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Motile organisms often use finite spatial perception of their surroundings to navigate and

search their habitats. Yet standard models of search are usually based on purely local

sensory information. To model how a finite perceptual horizon affects ecological search,

we propose a framework for optimal navigation that combines concepts from random

walks and optimal control theory. We show that, while local strategies are optimal on

asymptotically long and short search times, finite perception yields faster convergence

and increased search efficiency over transient time scales relevant in biological systems.

The benefit of the finite horizon can be maintained by the searchers tuning their response

sensitivity to the length scale of the stimulant in the environment, and is enhanced

when the agents interact as a result of increased consensus within subpopulations.

Our framework sheds light on the role of spatial perception and transients in search

movement and collective sensing of the environment.

Keywords: random walks, collective behavior, optimization problem formulation, Fokker-Planck equation,

ecological population dynamics, drift-diffusion, model predictive control

1. INTRODUCTION

Exploration, movement, and search for resources are ubiquitous among organisms in nature [1–3].
Classical theories of search [4], such as optimal foraging theory [5, 6], have mostly focused on
long time limits and typically assume that natural selection favors search strategies that maximize
long-term encounters with nutrients. However, many phenomena in ecology [7] and other fields
of biology operate in transient regimes [8, 9], extending over time scales that never reach the
asymptotic stationary state [10]. Another typical assumption is to consider random walks [11–13]
or diffusion processes [14] to describe the movement of searchers navigating the landscape based
on local information [15–17]. Yet, in many instances, searchers can obtain and store [18] non-
local information gathered through sensory cues [19, 20] or through anticipation of environmental
changes [21–23] (Figure 1). The question then arises as to how such finite perceptual range can
influence both the dynamics of movement and the search efficiency over the finite time scales
relevant in biology.

Here we study the role of finite time scales associated with ecological movement and search;
specifically, the effect of limited spatial perception when the search time is itself finite. To formalize
these aspects, we propose an optimal navigation (ON) model, which allows us to extend the
description of search as a biased random walk [11, 14, 24], and reinterpret it in the framework
of optimal control theory. The ON model includes a time horizon that quantifies the perceptual
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FIGURE 1 | A searcher with a finite perceptual range navigating a

heterogeneous landscape using a biased random walk search strategy. In

contrast to standard local searchers, which navigate based only on point-wise

information, our searcher can use non-local information within its perceptual

range to optimize its movement and exploration.

range of the searchers along their trajectory and fixes a non-
local optimization target for the agents. In the limit of vanishing
time horizon (i.e., as the spatial perception shrinks and the
information becomes local), the ON model recovers the classic
Keller-Segel (KS) drift-diffusion model [25] of local search
strategies (i.e., with instantaneous sensing and alignment to the
point-wise gradient).

Using simulations and analytical results, we find that a
population of non-local searchers moving toward a nutrient
patch exhibits distinct transient behavior, clustering faster at
the hotspot than local searchers, thereby increasing their search
efficiency. Our results show that the maximum efficiency
gain occurs when the perceptual range of the searchers
matches the environmental length scale over which the nutrient
concentration changes significantly. As the search time becomes
asymptotically large or small, the efficiency gain from the non-
local strategy diminishes, and the searchers behave effectively
as local responders. If the environmental length scale changes,
we show that the efficiency gain can be maintained as long
as searchers can adjust their sensitivity. This means that
finite perception remains advantageous to searchers that can
rescale their response dynamically, or to populations that
contain a diversity of responses. Finally, we consider the
effect of interaction between searchers, and show that non-
local information consistently reinforces the dominant strategy
in the population and leads to improved search efficiency
overall, even though multimodality (subpopulations) can appear
during the transients. Our framework provides and optimization
perspective on a range of collective phenomena in population
biology and, more generally, on biologically-inspired search and
exploration algorithms, thus shedding light on the role of spatial
perception on finite-time search.

2. THE CLASSIC KELLER-SEGEL MODEL:
NOISY SEARCH WITH LOCAL GRADIENT
ALIGNMENT

A classic model for the dynamics of a population of searchers
using local gradient alignment is given by the Keller-Segel
equation, which we briefly recap here.

Consider a population of searchers moving in a closed,
bounded, d-dimensional domain � ⊂ R

d. The searchers move
by responding to two concentration fields: to a primary stimulant
S1(x) (e.g., nutrient) with sensitivity χ1, and to a secondary
stimulant S2(x, t) (e.g., pheromone), released by the agents
themselves, with sensitivity χ2.

