
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[In the large neutrino flux limit, the behavior of a neutrino system experiencing ν-enhanced MSW

flavor transformation is the same as that of a synchronized neutrino system (76).] We note that

for an iron core–collapse supernova at early times and in the NH case, R+
coll ≤ R−

coll, meaning

that the collective neutrino oscillation regime does not exist. At later times in these models a

collective neutrino oscillation regime can appear when the matter density becomes relatively small.

In contrast, collective neutrino oscillations can occur at early epochs in an O-Ne-Mg core–collapse

supernova (80) because the progenitors of these supernovae have relatively lower masses (8–

12M ⊙), and therefore, after core bounce, the PNS has a dilute, lower-density envelope (126, 127).

In the IH case, the value of R−
coll is the larger of the values extracted from the following two

conditions:

nν̄e (R−
coll) ≃ 1

(
√

1 + ε − 1)2

�m2
atm√

2GF〈Eν̄e 〉
and nν̄e (R−

coll) ≃ ne (R−
coll). 31.

The first condition in Equation 31 is based on the flavor pendulum model (see Equation 17), and

the second condition accords with the discussion in Section 5.1. In the very early epochs of an

iron core–collapse supernova, the collective neutrino oscillation regime may not exist in the IH

case because of the presence of a large matter density.

6.2. Effects of Collective Neutrino Oscillations

The supernova neutrino energy spectra can be dramatically modified by collective neutrino os-

cillations. Perhaps the most prominent feature to arise from collective neutrino oscillations is the

spectral swap/split (e.g., Figure 1). Obtaining this feature can depend on supernova conditions.

For example, the calculations used to produce Figure 1 would give no spectral swap/split if the

matter density were too large (78, 91).

When νe and ν̄e are the most abundant neutrino species at the neutrino sphere, some qualitative

aspects of collective neutrino oscillations in supernovae can be understood by using the flavor

pendulum model. In the IH case, the initial configuration of the flavor pendulum is near its

highest position and is unstable when the neutrino flux is below some critical value. (See the

discussion in Section 4.2.) This implies that collective neutrino oscillations and their effects on

neutrino energy spectra are relatively insensitive to the matter density or the exact value of θ13. In

the NH case, however, the flavor pendulum would be near its stable configuration unless MSW

flavor transformation displaces it from this position. As a result, collective neutrino oscillations

and their effects depend on the efficiency of the ν-enhanced MSW flavor transformation. In

turn, the efficiency of this flavor transformation is sensitive to both the matter profile and the

value of θ13. This general picture is confirmed by multiangle calculations (77). The results shown

in Reference 77 suggest that it may be possible to resolve the neutrino mass hierarchy with an

observed supernova neutrino signal, even if the absolute neutrino masses and/or θ13 are too small

to be measured in the laboratory.

Neutrino signals detected at very early times after core bounce may be important probes of

neutrino mixing. For iron core–collapse supernovae, the neutrino spectra at very early times are

modified by the conventional MSW mechanism and can be easily calculated (128). For O-Ne-

Mg core–collapse supernovae, however, the matter density is so low above the PNS that even

at these very early times, where the νe luminosity can be very large (∼1053 erg s−1), collective

neutrino oscillations can create step-like features (swaps/splits) in the observed neutrino energy

spectra (80). If these features are observed in a galactic supernova neutrino burst, then they could

serve as diagnostics of the neutrino mass hierarchy and, in the NH case, even provide a measure

of θ13.
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However, the spectral swap/split phenomenon is sensitive to the neutrino luminosities and

energy spectra at the neutrino sphere. Presently there are rather large uncertainties in these

quantities, especially for the late-time supernova environment. Also, very large neutrino fluxes do

not necessarily imply a large neutrino oscillation effect; indeed, in the IH case a larger neutrino

luminosity pushes R−
coll to a larger radius.

Of course, collective neutrino oscillations are not the only way that neutrinos may experience

flavor transformation in supernovae. As in the Sun, in supernovae neutrinos can also experience

the conventional MSW flavor transformation. However, the matter profile in supernovae may

not be smooth (e.g., because of shocks or turbulence) near MSW resonance regions, which can

produce some interesting phenomena (101, 129–135).

