
Collective Travel Planning in Spatial Networks

Item Type Article

Authors Shang, Shuo; chen, Lisi; Wei, Zhewei; Jensen, Christian; Wen, Ji-
Rong; Kalnis, Panos

Citation Collective Travel Planning in Spatial Networks 2015:1 IEEE
Transactions on Knowledge and Data Engineering

Eprint version Post-print

DOI 10.1109/TKDE.2015.2509998

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Journal IEEE Transactions on Knowledge and Data Engineering

Rights (c) 2015 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other users,
including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale
or redistribution to servers or lists, or reuse of any copyrighted
components of this work in other works.

Download date 04/08/2022 16:50:42

Link to Item http://hdl.handle.net/10754/592626

http://dx.doi.org/10.1109/TKDE.2015.2509998
http://hdl.handle.net/10754/592626

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2015.2509998, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 1

Collective Travel Planning in Spatial Networks
Shuo Shang, Lisi Chen, Zhewei Wei, Christian S. Jensen, Fellow, IEEE, Ji-Rong Wen, and Panos Kalnis

Abstract—Travel planning and recommendation are important aspects of transportation. We propose and investigate a novel Collective

Travel Planning (CTP) query that finds the lowest-cost route connecting multiple sources and a destination, via at most k meeting

points. When multiple travelers target the same destination (e.g., a stadium or a theater), they may want to assemble at meeting points

and then go together to the destination by public transport to reduce their global travel cost (e.g., energy, money, or greenhouse-gas

emissions). This type of functionality holds the potential to bring significant benefits to society and the environment, such as reducing

energy consumption and greenhouse-gas emissions, enabling smarter and greener transportation, and reducing traffic congestions.

The CTP query is Max SNP-hard. To compute the query efficiently, we develop two algorithms, including an exact algorithm and an

approximation algorithm. The exact algorithm is capable finding the optimal result for small values of k (e.g., k = 2) in interactive time,

while the approximation algorithm, which has a 5-approximation ratio, is suitable for other situations. The performance of the CTP query

is studied experimentally with real and synthetic spatial data.

Keywords—Collective Travel Planning, Location Based Services, Spatial Networks, Spatial Databases

✦

1 INTRODUCTION

T HE continued proliferation of GPS-equipped mobile de-

vices (e.g., vehicle navigation systems and smart phones)

and the proliferation of online map-based services (e.g.,

Google Maps1, Bing Maps2, and MapQuest3) enable people

to acquire their current geographic positions in real time

and to retrieve spatial information relevant to their travel.

In this paper, we aim to provide fundamental geographic

functionality that is relevant to a range of services. Specifically,

we propose and investigate a novel query, the Collective

Travel Planning (CTP) query, that finds the lowest-cost route

connecting multiple query sources and a destination via at

most k meeting points. For example, when multiple travelers

target the same destination (e.g., a stadium or a theater), they

may want to assemble at their nearest meeting points, and

then travel together to the destination by collective transport

(e.g., shuttle bus or taxi) to reduce their global travel cost

(e.g., energy, money, or greenhouse-gas emissions). This type

of query is useful in organizing large events, and it can

bring significant benefit to society and the environment: it

can help optimize the allocation of transportation resources,

• Shuo Shang is with Department of Computer Science, China University of

Petroleum, Beijing, P.R.China.

E-mail: jedi.shang@gmail.com

• Lisi Chen is with School of Computer Engineering, Nanyang Technological

University, Singapore.

E-mail: lchen012@e.ntu.edu.sg

• Zhewei Wei and Ji-Rong Wen are with School of Information, Renmin

University of China, P.R.China.

E-mail: zhewei@ruc.edu.cn, jirong.wen@gmail.com

• Christian S. Jensen is with Department of Computer Science, Aalborg

University, DK-9220 Aalborg East, Denmark.

E-mail: csj@cs.aau.dk

• Panos Kalnis is with King Abdullah University of Science and Technology,

Saudi Arabia.

E-mail: panos.kalnis@kaust.edu.sa

1. http://maps.google.com/

2. http://www.bing.com/maps/

3. http://www.mapquest.com

reduce resource (e.g., energy and money) consumption, and

enable smarter and greener transportation; and it can help

reduce greenhouse-gas emissions and traffic congestion. The

EU targets a 50% reduction in CO2 emissions by 2050. This

work is motivated in part by the EU project Reduction4.

Given the current locations Q of a set of travelers, a set of

meeting points S, a destination d, and an integer threshold k
(1 ≤ k ≤ min{|S|, |Q|}), we aim to identify a subset A of

S with at most k elements that when used as meeting points

results in the minimum global travel cost. The global travel

cost includes two parts: a local travel cost and a connection

travel cost. The local travel cost is the sum of the travel cost

from each traveler’s current location to their closest meeting

point, and the connection travel cost is the sum of the travel

costs from each meeting point to the destination. The meeting

point count k is expected to be set according to the resources

that can be used (e.g., the number of shuttle buses and drivers).

For example, an event organizer my choose 100 meeting points

for the event due to the limitation of resources.

An example of the CTP query is shown in Figure 1, where

p1, p3, p4, and p5 are selected meeting points and d is the

destination. Let k = 5 and subset A = {p1, p3, p4, p5}. First,

travelers go to their closest meeting point by private transport.

Then the travelers at the same meeting point go together to

the destination by collective transport. For example, for the

traveler at q1, p1 is the closest meeting point, so the traveler

will follow the shortest path from q1 to p1 by private transport

(local travel cost of q1). A total of five travelers, q1, q2, q3, q4,

and q5, meet at p1. They then follow the shortest path from p1
to the destination d by collective transport (connection travel

cost of p1).

When a collective travel route is planned, we can set a

meeting time for each selected meeting point, where the

meeting time depends on the travel distance from the meeting

point to the destination and the event time at the destination.

4. http://www.reduction-project.eu/

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2015.2509998, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 2

p1

: a traveler’s current location

p2

p6

p3

p10

p5

p7

p8

p9

p4

: selected meeting point

: unselected meeting point: destination

: travel route for private transports

: travel route for public transports

q1 q2

q3 q4

q5

q6

q7

q8

q9 q10

q11

q12

q13

q16

q14

q15

d

Fig. 1. An example of the CTP query

For example, assume that an event starts at 7 p.m. and that the

estimated travel time from a meeting point p to the destination

is one hour. We can then set the meeting time at meeting point

p to 6 p.m. Then every individual should arrive at p before 6

p.m. The departure time is the minimum of the arrival time

of the latest arriving individual and 6 p.m. Thus, it is not

necessary for any individuals to wait beyond 6 p.m.

To the best of our knowledge, this is the first study of

the collective travel planning query in spatial networks. Some

existing multi-source trip planning queries (e.g., the group

nearest neighbor query [20] [21] and the group trip planning

query [14] that also aim to minimize all travelers’ global

travel cost) assume that each traveler goes to the destination

individually and do not take into account collective travel. We

contend that it is of societal interest to provide solutions that

take into account means of collective transportation, as this

may contribute to reducing energy consumption, pollution,

global warming, and congestion.

Next, the CTP query is also different from most existing

ridesharing (carpooling) services [1] [2] [18] [24]. Generally,

such services aim to plan a travel route with pick-up and

drop-off locations for a small number of users with similar

destination, while the CTP query aims to plan a collective

trip for many users (e.g., tens or hundreds of users or more)

located all over a city and targeting the same destination. In

fact, the CTP query can be viewed as a variant of the metric

k uncapacitated facility location problem (k-UFL) [17], as it

asks for an optimal meeting point set A (A ⊆ S ∧ |A| ≤ k).

Existing ridesharing techniques do not address this problem.

The CTP query is applied in spatial networks, since in a

large number of practical scenarios, users (e.g., pedestrians

and vehicles) move in such networks (e.g., roads and railways).

Exact search is a straightforward method to compute the CTP

query that evaluates each potential subset A (A ⊆ S ∧ |A| ≤
k), of which there are

∑k

i=1

(

|S|
i

)

=
∑k

i=1
|S|!

(|S|−i)!i! possible

combinations. We define a pair of an upper and a lower bound

to prune the search space during query processing. For a small

threshold k (e.g., k = 2), the exact algorithm is capable of

finding the optimal result of the CTP query in interactive time.

However,
∑k

i=1
|S|!

(|S|−i)!i! is exponential in |S|, and the CTP

query cannot be computed in polynomial time. In fact, the CTP

query is a variant of the k-UFL problem [17] and is Max SNP-

hard. To the best of our knowledge, no existing method can

compute the CTP query efficiently.

To achieve better performance than does the exact algo-

rithm, an approximation algorithm is developed with a 5
approximation ratio. Initially, we arbitrarily select a subset A
(|A| ≤ k) from S. Then we define three operations based on

local search [7] [29]: add (add a new item p ∈ (S \ A) to

A, if |A| < k), drop (drop an item from A, if |A| > 1), and

swap (swap an item in A with another items in (S \A)). We

repeatedly apply a randomly selected operation to improve the

global travel cost by a factor of 1+ ε, where ε is an arbitrary

small constant. The search process terminates when no new

operation can produce an improved result. The cost of the

obtained result is guaranteed to be at most 5 times worse than

that of the global optimum. The experimental results show that

the approximate results are generally very close to the global

optimum (less than 1.15 times larger).

The main contribution in relation to the approximation

algorithm is to “bridge theory and practice.” There exist several

theoretical methods for the k-UFL problem (e.g., modify

one item [7] or modify multiple items at one time [29]),

and their targets are to achieve a lower approximation ratio.

However, the CTP query has to balance accuracy and efficien-

cy. Although some theoretical methods can achieve a lower

approximation ratio, their query efficiency is very low. Thus,

our target is to select a suitable theoretical method for the CTP

query and then make it practical. Through theoretical analysis,

we only allow one item to be modified in an operation. We

propose two effective pruning techniques that accelerate the

approximation algorithm while retaining its approximation

ratio; experimental results show that the query efficiency is

improved by at least an order of magnitude. It is worth noting

that the theoretical method cannot be used by itself due to its

low efficiency.

We further extend the approximation algorithm to two

practical scenarios where (1) the connection travel cost is

dependent on the number of travelers, and (2) where a traveler

close to the destination can go to the destination directly. We

develop a series of new metrics and bounds for these scenarios.

The theoretical approximation ratio does not work here, and

we conduct extensive experiments to show that our extension

is usable in the new scenarios.

To sum up, the contributions of the paper are as follows.

