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Collective responses in electrical 
activities of neurons under field 
coupling
Ying Xu1,2, Ya Jia1, Jun Ma  2, Tasawar Hayat3,4 & Ahmed Alsaedi3

Synapse coupling can benefit signal exchange between neurons and information encoding for neurons, 
and the collective behaviors such as synchronization and pattern selection in neuronal network are 
often discussed under chemical or electric synapse coupling. Electromagnetic induction is considered 

at molecular level when ion currents flow across the membrane and the ion concentration is fluctuated. 
Magnetic flux describes the effect of time-varying electromagnetic field, and memristor bridges the 
membrane potential and magnetic flux according to the dimensionalization requirement. Indeed, field 
coupling can contribute to the signal exchange between neurons by triggering superposition of electric 
field when synapse coupling is not available. A chain network is designed to investigate the modulation 
of field coupling on the collective behaviors in neuronal network connected by electric synapse between 
adjacent neurons. In the chain network, the contribution of field coupling from each neuron is described 
by introducing appropriate weight dependent on the position distance between two neurons. Statistical 
factor of synchronization is calculated by changing the external stimulus and weight of field coupling. 
It is found that the synchronization degree is dependent on the coupling intensity and weight, the 
synchronization, pattern selection of network connected with gap junction can be modulated by field 
coupling.

Neurons are the basic structural and functional units of nervous system. �e information processing and encod-
ing are approached by exchange of neurotransmitter via chemical and electrical action, and the signal receiving is 
dependent on synapses between neurons1–7. For example, Qin et al.5 discussed the biological function of autapse 
connection to neurons and con�rmed that autapse driving can enhance self-adaption of neurons. �e biological 
nervous system is usually very complex and hierarchical, and it contains very complex inner structures, such as 
multiple subsystems. �erefore, the research in internal competition and cooperation behavior of complex system 
has to resort to the sampling and system analysis. �e related studies have very great signi�cance on understanding 
the evolution of collective behaviors of complex systems, and it is also helpful to predict the dynamical behavior of 
control systems. For an isolated neuron, geometry and anatomical structure o�en account for biological function, 
for example, autapse formation could be associated with injury in axon thus auxiliary loops are developed to prop-
agate the blocked signals8. Moreover, the impact of di�erent topology networks in various neuron models has been 
widely investigated by using bifurcation analysis. Indeed, coupling strength9,10, time delay11, spatial in homogeneity 
stimulus12, and noise13,14 can a�ect the synchronization and stability of network. �e network is composed of many 
nodes, the statistical analysis based on mean �eld theory and nonlinear analysis from sampled time series of observ-
able variables are o�en used to detect the synchronization stability and pattern selection15,16. However, it could be 
di�cult for generic sampling and statistical analysis when network is composed of many sub-networks, but pattern 
selection could be e�ective to understand the transition in collective behaviors. On the other hand, the use of speckle 
graph dynamics is much helpful to study the group discharge behaviors of neuronal networks, thus the spiral wave 
characteristics of spatial distribution of electrical activity in the cerebral cortex17 can be understood. �e spiral wave 
is self-sustained, and the developed spiral waves in cortex can change the collective behaviors in electrical activities 
as a stable pacemaker. �e potential mechanism for emergence of spiral wave and its dynamics are discussed in 
ref.18, which local and di�usive poisoning in ion channels19–21 can generate defects to trigger continuous waves and 
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further occurrence of spiral waves a�er symmetrical breaking22 in the pro�le. For example, Hu et al.22 con�rmed 
that symmetry breaking of target wave in the media accounts for emergence of multiarmed spiral wave, which can 
be developed from a group of spiral waves with single arm under appropriate condition, thus the potential forma-
tion mechanism of multiarmed spiral wave in the media is explained. Gong et al23. discussed the in�uence of time 
delay and channel blocking on multiple coherence resonance in network composed of Hodgkin-Huxley neurons. 
Qin et al.24 explained the defect mechanism for autapse driving in network by using negative feedback and the 
wave propagation was also discussed. Xiao et al.25 reported the dynamics in spatiotemporal patterns in network by 
changing the excitability. Xu et al.26 explained the new mechanism of spatial coherence resonance by imposing noise 
and periodical pacing in di�erent local areas in the network, and it is found that local forcing-induced wave can be 
broken in the area driven by noise and spiral waves are formed under appropriate noise intensity in the network. Li 
et al.27 discussed the selection and breakup of spiral wave in a coupled network driven by Gaussian colored noise. 
Qian et al.28 analyzed all oscillatory complex networks consisting of non-oscillatory nodes by using the dominant 
phase-advanced driving method, the oscillation sources and wave propagation paths of the self-sustained target 
waves in excitable small-world networks were explored explicitly.

