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Collective versus hub activation of epidemic phases on networks
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We consider a general criterion to discern the nature of the threshold in epidemic models on scale-free (SF)
networks. Comparing the epidemic lifespan of the nodes with largest degrees with the infection time between
them, we propose a general dual scenario, in which the epidemic transition is either ruled by a hub activation
process, leading to a null threshold in the thermodynamic limit, or given by a collective activation process,
corresponding to a standard phase transition with a finite threshold. We validate the proposed criterion applying
it to different epidemic models, with waning immunity or heterogeneous infection rates in both synthetic and
real SF networks. In particular, a waning immunity, irrespective of its strength, leads to collective activation with
finite threshold in scale-free networks with large degree exponent, at odds with canonical theoretical approaches.
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I. INTRODUCTION

The study of epidemic spreading [1] in complex topologies
is one of the cornerstones of modern network science [2],
with applications in the spread of influence, opinions,
and other social phenomena [3,4]. Of particular interest is
the theoretical understanding of epidemic models in scale-free
(SF) networks [5], in which the probability P (k) (degree
distribution) that a node is connected to k others (has degree
k) exhibits heavy tails of the form P (k) ∼ k−γ . This interest is
motivated by the possible effects that a heterogeneous topology
might have on the location of the epidemic threshold λc,
for some control parameter λ, signaling a phase transition
separating a healthy, disease-free phase, from an infected
phase, in which the epidemics can thrive [1].

For epidemics leading to a steady (endemic) state, the main
object of interest has been the susceptible-infected-susceptible
(SIS) model, which is defined as follows [6]: Individuals,
represented as nodes in the network, can assume two different
states, susceptible (S) or healthy, and infected (I ), and capable
of transmitting the disease. Infected individuals recover and
become spontaneously susceptible again with a rate β that can
be taken equal to 1. Transmission of the disease is effected
by a rate to transmit the disease through an edge connecting
an infected to a susceptible node equal to a constant λ.
After a considerable theoretical effort, it has been shown
that the behavior of the SIS model in uncorrelated [2] SF
networks is far from trivial [7–16]. Two competing theories
were initially proposed to account for the SIS epidemic
threshold. Heterogeneous mean-field (HMF) theories [1], ne-
glecting both dynamical and topological correlations, provide
a threshold λHMF

c = 〈k〉/〈k2〉 [8,17], which tends to zero in
the thermodynamic limit for γ � 3, and is finite for γ > 3.
Quenched mean-field (QMF) theory [9], including the full
network structure through its adjacency matrix Aij [2], but still
neglecting dynamical correlations, predicts instead a threshold
λQMF

c � 1/�m, where �m is the largest eigenvalue of the
adjacency matrix. The scaling form of this threshold is given
by [11,18] λQMF

c � 1/
√

kmax for γ > 5/2, where kmax is the
maximum degree in the network, while for γ < 5/2 it yields
λQMF

c � 〈k〉/〈k2〉 in agreement with HMF theory. Numerical
simulations [11,12,14] indicate that QMF is qualitatively
correct in SF networks, implying that the epidemic threshold

vanishes in the thermodynamic limit when kmax diverges,
irrespective of the degree exponent γ .

The origin of this null threshold has been physically
interpreted in Ref. [14] taking explicitly into account the
interplay between the lifetime of a hub of degree k, τ rec

k ,
and the time scale τ inf

k,k′ with which an infected hub of degree
k infects a susceptible hub of degree k′. The fact that the
lifetime τ rec

k is diverging with degree k faster than τ inf
k,k′ for any

value of λ is the ultimate cause of the null epidemic threshold
in the SIS model [10,14,15]. However, other epidemic and
dynamical models on SF networks, in particular the contact
process (CP) [19], defined by an infection rate inversely
proportional to the degree of the infected node, λ/k, possess
a finite threshold which can be better captured in terms of a
HMF theory [20,21]. This observation claims an understanding
of the mechanisms ruling epidemic transitions, regarding in
particular the conditions under which the threshold is either
constant or vanishing.

The results of Ref. [14], while important, are strictly applied
to the SIS process, and thus a general formalism, adapted to
more complex and realistic epidemic models with a steady
state, is still lacking. Here we determine the recovery τ rec and
infection τ inf time scales of hubs for generic epidemic models
including waning immunity and arbitrary edge-dependent
infection rates and, building on these results, we propose a
classification of endemic epidemic transitions on networks:
When τ rec � τ inf , a scenario of local hub activation with
mutual hub reinfection is at work [14], leading to λc → 0 when
the recovery times diverge in the thermodynamic limit. In
such scenario, QMF theories are expected to be qualitatively
correct. On the other hand, for τ rec � τ inf , mutual hub
reinfection cannot take place, and an endemic state is possible
only through a collective activation of the whole network in
a standard phase transition occurring at a finite threshold. In
this second scenario, HMF theories should be correct.

We present evidence for this scenario analyzing the
susceptible-infected-removed-susceptible (SIRS) model [6],
an extension of the SIS model allowing for a waning immunity
of nodes. While it has be shown that SIRS is equivalent
to SIS dynamics in the framework of standard mean-field
theories [22], here we show that the effect of waning immunity
is to induce a finite threshold in SF networks for γ > 3, at
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odds with QMF and qualitatively described by HMF theories.
For sake of generality, the theory is also applied to other
epidemic models without immunity, namely, the CP [19] and
the generalized SIS model proposed by Karsai, Juhász, and
Iglói (KJI) [23] with weighted infection rates.

