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We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D

fluid layer. These particles are chemically active and produce a chemical concentration field that creates

surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the

particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian

fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D

surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface

dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold

colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-

mass concentration singularities. We show that such singular behavior occurs in our finite-depth system,

and study the associated 3D flow structures.
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Active fluids or suspensions have attracted much atten-

tion for their interesting, often unexpected dynamics [1].

Examples of active fluids include suspensions of micro-

swimmers such as bacteria [2–4], or of chemically or

optically driven particles [5–10], and complex networks of

biopolymers and molecular motors [11,12]. These active

soft materials differ from passive ones as they continuously

consume energy from the surrounding environment to do

work and are far from thermodynamic equilibrium, even in

steady state conditions. This energy may come from

chemical energy and the work done on the fluid can be

used for self-propulsion. Most studies of active fluids have

focused on suspensions of motile particles [1] whose active

stresses, produced by swimming, and spontaneous flows

can enhance mixing [13,14], and affect chemotactic aggre-

gation (see Ref. [15] and references therein).

Here, we investigate a new type of active fluid with a

different source of active stress. Consider immotile (non-

swimming), but chemically active, particles that arebound toa

flat surface sittingabove a fluid layer [16–20].Theseparticles’

activity creates (or depletes) a spatially diffusing chemical

concentration field. At the surface, this chemical changes the

local surface tension, and any consequent gradients in surface

tensionwill produceMarangoni shear stresses. These “active”

Marangoni stresses will produce fluid flows that move the

particles. We call this surfing [21], and study it in the case of

negligible fluid inertia and a chemical specieswhose transport

is dominated by diffusion. Our theoretical analyses and

simulations suggest that, if particle concentration raises sur-

face tension (through the induced concentration field), surface

flows of chemical surfers can yield large aggregations

associated with vortical flows in the bulk. These might be

harnessed for microfluidic manipulations [22,23] or flow

assisted self-assembly [24,25].

Very surprisingly, we also show that for both sufficiently

deep or shallow fluid layers the surface dynamics of

particle density recovers the 2D parabolic-elliptic Keller-

Segel (KS) model. Originally conceived to describe the

chemotactically driven aggregation of motile slime molds,

the KS model [26] is a canonical model of mathematical

biology [27,28]. It describes the collective chemotactic

dynamics of motile organisms that secrete and respond to a

diffusing chemoattractant. KS dynamics can lead to aggre-

gation and, under easily met analytical conditions, chemo-

tactic collapse, which is an infinite pointwise density in

finite time [27,28]. In the fluid dynamical context this

collapse is associated with divergent velocity gradients and

intense vortical structures.

That the dynamics of our system is, in certain limits,

identical to the KS system is not obvious. However, the result

derives from a very direct Fourier transform argument. This

reveals an unexpected connection between self-attractive

chemotaxis (termed “autotaxis”) of organisms and a purely

physical fluid system driven by Marangoni stresses. In the

following, we first describe how the dynamics of active

particles is modeled followed by the derivation of the fluidic

analogy to the KS model, and give results.

Consider a flat free surface, at z ¼ 0, that sits above a

layer of Newtonian fluid, of viscosity μ, bounded by an

impermeable solid wall at z ¼ −H [see Fig. 1(a)]. Let

ψðx; tÞ be the number density field of active particles on the

free surface. The particles are carried passively by the

surface fluid velocity Uðx; tÞ and diffuse along the surface

with diffusion constant Dp. Then, ψ satisfies

ψ t þ∇2 · ðUψÞ ¼ DpΔ2ψ (1)

in the z ¼ 0 plane where the subscript 2 denotes spatial

derivatives in the x ¼ ðx; yÞ plane. These particles are
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chemically active and either deplete or produce a chemical

species that diffuses into the bulk. Thus, the concentration

field Cðx; z; tÞ of the chemical species satisfies

Ct þ u ·∇C ¼ DcΔC; (2)

whereDc is a diffusion constant,Δ is the 3D Laplacian in x

and z, and uðx; z; tÞ is the 3D fluid velocity. The flux

boundary conditions of Eq. (2) are

DcCzðx; 0; tÞ ¼ _mψðx; tÞ and Czðx;−H; tÞ ¼ 0; (3)

where _m is the rate of production ( _m > 0) or consumption

( _m < 0) of the chemical species per active particle.