• We propose a novel type of query to plan the lowest-

cost routes connecting multiple query sources and a

destination via at most k meeting points.

• We define a series of distance metrics to evaluate the

travel cost under different conditions (Section 2).

• We prove that the CTP query is SNP-hard that can be

reduced to the k-UFL problem (Section 3).

• We develop an exact algorithm with effective pruning

techniques to find the optimal result for small k (e.g.,

k = 2) (Section 4).

• We develop an approximation algorithm with two ef-

fective pruning techniques to compute the CTP query

efficiently (Sections 5).

• We define new distance measures for practical scenarios

and further extend the algorithms correspondingly (Sec-

tion 6).

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2015.2509998, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 3

• We conduct extensive experiments on real and synthetic

spatial data to investigate the performance (efficiency and

effectiveness) of the developed algorithms (Section 7).

The rest is organized as follows. Section 2 introduces the

spatial networks and distance metrics used in the paper and

defines the problem. Section 3 analyzes the problem. The exact

algorithm is introduced in Section 4, while the approximation

algorithm is covered in Section 5. The developed algorithms

are further extended to practical scenarios in Section 6, which

is followed by a coverage of experimental results in Section 7.

Related work is covered in Section 8, and conclusions are

drawn in Section 9.

2 PRELIMINARIES

2.1 Spatial Networks

A spatial network is modeled as a connected and undirected

graph G(V,E, F,W), where V is a vertex set and E ⊆ V ×V
is an edge set. A vertex vi ∈ V represents a road intersection

or an end of a road. An edge ek = (vi, vj) ∈ E is defined

by two vertices and represents a road segment that enables

travel between vertices vi and vj . Function F : V ∪ E →
Geometries records geometrical information of the spatial

network G. In particular, it maps a vertex and an edge to

the point location of the corresponding road intersection and

to a polyline representing the corresponding road segment,

respectively.

Function W : E → R is a function that assigns a real-

valued weight to each edge. The weight W (e) of an edge e
represents the corresponding road segment’s length or some

other relevant property such as its travel time [9] or fuel

consumption [12], [28], which may be obtained from historical

traffic data. Given two vertices pa and pb in a spatial network,

the network shortest path between them (i.e., a sequence of

edges linking pa and pb where the accumulated weight is

minimal) is denoted by SP (pa, pb), and its length is denoted

by sd(pa, pb). When weights model aspects such as travel time

and fuel consumption, the lower bound of network distance

is not necessarily the corresponding Euclidean distance; thus,

spatial indexes such as the R-tree [13] are not effective. For

simplicity, we assume that the data points considered (e.g.,

meeting points and query points) are located on vertices. It is

straightforward to also support data points on edges.

In this work, we study static spatial networks. To enhance

the efficiency of CTP query processing, we assume that all-

pair shortest path distances have been pre-computed. The time

complexity of this pre-computation process is O(V 2lg(V) +
V E) when using by Dijkstras algorithm [8], and the running

time is studied experimentally in Section 7.

2.2 Travel Cost Functions

Given a set of vertices A and a vertex q in a spatial network,

the minimum network distance between q and A is defined by

d(q, A) = min
pi∈A
{sd(q, pi)}, (1)

where pi is a vertex belonging to A.

Given a set of query points Q, a set of meeting points S, and

a destination d, let A be an arbitrarily-selected set of meeting

points (A ⊆ S and |A| ≤ k). The local travel cost (LTC) and

the connection travel cost (CTC) of A are defined by Equations

2 and 3, respectively.

LTC(A) = α ·
∑

q∈Q

d(q, A) (2)

CTC(A) = β ·
∑

p∈A

sd(p, d) (3)

Here, α and β represent the energy consumption (or

greenhouse-gas emissions) per unit distance for individual

travel and collective travel, respectively. By combining Equa-

tions 2 and 3, the global travel cost (GTC) of subset A is

defined by

GTC(A) = LTC(A) + CTC(A). (4)

2.3 Problem Definition

The CTP problem is defined as follows. Given a set of

query points Q, a set of meeting points S, a destination d,

and an integer threshold k (1 ≤ k ≤ min{|S|, |Q|}), the

Collective Travel Planning (CTP) query finds a subset A
(A ⊆ S ∧ |A| ≤ k) such that GTC(A) is minimized, i.e.,

∀A′ ⊆ S(|A′| ≤ k ⇒ GTC(A) ≤ GTC(A′)).

Extensions: We future extend the CTP query into two practical

scenarios. First, the connection travel cost of meeting point

p is proportional to the number p.t of travelers that meet

at p. For each point p, we need ⌈p.t
c
⌉ taxis, where c is the

capacity of a taxi. For example, assuming the capacity of a

taxi is 5 and 7 people are waiting at p, we need 2 taxis there.

Second, if a traveler is very close to the destination, he/she

can go to the destination directly. We define a series of new

practical distance measures to capture this aspect and further

extend the developed algorithms accordingly in Section 6. The

theoretical approximation ratio does not work here, and we

conduct extensive experiments to show that our extension is

usable in the new scenarios.

3 PROBLEM ANALYSIS

The CTP problem is related to the metric k uncapacitated

facility location problem (k-UFL) [17], where the aim is to

find a minimum cost solution to connect a set of cities to a

set of open facilities. More precisely, we are given a set of

cities C, a set of facility locations F , a transportation cost cij
for connecting city i to facility j, and a cost fj of opening

facility j ∈ F . The goal is to identify a subset of F with at

most k facilities and to connect each city to an open facility

so that the total cost is minimized. In the metric version of

the k-UFL problem, we assume that the connection costs are

metric, meaning that they are non-negative, symmetric, and

satisfy the triangle inequality.

The study of the k-UFL problem dates back to the

early 90s [19]. Guha and Khuller [10] proved that k-UFL

cannot be approximated within a factor of 1.463, if we

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2015.2509998, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 4

assume NP ⊆ DTIME[nO(log logn)]. Charikar et al. [3]

gave the first constant factor approximation algorithm with

approximation ratio 9.8. Later, Jain and Vazirani [17]

improved this ratio to 6 using a primal-dual scheme and

Lagrangian relaxation techniques. This was further improved

to 4 by Jain et al. [16], using the Lagrangian Multiplier

Preserving property of the greedy dual growth algorithms.

These algorithms use either the prime-dual scheme or linear

programming rounding techniques, and they are hard to

implement in real applications. Another and more practical

line of study of the k-UFL problem is based on local

search. In a local search algorithm, we repeatedly add,

drop, or swap a facility to reduce the total cost, and we

stop when a local optimum is found. Devanur et. al. [7]

offered a 5-approximation ratio based on local search. Later,

Zhang [29] proved that if the algorithm can add, drop, or

swap a constant number of facilities in an operation then

the approximation ratio becomes 2 +
√
3 + ε, for a small

constant ε. However, if only one facility is allowed to be

modified in an operation, Zhang’s technique yields a ratio of

3+
√
6, which is worse than Devanur’s 5 approximation ratio.

Reduction to the k-UFL problem: The CTP problem can

be reduced to the k-UFL problem. More precisely, given an

instance of the CTP problem, we can construct a correspond-

ing instance of the k-UFL problem as follows. We construct

a city iq in the k-UFL instance for each query point q in the

CTP instance and a facility jp for each meeting point p in

the CTP instance. The cost of facility ip serving city jq is

set to cipjq = α · sd(q, p), which is the cost of transportation

from query point q to meeting point p in the CTP problem.

The cost for opening facility jp is set to be fjp = β · sd(p, d),
which is the cost of transportation from meeting point p to the

destination d in the CTP problem. A solution to this instance of

the k-UFL problem identifies a subset A of at most k facilities

and connects each city iq to a facility jq ∈ A, such that that

the total cost

∑

q∈Q

α · d(q, p) +
∑

p∈A

β · sd(p, d)

is minimized. Once the subset A is determined, the solution

is obtained by connecting each city to its nearest facility in A.

Thus, the k-UFL problem is to minimize the total cost

α ·
∑

q∈Q

d(q, A) + β ·
∑

p∈A

sd(p, d) = GTC(A),

which is the objective function in the CTP problem. In other

words, we can take any instance of the CTP problem and

transform it to an instance of the k-UFL problem. We can

then solve that problem and transform the solution into a

solution to the original CTP problem. This implies that we can

achieve a local search algorithm for the CTP problem with an

approximation ratio of 5 if only a single meeting point can

be modified in an operation and an approximation ratio of

2 +
√
3 + ε if multiple meeting points can be modified.

In the CTP query, we only modify a single meeting point

in an operation to achieve higher query efficiency. A detailed

discussion is given in Section 5.4.

Hardness of the CTP Problem: To show the hardness of

the CTP problem, we need to reduce a known hard problem

to the CTP problem. Based on above analysis, an obvious

choice is the k-UFL problem. However, it is not clear that

this direction of the reduction is true. A subtle difference

between the CTP problem and the k-UFL problem is that the

k-UFL allows arbitrary facility opening costs, while the CTP

problem requires the distances between the meeting points and

the destination to satisfy the triangle inequality. Therefore, if

we map the opening cost of a facility in the k-UFL problem to

the distance between its corresponding meeting point and the

destination in the CTP problem, the shortest path between the

meeting point and the destination may go through some other

meeting points, which violates the facility cost assignments of

the k-UFL problem. So we cannot straightforwardly apply the

hardness result of the k-UFL problem to the CTP problem.

Instead, we reduce the B-vertex cover problem to the CTP

problem. In the B-vertex cover problem, we are given a graph

G = (V,E) with the degree of each node bounded by a

constant B, and the goal is to find a minimum vertex cover,

which is a minimum subset of vertices such that each edge in

E is covered by at least one vertex in the cover. The B-vertex

cover was shown to be Max SNP-hard by Papadimitriou and

Yannakakis [22]. We present a L-reduction from the B-vertex

cover problem ti the CTP problem, which implies that the CTP

problem is also Max SNP-hard.

Theorem 1: The CTP problem is Max SNP-hard.

Max-SNP-hardness essentially implies that the CTP prob-

lem also cannot be approximated within a factor of 1+ε, unless

P=NP, for some small constant ε. The proof of Theorem 1

follows the same framework as the proof of Theorem 1 in

reference [11].

Proof of Theorem 1: To design an L-reduction, we

assume that there is an polynomial algorithm A that solves the

CTP problem with approximation ratio 1+ ε
1+B

, and we will

show that this algorithm solves the B-vertex cover problem

with approximation ratio 1 + ε.