Our paper is organized as follows: We develop the theory
for the interplay between of hub lifetime and mutual hub
infection time in Sec. II and corroborate the theory with
simulations on synthetic and real SF networks in Secs. III
and IV, respectively. We briefly summarize our conclusions
and prospects in Sec. V. Three appendixes complement the
paper: HMF and QMF theories for the investigated models are
presented in Appendixes A and B while simulation methods
are presented in Appendix C.

II. THEORY

A. Generalized epidemic model

To develop our theory we study a generalized epidemic
model on a network where each vertex can be either healthy
or susceptible (S), infected (I ), and immune or recovered
(R). Infected individuals recover spontaneously, I → R, with
rate β. Recovered individuals become again spontaneously
susceptible (waning immunity), R → S, with a rate α. Infected
nodes of degree k transmit the disease to each adjacent
susceptible node of degree k′ with a heterogeneous infection
rate λk,k′ . See Figs. 1(a) and 1(b) for a graphical description
of the model. From this generalized epidemic model, classical
ones can be recovered: the SIS model (α → ∞, λk,k′ = λ);
the CP [19] model (α → ∞, λk,k′ = λ/k); the SIRS model

•  •  •

FIG. 1. Generic epidemic model in complex networks. (a) Nodes
in the network can be either healthy or susceptible (S), infected
(I ), and immune or recovered (R). (b) Infected individuals recover
spontaneously, I → R, with rate β. Recovered individuals become
again spontaneously susceptible, R → S, with a rate α. Heteroge-
neous transmission is implemented by infected nodes of degree k

transmitting the disease to adjacent susceptible nodes of degree k′

with rate λk,k′ . (c) Schematic representation of a chain of d vertices
of arbitrary degrees k1,k2, . . . ,kd , connecting two hubs of degree k

and k′. The infection starting in the center of the leftmost star (red)
aims to reach the rightmost star (blue). Stubs represent edges that can
transmit but cannot receive the infection.

(α finite, λk,k′ = λ); the KJI [23] model (α → ∞, λk,k′ =
λ/(kk′)θ ), etc.

To be used later, we define the average infection rate
produced, λout

k , and received, λin
k , by a vertex of degree k as

λout
k =

∑
k′

λkk′P (k′|k), λin
k =

∑
k′

λk′kP (k′|k), (1)

respectively, where P (k′|k) is the probability that a vertex of
degree k is connected to vertex of degree k′ [24].

B. Hub lifetime

We focus in the first place on the hub lifetime τ rec
k , which

is defined as the average time that a hub of degree k, starting
from a configuration with a single infected node, takes to reach
a configuration in which the hub and its nearest neighbors are
all susceptible. To estimate this quantity, we approximate the
dynamics of a hub of degree k by that of a star-like graph,
composed by a center connected to k nodes (leaves) of arbitrary
degree, the red nodes in Fig. 1(c), where we neglect infection
coming from outside the star. For analytical tractability, we
consider a simplified generic epidemic process with two states
(S, I ) in the leaves and three states (S, I , R) in the center.
The rate of infection along an edge from a leaf to the center
is approximated by λin

k and from the center to a leaf by λout
k ,

see Eq. (1); that is, we consider the effect of the leaves as
an average over their possible degree values k′, weighted
with the probability P (k′|k). The transitions I → S (leaves),
I → R and R → S (center) have constant rates β, β, and α,
respectively. The lifespan for this dynamics is larger than in
the real model, where leaves can also assume the R state, and
so it provides an upper bound for the true τ rec

k .
We approximate this dynamics in a star as follows:
(i) At t = 0 the center is infected and all leaves are

susceptible.
(ii) At time t1 = 1/β the center becomes recovered and n1

leaves are infected with probability

P1(n1|k) =
(

k

n1

)
p

n1
1 (1 − p1)k−n1 , (2)

where p1 = 1 − exp(−λout
k /β) is the probability that each leaf

was infected by the center in the interval t < t1.
(iii) At time t = t1 + t2, where t2 has a distribution ρ2(t2) =

α exp(−αt2), the center becomes susceptible and n2 leaves
remain infected with probability

P2(n2|n1) =
(

n1

n2

)
p

n2
2 (1 − p2)n1−n2 , (3)

where p2 = exp(−βt2) is the probability that each active leaf
remains infected for a time t2.