On long space and time scales relative to the microscopic
motion, one can describe the biased random walk x(t) ∈ � of
searchers by a Langevin equation [24]:

dx

dt
= v(x, t)+

√
2D ξ (t) , (1)

where ξ (t) is a white noise process, D is the coefficient of
diffusion, and

v(x, t) = ∇
(
χ1 S1(x)+ χ2 S2(x, t)

)
(2)

is the velocity of the searcher. The parameters D, χ1 and χ2

are typically inferred experimentally from trajectories of the
agents [14, 26], and can sometimes be expressed in terms
of microscopic parameters [27]. Note that Equations (1)–(2)
describe a searcher that uses local information, since it aligns its
velocity instantaneously to the gradients of S1 and S2.

The secondary stimulant S2 introduces interaction between
the searchers. If S2 is assumed to diffuse faster than the searchers,
its evolution is given by

S2(x, t) =
∫

�

8(x− x′)ρ(x′, t) dx′ : = 8 ∗ ρ (3)

where

8(x) =





−
1

2π
log ||x|| for d = 2

Ŵ
(
d
2 + 1

)

d(d − 2)πd/2
||x||2−d for d 6= 2,

(4)

and Ŵ is the Gamma function (see Appendix A).
Taking all together, the time evolution of the population

density ρ(x, t) of searchers obeying (1)– (3) can be described with
a Fokker-Planck equation [28] known as the Keller-Segel (KS)
model. In dimensionless variables x → x/L and t → t/TD, where
TD = L2/D is the diffusion time of the searchers, the KS equation
reads

∂tρ − ∇2ρ + Pe1∇ · (ρ∇S1)+ Pe2∇ ·
(
ρ ∇(8 ∗ ρ)

)
= 0, (5)

where the parameters Pe1 = χ1S1,av/D and Pe2 = χ2S2,av/D
are Péclet numbers quantifying the ratio of diffusive to advective
forces on the searchers, and S1,av, S2,av are the average stimulant
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concentrations. Given an initial distribution ρ0(x) : = ρ(x, 0), a
stimulant profile S1(x), and parameters Pe1 and Pe2, Equation
(5) can be solved numerically using standard techniques. Here,
we use a first-order in time, second-order in space forward
Euler scheme [29] with upwind discretization and 1x = 0.01
and 1t = 10−6. We denote the solution of the KS model by
ρKS(x, t). See Appendix A for a fuller derivation and details of
the non-dimensionalization.

2.1. Variational Rewriting of the KS Model
The KS model can be recast in a variational gradient
formulation [30, 31]. First, rearrange (5) as an advection
equation:

∂tρ + ∇ · (ρu) = 0 (6)

with u = −∇ log ρ + v , (7)

where u is the velocity of the population. Since the velocity of the
searchers v is a gradient (2), u is also a gradient:

u = ∇
(
− log ρ + Pe1 S1 + Pe2 (8 ∗ ρ)

)
. (8)

All terms in (8) are either local or symmetric with respect to x;
hence u can be written [30] as a first variation

u = −∇
(

δF

δρ

)
, (9)

where the free energy functional

F[ρ] =
∫

�

(
ρ log ρ − Pe1 ρS1 −

Pe2

2
ρ (8 ∗ ρ)

)
dx (10)

includes (in order): an entropic term from the stochastic
component of the dynamics (2); the internal energy of the
stimulant landscape S1; and a term from the interaction between
searchers via the secondary stimulant S2.

The KSmodel can then be rewritten in the equivalent gradient
flow form

∂tρ = ∇ ·
(

ρ ∇
δF

δρ

)
, (11)

which has the important implication that the evolution of ρ(x, t)
can be computed using the Jordan-Kinderlehrer-Otto (JKO)
variational optimization scheme [31, 32]. From an initial density
ρ0(x), the JKO scheme constructs a sequence of probability
distributions {ρ(x, k1t)}k≥0

ρ(x, (k+ 1)1t) = argmin
ρ′

{
1

21t
dW(ρ(x, k1t), ρ′)+ F[ρ′]

}
,

(12)
where 1t > 0 is the time step, and dW(·, ·) is the Wasserstein
distance between two distributions. The solution (12) has been
proved to converge to the solution of Equation (5) in the limit
1t → 0 [32].