Given an instance of the B-vertex cover G = (V,E), we

construct an instance of the CTP problem as follows. We

construct a query point qe for each edge e in E and a meeting

point pv for each vertex v in V . Each query point qe is

connected to each meeting point pv . The distance d(qe, pv) is

set to 1 if edge e is incident to vertex v and 2, otherwise. We

also construct a destination point d and connect each meeting

point to d with distance 1. By this setup, the shortest path

from a meeting point to d is the edge that connects them.

Finally, we assign energy consumption parameters α = 1 and

β = |E|
Bs

, where s is the size of the optimal vertex cover. Here

we assume that the algorithm knows s in advance, which is

not realistic. We will show how to remove this assumption

later.

We claim that there is a solution to the CTP problem with

global travel cost |E|+ |E|
B

. Recall that the algorithm outputs a

subset A of the meeting points, which corresponds to a subset

A of the vertices in the B-vertex cover instance. We set A to be

the subset of meeting points that corresponds to a minimum

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2015.2509998, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 5

vertex cover of G. We have |A| = s. By the property of a

vertex cover, each edge has a vertex in A, and it follows that

each query point can be assigned to a meeting point within

distance 1. Thus, the local travel cost for each point is α = 1,

and the total local travel cost is |E|. We also note that the

connection travel cost for each meeting point in A is β =
|E|
Bs

and that the total connection travel cost is s · |E|
Bs

= |E|
B

.

Therefore the global cost is |E|+ |E|
B

, and the claim holds.

The claim implies that the optimal solution for the CTP

problem achieves a global travel cost at most |E|+ |E|
B

. Since

the algorithm A solves the CTP problem with approximation

ratio 1+ ε
1+B

, it follows that A provides a solution to the CTP

problem with global travel cost at most
(

1 +
ε

1 +B

)

·
(

|E|+ |E|
B

)

= |E|+ (1 + ε)
|E|
B

.

Let r = |A| be the number of meeting points returned by

A, and let l be the set of query points that are assigned to

a meeting point with distance 2. Then the local travel cost is

|E|+ l, and the connection travel cost is r · |E|
Bs

. It follows that

|E|+ (1 + ε)
|E|
B
≥ |E|+ l + r

|E|
Bs

,

which implies that

(1 + ε)
|E|
B
≥ l + r

|E|
Bs
≥ (l + r)

|E|
Bs

.

The last inequality holds because a vertex cover exists with

size s and the degree of each vertex is bounded by B; thus,

the number of edges |E| is at most Bs. We have

(1 + ε)s ≥ l + r. (5)

For the final vertex cover, we first select the vertices that

correspond to the meeting points in A. Note that there are l
query points that are assigned to a meeting point with distance

2, so there are exactly l vertices that are not covered by A. We

will select a vertex for each of the l vertices. By equation (5),

the total size of the vertex cover is l + r ≤ (1 + ε)s, which

is within a factor (1 + ε) of the size of the optimal vertex

cover. This proves that the resulting vertex cover is an ε-

approximation of the optimal vertex cover.

Finally, as we do not know s in advance, we can run the

above reduction for all possible values of s in the range from

1 to |V | to produce |V | vertex covers, one of which has size

at most (1 + ε)s. Thus, we can return the vertex cover with

the minimum size, which is guaranteed to have size at most

(1 + ε)s.

4 EXACT ALGORITHM

4.1 Basic Idea

Exact search is a straightforward method to compute the CTP

query. Given a set of meeting points S, a set of query locations

Q, an integer threshold k, and a destination d, we select and

evaluate each potential subset A (A ⊆ S∧|A| ≤ k) iteratively.

A pair of an upper and a lower bound on the global travel

cost is developed to prune the search space. By combining

the computation results, the subset with the minimum cost is

found.

p4

r1

c1

r2

q

d

c2

p1

p2

p3

C1

C2
: meeting point

Fig. 2. An example of the exact search when k = 4

To enhance query efficiency, we assume that the meeting

points in S are indexed by the iDistance indexing method

[15]. The well-known iDistance method enables efficient

computation of nearest neighbors in spatial networks. Other

spatial indexes can also be adopted. In iDistance, a data

partition/clustering method (e.g., k-means, k-medoids) is used

to group the points into m clusters. For each cluster Ci, a

reference point ci is selected. Then, we compute and record

the network distance between ci and every meeting point

p ∈ Ci. A B+−tree is adopted to index the points using

the network distance to the corresponding reference point as

a key. In our implementation, to find a suitable number m
of clusters and to achieve high performance, we conducted

extensive experiments when establishing the iDistance index

(as [15]).

4.2 Upper and Lower Bounds

To prune the search space, we define and use the upper and

lower bounds of the global travel cost GTC (A).
Consider the example in Figure 2. The meeting points are

grouped into clusters C1 and C2, and points c1 and c2 are the

corresponding reference points. Point q ∈ Q is a query point,

and d is the destination. Let k = 4. Subset A = {p1, p2, p3, p4}
is a 4-subset selected from S, where p1 belongs to C1, and

p2, p3, and p4 belong to C2. Next, we estimate the lower and

upper bounds of the network distance between query point

q and meeting point p1 based on the triangle inequality of

the shortest-path distance. The triangle inequality in spatial

networks is represented as follows.

sd(v1, v2) + sd(v2, v3) > sd(v1, v3)

sd(v1, v2)− sd(v2, v3) < sd(v1, v3)

Here, v1, v2, and v3 are vertices in G.V , and any one of them is

not on the shortest path between the others. Otherwise, we may

have that sd(v1, v2)+sd(v2, v3) = sd(v1, v3) and sd(v1, v2)−
sd(v2, v3) = sd(v1, v3).

In Figure 2, meeting point p1 belongs to cluster C1, and c1
is its reference point. According to the triangle inequality, we

have the following inequalities.

sd(q, p1) < sd(q, c1) + sd(c1, p1)

and
{

sd(q, p1) > sd(q, c1)− sd(c1, p1)
sd(q, p1) > sd(c1, p1)− sd(q, c1)

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2015.2509998, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 6

⇒ sd(q, p1) > |sd(q, c1)− sd(c1, p1)|

According to Equation 1, the lower and upper bound of the

minimum network distance between query point q and subset

A are computed as follows, respectively.

d(q, A) = min
p∈A
{sd(q, p)} > min

p∈A
{|sd(q, ci)− sd(ci, p)|}

and

min
p∈A
{|sd(q, ci)− sd(ci, p)|} > min

Ci∩A 6=∅

{|sd(q, ci)− ri|}

⇒ d(q, A) > min
Ci∩A 6=∅

{|sd(q, ci)− ri|} = d(q, A).lb

d(q, A) = min
p∈A
{sd(q, p)} < min

p∈A
{sd(q, ci) + sd(ci, p)}

and

min
p∈A
{sd(q, ci) + sd(ci, p)} < min

Ci∩A 6=∅

{sd(q, ci) + ri}

⇒ d(q, A) < min
Ci∩A 6=∅

{sd(q, ci) + ri} = d(q, A).ub

Here, ci is the reference point of cluster Ci, and ri is the radius

of Ci (network distance from ci to the cluster boundary). Thus,

we have that ri > sd(ci, p), and we can replace sd(ci, p) by

ri in the inequalities.

For the example in Figure 2, the values of d(q, A).lb and

d(q, A).ub are computed as follows.

d(q, A).lb = min{(|sd(q, c1)− r1|), (|sd(q, c2)− r2|)}

d(q, A).ub = min{(sd(q, c1) + r1), (sd(q, c2) + r2)}

According to Equation 2, the lower and upper bounds of

local travel cost LTC(A) are defined as follows.

LTC(A).lb = α ·
∑

q∈Q

d(q, A).lb (6)

LTC(A).ub = α ·
∑

q∈Q

d(q, A).ub (7)

Then, we estimate the lower and upper bounds of the connec-

tion travel cost CTC(A) in Equations 8 and 9, respectively.
{

CTC(A) = β ·∑p∈A sd(p, d)

sd(p, d) ≥ minCi∩A 6=∅{sd(ci, d)− ri}

⇒
∑

p∈A

sd(p, d) ≥
∑

p∈A

min
Ci∩A 6=∅

{sd(ci, d)− ri}

⇒ CTC(A).lb = β · |A| · min
Ci∩A 6=∅

{sd(ci, d)− ri} (8)

{

CTC(A) = β ·
∑

p∈A sd(p, d)

sd(p, d) ≤ maxCi∩A 6=∅{sd(ci, d) + ri}

⇒
∑

p∈A

sd(p, d) ≤
∑

p∈A

max
Ci∩A 6=∅

{sd(ci, d) + ri}

⇒ CTC(A).ub = β · |A| · max
Ci∩A 6=∅

{sd(ci, d) + ri} (9)

Here, p is a meeting point in subset A (|A| ≤ k). For all

p ∈ A, we have that sd(p, d) ≥ minCi∩A 6=∅{sd(ci, d) − ri}
and sd(p, d) ≤ maxCi∩A 6=∅{sd(ci, d) + ri}.

For the example in Figure 2, the lower and upper bounds

of connection travel cost CTC(A) are computed as follows.

CTC(A).lb = β ·min{(sd(c1, d)− r1), (sd(c2, d)− r2))}
CTC(A).ub = β ·max{(sd(c1, d) + r1), (sd(c2, d) + r2))}

By combining Equations 6 and 8 and 7 and 9, respectively,

the lower and upper bounds of the global travel cost GTC(A)
are computed as follows.

GTC(A).lb = LTC(A).lb+ CTC(A).lb (10)

GTC(A).ub = LTC(A).ub+ CTC(A).ub (11)

To find the subset with the minimum global travel cost, we

evaluate each potential subset A. Among all scanned subsets,

we define a global upper bound UB as

UB = min
A∈S
{GTC (A).ub}, (12)

where S contains all scanned subsets. For a subset A, if

GTC(A).lb exceeds the global upper bound UB , A cannot

be the subset with the minimum global travel cost; thus, A
can be pruned safely. Otherwise, we match each query point

q ∈ Q to its closest meeting point p ∈ A, and compute the

exact value of GTC(A).