In principle, the alteration of supernova neutrino energy spectra by collective neutrino oscil-

lations and/or other processes of neutrino flavor transformation could affect supernova dynamics,

shock reheating, and nucleosynthesis in neutrino-heated ejecta (41, 48, 50, 108, 136). However,

modeling of this physics in realistic supernova conditions is at present primitive.

7. SUMMARY AND OPEN ISSUES

In this review, we have discussed collective neutrino oscillations in a simple bipolar neutrino sys-

tem, in homogeneous and isotropic neutrino gases, and in anisotropic neutrino gases. The simple

bipolar neutrino system (described by the flavor pendulum) is the simplest of these scenarios and is

solvable analytically. It can be used to understand many qualitative features of collective neutrino

oscillations in supernovae. The single-angle scheme essentially treats supernova neutrinos as a

homogeneous and isotropic gas, and adiabatic neutrino flavor transformation in such a gas can

be used to understand the spectral swap/split phenomenon in the supernova environment. An

anisotropic neutrino gas can possess unique characteristics (e.g., suppression of collective flavor

oscillations by large matter density), which makes it an important target for study because realistic

physical environments such as core-collapse supernovae can be highly anisotropic.

We have covered some of the basic properties of collective neutrino oscillations, with em-

phasis on the two-flavor mixing case. There is much about the collective neutrino oscillation

phenomenon that remains to be understood. For example, in Section 4.1 we skipped over the

adiabaticity condition when we discussed adiabatic neutrino flavor transformation. Adiabaticity

criteria developed so far (79) are difficult to use in practice.

There are other open issues in our current understanding of collective neutrino oscillations

in supernovae. For example, there can be multiple spectral swaps/splits in the final neutrino en-

ergy spectra (Figure 10) (78, 103, 105). The appearance of these features, however, depends

on the luminosities and energy spectra of the different neutrino species at the neutrino sphere.

This finding cannot be explained by a grand collective precession mode in which all neutrinos

and antineutrinos participate. In a more recent paper (110), it was reported that qualitatively

different results could appear in some collective neutrino oscillation scenarios, depending on

whether two-flavor mixing or full three-flavor mixing is used. All of these discoveries point to the

need for a systematic study of supernova neutrino oscillations with neutrino self-interaction and

full three-flavor mixing at various supernova epochs in which neutrino luminosities and energy

spectra can be different. Also, numerical simulations of supernova explosions have clearly shown

that realistic supernova environments may be highly anisotropic and inhomogeneous (28, 30–

37, 137). It would be interesting to see how density inhomogeneities arising from, for instance,

shock waves and turbulence might affect collective neutrino oscillations. It remains a tower-

ing numerical challenge to integrate fully hydrodynamic, three-dimensional supernova models

with calculations of neutrino oscillations that include neutrino self-interaction. However, such
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µ
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Figure 10

Multiple spectral swaps/splits in a two-flavor single-angle calculation with |�m2| ≃ �m2
atm and θv ≪ 1. The

solid and dashed curves represent the final and initial energy spectra, respectively. The red and blue curves
are for e and μ flavors, respectively. The shaded regions mark the energy ranges in which spectral swaps
occur. Unlike previous numerical calculations, this calculation assumes that νμ and ν̄μ, rather than νe and ν̄e ,
are the most abundant neutrino species at the neutrino sphere. Abbreviations: IH, inverted neutrino mass
hierarchy; NH, normal neutrino mass hierarchy. Reprinted with permission from Reference 103. Copyright
2009 by the American Physical Society.

self-consistent integration may be necessary to study the interplay between supernova physics and

neutrino oscillations. Specifically, a full understanding of neutrino oscillations in supernovae may

hold the key to deciphering the neutrino signal from a future galactic supernova. The stakes are

high. Deciphering a supernova neutrino signal could provide important insights into supernova

astrophysics. It could also provide key insights into fundamental neutrino properties, and such

insights could be complementary to those sought by future neutrino experiments.
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