3. THE OPTIMAL NAVIGATION MODEL: A
POPULATION OF SEARCHERS WITH
NON-LOCAL OPTIMIZATION

The variational rewriting (11) and its approximation scheme (12)
leads us to formulate the optimal navigation (ON) search model,
as follows. Consider a population of searchers that move by
performing the optimization (12) over a finite time horizon τ ≥
1t > 0, which reflects the perceptual range of the agents. Then
the time evolution of the population corresponds to a sequence of
constrained optimization problems [33], i.e., a succession of JKO
solutions, each over time τ .

Starting from the initial density ρ0(x), we construct the
evolution of ρ(x, t), such that each iteration k ≥ 0 finds
m(x, s) : = ρ(x, kτ + s) for s ∈ [0, τ ] by solving the minimization
problem:

minimize
(m,u)

J (m, u) : =
∫ τ

0

∫

�

m
|u|2

2
dxds+ F[m(x, τ )]

subject to ∂sm+ ∇ · (mu) = 0.

(13)

Note that the constraint is the continuity equation ensuring
the conservation of ρ as in (6), whereas the cost function J

contains a transportation cost, which constrains the average
motion to geodesics between optimal states, and an end-point
term involving the evaluation of the free energy at τ (10).
Although we use it here for a particular form of the free energy
functional, the formulation is generic: through suitable choice of
F , the ON model (13) converges to a broad class of conservation
laws as long as they can be recast as continuity equations and
possess a variational structure [30–32, 34].

We denote the solution of the ON model (13) by ρON(x, t; τ ),
and compute it using Algorithm 1, a gradient descent algorithm
inspired by Burger et al. [35] and presented in detail in
Appendix B.

Physically, the ON model (13) describes the motion of
searchers that optimize their displacement over paths bounded
by the time horizon τ . From the proof of the JKO scheme [32], it
follows directly that the ON model recovers the local KS model
as τ → 0:

lim
τ→0

ρON(x, t; τ ) = ρKS(x, t) (14)

For finite horizon τ > 0, the time evolution of the ON model
departs from the KS solution due to the effect of non-local
information on the movement of the searchers, as explored
below.

4. NON-LOCAL SEARCH: TRANSIENTS
AND ENHANCED SEARCH EFFICIENCY

We use the ON model (13) to study how the finite perception of
the agents (encapsulated in the time horizon τ > 0) affects the
search at the population level. We first consider non-interacting
searchers insensitive to the secreted stimulant, i.e., Pe2 = 0. The
case of interacting searchers is presented in section 6.
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Our numerics start with a uniform initial condition ρ0(x) = 1
and we compute ρON(x, t; τ ), the time evolution (13) of the ON
population of non-local searchers with time horizon τ > 0. We
also compare it to the time evolution (5) of a KS population of
local searchers, or equivalently the ON model with τ = 0.

Both the KS and ON models converge to the same stationary
solution ρ∞(x) asymptotically as t → ∞:

ρ∞(x) : = lim
t→∞

ρKS(x, t) =
1

Z
exp

(
Pe1 S1(x)

)
(15)

= lim
t→∞

ρON(x, t; τ ), (16)

for all τ and S1, given by the Gibbs-Boltzmann distribution (15),
where Z is a normalization constant. This result is well known
for the KS equation [28]. To check that ρ∞(x) is also the
stationary solution of the ON model, note that at stationarity
dW(ρ∞, ρ′) = 0 in (12), and the result (16) follows from solving
for the minimizer.

The approach to stationarity, on the other hand, reveals
differences between the KS and ON models. To develop our
intuition, let us first consider a linear attractant gradient S1(x) =
αx. Such a landscape is fully characterized by the local gradient
∇S1(x), and hence non-local searchers have no advantage since
τ > 0 provides no further information than what is known by
local searchers. In line with this expectation, when we solve the
ONmodel (13) using the method of characteristics (section S2 in
the SI), we find that the drift velocity predicted by the KS and ON
models coincide for all τ , i.e.,

u(x, t; τ ) ≡ u(x, t) when S1 is linear.

This observation implies that non-local search is only
advantageous in landscapes with non-zero curvature. To
illustrate this point in more detail, let us consider a static
Gaussian concentration of stimulant with characteristic length
scale σ ≪ 1 over the domain � = [−1/2, 1/2]d (Figure 2A):

S1(x; σ ) =
1√

(2π)ddet(6)
exp

(
−
1

2
xT6−1x

)
, (17)

where det(·) is the matrix determinant and xT is the transpose
of the vector x. For simplicity of the computations that follow,
we take 6 = σ 2Id, where Id is the d-dimensional identity matrix.
Such a Gaussian landscape serves as a simplemodel of a stimulant
patch emanating from a point source, and its characteristic length
scale σ indicates regions of steep attractant gradients near the
source (||x|| ≪ σ ) and regions of shallow gradients in the tails
of the distribution (||x|| ≫ σ ).