4.3 Algorithm

Algorithm 1: Exact Algorithm

Data: meeting point set S, query point set Q, destination d,
threshold k

Result: subset A (A ⊆ S ∧ |A| ≤ k) with the minimum
GTC(A)

H ← ∅; UB ← +∞; i = 1;1

while i ≤ k do2

for each i-subset A ⊆ S do3

compute GTC(A).lb and GTC(A).ub;4

if GTC(A).ub < UB then5

UB ← GTC(A).ub;6

if GTC(A).lb ≤ UB then7

H.push(A);8

while H 6= ∅ do9

A← H.min.pop();10

if GTC(A).lb > UB then11

record UB and the corresponding i-subset;12

H.clear();13

break;14

compute GTC(A);15

if GTC(A) < UB then16

UB ← GTC(A);17

i← i+ 1;18

return UB and the corresponding subset;19

The exact algorithm is detailed in Algorithm 1. Here, we

evaluate all possible subsets of cardinality from 1 to k (lines

1–2). For each potential i-subset A, we compute and record

its lower bound GTC(A).lb and upper bound GTC(A).ub
(lines 3–4). If the value of GTC(A).ub is less than that of

UB , the value of UB is set to GTC(A).ub (lines 5–6). If the

value of GTC(A).lb is no greater than that of UB , A is put

into a heap H sorted according to the value of GTC(A).lb

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2015.2509998, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 7

(line 7–8). At each time, the i-subset A with the minimum

GTC(A).lb is selected from H (lines 9–10). If GTC(A).lb
exceeds UB , we record UB and the corresponding i-subset

and break the loop (lines 11-14). Otherwise, we compute the

exact value of GTC(A), and we check whether GTC(A) is

less than UB . If so, UB is updated to the value of GTC(A)
(lines 15–17). After evaluating all subsets of cardinality from

1 to k, the subset with the minimum global travel cost is found

(line 19).

4.4 Complexity Analysis

The exact algorithm evaluate each subset A (A ⊆ S∧|A| ≤ k),

and there is a total of
∑k

i=1

(|S|
i

)

=
∑k

i=1
|S|!

(|S|−i)!i! possible

combinations. For each subset A, we match query points to

their closest meeting point p ∈ A. The time complexity is

O(|Q||A|) = O(|Q|) because |A| is a constant no larger than

k. Thus, the time complexity of the exact algorithm is

O

(

|Q|
k
∑

i=1

|S|!
(|S| − i)!i!

)

= O
(

|Q| · |S|k
)

.

The last equation uses Stirling’s approximation.

5 APPROXIMATION ALGORITHM

5.1 Basic Idea

The CTP query is Max SNP-hard. To find the optimal result,

the exact algorithm has to evaluate each subset A. For small

threshold k, the exact algorithm is able to do so in interactive

time. To compute the CTP query efficiently, we develop an

approximation algorithm based on the local search scheme [7]

[29] that can compute the query in polynomial time and that

guarantees a 5-approximation ratio. Initially, we arbitrarily

select a subset A (|A| ≤ k) from S. Then we define three

operations: add, drop, and swap. In a sequence of iterations,

we randomly use an operation to optimize the global travel

cost. The process terminates when no operation can produce a

better result. The obtained result has a cost that is at most

5 times that of the global optimum [7]. The experimental

results (refer to Section 7) show that algorithm achieves greatly

improved running time and that the costs of the results are

close to those of the optimal results (i.e., less than 1.15 times

larger).

In Section 5.2, we introduce the operations as well as the

pruning rules during query processing. The approximation

algorithm is detailed in Section 5.3.

5.2 Operations and Pruning Rules

5.2.1 Operations

In this section, we introduce three types of operations and

corresponding pruning rules. The approximation algorithm

initially selects an arbitrary subset A (|A| ≤ k) from S and

matches each traveler q ∈ Q to its closest meeting point

p ∈ S and computes the exact value of GTC(A) (refer to

Equation 4). Then, to optimize the global travel cost, the

approximation algorithm uses three operations:

• add(p): add a new meeting point p ∈ (S \ A) to A if

|A| < k;

• drop(p): drop a meeting point p from A if |A| > 1;

• swap(p, p′): swap a meeting point p ∈ A with another

meeting point p′ ∈ (S \A).
We repeatedly apply a randomly selected operation to

improve the global travel cost by a factor of 1 + ε, where

ε is an arbitrary small constant. The search process terminates

when no new operation can produce a better result. The main

reason that we compare the ratio GTC(A)/GTC(A′) with

1 + ε is to make sure the algorithm runs in polynomial time.

If each operation improves the total cost by at least a factor

of (1 + ε), the number of operations is at most log1+εW ,

where W is the maximum possible global travel cost. If we

do not impose the (1+ε) constraint, each operation may result

in a very small improvement, and the number of operations

could be as large as W . Note that we only need log W bits to

represent the cost, so this is not a polynomial time algorithm.

5.2.2 Add Operation

Figures 3(a), 3(b), and 3(c) illustrate examples of the add,

drop, and swap operations, where q1, q2, q3, q4, and q5
are query points and d is the destination. In Figure 3(a),

A = {p1, p2} is a subset of meeting points, and query points

q1, q2, q3 are matched to p1, and q4 and q5 are matched to p2.

According to Equation 4, the global travel cost GTC(A) is

computed as follows.

GTC(A) = α · (
3
∑

i=1

sd(qi, p1) +
5
∑

j=4

sd(qj , p2))

+ β · (sd(p1, d) + sd(p2, d))

Then we add a new meeting point p3 to A and get a new

subset A′ = {p1, p2, p3}. As each query point is matched to

its nearest meeting point, query points q1 and q2 are matched

to p1, and q3 and q4 are matched to p3, and q5 is matched to

p2. The global travel cost GTC(A′) is computed as follows.

GTC(A′) = α · (
2
∑

i=1

sd(qi, p1) + sd(q5, p2) +
4
∑

j=3

sd(qj , p3))

+ β · (sd(p1, d) + sd(p2, d) + sd(p3, d))

If the cost is improved by a factor of (1 + ε) (i.e.,
GTC(A)
GTC(A′)

exceeds (1 + ε)), operation add(p3) is valid. Otherwise, the

operation is invalid, and p3 is not added to A.

Each time when conducting the operation add(p′), the

existing matching of each query point q ∈ Q to meeting points

in A has to be updated. To accelerate the rematching process,

we propose the following pruning rule.

Given a subset A and the matching between Q and A, we

define a search radius r as follows.

r = max
q∈Q,p∈A

{sd(q, p)} (13)

Thus, r is the maximum network distance between a query

point q ∈ Q and a meeting point p ∈ A. When conducting the

operation add(p′), we only need to rematch the query points

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2015.2509998, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 8

q1

d

p1

p2

p3

q2

q3

q4

q5

r

(a) add

q1

d

p1

p2

p3

q2

q3

q4

q5

(b) drop

q1

d

p1

p2

p3

q2

q3

q4

q5

r

(c) swap

Fig. 3. Examples of add, drop, and swap operations

covered by region C(p′, r), the circular region with center p′

and radius r.

As an example in Figure 3(a), a new meeting point p3
is added to A = {p1, p2} (A′ = {p1, p2, p3}). We compute

r according to Equation 13. To establish a new matching

between each query point q ∈ Q and each meeting point

p ∈ A′, we only need to rematch the query points covered

by the region C(p3, r). In Figure 3(a), query points q3 and

q4 are covered by C(p3, r), and are rematched. Because

sd(q3, p1) > sd(q3, p3) and sd(q4, p2) > sd(q4, p3), both

q3 and q4 are matched to p3. The matchings of other query

points remains unchanged.

Lemma 1: When adding a new meeting point p′ to A, the

matchings of the query points outside the region C(p′, r) are

unaffected.

Proof : For a query point q outside region C(p′, r), we have

that sd(q, p′) > r. Assume that p is the meeting point closest

to q in A. We have that ∀p′′ ∈ A\{p} (sd(q, p) < sd(q, p′′)).
According to the definition of r (Equation 13), we have that

sd(q, p) ≤ r. Thus, we have that sd(q, p) ≤ r < sd(q, p′) ⇒
sd(q, p) < sd(q, p′), so p is still the meeting point closest to

q in A′.

5.2.3 Drop Operation

For the example in Figure 3(b), A = {p1, p2, p3} is a subset of

meeting points. Initially, query points q1 and q2 are matched

to p1, q3 and q4 are matched to p3, and q5 is matched to

p2. We compute GTC(A) according to Equation 4. Then the

operation drop(p3) is conducted, and the meeting point p3 is

dropped from subset A = {p1, p2, p3} (A′ = {p1, p2}). Each

query point q ∈ Q is matched to its closest meeting point

p ∈ A′. As shown in Figure 3(b), query points q1, q2, and

q3 are matched to p1, and q4 and q5 are matched to p2. After

that, we compute GTC(A′) and check the validity of operation

drop(p3). If
GTC(A)
GTC(A′) < 1+ε, operation drop(p3) is valid, and

meeting point p3 can be dropped from A. Otherwise, drop(p3)
is invalid.

Finding a valid meeting point p ∈ A to drop is time-

consuming. In the worst case, all points in A have to be

checked. To improve performance, we propose a pruning rule

to pre-check the validity of operation drop(p). First, we define

the connection travel cost of meeting point p as follows (refer

to Equation 3).

CTC(p) = β · sd(p, d) (14)

Here, β represents the energy consumption per unit distance

for collective travel.

Lemma 2: If
GTC(A)

GTC(A)−CTC(p) < 1 + ε, operation drop(p) is

invalid.

Proof : Assume that query points {q1, q2, ..., qn} ⊆ Q are

matched to meeting point p initially. For any qi, we have that

∀p′ ∈ A\{p} (sd(qi, p) < sd(qi, p
′)). If p is dropped from A,

query points {q1, q2, ..., qn} will be matched to other meeting

points, and their local travel costs will increase (refer to Equa-

tion 2). Thus, we have that GTC(A)−CTC(p) < GTC(A′).

Therefore,
GTC(A)
GTC(A′) < GTC(A)

GTC(A)−CTC(p) . This in turn means

that

GTC(A)

GTC(A′)
<

GTC(A)

GTC(A)− CTC(p)
< 1 + ε.

Therefore, operation drop(p) is invalid.

For example, in Figure 3(b), if we want to drop meeting

point p3, we compute of CTC(p3) (refer to Equation 14),

and pre-check the validity of drop(p3) by comparing the value

of
GTC(A)

GTC(A)−CTC(p3)
to 1 + ε. If

GTC(A)
GTC(A)−CTC(p3)

< 1 + ε,

operation drop(p3) is invalid and p3 cannot be dropped from

A. Otherwise, we rematch the query points that were matched

to p3 to their closest meeting points in A′, respectively (i.e., q3
to p1, and q4 to p2), and compute the exact value of GTC(A′).