(iv) At time t = t1 + t2 + t3, where t3 = 1/β, all n2 leaves
infected at time t1 + t2 become (synchronously) susceptible
and the center is infected again with probability

P3(n2) = 1 − (1 − p3)n2 , (4)

where p3 = 1 − exp(−λin
k /β) is the probability that each leaf

sent the infection to the center during a time t3.
Steps (ii) and (iv) are essentially a generalization of the

approximation for SIS dynamics on stars in Ref. [14], in
which stochasticity of infective time and multiple infections
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of the leaves are neglected, while step (iii) does not involve
approximations. Treating step (iii) stochastically is essential
since the rare events in which only a few infected leaves survive
cannot be neglected. The probability that the star returns to its
initial state in one step with interevent times t1, t2, and t3 is

qk(t2) =
k∑

n1=1

P1(n1|k)
n1∑

n2=1

P2(n2|n1)P3(n2). (5)

Averaging qk(t2) over ρ2(t2) we finally have

Qk = 1 − α

∫ ∞

0
e−αt2 [1 − e−βt2A]kdt2, (6)

with A = (1 − e−λout
k /β)(1 − e−λin

k /β). Now, the probability that
this dynamics survives for s steps of average duration τ0 =
t1 + 〈t2〉 + t3 = 2/β + 1/α is P (s) = Qs−1

k (1 − Qk) and the
average number of survival steps is 〈s〉 = ∑∞

s=1 sP (s) =
1/(1 − Qk). We thus obtain the final result,

τ rec
k ≡ τ0〈s〉 = τ0

1 − Qk

. (7)

Considering the absence of waning immunity inserting in
Eq. (6) the limit limα→∞ αe−αt = δ(t), the Dirac δ function,
and assuming λin

k /β,λout
k /β � 1, we obtain

τ rec
k ∼ exp

(
kλin

k λout
k /β2

)
. (8)

In the case of α finite, Eq. (6) becomes, after the change of
variable u = Ae−βt ,

Qk = 1 − α

βAα/β

∫ A

0
uα/β−1(1 − u)k du. (9)

We can estimate the behavior of Qk in the limit of large k using

(1 − u)k = exp [k ln(1 − u)] � e−uk, (10)

valid for A < 1, and∫ A

0
ua−1e−uk du �

∫ ∞

0
ua−1e−uk du = k−a�(a), (11)

where �(z) is the gamma function [25], and in which the
extension of the integral’s upper limit to infinity is valid for
kA large. Thus, from Eq. (9), we obtain

Qk � 1 − α

βAα/β
�

(
α

β

)
k−α/β . (12)

From here and Eq. (7), it follows that, in the limit of large k,

τ rec
k ∼ kα/β

[(
1 − e−λout

k /β
)(

1 − e−λin
k /β

)]α/β
. (13)

C. Hub mutual infection time

To estimate the infection time τ inf
k,k′ , we consider two stars

of degree k (the source i = 0) and k′ (the target at i = d + 1),
connected through a path of d vertices (i = 1,2, . . . ,d) of
arbitrary degree; see Fig. 1. The following hypotheses are
used in the derivation for the case τ rec

k � 1/λout
k :

(i) The vertex with degree k on the left (i = 0) is never
recovered and transmits the infection to its nearest neighbor at
i = 1 at an average rate λout

k and, in an average, a new epidemic
outbreak is started at i = 1 each 1/λout

k time units.

(ii) We assume that both λkk′/β � 1 and λkk′/α � 1 and
consider only the epidemic routes where an infected vertex
always transmits the infection to its right neighbor before
it becomes recovered or susceptible [14]. Additionally, we
assume the average transmission rate for all edges inside
the chain (i = 1, . . . ,d − 1) λ̄ = ∑

k′ λ
out
k P (k) that leads to

the average probability of transmission per edge given by
q̄ = λ̄/(λ̄ + β).

(iii) The rate at which an infected vertex at i = d transmits
the infection to the rightmost hub of degree k′ at i = d + 1
is approximated by λin

k′ . The average probability to transmit
to i = d + 1 before recovering of i = d is, therefore, q̄k′ =
λin

k′/(λin
k′ + β).

(iv) The probability that an infection started at i = 1 reaches
the rightmost hub (i = d + 1) under these assumptions is
given by q̄d−2q̄k′ and, consequently, the transmission rate is
λout

k q̄d−2q̄k′ .
(v) For small-world networks with N vertices, the average

distance between nodes of degrees k and k′ is [26]

d = 1 + ln(N〈k〉/kk′)/ ln κ, (14)

where κ = 〈k2〉/〈k〉 − 1, resulting in an upper bound for the
infection time (inverse of the rate) given by

τ inf
k,k′ � τkk′ = q̄k′

λout
k q̄

(
N〈k〉
kk′

)b(λ̄)

, (15)

where b(λ̄) = ln(1 + β/λ̄)/ln κ .
For the case τ rec

k < 1/λout
k , the leftmost star recovers before

producing the first outbreak in i = 1 and thus the infection
time becomes infinite.

III. ANALYSIS OF EPIDEMIC MODELS ON SYNTHETIC
SCALE-FREE NETWORKS

In this section we present the analysis of different epidemic
models on SF networks characterized by a degree distribution
P (k) ∼ k−γ , that in a network of finite size N extends up to a
maximum degree [27],

kmax(N ) ∼
{

N1/2 for γ < 3
N1/(γ−1) for γ > 3

. (16)

In these networks, we have

κ ∼
{
k

3−γ
max � N (3−γ )/2 for γ < 3

const for γ > 3
. (17)

We focus in particular on uncorrelated networks, with
P (k′|k) = k′P (k′)/〈k〉 [28], as generated by the uncorrelated
configuration (UCM) model [29].