The inertialess incompressible fluid flow with velocity

uðx; z; tÞ ¼ ðu; v; wÞ, pressure p, and stress tensor σ ¼
−pIþ μ½∇uþ ð∇uÞT � is driven by Marangoni shear

stresses produced by surface gradients in C. We make

the standard assumption that the surface tension γ depends

linearly on the surface concentration of the chemical

species [29,30], so that γðx; tÞ ¼ γ0 þ αCðx; 0; tÞ, where
γ0 and α are constants. To determine the surface velocity

U ¼ ðu; vÞjz¼0, we must solve the 3D Stokes equations

∇ · σ ¼ −∇pþ μΔu ¼ 0 and ∇ · u ¼ 0 (4)

with the boundary conditions

μðuz; vzÞjz¼0 ¼ ∇2γ ¼ α∇2C; wðx; 0; tÞ ¼ 0; (5)

and no slip at z ¼ −H.

We consider the coupled Eqs. (1)–(5) in a L × L ×H
domain V that is L periodic in the x and y directions. We

make these equations dimensionless by scaling particle

density, length, chemical concentration, time, and velocity

with, respectively, the average conserved particle density

ψ̄ , L, _m ψ̄ L=Dc, advection time scale τ ¼ μDc= _mαψ̄ ,

and L=τ.
Assuming Cðx; z; 0Þ ¼ 0, the integration of Eq. (2) over

the volume and applying the boundary conditions, Eqs. (3),

yields C̄ðtÞ ¼ ð
R
CdVÞ=V̄ ¼ t=ðδPecÞ, where V̄ is the

domain volume, δ ¼ H=L, and Pec ¼ τc=τ with τc ¼
L2=Dc being the time scale of diffusion of the chemical

species. Letting Cðx; z; tÞ ¼ ϕðx; z; tÞ þ C̄ðtÞ, Eq. (2)

becomes

Pecðϕt þ u ·∇ϕÞ ¼ Δϕ − δ−1 for − δ ≤ z ≤ 0: (6)

Assuming Pec ≪ 1 and so neglecting the left-hand side, ϕ

satisfies a quasisteady Poisson equation (after an initial

transient), which can be solved via 2D Fourier transform in

x (see the Supplemental Material [31]). This yields

ϕ̂ð0; zÞ ¼ z2=ð2δÞ þ zþ δ=3 and

ϕ̂ðk; z; tÞ ¼ ðcothkδ cosh kzþ sinh kzÞψ̂ðk; tÞ=k (7)

for k ≠ 0, where k ¼ ð2πn1; 2πn2Þ is the 2D wave vector

with k ¼ jkj and n1, n2 are integers. The surface gradient
d∇2ϕjz¼0 ¼ ðik=kÞcothðkδÞψ̂ðk; tÞ ¼ cRδ½ψ � is a general-

ized Riesz transform [32].

Though slightly more complicated, Eq. (4) with boun-

dary conditions (5) can again be solved via Fourier trans-

form in x (see the Supplemental Material [31]), which

allows us to relate the surface velocity to the density of

active particles,

Ûðk; tÞ ¼ ðik=k2ÞΩðkδÞψ̂ðk; tÞ (8)

for k ≠ 0, where

ΩðλÞ ¼ cothλðsinh2λ − λ2Þ=ðsinh 2λ − 2λÞ: (9)

Note that Ûðk ¼ 0; tÞ ¼ 0. Ω has a simple structure: for λ

small, Ω≃ 1=4þOðλ2Þ whereas for λ large, Ω approaches

1=2 exponentially fast [Fig. 1(b)]. That Ω remains finite as

δ → 0 is interesting. While viscous dissipation increases

with narrowing of the gap between the free surface and

solid wall, the surface gradient of C, and therefore the

driving Marangoni stress, increases with a decrease in δ

[see Eq. (7)]. These two effects cancel, which gives rise to a

finite Ω even when δ is very small.