If the condition of
GTC(A)

GTC(A)−CTC(p) < 1+ ε does not hold,

we will do further validity checking for operation drop(p).

5.2.4 Swap Operation

The swap operation can be viewed as a combination of a drop
and an add. However, a swap operation may be valid even

when its drop and add operations are each invalid. Figure 3(c)

gives an example of the swap operation. Initially, subset

A = {p1, p2}, and query points q1, q2, and q3 are matched

to meeting point p1, and q4 and q5 are matched to p2. Then

we conduct operation swap(p2, p3) and we get A′ = {p1, p3}.
Accordingly, we match the query points to the meeting points

in A′ (q1 and q2 to p1 and q3, q4, and q5 to p3) and compute

GTC(A′). The process of operation swap(p2, p3) is detailed

as follows.

First, we drop meeting point p2 from A, and we label

the query points that were matched to p2 as “unmatched”.

For example, in Figure 3(c), when we drop p2 from A, q3
and q4 are labeled as “unmatched”. Then, we add meeting

point p3 to the subset (A \ {p2}). We label the query points

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2015.2509998, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 9

covered by circular region (p3, r) as “unmatched”. As an

instance, q3 is labeled as “unmatched” (q4 is already labeled).

After that, we match all “unmatched” query points to their

closest meeting points in A′, and the matching of other query

points remains unchanged. For example, in Figure 3(c), q3, q4,

and q5 are matched to p3, and the matchings of q1 and q2
remains unchanged. Finally, we compute GTC(A′) according

to Equation 4 and compare
GTC(A)
GTC(A′) to (1 + ε) to check the

validity of the swap(p2, p3) operation.

5.3 Algorithm

Algorithm 2: Approximation Algorithm

Data: meeting point set S, query point set Q, destination

d, threshold k
Result: subset A (A ⊆ S ∧ |A| ≤ k) with the minimum

GTC(A)
select a subset A from S;1

compute GTC(A);2

while true do3

for each point p ∈ (S \A) do4

if |A| < k then5

A′ ← A.add(p);6

r ← maxq∈Q,p∈A{sd(q, p)};7

rematch query points in region C(p, r);8

compute GTC(A′);9

if
GTC(A)
GTC(A′) > 1 + ε then10

A.add(p) is valid, and A← A′;11

continue;12

break;13

for each pair (p, p′), p ∈ A, p′ ∈ (S \A) do14

A′ ← A.swap(p, p′);15

rematch all “unmatched” query points;16

compute GTC(A′);17

if
GTC(A)
GTC(A′) > 1 + ε then18

A.swap(p, p′) is valid, and A← A′;19

continue;20

for each point p ∈ A do21

if |A| > 1 then22

A′ ← A.drop(p);23

compute CTC(p);24

if
GTC(A)

GTC(A)−CTC(p) > 1 + ε then25

rematch the query points that were26

matched to p;

compute GTC(A′);27

if
GTC(A)
GTC(A′) > 1 + ε then28

A.drop(p) is valid, and A← A′;29

continue;30

break;31

if add, swap, and drop are all invalid then32

return A and GTC(A);33

The approximation algorithm is detailed in Algorithm 2.

Initially, we arbitrarily select a subset A (A ⊆ S ∧ |A| ≤
k), and we match query points in Q to meeting points in A.

Then, we compute the global travel cost GTC(A) according

to Equation 4 (lines 1–2). Next, we try to use three operations

add, swap, and drop to optimize the global travel cost.

add operation: if the size of subset A is less than k, when

adding a point p to A, we first compute the value of search

radius r (Equation 13). Then, we rematch the query points

covered by circular region C(p, r) to meeting points in A′, and

we compute GTC(A′) (lines 4–9). Next, we check the validity

of operation A.add(p) by comparing the value of
GTC(A)
GTC(A′) to

(1 + ε). If A.add(p) is valid, we update A to A′. Otherwise,

A.add(p) is invalid and A remains unchanged (lines 10–13).

swap operation: we try to swap meeting point p ∈ A with

another point p′ ∈ (S \ A). According to Section 5.2.4, we

find all “unmatched” query points and match them to meeting

points in A′, and we compute GTC(A′) (lines 14–17). Finally,

we check the validity of A.swap(p, p′). If A.swap(p, p′) is

valid, A is updated to A′ (lines 18–20).

drop operation: if the size of A is greater than 1, when

dropping a point p, we compute CTC(p) (lines 21–24). Then,

we precheck the validity of A.drop(p) by comparing the value

of
GTC(A)

GTC(A)−CTC(p) to 1 + ε. If drop(p) is valid, we rematch

the query points that were matched to p, and we compute

GTC(A′) (lines 25–27). Finally, we recheck the validity of

A.drop(p) by comparing the value of
GTC(A)
GTC(A′) to 1 + ε. If

A.swap(p) is valid, A is updated to A′ (lines 28–31).

If no operations can optimize the global travel cost by a

factor of 1+ ε, the search process terminates, and the current

subset A and the value of GTC(A) are returned (lines 32–33).

5.4 Complexity Analysis

Assume that C0 is the global travel cost of the initially selected

subset A and that C is the global optimum. The maximum

number of operations m depends on the ratio of C0 to C. The

value of m is computed as follows.

C0 · (1 + ε)−m ≤ C

⇒ m = ⌊log(1+ε)
C0

C
⌋

To find a valid operation, we check all possibilities of add,

drop, and swap, which has time complexity O(|Q|(|S| −
|A|)) + O(|Q||A|) + O(|Q|(|S| − |A|)|A|) = O(|Q||S|)
because |A| is a constant no larger than k. The total

number ⌊log(1+ε)
C0

C
⌋ of operations is a constant. Thus,

the time complexity of the approximation algorithm is

O(⌊log(1+ε)
C0

C
⌋|Q||S|) = O(|Q||S|).

In our setting, only a single meeting point can be modified

in an operation, and the algorithm achieves an approximation

ratio of 5. The experimental results show that the approximate

results are generally very close to the global optimum (less

than 1.05 times larger). If multiple meeting points can be

modified, the time complexity of the approximation algorithm

is O(|Q|
(

|S|−|A|
n

)

+ O(|Q|
(

|A|
n

)

) + O(|Q|
(

|S|−|A|
n

)(

|A|
n

)

) =
O(|Q| · |S|n), where n is the number of modified meeting

points in an operation. Although this can be done with the

slightly better approximation ratio 2 +
√
3 + ε, the query

efficiency is affected badly.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2015.2509998, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 10

6 EXTENSIONS

We future extend the CTP query to include two practical

scenarios. First, it is of interest to consider connection travel

costs of meeting points that are dependent on the number of

travelers that travel from each meeting point to the destination.

A new practical connection travel cost CTCp(A) is defined

as:

CTCp(A) = β ·
∑

p∈A

⌈p.t
c
⌉ · sd(p, d). (15)

Here, p.t is the number of travelers at meeting point p, and c is

the capacity of a shuttle bus (collective travel). By combining

Equations 2 and 15, the practical global travel cost GTCp(A)
is computed as

GTCp(A) = LTC(A) + CTCp(A). (16)

Next, we extend the exact and approximation algorithms to

support the new distance measure. In the exact algorithm (refer

to Section 4), we estimate the lower and upper bounds of the

practical connection travel cost CTCp(A) in Equations 17 and

18, respectively.
{

CTCp(A) = β ·∑p∈A⌈p.tc ⌉ · sd(p, d)
sd(p, d) ≥ minCi∩A 6=∅{sd(ci, d)− ri}

⇒
∑

p∈A

⌈p.t
c
⌉ · sd(p, d) ≥

∑

p∈A

⌈p.t
c
⌉ · min

Ci∩A 6=∅

{sd(ci, d)− ri}

⇒
∑

p∈A

⌈p.t
c
⌉ · sd(p, d) ≥ |Q|

c
· min
Ci∩A 6=∅

{sd(ci, d)− ri}

⇒ CTCp(A).lb = β · |Q|
c
· min
Ci∩A 6=∅

{sd(ci, d)− ri} (17)

{

CTCp(A) = β ·∑p∈A⌈p.tc ⌉ · sd(p, d)
sd(p, d) ≤ maxCi∩A 6=∅{sd(ci, d) + ri}

⇒
∑

p∈A

⌈p.t
c
⌉ · sd(p, d) ≤

∑

p∈A

⌈p.t
c
⌉ · max

Ci∩A 6=∅

{sd(ci, d) + ri}

⇒
∑

p∈A

⌈p.t
c
⌉·sd(p, d) ≤ (

|Q|
c

+|A|)· max
Ci∩A 6=∅

{sd(ci, d)+ri}

⇒ CTCp(A).ub = β · (|Q|
c

+ |A|) · max
Ci∩A 6=∅

{sd(ci, d)+ri}
(18)

Here, p is a meeting point in subset A. Integer p.t is the

number of travelers at meeting point p, |Q| is the total number

of travelers, and integer c is the capacity of a shuttle bus. In

the example in Figure 2, the lower and upper bounds of the

practical connection travel cost CTCp(A) are computed as

follows.

CTCp(A).lb = β· |Q|
c
·min{(sd(c1, d)−r1), (sd(c2, d)−r2))}

CTCp(A).ub = β· |Q|
c
·max{(sd(c1, d)+r1), (sd(c2, d)+r2))}

By combining Equations 6 and 17 and 7 and 18, the lower and

upper bounds of the practical global travel cost GTCp(A) are

computed as follows.

GTCp(A).lb = LTC(A).lb+ CTCp(A).lb (19)

GTCp(A).ub = LTC(A).ub+ CTCp(A).ub (20)

The exact algorithm with the practical connection travel cost

is obtained by substituting Equations 17, 18, 19, and 20 into

Algorithm 1.

In the approximation algorithm, the practical connection

travel cost of meeting point p is updated as follows.

CTCp(p) = β · ⌈p.t
c
⌉ · sd(p, d) (21)

Lemma 2 in the drop operation (refer to Section 5.2.3) is

not affected by the new measure. Assume that query points

{q1, q2, ..., qn} ⊆ Q are matched to meeting point p initially.