A. SIS model

The SIS model is defined by α = 0 and λk,k′ = λ, indepen-
dent of k and k′, yielding λin

k = λout
k = λ. These values imply,

from Eq. (8), τ
rec,SIS
k ∼ exp(λ2k/β). On the other hand, from

Eq. (15), and using Eq. (17), we obtain a τ
inf,SIS
k that is constant

for γ < 3 (b → 0), while for γ > 3 (b → const) it shows
an algebraic increase that, for the largest hubs with degree

kmax given by Eq. (16), takes the form τ inf,SIS ∼ N
γ−3
γ−1 b(λ).

Both expressions have been confirmed by means of numerical
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simulations of the SIS model in Ref. [14]. We have thus that, for
the SIS model τ rec,SIS

k � τ inf,SIS, i.e., the hubs survive for much
longer times than are needed for hubs to reinfect another, and
there is therefore a plausible scenario in which the transition
is ruled by a hub activation dynamics. This possibility is
substantiated by an analysis of the SIS dynamics within a
theory taking into account, at a mean-field level, the dynamics
of hub recovery and mutual reinfection, leading to a vanishing
epidemic threshold scaling with network size in qualitative
agreement with the predictions of QMF theory [14].

B. Contact process

In the case of the CP [19], we have α = ∞ and λk,k′ = λ/k

implying λin
k = λ/〈k〉 and λout

k = λ/k, and thus, from Eq. (8),
τ

rec,CP
k ∼ const. On the other hand, 1/λout

k , and thus τ inf,CP,
diverges implying that, for any value of γ , τ rec,CP � τ inf,CP.
This result indicates that it is impossible to have a scenario
in which the transition is driven by the successive activation
and reactivation of hubs, and that the associated epidemic
transition must be given by a collective phenomenon, involving
the activation of the whole network. This collective transition
is consistent with the finite threshold numerically observed in
the CP on SF networks [20,21], in agreement with HMF pre-
dictions [19,21]. Interestingly in the case of the CP, the QMF
prediction [30] coincides with the HMF theory [19], λc = 1,
indicating a threshold completely independent of the network
structure. This theoretical prediction is not fully observed in
numerical simulations, which show a constant threshold but
that is modulated by network heterogeneity [19–21].

C. KJI model

The KJI model is defined by α → ∞ and a heterogeneous
infection rate λk,k′ = λ/(kk′)θ , with 0 � θ � 1; that is, the
infection power decreases with the degree of both the infected
and susceptible nodes connected by the corresponding edge.

Simple HMF theory [23] (see Appendix A) predicts a
threshold in uncorrelated networks

λHMF,KJI
c = 〈k〉

〈k2(1−θ)〉 , (18)

which takes a finite value for γ > 3 − 2θ , and in particular
for γ > 3 and any θ > 0. On the other hand, QMF theory (see
Appendix A) predicts

λQMF,KJI
c = 1

�D
m

, (19)

where �D
m is the largest eigenvalue of the matrix Dij =

Aij/(kikj )θ , Aij being the adjacency matrix. This largest
eigenvalue (see Appendix A) increases with network size for
θ < 1/2 irrespective of γ . Therefore the QMF prediction is a
vanishing threshold for θ < 1/2, and a finite one otherwise.

Applying Eq. (1) to the present model leads to λin
k =

λout
k = λ〈k1−θ 〉/(〈k〉kθ ), which translates, from Eq. (8), to a

hub recovery time τ
rec,KJI
k ∼ exp(const k1−2θ ) that is finite for

θ > 1/2 and diverges as a stretched exponential for θ < 1/2.
These results are backed up by numerical simulations of the
KJI model on star graphs; see Fig. 2(a).
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FIG. 2. (a) Lifespan for KJI model on star graphs with
λ〈k1−θ 〉/〈k〉 = 0.2 confirming the stretched exponential asymptotic
behavior expected for θ < 1/2. (b) Epidemic activation thresholds
for the KJI model with different values of θ and γ = 3.5.

The mutual infection time of hubs for θ < 1/2 scales
similarly as in the SIS dynamics τ inf,KJI ∼ N [(γ−3)/(γ−1)]b(λ̄)

for γ > 3 and τ inf,KJI ∼ const for γ < 3, the only difference
being in the factor λ̄ = λ〈k−θ 〉〈k1−θ 〉/〈k〉. For θ � 1/2, we
have 1/λout

k and thus τ inf,KJI diverging as in the CP case.
Thus, in the case γ > 3, where HMF and QMF predictions
disagree markedly for θ < 1/2, we obtain that, for θ < 1/2,
the transition should be driven by a hub activation mechanism,
since in this region τ rec � τ inf , and thus should correspond
to a vanishing threshold, qualitatively in agreement with
QMF, which indeed predicts a threshold λQMF,KJI

c ∼ k
θ−1/2
max ;

see Appendix A. For θ > 1/2, on the other hand, the hub
lifetime is finite, compatible with a collectively activated
transition, and corresponding to a finite threshold, in agreement
with both HMF and QMF theories. These predictions are
verified in Fig. 2(b) by means of numerical simulations of
the KJI model on SF networks using the quasistationary (QS)
method [20,31], estimating the effective threshold for each
network size as the position of the main peak shown by the
susceptibility χ = N (〈ρ2〉 − 〈ρ〉)/〈ρ〉 (see Appendix C for
simulation details). For values of θ close to 1/2, however,
long crossovers are found in the threshold, in analogy with
the behavior observed in the lifespan of stars. Indeed, after
a crossover that can be very long as θ approaches 1/2, the
epidemic lifetime of the KJI model on star graphs of increasing
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size reaches the asymptotic regime of a stretched exponential;
see Fig. 2. These crossovers, also observed in the numerical
estimate of the QMF threshold (see Appendix A), explain the
apparently constant threshold observed in Fig. 2 for θ = 0.4.
Equivalent scenarios can be drawn for γ < 3 with critical
values of θ smaller than 1/2.