In Figure 2 we show that, as the time horizon τ is increased,
the population of ON searchers exhibits a faster approach to
stationarity, as measured by the normalized L2-distance between
ρON(x, t; τ ) and ρ∞(x) as a function of time for different values
of τ :

D∞(t; τ ) =
||ρON(x, t; τ )− ρ∞(x)||

||ρ0(x)− ρ∞(x)||
. (18)

Figures 2A–C presents the one-dimensional case (d = 1).
The effect of the horizon in accelerating the convergence to
stationarity is shown in Figure 2B. Note also that for small values
of τ , an intermediate, quasi-steady distribution develops during
the transient (e.g., τ = 10−5 in Figures 2B,C). This long-lived
intermediate behavior is the result of the population evolving
on two timescales [14]: searchers near the maximum of S1(x)
(||x|| ≪ σ ) are driven by advection due to the steep gradient,
whereas those far from the maximum (||x|| ≫ σ ) are driven
by diffusion in shallow gradients, and hence move more slowly
toward the maximum. Due to the slow diffusive searchers, the
stationary state is only reached at a longer time scale t ∼ 1.
As the horizon τ is increased, this dual behavior (diffusion- or
advection-dominated) is lost: the searchers escape quickly the
diffusion-dominated part of the domain and, as a result, the
distribution approaches stationarity increasingly faster with no
appreciable quasi-steady transient distribution (e.g., τ = 10−3

in Figures 2B,C). The same behavior is observed also in the
two-dimensional case (d = 2) in Figures 2D–F.

Such transient states can be important in biological systems,
which typically operate on time scales far from the asymptotic
long-time regime [7–9]. In our setting, this situation arises when
the search time T (which is analogous to the foraging effort in
ecology) is smaller than the diffusion-dominated convergence
time, i.e., when T ≪ 1. In such a situation, non-local (ON)
searchers have an advantage over local (KS) searchers since they
converge faster to areas with high concentration of attractant.
To quantify this effect, we consider the amount of stimulant S1
encountered over the search time T

Û(τ ,T) =
∫ T

0

∫

�

S1(x) ρON(x, t; τ ) dxdt,

and define the relative search efficiency as

U(τ ,T) =
Û(τ ,T)

Û(0,T)
. (19)

where Û(0,T) is the uptake of the population of KS searchers.
Therefore, U(τ ,T) > 1 indicates a gain in search efficiency, that
is, increased stimulant encountered by the population due to the
perceptual horizon τ > 0.

Our numerics in Figure 3A show that, given a finite search
time T, the search efficiency (19) reaches a maximum U∗(τ ∗σ ,T)
for searchers operating with an optimal horizon τ ∗σ , which
depends on the length scale σ for a given dimension d
(Figure 3A). The presence of a maximum follows from the
asymptotic behavior U(τ ,T) → 1 for τ → 0 and τ → ∞.
The latter limit follows from the invariance of ρ∞(x) under τ ,
and the fact that the integral (19) is asymptotically dominated
by the steady state. The presence of a maximum is also observed
in the two-dimensional case, but U∗(τ ∗σ ,T) decreases in higher
dimensions.

The dependence of τ ∗σ with the length scale of the landscape
σ obtained numerically from our simulations is shown in
Figure 3B with solid (1D) and open (2D) circles. To understand
this dependence, consider a searcher at x(t) obeying the Langevin
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FIGURE 2 | Transient population dynamics in nonlocal search with the ON model in the one-dimensional (A–C) and two-dimensional (D–F) cases. (A) The searchers

are initially uniformly distributed with ρ0(x) = 1. We simulate the time evolution of the population in a Gaussian stimulant profile S1(x; σ ) (17) until they reach the

stationary state ρ∞(x) (15). (B) The approach toward stationarity measured by D∞(t; τ ) (18), the normalized L2-distance of the solution to the stationary state. For

small time horizons 0 < τ < τ∗σ , there exists a long-lived intermediate transient state, whereas for τ ≥ τ∗σ the dynamics directly converges to the stationary state as the

searchers quickly escape the diffusion-dominated part of the domain. See Figure 3 for the definition of τ∗σ . (C) Space-time plots illustrating the convergence toward

the stationary state by the ON model in the one-dimensional case (d = 1). The time evolution for increasing time horizon τ = 0, 10−5, 10−4, 10−3 show qualitatively

different transients. The KS model is equivalent to τ = 0. (D,E) are equivalent to (A,B) but for the two-dimensional case. (F) Snapshots of the time evolution of the ON

population with time horizon τ = 5× 10−5 in the two-dimensional case taken at increasing times [t = 10−3, 2× 10−2, 8× 10−1, marked with yellow diamonds in