For any query point qi ∈ {q1, q2, ..., qn}, we have that

∀p′ ∈ A \ {p} (sd(qi, p) < sd(qi, p
′)). If meeting point p

is dropped from A, query points {q1, q2, ..., qn} are matched

to other meeting points {p1, p2, ..., pm} ⊆ A \ {p}, and their

local travel costs increase (refer to Equation 2). For meeting

points {p1, p2, ..., pm}, their practical connection travel costs

also increase because they will serve more query points (refer

to Equation 15). Thus, we have that GTCp(A)−CTCp(p) <

GTCp(A
′). Therefore,

GTCp(A)
GTCp(A′) <

GTCp(A)
GTCp(A)−CTCp(p)

. This

in turn means that

GTC(A)

GTC(A′)
<

GTC(A)

GTC(A)− CTC(p)
< 1 + ε.

In that case, the operation drop(p) is invalid. Therefore,

Lemma 2 is not affected by the new measure.

The approximation algorithm with the practical connection

travel cost is achieved by substituting Equations 17, 18, 19,

20, and 21 into Algorithm 2.

Notice that CTCp(A) and GTCp(A) are not metrics. Thus,

the approximation ratio 5 is not valid. We conduct extensive

experiments to verify the performance of the practical CTP

query, and the experimental results show that the approximate

results are also very close to the global optimum.

Second, it is of interest to study the scenario where travelers

are allowed to proceed directly to the destination if they are

closer to the destination than to any meeting point. We extend

the approximation algorithm (Algorithm 2) to support this

scenario. Initially, the destination can be viewed as a meeting

point, and it is put into the meeting point set A. During the

search process, the destination will not be removed from A
by drop and swap operations. When the search terminates,

each traveler is matched to his/her closest meeting point, and

the travelers that are matched to the destination can go to

the destination directly. In Figure 11, when ε = 0.03 (default

value), the approximation algorithm can also achieve a very

good approximation ratio (less than 1.2) and low CPU time

(less than 140 ms for BRN and less than 300 ms for NRN).

7 EXPERIMENTS

We report on extensive experiments with real and synthetic

data that offer insight into the properties of the developed

algorithms.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2015.2509998, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 11

Table I: Pre-Processing Time and Required Disk Space
Road Networks Pre-Processing Time Required Disk Space

BRN (28,342 vertices and
38,577 edges)

193 seconds 3.5 GB

NRN (175,813 vertices
and 179,179 edges)

1145 seconds 125 GB

7.1 Settings

We use graphs extracted from two spatial networks, namely

the Beijing Road Network (BRN) and the North America Road

Network (NRN)5. The graphs are stored using adjacency lists.

Query points are randomly selected vertices and the meeting

points are generated according to random (default), uniform,

and Gaussian distributions.

We pre-compute the all-pair shortest path distances using

Dijsktra’s algorithm [8] and store the pre-computed results

on disk. Parallel computing techniques are easily adopted to

accelerate the pre-computation because the all-pair shortest

path computation can be viewed as |G.V | single-source short-

est path computations that are independent of each other. If

we divide the task into N subtasks for N different workers

and each worker computes
|G.V |
N

single-source shortest path

distances, the running time is expected to be improved by

approximately a factor of N . The pre-computation algorithm

was implemented in Java and run on a cluster with 16

servers. Each server has a 16-core CPU (2.40GHz) and 300GB

memory. The pre-computation results are stored on disk. The

pre-processing times and the required disk space are listed in

Table I.

In the experiments, the graphs were memory resident when

running Dijkstra’s algorithm [8], as the memory occupied

by BRN/NRN was less than 20MB. All algorithms were

implemented in Java and run on a Windows 7 platform with

an Intel i7-4770k processor (3.50GHz) and 16GB memory.

Unless stated otherwise, experimental results are averaged over

20 independent trails with different query inputs. The main

performance metrics are CPU time and the number of visited

vertices. The number of visited vertices is used as a metric

since it describes the number of data accesses.

The parameter settings are listed in Table II. In subsequent

figures, the exact algorithm (Section 4) is denoted by “Exact-

Alg,” and the approximation algorithm (Section 5) is denoted

by “Approx-Alg.” We extend the query into two practical

scenarios (Section 6). For the first (the connection travel cost

is dependent on the number of travelers), the exact algorithm is

denoted by “Exact-Alg-p1,” and the approximation algorithm

is denoted by “Approx-Alg-p1.” In the second scenario (a trav-

eler can go to the destination directly), the exact algorithm is

denoted by “Exact-Alg-p2,” and the approximation algorithm

is denoted by “Approx-Alg-p2.”

7.2 Effect of Query Point Count |Q|
First, we investigate the effect of the query point count |Q|
on the performance of the two algorithms with the default

settings. Intuitively, a larger |Q| causes more query points to

be processed (being matched to their closest meeting point)

and has a larger search space. Thus, the CPU time and the

5. http://www.cs.utah.edu/l̃ifeifei/SpatialDataset.htm

Table II: Parameter Settings
NRN BRN

Query point count |Q| 5,000–15,000/default
5,000

1,000–9,000/default
1,000

Meeting point count |S| 50–1,600/default 100 50–1,600/default 100

Integer threshold k 5–160/default 10 5–160/default 10

ε 0.03–0.15/default
0.03

0.03–0.15/default
0.03

shuttle bus capacity c 5–20/default 5 5–20/default 5

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

1000 3000 5000 7000 9000

C
P

U
 T

im
e

(m
s)

|Q|

Approx-Alg
Exact-Alg

(a) BRN

1

10
1

10
2

10
3

10
4

10
5

10
6

1000 3000 5000 7000 9000

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

|Q|

Approx-Alg
Exact-Alg

(b) BRN

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

5000 7000 9000 11000 13000 15000

C
P

U
 T

im
e

(m
s)

|Q|

Approx-Alg
Exact-Alg

(c) NRN

1

10
1

10
2

10
3

10
4

10
5

10
6

500 1000 1500 2000 2500

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

|Q|

Approx-Alg
Exact-Alg

(d) NRN

Fig. 4. Effect of query point count |Q|

number of visited vertices are expected to be higher for both

algorithms. However, from Figure 4, it is clear that with the

help of its heuristic search strategy and pruning rules, the

approximation algorithm outperforms the exact algorithm by

almost a factor of 105 (for both CPU time and visited vertices).

It is worth noting that (i) the number of visited vertices may

exceed the number of vertices in the graph |G.V | since a

vertex may be visited several times by network expansions

from different expansion centers; (ii) the CPU time is not

fully aligned with the number of visited vertices. To prune

the search space, the algorithms need more computational

effort to maintain their bounds. In some cases, the increased

computation cost may offset the benefits of the reduction in

the number of visited vertices.

7.3 Effect of Meeting Point Count |S|
Figure 5 considers the effect of varying the meeting point

count |S|. There exist
∑k

i=1
|S|!

(|S|−i)!i! combination possibilities

for subset A (A ⊆ S ∧ |A| ≤ k). With a fixed value of k, a

larger meeting point count |S| leads to more computation. In

Figure 5, the CPU time and the number of visited vertices

for both algorithms increase with |S|, and the increase of the

exact algorithm is much faster than that of the approximation

algorithm. The CPU time and the number of visited vertices

required by the exact algorithm are at least 102 times higher

than those needed by the approximation algorithm.

7.4 Effect of k

Next, we vary threshold k. For the exact algorithm, with a

fixed value of the meeting point count |S|, a larger k leads

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2015.2509998, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 12

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

50 100 200 400 800 1600

C
P

U
 T

im
e

(m
s)

|S|

Approx-Alg
Exact-Alg

(a) BRN

1

10
1

10
2

10
3

10
4

10
5

10
6

50 100 200 400 800 1600

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

|S|

Approx-Alg
Exact-Alg

(b) BRN

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

50 100 200 400 800 1600

C
P

U
 T

im
e

(m
s)

|S|

Approx-Alg
Exact-Alg

(c) NRN

1

10
1

10
2

10
3

10
4

10
5

10
6

50 100 150 200 250 300 350 400 450 500

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

|S|

Approx-Alg
Exact-Alg

(d) NRN

Fig. 5. Effect of meeting point count |S|

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

5 10 20 40 80 160

C
P

U
 T

im
e

(m
s)

k

Approx-Alg
Exact-Alg

(a) BRN

1

10
1

10
2

10
3

10
4

10
5

10
6

5 10 20 40 80 160

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

k

Approx-Alg
Exact-Alg

(b) BRN

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

5 10 20 40 80 160

C
P

U
 T

im
e

(m
s)

k

Approx-Alg
Exact-Alg

(c) NRN

1

10
1

10
2

10
3

10
4

10
5

10
6

5 10 15 20 25 30 35 40 45 50

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

k

Approx-Alg
Exact-Alg

(d) NRN

Fig. 6. Effect of k

to more combination possibilities (
∑k

i=1
|S|!

(|S|−i)!i!). Intuitively,

the larger k becomes, the larger the required search space

becomes, and thus the required CPU time and the number of

visited vertices are expected to increase correspondingly. On

the other hand, the approximation algorithm is not sensitive

to the value of k because the total number of operations is

indirectly affected by the value of k (refer to Section 5.2). In

Figure 6, the approximation algorithm outperforms the exact

algorithm by factors of more than 105 in terms of both CPU

time and the number of visited vertices when k exceeds 10.

7.5 Effect of ε

Figure 7 shows the effect of varying parameter ε on the

efficiency and accuracy of the approximation algorithm. An

operation (add, drop, and swap) will improve the global

travel cost by a factor of 1 + ε; thus, the total number of

operations ⌊log(1+ε)
C0

C
⌋ is inversely proportional to the value

of ε (refer to Section 5.2). A larger value of ε means fewer

operations; thus, the query efficiency is improved and less CPU

time is required. However, a larger value of ε also leads to a

0

20

40

60

80

100

120

140

0.03 0.06 0.09 0.12 0.15

C
P

U
 T

im
e

(m
s)

ε

Approx-Alg

(a) BRN

1

1.1

1.2

1.3

1.4

0.03 0.06 0.09 0.12 0.15

A
p
p
ro

x
im

at
io

n
 R

at
io

ε

Approx-Alg

(b) BRN

0

50

100

150

200

250

0.03 0.06 0.09 0.12 0.15

C
P

U
 T

im
e

(m
s)

ε

Approx-Alg

(c) NRN

1

1.1

1.2

1.3

1.4

0.03 0.06 0.09 0.12 0.15

A
p
p
ro

x
im

at
io

n
 R

at
io

ε

Approx-Alg

(d) NRN

Fig. 7. Effect of ε

lower accuracy of query result. It is worth noting that when

ε = 0.03, the approximation algorithm achieves a very good

approximation ratio (less than 1.1 in BRN and less than 1.15

in NRN) and low CPU time (less than 120 ms in BRN and

less than 260 in NRN).