In fact, spatial patterns such as spiral wave, target wave and Turing patterns can also be found in 
Reaction-di�usion systems and neuronal networks as well. Pattern formation in nonlinear complex systems 
is one of the central problems of the natural, social, and technological sciences. Since Turing �rstly proposed 
reaction-di�usion (RD) theory to model the range of spatial patterns observed in the developing embryo29, RD 
models have been studied extensively to explain patterns in both epidemiology and ecosystems30. It is found that 
cross di�usion31, time delay32,33 and functional response34 can induce the appearance of stationary patterns. It is 
con�rmed that the standard multiple-scale analysis and exact Turing regions can be obtained35 to develop kinds 
of spatial patterns. In fact, spiral wave, target wave or patched invasion can be observed36,37 when the di�usion 
coe�cients are the same (Turing theory does not hold). Based on the data observations, it is revealed that multiple 
scale spatial patterns38, isolation degree39 and spatial scaling laws40 play important roles on the resilience of the 
biological systems and thus they have implications on population protection or diseases control. In cardiac tissue 
and also cortex, the emergence and survival of spiral waves, continuous pulses could disturb signal propagation 
and information processing, thus normal electrical activities in cortex and wave propagation in cardiac tissue can 
be perturbed for inducing possible diseases. �erefore, it is important to apply e�ective schemes40,41 to remove 
and suppress spiral waves. Based on the driven-synchronization, the rotating electric �eld (REF) can be utilized to 
“smooth” a heterogeneous medium and suppress turbulence42. Chen et al.43,44 found that the REF can induce wave 
emission from heterogeneity in excitable media, which may provide a potential application to utilized the existed 
defects on cardiac tissue as the second sources to remove pinned spiral waves45.

�at is, the e�ect of electric �eld on cardiac tissue can o�en be described by adding gradient terms in the mem-
brane potential of media described by the Reaction-Di�usion system. In the cortex and neuronal network, it is a 
challenge to deal with this problem that the e�ect of electromagnetic induction can be understood from physical view. 
�e in�uence of the biological e�ects of electromagnetic �elds on human health has been investigated, and electro-
magnetic radiation-induced disease and abnormality in nervous systems (such as memory loss and other symptoms) 
were also discussed46–55. On the other hand, the dynamics of neuronal activities in presence of electromagnetic �eld 
also became attractive56–58. In fact, by further improving the computational models for neuron59,60 and cardiac tis-
sue61,62, the physical e�ect can be described by using magnetic �ux associated with time-varying electromagnetic �eld. 
For example, Lv et al.63 proposed a four-variable neuron model developed from the previous Hindmarsh-Rose neuron 
model59,60 by adding the variable for magnetic �ow, which memristor is also used to bridge the coupling between 
membrane potential and magnetic �ux63. Inspired by this model, the transition of electrical activities in neurons 
induced by electromagnetic radiation has been investigated extensively64–68, particularly, the same scheme was carried 
out on cardiac tissue, and two death mechanisms61,62 in heart induced by electromagnetic radiation are explained. For 
a further survey and guidance, readers can �nd clues in refs69,70 and references therein. In most of the previous works, 
synapse connection and gap junction are regarded as the main bridge to bene�t signal exchange and wave propagation 
between neurons. In this paper, we argued that �eld coupling could be another e�ective way for signal propagation 
in network because �eld coupling can realize phase synchronization between neurons71. �e potential mechanism is 

Figure 1. Schematic diagram of �eld coupling between neurons, the red circles mark the distribution of electric 
�eld. �e black point represents the neuron, black line means connection between neuron, the red circles 
denotes the propagation of electric �eld and the same circle means the same intensity distribution for electric 
�eld. According the Coulomb’s law in physics, the intensity of electric �eld can be described by E = Q/4πεr2, 
where Q means the charge value, ε is the dielectric coe�cient; r denotes the distance from charged cell to �eld 
point (detection position).
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explained that each neuron can contribute to the distribution of electric �eld, and the electrical activity of each neuron 
will be a�ected by other neurons by triggering di�erent electric �elds in the network.