(E)]. The convergence to stationarity displays the two-stage transient: the searchers near the center aggregate during the initial fast transient, whereas the searchers

far from the center slowly diffuse toward the center until the stationary state is reached. As the time horizon τ is increased this second slow transient dynamics is

reduced. See animations of this solution in the Supplementary Information. All simulations in this figure with Pe1 = 2 and σ = 0.05.

Frontiers in Physics | www.frontiersin.org 5 January 2019 | Volume 6 | Article 153

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Gosztolai et al. Collective Search With Finite Perception

FIGURE 3 | (A) The relative search efficiency (19) of the ON population in one

and two dimensions as a function of the time horizon τ for three Gaussian

stimulant profiles with length scales σ = 0.03, 0.05, 0.1. All results are

computed over a fixed search time T = 10−1. Values of U(τ ,T ) > 1 indicate

improved search efficiency of the ON population as compared to the KS

population. The maximum efficiency U∗(τ∗σ , T ) is achieved at a time horizon τ∗σ .
For a given Pe1, the relative search efficiency decreases in higher dimensions

due to the increasing dominance of diffusive motion relative to ballistic motion.

(B) Comparison of simulations (circles) with our estimate (line) of τ∗σ obtained

from (20, 21) by matching the mean-squared distance traveled to the length

scale of the landscape as given by Equation (22). The estimate is accurate

when σ ≪ 1.

equation (1) under the ONmodel. The reachable set until t+ τ is
within a ball of radius xms(τ ) defined by

x2ms(τ ) ≃ 2dτ + v̄2(τ )τ 2, (20)

where the two terms represent the displacement due to diffusion
and to an effective drift velocity v̄ over time τ , respectively. To
estimate v̄(τ ), we assume that the search time T is large enough
such that individual searchers have explored the whole domain
(e.g., for T = 0.1 this is fulfilled when τ > 10−3 as seen in
Figure 2B). The effective drift velocity can then be approximated
by the velocity of an average searcher (over the domain) that
maximizes its gain up to time τ ,

v̄(τ ) ≃ 2Pe1

∫ 0

−1/2

S1
(
x+ xms(τ )

)
− S1(x)

xms(τ )
dx, (21)

where the integral is evaluated along a one-dimensional cross-
section of the Gaussian landscape

v̄(τ ) ≃
2Pe1

xms(τ )
(2πσ )−

d
2

∫ 0

−1/2

(
e
− (x+xms(τ ))

2

2σ2 − e
− x2

2σ2

)
dx

=
Pe1

xms(τ )
(2πσ )−

d−1
2

[
erf

(
xms(τ )√
2σ 2

)
− erf

(
1/2
√
2σ 2

)

− erf

(
xms(τ )− 1/2

√
2σ 2

)]
.

From (20) and (21), we obtain an estimate of the horizon τ

necessary to search over a distance xms with the ON model.
The relevance of this estimate is shown in Figure 3B, which

shows that for small σ , the maximum search efficiency is attained
when the mean-squared displacement of the searchers equals the
length scale of the environment:

xms(τ
∗
σ ) ≃ σ , (22)

as obtained with our approximation. TheONmodel thus predicts
that the most efficient searchers are those that tune their horizon
such that they traverse the characteristic length scale of the
environment within one optimization step. Shorter or longer
optimizations lead to a decreased search efficiency.

The dependence of this behavior on the dimension d is also
captured by (20), which tells us that the ballistic and diffusive
terms balance when v̄(τ )2τ/(2d). Thus for a given S1, τ and Pe1
the motion of searchers becomes gradually diffusion dominated
as the dimension d increases. As a result, the relative search
efficiency decreases in higher dimensions as shown in Figure 3.