7.6 Query Performance, Worst-Case Measurements

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9

50 100 200 400 800 1600

W
o
rs

t
C

as
e

C
P

U
 T

im
e

(m
s)

|S|

Approx-Alg
Exact-Alg

(a) BRN

1

10
1

10
2

10
3

10
4

10
5

10
6

50 100 200 400 800 1600

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

|S|

Approx-Alg
Exact-Alg

(b) BRN

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9

50 100 200 400 800 1600

W
o
rs

t
C

as
e

C
P

U
 T

im
e

(m
s)

|S|

Approx-Alg
Exact-Alg

(c) NRN

1

10
1

10
2

10
3

10
4

10
5

10
6

50 100 200 400 800 1600

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

|S|

Approx-Alg
Exact-Alg

(d) NRN

Fig. 8. Query performance, worst-case measurements

In our settings, the worst-case measurement is the worst ex-

perimental result among 20 independent experiments. Figure 8

reports worst-case measurements for the CTP query. It is clear

that the approximation algorithm is able to compute the CTP

query in interactive time.

7.7 Effect of Meeting Point Distributions

We study the effect of meeting point distributions on query

performance. We consider three types of distributions: Gaus-

sian, uniform, and random. From Figure 9, it is clear that the

time cost of the approximation algorithm is not affected sig-

nificantly by meeting point distributions, and compared to the

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2015.2509998, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 13

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

50 100 200 400 800 1600

C
P

U
 T

im
e

(m
s)

|S|

Approx-Alg(Gaussian)
Approx-Alg(uniform)
Approx-Alg(random)
Exact-Alg(Gaussian)
Exact-Alg(uniform)
Exact-Alg(random)

(a) BRN

1

1.1

1.2

1.3

1.4

1.5

0.03 0.06 0.09 0.12 0.15

A
p
p
ro

x
im

at
io

n
 R

at
io

ε

Approx-Alg(Gaussian)
Approx-Alg(uniform)
Approx-Alg(random)

(b) BRN

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

50 100 200 400 800 1600

C
P

U
 T

im
e

(m
s)

|S|

Approx-Alg(Gaussian)
Approx-Alg(uniform)
Approx-Alg(random)
Exact-Alg(Gaussian)
Exact-Alg(uniform)
Exact-Alg(random)

(c) NRN

1

1.1

1.2

1.3

1.4

1.5

0.03 0.06 0.09 0.12 0.15

A
p
p
ro

x
im

at
io

n
 R

at
io

ε

Approx-Alg(Gaussian)
Approx-Alg(uniform)
Approx-Alg(random)

(d) NRN

Fig. 9. Effect of meeting point distributions

random distribution, the Gaussian and uniform distributions

may lead to a bit lower approximation ratios.

7.8 Effect of Pruning Techniques

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

50 100 200 400 800 1600

C
P

U
 T

im
e

(m
s)

|S|

Approx-Alg
Approx-Alg*

Exact-Alg
Exact-Alg*

(a) BRN

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7

50 100 200 400 800 1600

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

|S|

Approx-Alg
Approx-Alg*

Exact-Alg
Exact-Alg*

(b) BRN

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

50 100 200 400 800 1600

C
P

U
 T

im
e

(m
s)

|S|

Approx-Alg
Approx-Alg*

Exact-Alg
Exact-Alg*

(c) NRN

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7

50 100 200 400 800 1600

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

|S|

Approx-Alg
Approx-Alg*

Exact-Alg
Exact-Alg*

(d) NRN

Fig. 10. Effect of pruning techniques

We study the effect of pruning techniques in the exact

and approximation algorithms. The exact algorithm without

pruning techniques (without upper and lower bounds, refer to

Section 4.2) is denoted by “Exact-Alg-p*,” and the approxi-

mation algorithm without pruning techniques (Lemmas 1 and

2, refer to Sections 5.2.2 and 5.2.3) is denoted by “Approx-

Alg-p*.” In Figure 10, it is clear that with the help of pruning

techniques, the performance of the exact algorithm is improved

by 5–8 times, and the performance of the approximation

algorithm is improved by at least an order of magnitude.

7.9 Performance of the Practical CTP Query

We study the performance (efficiency and effectiveness) of

the practical CTP query processing. The results are shown in

 0

 0.2

 0.4

 0.6

 0.8

 1

NRN(p1) BRN(p1) NRN(p2) BRN(p2)

C
o

st
 (

C
T

P
)

/
C

o
st

 (
In

d
iv

id
u

al
)

Datasets

5seats
10seats

18seats
33seats

Fig. 12. Travel cost reduction

Figure 11. Compared to the original CTP query, practical CTP

query processing takes longer to compute the upper and lower

bounds, due to the more complex distance measures (refer to

Section 6). The approximation algorithm can still outperform

the exact algorithm by a factor of more than 105 in terms of

both CPU time and the number of visited vertices. Neither of

the algorithms is efficiency-sensitive to the value of c (shuttle-

bus capacity). When ε = 0.03, the approximation algorithms

can also achieve a very good approximation ratio (less than

1.2) and low CPU time (less than 140 ms for BRN and less

than 300 ms for NRN).

7.10 Travel Cost Reduction

We conduct a case study to gain insight into the travel cost

reduction that can be achieved by using the CTP query. We

select four types of vehicles for the collective travel: Toyota

Corolla (5 seats, petrol cost: 6.3L/100km), Benz Minibus (10

seats, 11.3L/100km), Benz Minibus (18 seats, 12L/100km),

and Yutong Bus (33 seats, 16L/100km). We assume that

travelers drive the Toyota Corolla to meeting points. Figure 12

shows the travel cost reduction of using the CTP query.

Compared to individual travel, the collective travel can reduce

the cost by more than 60%.

8 RELATED WORK

Group nearest neighbor [20] and aggregate nearest neigh-

bor [21] queries are typical queries that have multiple sources

and a single destination. They assume that each traveler goes

to the destination individually and the queries aim to find the

optimal location of the destination to minimize the travelers’

global travel cost. A group travel planning query [14] extends

the group nearest neighbor query to the multiple-destinations

scenario, and it assumes that a group of travelers assemble

at the first destination and then go together to the next

destination. The group nearest group query [6] is another

type of query with multiple sources and multiple destinations.

It matches each traveler to their closest destination, and the

query aims to find the optimal locations of the destinations to

minimize the travelers’ global travel cost. Unlike the existing

studies, the Collective Travel Planning query has multiple

query sources, multiple meeting points, and single destination.

It can be viewed as a combination of the group nearest

neighbor query and the group nearest group query. It assumes

that a group of travelers meet at their closest meeting point

and then go together to the destination, and its target is also

to minimize the global travel cost.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2015.2509998, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 14

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

1000 3000 5000 7000 9000

C
P

U
 T

im
e

(m
s)

|Q|

Approx-Alg-p1
Exact-Alg-p1

Approx-Alg-p2
Exact-Alg-p2

(a) BRN

1

10
1

10
2

10
3

10
4

10
5

10
6

1000 3000 5000 7000 9000

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

|Q|

Approx-Alg-p1
Approx-Alg-p2

Exact-Alg-p1
Exact-Alg-p2

(b) BRN

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

5000 7000 9000 11000 13000 15000

C
P

U
 T

im
e

(m
s)

|Q|

Approx-Alg-p1
Exact-Alg-p1

Approx-Alg-p2
Exact-Alg-p2

(c) NRN

1
10

1
10

2
10

3
10

4
10

5
10

6

5000 7000 9000 11000 13000 15000

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

|Q|

Approx-Alg-p1
Approx-Alg-p2

Exact-Alg-p1
Exact-Alg-p2

(d) NRN

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

50 100 200 400 800 1600

C
P

U
 T

im
e

(m
s)

|S|

Approx-Alg-p1
Approx-Alg-p2

Exact-Alg-p1
Exact-Alg-p2

(e) BRN

1

10
1

10
2

10
3

10
4

10
5

10
6

50 100 200 400 800 1600

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

|S|

Approx-Alg-p1
Approx-Alg-p2

Exact-Alg-p1
Exact-Alg-p2

(f) BRN

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

50 100 200 400 800 1600

C
P

U
 T

im
e

(m
s)

|S|

Approx-Alg-p1
Approx-Alg-p2

Exact-Alg-p1
Exact-Alg-p2

(g) NRN

1

10
1

10
2

10
3

10
4

10
5

10
6

50 100 200 400 800 1600

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

|S|

Approx-Alg-p1
Approx-Alg-p2

Exact-Alg-p1
Exact-Alg-p2

(h) NRN

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

5 10 20 40 80 160

C
P

U
 T

im
e

(m
s)

k

Approx-Alg-p1
Approx-Alg-p2

Exact-Alg-p1
Exact-Alg-p2

(i) BRN

1

10
1

10
2

10
3

10
4

10
5

10
6

5 10 20 40 80 160

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

k

Approx-Alg-p1
Approx-Alg-p2

Exact-Alg-p1
Exact-Alg-p2

(j) BRN

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

5 10 20 40 80 160

C
P

U
 T

im
e

(m
s)

k

Approx-Alg-p1
Approx-Alg-p2

Exact-Alg-p1
Exact-Alg-p2

(k) NRN

1
10

1
10

2
10

3
10

4
10

5
10

6

5 10 20 40 80 160

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

k

Approx-Alg-p1
Approx-Alg-p2

Exact-Alg-p1
Exact-Alg-p2

(l) NRN

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

5 10 15 20

C
P

U
 T

im
e

(m
s)

c

Approx-Alg-p1
Exact-Alg-p1

Approx-Alg-p2
Exact-Alg-p2

(m) BRN

1

10
1

10
2

10
3

10
4

10
5

10
6

5 10 15 20

N
u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)

c

Approx-Alg-p1
Approx-Alg-p2

Exact-Alg-p1
Exact-Alg-p2

(n) BRN

1
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

5 10 15 20

C
P

U
 T

im
e

(m
s)

c

Approx-Alg-p1
Exact-Alg-p1

Approx-Alg-p2
Exact-Alg-p2

(o) NRN

1
10

1
10

2
10

3
10

4
10

5
10

6

5 10 15 20
N

u
m

b
er

 o
f

V
is

it
ed

 V
er

ti
ce

s
(M

)
c

Approx-Alg-p1
Approx-Alg-p2

Exact-Alg-p1
Exact-Alg-p2

(p) NRN

0

20

40

60

80

100

120

140

0.03 0.06 0.09 0.12 0.15

C
P

U
 T

im
e

(m
s)