Model and scheme
�e Hindmarsh-rose neuron model59,60 mainly highlights the main nonlinear dynamic characteristics of mollusk 
neurons, the dynamical kinetics can be approached by the ordinary di�erential equations (ODEs) composed of 
three variables shown in ref.59. As proposed and discussed in refs63,64, magnetic �ux is used to describe the e�ect 
of electromagnetic induction72, and memristor is considered to realize coupling between membrane potential 
and magnetic �ux thus the induction �eld and action potential can be bridged in physical view. �e dynamical 
neuron model is described by
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Figure 2. Developed spatial patterns of network and sampled time series are calculated when network is 
modulated by �eld coupling. Coupling intensity between nodes D = 0.5, W = 1.0, for (a) D0 = 0.0001, I = 1.0; (b) 
D0 = 0.00048, I = 1.0; (c) D0 = 0.0001, I = 1.2; (d) D0 = 0.00048, I = 1.2. �e snapshots are shown in color scale.

Figure 3. Sampled time series for membrane potential from node (i = 80) are calculated. Coupling intensity 
between nodes D = 0.5, W = 1.0, for (a) D0 = 0.0001, I = 1.0; (b) D0 = 0.00048, I = 1.0; (c) D 0 = 0.0001, I = 1.2; 
(d) D 0 = 0.00048, I = 1.2.
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where the variable x, y, z represents the membrane potential, slow current for recovery variable, and adaption 
current, respectively. �e variable I de�nes the external forcing current, and the fourth variable ϕ describes the 
magnetic �ux across membrane. �e ρ(ϕ) is the memory-conductance of a magnetic �ux-controlled memristor 
and it is approached as ρ(ϕ) = α + 3βϕ2, kρ(ϕ)x denotes induction current and k is induction coe�cient. Further 
detailed description for parameters can be found in refs63,64. �e induction current is calculated as follows
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�at is, the e�ect of electromagnetic induction and change of electric �eld is described by induction cur-
rent. �e memductance of memristor is dependent on the magnetic �ux and time-varying induction current is 
imposed on the neuron. �e memristor73 is o�en used as nonlinear electric device in setting nonlinear circuits 
and synchronization can be approached by using memristor coupling74,75. It is also e�ective to describe the e�ect 
of electromagnetic induction in neuronal activities. From physical view, each neuron and cell can be thought as 
an non-uniform charged body because the distribution of charged ions are not distributed in uniform way, and 
thus complex �eld distribution can be triggered in intracellular and extracellular space. �e e�ect of electric �eld 
could be distinct and the time-varying electromagnetic �eld plays important role in changing the exchange of 
charged ions. In biological and nervous systems, contribution to the �eld distribution from each neuron could be 
di�erent and shows diversity, therefore, appropriate weight is considered in the neuronal network. For simplic-
ity, in a chain-like network, the position of neuron is marked with subscript “i”, another neuron is marked with 
subscript “j”, it is supposed that the contribution to �eld intensity is inversely proportional to the number error 
as Γij = W/│i − j│, and W is the weight value contributed to the �eld intensity. As a result, the network can be 
approached by gap junction coupling and �eld coupling; the dynamical equations are described by

Figure 4. Evolution of spatial patterns is calculated at W = 1, D = 0.5, the transient period for calculating 
is 2000 time units. For (a) D0 = 0.0001, I = 1.3; (b) D0 = 0.001, I = 1.3; (c) D0 = 2.0, I = 0.0001; (d) D0 = 2.0, 
I = 0.001.

Figure 5. Sampled time series for membrane potential of neuron (i = 80) are calculated by applying di�erent 
stimulus current, at W = 1, D = 0.5. For (a) D0 = 0.0001, I = 1.3; (b) D0 = 0.001, I = 1.3; (c) D0 = 2.0, I = 0.0001; 
(d) D0 = 2.0, I = 0.001.
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�e subscript i indicates the position of the neuron in the network, D is the coupling coe�cient between adja-
cent neurons via electric synapse coupling, D0 describes the �eld interaction between neurons. W represents the 
intensity of the �eld e�ect associated with distance between neurons. According to Eq. (3), increasing the value 
for intensity of �eld coupling, positive feedback will enhance the electromagnetic induction e�ect, and stronger 
induction current will be induced to decrease the excitability of neurons. �e parameters are selected as a = 1.0, 
b = 3.0, c = 1.0, d = 5.0, s = 4.0, α = 0.1, β = 0.02, k = 0.9, k1 = 0.4, k2 = 0.5. �e �eld coupling is illustrated in 
Fig. 1.