5. INVARIANCE OF SEARCH EFFICIENCY
THROUGH RESCALING OF RESPONSE
SENSITIVITY

The search efficiency of the ON model depends on the length
scale σ of the Gaussian landscape: the ON gain diminishes as σ

increases (Figure 3). However, as we now show, an ON searcher
can retain the same search efficiency under a Gaussian landscape
with varying length scale by adjusting Pe1, its sensitivity to the
stimulant.

To see this, consider an ON searcher starting at x0 exposed
to its nutrient micro-environment until time T. The effective
gradient for this searcher depends on the starting position x0 and
is given by:

〈∇S1(x)〉T =

∫ x0+xms(T)
x0

[
S1(x+xms(τ ))−S1(x)

xms(τ )

]
dx

xms(T)
. (23)

For a fixed exploration time T, an increase in the stimulant
length scale σ leads to shallower effective gradients (Figure 4A).
Using asymptotic techniques, we show in section S1 in the SI that
the effective gradient (23) for symmetric Gaussian profiles has a
well-defined behavior in the two limiting regimes:

{
〈∇S1(x)〉T ∝ σ−2−d as T → 0,

〈∇S1(x)〉T ∝ σ−d as T → ∞.
(24)

Together with the form of the dynamics (1), this suggests the
following scaling for the Péclet number:

P̃e1(σ ,T) ∝ σ α(T,d), (25)
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FIGURE 4 | The search efficiency can be made invariant by scaling the

sensitivity Pe1. (A) The displacement of the searcher up to time T is

approximated by the displacement in an effective gradient (23). To account for

the change in this effective gradient as T or σ varies, we renormalize the Péclet

number as in (25). (B) The renormalization yields invariance (26) of the search

efficiency under σ (T = 10−1 in this figure). (C) The α(T,d) for d = 1 computed

numerically matches the asymptotic results (24): α(T → 0, 1) = 3 and

α(T → ∞, 1) = 1. From the perspective of the searcher, the rescaling P̃e1(σ ,T )
is equivalent to renormalizing the landscape. Insets show examples of the

renormalized Gaussian landscape with varying σ but the same effective

gradient. (D) The optimal renormalized search efficiency U∗(T ) attainable by

adapted agents achieves a maximum at search time T∗ ∼ 0.1. Hence

non-local search is maximally advantageous for foraging times much smaller

than the diffusion time TD = 1.

with d ≤ α(T, d) ≤ 2+ d.
We have tested this scaling by obtaining the ON solution (13)

over a given T for Gaussian profiles with different σ using the
renormalized Péclet number (25). We then compute the relative
search efficiency (19) for this solution, U(τ ,T; P̃e1(σ ,T)). Our
numerics in Figure 4B show that the search efficiency curves for
the renormalized parameter (25) for different σ collapse on a
single curve:

U(τ ,T; P̃e1(σ ,T)) ≈ U(τ ,T). (26)

The exponent α(T, 1), i.e., for d = 1, is obtained numerically
(Figure 4C) is consistent with the expected asymptotic
limits (24). Note that, the effective gradient (23) is a function of
xms(τ ), which changes with dimension. Therefore, although for
any d a scaling relationship exists, it will be different from the
curve in Figure 4C depending on d.

Hence the search efficiency can be made invariant for
different environmental length scales σ by rescaling the Péclet
number (25). Alternatively, adjusting α(T, d) can be viewed as
responding to a “renormalized landscape” [P̃e1S1(x)] in order to
maintain the ON search efficiency. This is intuitive in limiting
cases: when the search time is small (T → 0), the efficiency
remains unchanged on landscapes with similar local gradients

near the center (x0≪ 1); when the search time is large (T → ∞),
the efficiency is invariant for landscapes with similar effective
gradient over the whole domain (see inset of Figure 4C).

This result suggests that searchers can optimize their search
efficiency by adjusting their response sensitivity [as in the
scaling (25)] so as to balance the relative effect of the
advection and diffusion velocities or, in other words, the relative
importance of gradient optimization vs. noisy exploration. Since
the diffusion coefficient D is typically independent of S1(x) [27],
the adjustment of Pe1 could be achieved by varying the sensitivity
as a function of the stimulant, i.e., χ1(S1(x)) (see Appendix A).
In the Discussion, we explain possible biological mechanisms to
achieve this effect.