Hence, in both limits, Eq. (8) reduces to

βÛðk; tÞ ¼ ðik=k2Þψ̂ðk; tÞ; (10)

where β ¼ 2 (deep layer) or 4 (shallow layer). In real space

we can write Eq. (10) as

βU ¼ −Δ−1
2
∇2ψ ; (11)

λ

λ

z

(a)

(b)
L

y

FIG. 1 (color online). (a) Schematic illustrating chemically

active particles (dark circles) bound to a flat fluid surface sitting

above a fluid layer of depth H. The gray-scale map represents the

concentration field of the chemical species produced by the active

particles. (b) Variation of Ω as a function of λ.
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and Eq. (1) becomes

ψ t −∇2 · ½ðψ=βÞðΔ−1
2
∇2ψÞ� ¼ Pe−1p Δ2ψ ; (12)

where Pep ¼ τp=τ with τp ¼ L2=Dp the time scale of

diffusion of active particles. Surprisingly, rescaling of

Eq. (12) when _mα > 0 recovers the 2D parabolic-elliptic

KS model for autotactic aggregation. This model is given

by equations for the organismal density φðx; tÞ and the

collectively produced chemoattractant concentration

ρðx; tÞ,

φt þ∇2 · ðχφ∇2ρÞ ¼ Δ2φ and Δ2ρ ¼ −φ: (13)

Read as a kinetic equation for conservation of species

number, the first equation of Eqs. (13) states that the

organismal speed is χ∇2ρ with “chemotactic” strength χ.

The Poisson equation states that the chemoattractant is

produced locally at a rate proportional to the organismal

density, and is rapidly diffused. Its solution can be written

formally as ρ ¼ −Δ−1
2
φ. Thus, the evolution equation for φ

has the same form as Eq. (12). However, though ψ and φ

are governed by the same equation, surface distributions of

C and ρ are different since Δ2C ¼ ∇2 ·Rδ½ψ � ≠ −ψ . Much

is known about Eqs. (13). For instance, given a sufficient

mass of organisms in the plane, the 2D KS model leads to

chemotactic collapse in finite time [27,28,33,34]. The

collapse singularity is approximately self-similar, i.e.,

φðx; tÞ ≈ ζ−2Φðjxj=ζÞ for some function Φ and a scale ζ

whose dominant algebraic part is
ffiffiffiffiffiffiffiffiffiffiffi
tc − t

p
, with tc the

collapse time [35]. In addition, ζ → 0 and φ becomes a

Dirac δ function in x as t → tc. See Refs. [27,28] for

comprehensive reviews.

Consistent with this, linear stability analysis of Eqs. (1)

and (8) shows that the system is unstable to 2D surface

flows if Pep > 2=Ωð
ffiffiffi
2

p
δÞ as Pep scales linearly with ψ̄

(see the Supplemental Material [31]). In this scenario,

particle activity locally increases the surface tension

(α _m > 0) and Marangoni stresses produce flows that

concentrate the surface density of particles, leading to

yet higher surface tension. Unlike the 2D KS problem, the

surface flow in our system is associated with fully 3D fluid

flow and structures.

We simulate Eqs. (1) and (8) using a semi-implicit,

second-order in time, Fourier pseudospectral method for

_mα > 0. We set ψðx; 0Þ ¼ 1þ 0.1 cos ð2πxÞ cos ð2πyÞ and
fix Pep ¼ 400 which gives rise to instability independent

of δ. We observe a rapid accumulation of active surface-

bound particles at the center and corners of the domain,

where the initial concentration is peaked. Figure 2(a) shows

a snapshot of ψðx; tÞ near the collapse time when

ψmax ¼ ψð1=2; 1=2Þ ≈ 10. Due to the similarity of patterns

across δ, we only show the results for the case of δ ¼ 1=2.
We see an analogous, though broader, distribution for C on

the surface [Fig. 2(b)]. Note that C is one derivative

smoother than ψ [see Eq. (7)], and on the surface blows

up more rapidly than ρ in the KS model as ψ collapses.

The increased active particle density is accompanied by

fluid flow towards the blowup points [Fig. 2(c)]. This

surface flow generates a 3D flow in the bulk. Figure 2(d)

shows the in-plane vorticity field at z ¼ 0 overlaid with the

contour map of its magnitude, which highlights the 3D

nature of the velocity field. The out-of-plane vorticity is

zero sinceU is a 2D gradient [Eq. (8)]. To better understand

the bulk flow, consider the δ → ∞ case (β ¼ 2). Applying

the incompressibility condition at z ¼ 0 gives [see Eq. (11)]

∇2 · U ¼ −wzjz¼0
¼ ð1 − ψÞ=2: (14)