To discern the collective behavior of neurons, a statistical factor of synchronization24,26,69 is calculated to �nd 
synchronization approach based on mean �eld theory, and it reads as follows

Figure 6. Distribution for synchronization factors is calculated by changing the intensity of �eld coupling and 
external stimulus. �e snapshots are plotted in color scale.

Figure 7. Developed spatial pattern in the network. �e weight coe�cient W = 1 and electric coupling D = 0, 
for (a) I = 1.2, D0 = 0.0001; (b) I = 1.2, D0 = 0.00048; (c) I = 1.0, D0 = 0.0001; (d) I = 2.0, D0 = 0.0001.
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where N is the node number of neuronal network, < * > describes the average of variable over time, for simplicity, 
a transient period T = 2000 time units will be used for numerical studies. Perfect synchronization is approached 
when R is close to 1, and non-perfect synchronization is detected together with emergence of appropriate pattern 
distribution when R is close to zero.

Numerical results and discussion
In the numerical section, the fourth order Runge-Kutta algorithm is used to approach solutions for the dynam-
ical equations. �e chain network is composed of 100 neurons, time step is set as h = 0.01. �e initial values are 
selected random values as (0.3 + ξ, 0.1 + ξ, 5 + ξ, 0, 0.2 + ξ), where ξ is a random number ranged from 0 to 1. 
Transient period for calculation is about 2000 time units, coupling coe�cient D = 0.5. In order to illustrate the 
e�ect of �eld superposition on neuronal discharges, di�erent external stimuli I are applied when the chain neuron 
W is set to 1. �e spatiotemporal evolution of membrane potentials are calculated for dynamical analysis when 
the node position driven by external stimulus current is changed. Furthermore, the distribution for factors of 
synchronization on the network is calculated by selecting di�erent external stimuli I and D0. At �rst, the weight of 
electric �eld contribution is �xed at W = 1, the intensity of �eld coupling is adjusted to observe the development 
of spatial patterns(spatial distribution of membrane potential), the results are plotted in Fig. 2 and sampled time 
series for membrane potential of neuron connected to node (i = 80) are shown in Fig. 3.

Figure 8. Sampled time series for membrane potential of neuron (i = 80) are calculated by applying di�erent 
stimulus current. �e weight coe�cient W = 1 and electric coupling D = 0, for (a) I = 1.2, D0 = 0.0001; (b) 
I = 1.2, D0 = 0.00048; (c) I = 1.0, D0 = 0.0001; (d) I = 2.0, D0 = 0.0001.

Figure 9. Developed spatial pattern in the network. �e weight coe�cient W = 1 and electric coupling D = 0, 
I = 2.0, for (a) D0 = 0.0; (b) D0 = 0.00001; (c) D0 = 0.0001; (d) D0 = 0.0002.



www.nature.com/scientificreports/

7SCIENTIFIC REPORTS |  (2018) 8:1349  | DOI:10.1038/s41598-018-19858-1

�e excitability of neuron mainly depends on the external forcing current, and larger external stimuli are 
much helpful to excite neurons and the collective behaviors of network will present oscillating state. When the 
subthreshold forcing is applied on the network, diversity in initial settings can trigger short transient oscillation 
and then the network become quiescent state occupied the network completely. By further increasing the inten-
sity of external stimuli, the excitability of neuron is also enhanced, the quiescent neurons are waken up to present 
spiking and bursting states. Indeed, the �eld coupling contributes magnetic �ux and induction current, as a result, 
the mode in electrical activities are controlled. As shown in Figs 2d, 3d, further increasing the intensity of �eld 
coupling, diversity in magnetic �ux and induction currents are induced, as a result, each neuron shows di�erent 
excitability to trigger appropriate oscillating behaviors in electrical activities.

�e results in Fig. 4 con�rmed that the �eld coupling plays important role in regulating the collective behav-
iors of the network, while slight di�erence in external stimuli can also enhance the developed state when the 
intensity of �eld coupling is highly increased. �e sampled time series for some nodes found that bursting behav-
iors are enhanced under �eld coupling even stimuli is much weak, the results are shown in Fig. 5.