Is non-local search advantageous over search times relevant
for ecological systems? The invariant search efficiency U(τ ,T)
characterizes the performance of a searcher that is tuned to the
intrinsic length scale of the stimulant landscape during its search
time T. In Figure 4D, we show the dependence of the maximum
renormalized search efficiency (26) with the search time T. As
expected, for short search time T → 0 and long search time
T → ∞, the efficiency U∗(T) is equivalent to the local search
strategy, i.e., U∗(T) → 1. However, between both extremes,
searchers benefit from finite perception. Our numerics show that
the optimal search time is T∗ = argmax U∗(T, τ ∗) ∼ 0.1 <

1 = TD. Hence finite perception is maximally advantageous for
search times smaller than the diffusion time, a fact that is typical
in ecological systems (see section 7).

6. AGENT INTERACTION IN THE OPTIMAL
NAVIGATION MODEL: INCREASED
EFFICIENCY AND MULTIMODALITY

Until now, we have considered a population of non-interacting
searchers reacting only to an external stimulant S1(x). Now we
consider searchers which also interact with each other through
an attractive secondary stimulant S2(x, t) (i.e., Pe2 > 0).
The effect of such interaction can be potentially contradictory:
agent interactionmay increase aggregation; however, aggregation
might not increase search efficiency for the population if a large
proportion of the agents clumps away from the stimulant source
if the sensitivity to stimulant S2 becomes larger.

To explore these effects numerically, we use the ON
model (13) with a weak interaction in the free energy (10)

Pe2 = β Pe1, β ≪ 1 (27)

and compute the time evolution of the population for various β

and τ . We restrict ourselves to the weak interaction case (β ≪ 1)
to facilitate our numerics. Specifically, to prevent infinite density
concentration at finite time, a well-known artifact of the KS
model, by applying a small regularizing factor ωρ2 with 0 <

ω ≪ 1 to the free energy F[ρ] (10). This is a volume exclusion
term that models the fact that agents occupy a finite volume in
space [36, 37] [see (B5) in Appendix B]. The weak interaction
assumption (β ≪ 1) is important for numerical performance
so as to avoid high velocities near the concentration point that
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would necessitate a finer time discretization to maintain the CFL
condition (see Appendix B).

A summary of the numerics of the two-dimensional ON case
with different horizons τ and levels of interaction β over different
search times T is presented in Figure 5. In all cases, the presence
of interaction reduces the tails of the population density and
increases aggregation near the maximum of S1 at the center of the
domain. This becomes more noticeable as the search time grows
and we approach stationarity (Figure 5, right column). During
transients, however, agent interaction induces multimodality in
the population (Figure 5, left and middle column). This implies
that some searchers move away from the maximum of the
stimulant S1(x) and aggregate into transient subpopulations. This
behavior arises due to the non-linear response of the searchers
to the gradient of S1(x): for steep gradients of S1(x), agents
are driven by attraction to S1, whereas for shallow gradients of
S1(x) the agents are driven by the interaction with the rest of

the population through the secreted stimulant S2. In contrast,
for non-interacting agents (β = 0) the distribution is always
uni-modal (Figure 5).

Figure 6 shows the dependence of multimodality on T and τ

at three different interaction strengths β = 5 × 10−5, 10−5, 5 ×
10−6. We find that interaction introduces multimodality, as part
of the population clumps away from the source of the attractant.
For higher interaction strength (β = 5 × 10−5) multimodality
is only present during early transients, and is independent of
the time horizon τ , since the strongly interacting population
rapidly converges to the peak of the primary stimulant. As the
interaction strength β decreases, multimodality lasts longer, but
it decreases as the time horizon τ increases. This is in line with
the expectation that increased spatial perception τ or search time
T leads to overlapping information of the searchers about the
environment, whereas, in contrast, when τ and/or T are small,
the searchers remain isolated within their local environment, thus

FIGURE 5 | Populations of interacting ON agents. Right panel shows snapshots of a population of ON searchers along the cutting plane shown in gray on the left

hand panel. Snapshots are shown with time horizons τ and interaction strength β for different search times T. Interaction increases aggregation at the maximum of

the nutrient profile (the center of the domain) and reduces the long tails leading to the emergence of multimodality. Simulations performed with Pe1 = 2, σ = 0.05.

FIGURE 6 | Multimodality as a result of agent interaction. The relative prominence of the smaller modes h1/h2 is computed for different parameters T, τ and β. As the

interaction β decreases, multimodality gradually shifts to longer times and its magnitude also depends on the time horizon. This results from non-local searchers

reaching more quickly a unimodal aggregate at the stimulant source. Simulations performed with Pe1 = 2, σ = 0.05.
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leading to multimodality by local aggregation. As the interaction
decreases further multimodality disappears.