This suggests that the out-of-plane rate of strain directly

inherits the structure of ψ , and so diverges with any

collapse. Figure 3(a) demonstrates such a behavior where

the surface flow creates a vortex ring just below the free

surface. Though with a different strength and dimension, a

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
(a) (b) (c) (d)  0 10 170.4

 

171 0 3.5

 

FIG. 2 (color online). For δ ¼ 1=2, contours of (a) particle density ψ, (b) chemical surface concentration C, and (c) the surface velocity
field from Eq. (8). (d) The in-plane surface vorticity field ω overlaid with a color map of vorticity magnitude ω. The data correspond to

t=tc ≈ 0.9 where tc is the estimated collapse time. Simulation parameters are Δt ¼ 1=400, Δx ¼ Δy ¼ 1=256, Pec ¼ 0.1, Pep ¼ 400,

and ψðx; 0Þ ¼ 1þ 0.1 cos ð2πxÞ cos ð2πyÞ. Vorticity is scaled by 1=τ.
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vortex ring emerges in shallower fluid layers as well [see

Figs. 3(b) and 3(c)].

Finally, we examine the effect of fluid layer depth on the

putative collapse time. Figure 4 shows the divergence of

ψmax for different values of δ. We see that tc increases with
decreasing δ, but remains finite for both deep or shallow

layers. The collapse time is very well described by the

shallow depth KS model for δ≲ 0.01 and by the infinite

depth KS model for δ≳ 1. While the form of singularity in

the asymptotic limits of δ appears to be consistent with KS

collapse, the precise nature of the apparent singularity for

finite δ is beyond the scope of this Letter.

Can our results be realized experimentally? The values

for Pep and Pec used in our simulations can be realized in

an aqueous system of size L ∼ 100 μm and characteristic

fluid velocity L=τ ∼ 1 μm=s, using chemically active par-

ticles of radius R ∼ 100 nm that produce a chemical species

with a diffusion constant Dc ∼ 10−9 m2=s. Surface tension
in this system is strong enough to keep the free surface flat.

A challenge in developing such a system is designing a

chemical reaction whose product increases the surface

tension or whose reactants decrease the surface tension.

Alternatively, an endothermic chemical reaction could

increase surface tension by lowering the local temperature.

Also, our results near the collapse time are not expected to

be realized quantitatively since collapse leads to violation

of many of our modeling assumptions such as finite

velocity gradients, linearity of surface tension dependence

on C, and large dynamic range of the surface tension

(which, in reality, is small).

In this work, we considered active particles of isotropic

shape that are much smaller than the characteristic size of

the system. The use of anisotropic, or larger, active particles

[16] could lead to other types of instabilities with different

emerging flow patterns. Note that Marangoni stresses and

associated 3D fluid flow in our system could be used for

microfluidic manipulations [22] and directed self-assembly

[24,25]. In fact, Marangoni stresses, induced by a chemical

reaction, were utilized in a related system to create self-

propelling liquid microdroplets [36]. It has been also

reported that bacteria in biofilms exploit Marangoni

stresses for dispersal [21], so it would be interesting to

see whether any surface bound organisms take advantage of

the Marangoni stresses for aggregation (say by consuming

surfactant).

Lastly, we showed analytically that for sufficiently deep

or shallow fluid layers the collective surfing of active

particles is described by the iconic Keller-Segel model and

we used the existing knowledge about its behavior to

enhance our understanding of singularities in flow.
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FIG. 3 (color online). The 3D velocity field overlaid with a color map of the chemical concentration C, at the time when

ψmax ¼ ψðL=2; L=2Þ ≈ 10. δ ¼ 1=2, 1=10, 1=20 in (a), (b), and (c), respectively. Simulation parameters are the same as for Fig. 2. The z
axis is scaled by δ. The black arcs in (a) highlight vortical flows in the bulk.
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FIG. 4 (color online). Time variation of ψmax ¼ ψð1=2; 1=2Þ
for different values of δ and asymptotic cases ofΩ ¼ 1=2, 1=4 for
which the evolution of ψ obeys the 2D KS model. The inset

shows the variation of the estimated collapse time tc as a function
of δ. Crosses show the asymptotic values of tc for Ω ¼ 1=2, 1=4.
Simulation parameters are the same as for Fig. 2.
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Alternatively, it might prove fruitful to explore aspects of

biological systems described by the KS model and its

variants using chemically active particles that create active

surface stresses for motion.
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