D. SIRS model

We finally consider the SIRS model, an extension of the
SIS model, with the same λk,k′ constant, but with a finite
waning immunity. Application of standard mean field theories
(see Appendix B) leads to exactly the same result as the
SIS model, independently of the waning immunity α, i.e.,
λHMF,SIRS

c = 〈k〉/〈k2〉 and λQMF,SIRS
c = 1/�m. So, we face

the same situation of the SIS and KJI models, with two
contradictory predictions in SF networks for γ > 3.

In the SIS model, from Eq. (13), and given that λin
k = λout

k =
λ, we obtain

τ
rec,SIRS
k ∼ kα/β, (20)

that is, an algebraic increase of the hub recovery time with
degree, modulated by the exponents α and β. This analytic
prediction is confirmed in numerical simulations of the SIRS
model using the QS method (see Appendix C for details) in
Fig. 3(a). The agreement observed is expected for small λ,
since only a few leaves are infected in each step and thus
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FIG. 3. (a) Lifespan for SIRS or SIS dynamics on star graphs with
k leaves for λ = 0.05, β = 1, and different values of α. Solid lines are
power laws τk ∼ kα/β . (b) Infection times of vertices of degree k′ in a
network with N = 105 vertices where the epidemics starts in a vertex
of degree k = 50 which is never cured. The solid line represents the
theoretical value of Eq. (15). (c) Epidemic thresholds against network
size for different immunization times 1/α, using SF networks with
degree exponents γ = 2.2 (bottom curves) and γ = 2.7 (top curves).
Dashed lines correspond to λQMF

c = 1/�m, where �m is the largest
eigenvalue of the adjacency matrix.

neglecting the recovered leaves at the end of each step becomes
a good approximation.

Application of Eq. (15) turns out the same result as in
the SIS model, i.e., a finite infection time for γ < 3 and an
algebraic increase for γ > 3. This result, which is independent
of α, is numerically confirmed in Fig. 3(b). At this respect, it
is interesting to notice that the basic hypothesis used in our
analysis, see Sec. II B, considering only the epidemic routes
where the infected vertices always transmit the infection to its
right neighbor before it becomes recovered or susceptible [14],
is more precise for longer immunization periods (small α)
since the multiple infections of a vertex in this path occurs
rarely, implying the bound is an estimate of τ inf

k,k′ for SIRS as
good as or better than that for SIS.

Combining the previous results, we observe that for γ < 3,
the hub recovery time is always larger than the hub infection
time, the same situation observed in the SIS model, with the
only difference of the sharper (exponential) increase of τ rec

k in
the SIS case. The scenario that we expect in this range of γ

values is thus a SIS-like transition, with the hub reinfection
mechanism at work and a vanishing epidemic threshold,
in qualitative agreement with QMF. In order to check the
prediction, we have performed numerical simulations of the
SIRS model on SF networks using the QS method (see
Appendix C for details). In Fig. 3(c) we show that, for
γ < 3, even a very small value of α/β leads to a scaling
of the epidemic threshold against network sizes, in very good
agreement with the QMF prediction.

For γ > 3, on the other hand, the situation is more complex
and the threshold finite-size behavior depends on α. From the
divergence of the maximum degree in Eq. (16), we obtain
τ inf,SIRS ∼ N [(γ−3)/(γ−1)]b(λ) and τ rec,SIRS ∼ N (α/β)/(γ−1), that
is, algebraic increases with network size in both cases. A
SIS-like regime (hub reinfection triggering epidemics where
the threshold decreases with N ) is expected whenever 1/β �
τ inf,SIRS � τ rec,SIRS, which corresponds to b(λ) < α

β(γ−3) ln κ

or, equivalently,

λ > βϑ(α,γ ) ≡ β/
[
κα/[β(γ−1)] − 1

]
. (21)

Unless α is sufficiently small and/or γ is sufficiently large,
this inequality is violated, and the hub lifetime is smaller than
the hub infection time. This indicates that the hub activation
scenario is not viable, and in analogy with the contact process,
it hints towards a finite threshold. However, for sufficiently
small ϑ(α,γ ), we can observe a region of λ values for which
the hub activation mechanism is at work, leading to an effective
threshold decreasing with N . A sufficient condition to observe
this effective SIS-like behavior is βϑ(α,γ ) < λSIS

c (N ), the
effective SIS threshold in the network of size N [12,14,32],
since if the SIS dynamics cannot activate hubs in a network,
SIRS dynamics cannot either, due to the suppressing effect
of immunity. Assuming a scaling λSIS

c (N ) ∼ k
−μ
max where μ =

1/2 for the QMF theory [11], this SIS-like behavior should
be observed for network sizes N � Nc ≡ [βϑ(α,γ )](γ−2)/μ,
crossing over to a constant threshold for N � Nc.