Importantly, despite the presence of such mildly multimodal
transients with clumped subpopulations, agent interaction β

leads to an overall improvement in the search efficiency
U∗(τ ∗,T) at a shorter time horizon τ ∗ (Figure 7). This behavior
follows from the increased concentration of searchers around
the center (on average), and suggest that when resources
are sparsely distributed, agent interaction in conjunction with
a finite perceptual range, could play a role in improving
the collective sensing of the environment toward improved
population efficiency.

7. DISCUSSION

In this work, we studied how finite perception influences
the dynamics and efficiency of collective random search in
a population of agents. Using concepts from optimal control
and random walks, we proposed a model that encapsulates
the spatial information the searchers possess as a time horizon
for an optimization problem. Simulations of the dynamics of
population search show that non-local information affects the
movement strategy, as compared with the standard Keller-Segel
model based on local optimization. Although non-local search
does not change the stationary state, it leads to qualitatively
different transient responses of possible relevance in biological
systems [7]. For example, marine bacteria have been observed to
aggregate at food patches much faster (∼ 101 − 102 s) [38, 39]
than the timescale to reach the steady state distribution (TD ∼
104 − 105 s, based on D ∼ 102 − 103 µm2/s [40] and typical
inter-patch distance L ∼ 103 µm [41]). Similarly, in several
rodent species diffusion coefficients of D ∼ 200 m2/day and

FIGURE 7 | Relative search efficiency (19) of an ON population of interacting

agents against time horizon with different interaction strengths β. As β grows,

the search efficiency increases and the maximum is attained at smaller time

horizons (dashed line). The improvement in the search efficiency with

interaction follows from the increased accumulation of agents at the maximum

of the nutrient and the reduced long tails far from the center of the domain

(Figure 5). Simulation parameters: Pe1 = 2, σ = 0.05, T = 5× 10−2.

home range of L ∼ 70 m have been reported [42]. Therefore,
the time it takes to reach home by diffusion (∼ 25 days) is much
longer than their typical response time (∼ 1 day).

We find that non-local information can account for the
increase in the search efficiency under transient search times:
the maximum efficiency is reached when the mean-squared
displacement of the searchers matches the environmental length
scale of the stimulant. When the time horizon vanishes or when
the search time is infinite, our model recovers the response of
local searchers. This is in accordance with the fact that when
long-range cues are unreliable, local response leads to highest
efficiency [15].

We also showed that the search efficiency can be made
invariant to changes in environmental length scales by
suitably scaling the response sensitivity. As a consequence,
a searcher with a given perceptual range may always achieve
its maximum efficiency by dynamically adjusting its sensitivity
to the environmental stimuli. This can be achieved either by
dynamically rescaling the responses via adaptation at the agent
level [43], or by the presence of a distribution of sensitivities
among the agents at the population level. For example, it has
been shown that phenotypic heterogeneity (or plasticity) across
a population can be used to achieve maximum search efficiency
in patchy environments [44].

Finally, we considered the effect of interaction between
searchers with finite perception and showed that interaction
can lead to unimodal or multimodal population distributions
on transient timescales. Multimodality appears even in the
presence of unimodal stimulant landscapes due to a trade-off
between following the environmental gradient or the rest of the
population. In our numerics, interaction always improved the
overall search efficiency of the population.

Recent theoretical and experimental studies [45, 46] also
suggest that rodents (and other higher animals) store spatial
information of their environment, and in doing so commonly
prefer longer (non-trivial) future paths as opposed to paths
leading to immediate rewards. These results are in line with a
predictive optimization based on spatial knowledge, as in the
ON model, where the searcher weighs up local cues with those
at a distance to inform the planning of the future trajectory as
opposed to an immediate (gradient) optimization. Clearly, the
perceptual horizon in the ON model is a very coarse abstraction
of the spatial information the organism perceives (for example
in its visual field) or is encoded in its neural or cellular memory.
Going beyond our framework would require explicit assumptions
about the sensory or cognitive mechanisms involved in search
and navigation, an area of interesting future research which is out
of the scope of this work.

Our work opens up several directions of research. Beyond
our simple setup, it would be of interest to study search on
temporally-fluctuating or patchy nutrient landscapes [47] using
non-local strategies. Random search theory based on local
response predicts that when a searcher is positioned equally far
from two nutrient patches it is equally likely to explore either
patch. However, on transient timescales, nonlocal searchers are
expected to explore the patch with denser resources with higher
probability. This direction will be the object of future work.
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