�e change in the discharge period of the neuron is caused by the change of the �eld interaction between each 
neuron and the other neurons, that is, D0 is positively correlated with the neuronal discharge period T. It is found 
that the bursting states show distinct di�erence and the response intervals are much di�erent. �e �eld coupling 
can drive all neurons to give appropriate response in time. �e distribution for factors of synchronization is cal-
culated in the two-parameter space, and the contribution from �eld coupling and external forcing is estimated, 
the results are shown in Fig. 6.

It is con�rmed that the synchronization degree is high when external forcing current is weak that excitability 
is low, as a result, the e�ect of diversity in initials setting can be suppressed by �eld coupling. To discern the e�ect 
of �eld coupling, the intensity of electric coupling is removed as D = 0, then external forcing current and �eld 
coupling are considered, the results are shown in Figs 7, 8, 9, 10.

It is con�rmed that weak excitability can’t support continuous oscillating, while �eld coupling can enhance the 
oscillating behaviors in electrical activities. �e external stimuli mainly contribute the electrical activities when 
the intensity of �eld coupling is weak. Furthermore, the �eld coupling is enhanced to observe the evolution of 
collective behaviors, the results are shown in Figs 9, 10.

In the case of high excitability by applying stronger external stimuli, the oscillating behaviors and bursting 
states can be increased greatly under �eld coupling. As shown in Fig. 10, multiple modes in electrical activities are 
induced by further increasing the intensity of �eld coupling, and all the neurons can give rapid response under 
�eld coupling. Extensive numerical results con�rmed synchronization can be approached when electric coupling 
is set as D = 0.5 when diversity in initials setting is removed. As a result, the developed states show some di�er-
ence when �eld coupling is triggered in di�erent transient periods. Furthermore, the e�ect of weight contributed 
to the supimposed �eld is discussed, the transition of synchronization factors is estimated by changing the inten-
sity of �eld coupling, the results are plotted in Fig. 11.

It is found that the weight in �eld coupling also contributes to the synchronization approach of the network. 
When the weight for �eld coupling is much small, the synchronization factors show slight di�erence and synchro-
nization mainly depends on the electric coupling. �e role of weight becomes most important when �eld cou-
pling is increased in intensity because the contribution from each neuron becomes distinct di�erent than other 
neurons. When the external stimulus is decreased to I = 1.2, the �eld coupling can modulate the synchronization 
behavior greatly (decreases the synchronization) with increasing the intensity of �eld coupling. However, in case 
of high excitability and stronger stimulus, the oscillating behaviors and evolution of network mainly depend on 
the stimuli and the e�ect of weight shows slight di�erence on synchronization approach.

In a summary, the evolution of collective behaviors and synchronization degree are dependent on the electric 
coupling via gap junction, intensity of �eld coupling, weight for superimposed �eld, diversity in initials setting. 
Due to the memory e�ect of memristor associated with magnetic �ux and e�ect of initials diversity becomes 
important and distinct. �e external forcing current changes the excitability of neuron and the electrical activities 
of neuronal network can be changed directly. Field coupling can modulate the collective behaviors of network by 
inducing induction currents with diversity and diversity in excitability of network is triggered. �e development 
and evolution of collective electrical activities of neuronal network are contributed by �eld coupling, electric 

Figure 10. Sampled time series for membrane potential of neuron (i = 80) are calculated by applying di�erent 
intensities of �eld coupling. �e weight coe�cient W = 1 and electric coupling D = 0, I = 2.0, for (a) D0 = 0.0; 
(b) D0 = 0.00001; (c) D0 = 0.0001; (d) D0 = 0.0002.
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coupling when external forcing is �xed. On the other hand, the �eld coupling between neurons can be considered 
as external electromagnetic radiation on isolated neuron. Readers can extend this study by setting other networks 
with di�erent connection types when �eld coupling is considered.

Conclusions
An improved neuron model, which the membrane potential and magnetic �ux are bridged by using memristor, 
is used to describe the local kinetics of chain network of neurons. �e e�ect of electromagnetic �eld is described 
by magnetic �ux. Each neuron is regarded as an charged body and is controlled by the electric �eld triggered by 
other neurons. A weight value is introduced to discern the contribution to superimposed �eld from each neuron, 
�eld coupling between neurons is described by exchange of magnetic �ux. It is found that �eld coupling between 
neurons can change the magnetic �ux and induction current, and then the excitability of neurons are changed 
to modulate the collective behaviors of electrical activities in neuronal network. It could give instructive clues to 
understand the signal encoding and exchange when synapse coupling is suppressed.
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