Numeric thresholds for γ > 3 are shown in Fig. 4. As we
can see, for sufficiently small α (up to 1 for γ = 4), we can
observe a constant threshold for large N . For larger α values,
the trend is still decreasing, being the constant plateau located
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FIG. 4. Epidemic threshold for SIRS model against network size
for UCM networks with distinct degree exponents (a) γ = 3.5 and
(b) γ = 4.0 with minimal degree k0 = 3. This SIS limit (α = ∞) is
also included for comparison.

on system sizes larger than those available to our computer
resources.

IV. SIRS MODEL ON REAL NETWORKS

These results presented so far have been checked on syn-
thetic uncorrelated networks. They can however be extended
to real correlated networks, characterized by conditional
probability P (k′|k) with a nontrivial dependence on k [28].
Focusing on the SIRS model, in Figs. 5(a) and 5(b) we
present numerical simulations on two SF real networks.
We consider in particular the location-based social network
Gowalla [33] and the product copurchasing network in the
Amazon website [34], possessing degree exponents smaller
and larger than 3, respectively; Fig. 5(c). According to QMF
theory, the thresholds for these networks are equal to the
inverse of the largest eigenvalue of their adjacency matrix.
By means of a numerical diagonalization, we obtain the
values λQMF,Gowalla

c = 0.0059 and λQMF,Amazon
c = 0.042. Our

simulations show, in the case of the Gowalla network, with
a degree exponent γ � 2.4 < 3, that numerically estimated
thresholds are essentially independent of α and very close
to the QMF prediction. This behavior is consistent with the
theoretical expectation of a hub activated dynamics, to be
observed in the regime γ < 3; see Fig. 5(a). On the other hand,

for the Amazon network, with degree exponent γ ≈ 3.5 > 3,
we observe effective thresholds that diminish with increasing
α, approaching the QMF prediction for α → ∞. This behavior
is again in agreement with the prediction for the SIRS model
in SF networks with γ > 3, that indicates a finite threshold for
small α values, opposite to the QMF prediction of threshold
independence.

V. SUMMARY

The determination of the properties of the epidemic transi-
tion in models of disease propagation in highly heterogeneous
networks is a crucial topic in network science, to which a large
research effort has been recently devoted. Among others, one
of the main questions that remains to be answered in this
field is what are the conditions under which a given epidemic
model leads to a vanishing or a finite threshold, and how the
properties of the epidemic transition can be best described
from a theoretical point of view.

In the present paper, building on an extension of the
theory of Ref. [14], we have proposed a general criterion
to discern the nature of thresholds in epidemic models. The
criterion is based on the comparison of the time scales of hub
recovery (lifespan) and hub reinfection. When the lifespan
is larger than the infection time, dynamics is triggered by
a hub activation process, akin to the SIS dynamics: Hubs
survive for very long times, and are able to reinfect each
other, in such a way as to establish a long-lived endemic state.
This hub activation scenario leads to a vanishing threshold
when the lifespan is diverging faster than the reinfection time
in the thermodynamic limit. In this case, QMF theories are
expected to be qualitatively correct. The reason underlying
the effectiveness of QMF theories lies in the fact that they
take into account the full topological structure of the network,
and are dominated by the effects of the largest hubs. On
the other hand, for a lifespan smaller than the infection time
scale, hub activation cannot be sustained and possible epidemic
phase transitions should be the result of a collective activation
process, leading to a standard phase transition at a finite
threshold, as in the case of the CP. In this second scenario,
HMF theories should be qualitatively correct, due to the fact
that they work on the annealed network approximation, in
which every node can interact with every other with a degree
dependent probability [35].
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FIG. 5. Simulation of SIS and SIRS dynamics on real networks. Quasistationary density against infection rate in (a) Gowalla and (b) Amazon
networks for different waning immunity rates. Arrows indicate the positions of the thresholds obtained via susceptibility method and QMF
theory; see Appendix B. (c) Degree distribution for Gowalla (N = 196 591, kmax = 14 730, γ = 2.4) and Amazon networks (N = 334 863,
kmax = 549, γ = 3.5). Solid lines are power-law regressions.
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To check the validity of the criterion, we have investigated a
generic epidemic model with spontaneous recovering, waning
immunity, and edge degree dependent infection rates on scale-
free networks, for which we can compute analytic expressions
for the hub recovery and infection time scales. The model
has as particular cases the fundamental epidemic models,
as the SIS, SIRS, and CP as well as more complex ones
as the generalized SIS model of Ref. [23], which we have
considered. After exemplifying our framework with the known
cases of the SIS and CP models, we present an extended
discussion of the SIRS model, an extension of the SIS model
with waning immunity. While previous analytic approaches
(HMF and QMF theories) predict for the SIRS model the
same behavior as the SIS model, the main result from our
criterion is that we are able to show that, instead, the effect of
even a small amount of waning immunity is able to restore a
finite threshold (albeit affected by possible strong finite-size
effects) in scale-free networks with degree exponent γ > 3, at
odds with the QMF theory valid for SIS in this regime, and in
agreement with HMF theory. Our predictions are corroborated
by means of numerical simulation on synthetic uncorrelated
scale-free networks, as well as on real correlated networks.