ε

Approx-Alg-p1
Approx-Alg-p2

(q) BRN

1

1.1

1.2

1.3

1.4

0.03 0.06 0.09 0.12 0.15

A
p
p
ro

x
im

at
io

n
 R

at
io

ε

Approx-Alg-p1
Approx-Alg-p2

(r) BRN

0

50

100

150

200

250

0.03 0.06 0.09 0.12 0.15

C
P

U
 T

im
e

(m
s)

ε

Approx-Alg-p1
Approx-Alg-p2

(s) NRN

1

1.1

1.2

1.3

1.4

0.03 0.06 0.09 0.12 0.15

A
p
p
ro

x
im

at
io

n
 R

at
io

ε

Approx-Alg-p1
Approx-Alg-p2

(t) NRN

Fig. 11. Performance for the practical CTP query

The trajectory-based travel planning can be further divid-

ed into trajectory-to-object search and trajectory-to-trajectory

search. In the trajectory-to-object search, queries aim to find

objects spatially close to a query path according to some

distance metrics. For example, the in-route nearest neighbor

(IRNN) query [27] is designed for travelers following a fixed

route. The path nearest neighbor (PNN) query [4] [23] [25]

is an extension of the IRNN query that maintains an up-to-

date path nearest neighbor result as the user is moving along a

predefined route. Moreover, the path nearby cluster query [26]

further extends the PNN query to find the POI clusters spatially

close to a given path. In trajectory-to-trajectory search, queries

retrieve the trajectories that have similar curve and are spatially

close to a query trajectory. Travelers can use the travel history

of other travelers to guide their own trips. Chen et al. study the

trajectory similarity search in Euclidean space [5], and Shang

et al. study the problem in spatial networks [24].

9 CONCLUSION AND RESEARCH DIRECTIONS

We propose and study a novel problem, the Collective Travel

Planning (CTP) query that finds the lowest-cost travel route

that connects multiple sources and a destination via at most

k meeting points. The query is designed for ridesharing by

a large population of travelers going to the same destination.

The solution aims to offer societal and environmental benefits,

such as reducing energy consumption and greenhouse gas

emissions, enabling smarter and greener transportation, and

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2015.2509998, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 15

reducing traffic congestion. The CTP query is Max SNP-

hard. To compute the query efficiently, an approximation

algorithm was developed with a 5-approximation ratio. The

performance of CTP query processing was investigated by

means of extensive experiments on real and synthetic data.

Six interesting directions for future research exist. First, it

is of interest to study the CTP query without the k constraint.

The query then finds the least-cost travel route connecting

multiple query sources and a destination via unconstrained

meeting points. A key challenge is to design an approximation

algorithm with a suitable approximation ratio to compute the

query in interactive time. Second, it is of interest to use

travel time in the query and take the travelers’ transfer times

into account, as this makes the problem more practical. The

resulting query then aims to find the travel route with the

minimum total travel time that connects multiple travelers and

a destination, via at most k meeting points. Third, it is of

interest to take the changes of travel costs of road segments

into account and further extend the developed algorithms to

dynamic spatial networks. Fourth, it is of interest to study

a continuous CTP query for the scenario where one or more

travelers fail to reach the meeting points on time and then may

need to catch up with the group. Fifth, in the approximation

algorithm, it is of interest to study how to identify a good ini-

tial answer efficiently, to further enhance the query efficiency.

Sixth, to find the optimal solution, the exact algorithm should

be conducted k times to test all possible values of k. It is of

interest to study a more integrated exact algorithm to achieve

a higher query efficiency.

REFERENCES

[1] R. Baldacci, V. Maniezzo, and A. Mingozzi. An exact method for the
car pooling problem based on lagrangean column generation. Operation

Research, 52:422–439, 2004.

[2] R. W. Calvo, F. de Luigi, P. Haastrup, and V. Maniezzo. A distributed
geographic information system for the daily carpooling problem. Com-

puter Operation Research, Elsevier Science Ltd., 2004.

[3] M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. In STOC, pages
1–10, 1999.

[4] Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu. Monitoring path nearest
neighbor in road networks. In SIGMOD, pages 591–602, 2009.

[5] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie. Searching
trajectories by locations: an efficiency study. In SIGMOD, pages 255–
266, 2010.

[6] K. Deng, S. W. Sadiq, X. Zhou, H. Xu, G. P. C. Fung, and Y. Lu. On
group nearest group query processing. IEEE Trans. Knowl. Data Eng.,
24(2):295–308, 2012.

[7] N. Devanur, N. Garg, R. Khandekar, V. Pandit, A. Saberi, and V. Vazi-
rani. Price of anarchy, locality gap, and a network service provider
game. In Internet and Network Economics, pages 1046–1055. Springer,
2005.

[8] E. W. Dijkstra. A note on two problems in connection with graphs.
Numerische Math, 1:269–271, 1959.

[9] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. Sondag. Adaptive
fastest path computation on a road network: A traffic mining approach.
In VLDB, pages 794–805, 2007.

[10] S. Guha and S. Khuller. Greedy strikes back: Improved facility location
algorithms. In ACM-SIAM symposium on Discrete algorithms, pages
649–657, 1998.

[11] S. Guha and S. Khuller. Greedy strikes back: Improved facility location
algorithms. Journal of Algorithms, 31(1):228–248, 1999.

[12] C. Guo, Y. Ma, B. Yang, C. S. Jensen, and M. Kaul. Ecomark: evaluating
models of vehicular environmental impact. In ACM GIS, pages 269–278,
2012.

[13] A. Guttman. R-trees: a dynamic index structure for spatial searching.
In SIGMOD, pages 47–57, 1984.

[14] T. Hashem, T. Hashem, M. E. Ali, and L. Kulik. Group trip planning
queries in spatial databases. In SSTD, pages 259–276, 2013.

[15] H. Jagadish, B. Ooi, K.-L. Tan, C. Yu, and R. Zhang. idistance: An
adaptive b+-tree based indexing method for nearest neighbour search.
TODS, 30(2):364–397, 2005.

[16] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani.
Greedy facility location algorithms analyzed using dual fitting with
factor-revealing lp. JACM, 50(6):795–824, 2003.

[17] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility
location and k-median problems using the primal-dual schema and
lagrangian relaxation. JACM, 48(2):274–296, 2001.

[18] S. Ma, Y. Zheng, and O. Wolfson. T-share: A large-scale dynamic taxi
ridesharing service. In ICDE, pages 410–421, 2013.

[19] P. B. Mirchandani and R. L. Francis. Discrete location theory.
[20] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group nearest neighbor

queries. In ICDE, pages 301–312, 2004.
[21] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui. Aggregate nearest

neighbor queries in spatial databases. TODS, 30(2):529–576, 2005.
[22] C. Papadimitriou and M. Yannakakis. Optimization, approximation,

and complexity classes. In Proceedings of the twentieth annual ACM

symposium on Theory of computing, pages 229–234. ACM, 1988.
[23] S. Shang, K. Deng, and K. Xie. Best point detour query in road

networks. In ACM GIS, pages 71–80, 2010.
[24] S. Shang, R. Ding, K. Zheng, C. S. Jensen, P. Kalnis, and X. Zhou. Per-

sonalized trajectory matching in spatial networks. VLDB J., 23(3):449–
468, 2014.

[25] S. Shang, B. Yuan, K. Deng, K. Xie, K. Zheng, and X. Zhou. Pnn query
processing on compressed trajectories. GeoInformatica, 16(3):467–496,
2012.

[26] S. Shang, K. Zheng, C. S. Jensen, B. Yang, P. Kalnis, G. Li, and J.-R.
Wen. Discovery of path nearby clusters in spatial networks. IEEE Trans.

Knowl. Data Eng., online first:1–14, 2014.
[27] S. Shekhar and J. S. Yoo. Processing in-route nearest neighbor queries:

a comparison of alternative approaches. In ACM GIS, pages 9–16, 2003.
[28] B. Yang, C. Guo, C. S. Jensen, M. Kaul, and S. Shang. Stochastic

skyline route planning under time-varying uncertainty. In ICDE, pages
136–147, 2014.

[29] P. Zhang. A new approximation algorithm for the k-facility location
problem. Theoretical Computer Science, 384(1):126–135, 2007.

Shuo Shang is a professor of computer science at China University of
Petroleum-Beijing. He was a research assistant professor at department
of computer science, Aalborg University. He obtained his Ph.D. in com-
puter science from University of Queensland. His research interest is
efficient query processing in spatiotemporal databases. He has served
as session chair and invited reviewer for many prestigious conferences
and journals, including ICDE, TKDE, The VLDB Journal and ACM TIST.

Lisi Chen is a Ph.D. candidate with Nanyang Technological University.
His research interests include geo-textual data management, spatial
keyword query evaluation, and location based social networks.

Zhewei Wei is an associate professor at Renmin University of China.
He obtained his Ph.D in Computer Science and Engineering from The
Hong Kong University of Science and Technology in 2012. His research
interests include streaming algorithms and data structures.

Christian S. Jensen is Obel Professor of Computer Science at Aalborg
University, Denmark. His research concerns data management and
data-intensive systems, and its focus is on temporal and spatiotemporal
data management. Christian is an ACM and an IEEE fellow, and he is a
member of the Academia Europaea, the Royal Danish Academy of Sci-
ences and Letters, and the Danish Academy of Technical Sciences. He
has received several national and international awards for his research.
He is editor-in-chief of ACM Transactions on Database Systems (TODS)
and was an editor-in-chief of The VLDB Journal from 2008 to 2014.

Ji-Rong Wen is a professor at Renmin University of China. His main
research interest lies on Web big data management, information re-
trieval, data mining and machine learning. He was a senior researcher
at MSRA, and he has 50+ U.S. patents in Web search and related areas.
He is currently the associate editor of ACM Transactions on Information
Systems (TOIS). He is an IEEE senior member.

Panos Kalnis is an associate professor at KAUST. He received his
Diploma in Computer Engineering from the Computer Engineering and
Informatics Department, University of Patras, and PhD from HKUST. His
research interests include Database outsourcing and Cloud Computing,
Mobile Computing, and Spatiotemporal and High-dimensional Databas-
es. He serves on associate editors of TKDE, and The VLDB Journal.