The proposed criterion represents a step forward in our
understanding of the properties of the epidemic transition in
epidemic modeling, and thus opens the path to study more gen-
eral and realistic models. In this sense, its application to more
complex models is straightforward, only possibly hampered by
technical difficulties in extracting analytic expressions for the
hub lifetime and infection time scales. These time scales can,
however, be numerically estimated from direct simulations of
epidemics on star networks, as we have shown in the examples
presented here.
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APPENDIX A: MEAN-FIELD THEORY OF THE KJI
MODEL ON NETWORKS

In the Karsai, Juhász, and Iglói (KJI) model [23], an edge
transmits the infection from a vertex j to vertex i at a weighted
rate λij = λAij /(kikj )θ , where θ is a control parameter.1 The
HMF theory for the KJI model is set in terms of the probability
Ik that a node of degree k is infected, while it is susceptible
with probability 1 − Ik . The rate equation for this quantity can
be simply written as [23,35,36]

dIk

dt
= −Ik + k(1 − Ik)

∑
k′

λ

(kk′)θ
Ik′P (k′|k), (A1)

1A constant factor in the original definition was absorbed in λ.

where P (k′|k) is the probability that an edge from a node of
degree k points to a node of degree k′ [24]. The threshold
is obtained by linearizing Eq. (A1) around the fixed point
Ik = 0, which yields for uncorrelated networks with P (k′|k) =
k′P (k′)/〈k〉 [28]

dIk

dt
=

∑
k′

Lkk′Ik′ , (A2)

with a Jacobian

Lkk′ = −δkk′ + λ(kk′)1−θP (k)/〈k〉. (A3)

The absorbing state Ik = 0 loses stability when the largest
eigenvalue of Lkk′ is null. We thus obtain a threshold for the
active state with the form

λHMF
c = 〈k〉

〈k2(1−θ)〉 . (A4)

As we see from this equation, θ = 0 leads to the epidemic
threshold of the SIS model, depending on γ , while θ = 1/2
leads to the threshold of the CP model, independent of the
network structure. For general values of θ , a finite HMF
threshold is expected for γ > 3 − 2θ , while it is null for
γ < 3 − 2θ .

From the point of view of QMF theory, based on the
microscopic probability Ii that node i is infected, the relevant
rate equation can be written as [2]

dIi

dt
= −Ii + λ(1 − Ii)

∑
j

Ij

Aij

(kikj )θ
, (A5)

where Aij is the adjacency matrix [2] with value Aij = 1
if nodes i and j are connected, and zero otherwise. After
linearization, stability analysis leads to a threshold inversely
proportional to the largest eigenvalue �D

m of the matrix

Dij = Aij

(kikj )θ
. (A6)

No general analytical expression is available for the
largest eigenvalue of this matrix, so we have proceeded to
determine it numerically in SF networks generated using the
uncorrelated configuration model (UCM) [29]; see Fig. 6.
We find that �D

m ∼ �m/kθ
max for θ < 1/2, where �m is the

largest eigenvalue of the adjacency matrix Aij , and a constant
for θ > 1/2. For γ > 3, since �m ∼ √

kmax [18], we have
�D

m ∼ k
1/2−θ
max for θ < 1/2 and �D

m ∼ const for θ � 1/2. The
behavior of the largest eigenvalue in this case has strong
finite-size effects close to θ = 1/2. These size effects can be
observed in the crossover from a flat region to the scaling
regime k

1/2−θ
max for θ < 1/2, a crossover that takes place at

larger values of kmax when θ approaches 1/2.
These observations indicate that, for θ < 1/2, a zero thresh-

old is obtained in the thermodynamic limit, independently of
γ , while a finite threshold should occur for θ > 1/2.

APPENDIX B: MEAN-FIELD THEORIES FOR THE SIRS
MODEL ON NETWORKS

In the HMF theory, the densities of infected, recovered,
and susceptible vertices of degree k are represented by Ik ,
Rk , and Sk , respectively, and obey the normalization condition
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FIG. 6. Scatter plot of the largest eigenvalue �D
m of the matrix

Dij = Aij /(kikj )θ against the degree of the most connected vertex
kmax for UCM networks with exponents (a) γ = 2.7 and (b) γ = 3.5
using minimal degree k0 = 3 and structural cutoff kc ∼ N 1/2 [29].
The results were computed for five independent networks for γ = 3.5
and 1 for γ = 2.7 (largest degree fluctuates little). Sizes of N = 103,
3 × 103, 104, 3 × 104, 105, 3 × 105, 106, 3 × 106, 107, 3 × 107, and
108 were used. In the bottom panel, solid lines are power laws k1/2−θ

max .
In the top panel, solid lines are proportional to �m/kθ

max, with �m

being the numerically estimated largest eigenvalue of the adjacency
matrix Aij for θ < 1/2.

Ik + Rk + Sk = 1. The HMF dynamic equations, setting β =
1, are given by [22,35,36]

dIk

dt
= −Ik + λkSk

∑
k′

Ik′P (k′|k), (B1)

and

dRk

dt
= −αRk + Ik. (B2)

To determine the threshold where an active state becomes
stable, we perform a linear stability analysis around the
fixed point Ik = Rk = 0, corresponding to the absorbing
state. Since we are interested in long times, a quasistatic
approximation [37] dRk

dt
≈ 0 is used to obtain Ik = αRk , which

is inserted in Eq. (B1) to result in a linearized equation with
Jacobian

Lkk′ = −δkk′ + λkP (k′|k). (B3)

The absorbing state loses stability when the largest eigenvalue
of Lkk′ is null. Thus, for uncorrelated networks with P (k′|k) =
k′P (k′)/〈k〉, we easily obtain that the infected state is stable
for [22]

λ > λHMF
c = 〈k〉

〈k2〉 . (B4)

In the QMF theory, the process is defined in terms of the
probabilities that a vertex i is infected, Ii , recovered, Ri , or
susceptible, Si , which fulfill the equations

dIi

dt
= −Ii + λSi

∑
j

IjAij , (B5)

and

dRi

dt
= −αRi + Ii, (B6)

where Aij is the adjacency matrix [2], and we consider the
normalization condition Ii + Ri + Si = 1.

Applying a quasistatic approximation to Eqs. (B5) and (B6),
we obtain the linearized equation

dIi

dt
=

∑
j

Lij Ij , (B7)

with the Jacobian Lij = −δij + λAij , implying that the thresh-
old is given by [38]

λQMF
c = 1

�m

, (B8)

where �m is the largest eigenvalue of the adjacency matrix.

APPENDIX C: SIMULATION METHODS

SIRS simulations were implemented for β = 1 adapting
the simulation scheme of Refs. [12,32]: At each time step, the
number of infected nodes Ni , the number of edges emanating
from them Nk , and the number of recovered vertices Nr , are
computed and time is incremented by dt = 1/(Ni + λNk +
αNr ). With probability Ni/(Ni + λNk + αNr ) one infected
node is selected at random and becomes recovered. With
probability αNr/(Ni + λNk + αNr ), a recovered vertex is
selected and turned to susceptible. Finally, with probability
λNk/(Ni + λNk + αNr ), an infection attempt is performed in
two steps: (i) An infected vertex j is selected with probability
proportional to its degree. (ii) A nearest neighbor of j is
selected with equal chance and, if susceptible, is infected. If
the chosen neighbor is infected or recovered nothing happens
and the simulation runs to the next time step. The numbers
of infected and recovered nodes and links emanating from
the former are updated accordingly, and the whole process
is iterated.

KJI simulations were performed generalizing the previous
algorithm as follows. For each node of the network we
calculate the weight

wi =
∑

j

Aij (kikj )−θ , (C1)

proportional to the total infection rate transmitted by all edges
of i. Then, at each time step, the number of infected nodes
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FIG. 7. Susceptibility against infection rate for SIRS dynamics
with α = 1.0. We used UCM networks of different sizes (noted in the
labels) with k0 = 3 and γ = 2.7.

Ni and the sum of the weights wi over all infected nodes
Sw are computed and time is incremented by dt = 1/(Ni +
λSw). With probability Ni/(Ni + λSw) one infected node is
selected at random and becomes susceptible. With probability
λSw/(Ni + λSw), an infection attempt is performed in two
steps: (i) An infected vertex i is selected with probability
proportional to its weight wi . (ii) A nearest neighbor of i,
namely j , is selected with probability proportional to k−θ

j and,
if susceptible, it is infected.

The simulations were performed using the quasistationary
(QS) method [31,39] which permits one to overcome the
difficulties intrinsic in the simulations of finite systems with

absorbing states. In the QS method, every time the system
visits an absorbing state it jumps to an active configuration
previously visited during the simulation. This task is achieved
building and constantly updating a list containing M = 70
configurations. The update is done by randomly picking up a
stored configuration and replacing it by the current one with
probability pr�t . We fixed pr � 10−2 since no dependence
on this parameter was detected for a wide range of simulation
parameters. After a relaxation time tr , averages are computed
over a time tav . Typically, a QS state is reached at times
t � 104 for QS simulations of dynamical processes on com-
plex networks. Therefore, tr = 105 was used in all simulations.
On the other hand, averaging times from 106 to 108 were used,
the larger the average time the smaller the infection rate.

During the averaging time, the QS probability P̄ (n) that
the system has n infected vertices is computed. All stationary
quantities of interest can be derived from P̄ (n). Here, we will
investigate the density of infected vertices ρ = ∑

n nP̄ (n)/N ,
the lifespan τ = 1/P̄ (1), and the susceptibility defined as χ =
N (〈ρ2〉 − 〈ρ〉2)/〈ρ〉 [12]. This susceptibility has a diverging
peak at the transition to an absorbing state on complex net-
works [12,21,40] and has been successfully used to determine
the thresholds for epidemic models [12,38,41,42].

Simulations were done on SF networks with N vertices
and degree distribution P (k) ∼ k−γ generated with the un-
correlated configuration model (UCM) [29] with minimum
degree k0 = 3 and structural upper cutoff kmax = N1/2, which
guarantees absence of degree correlations in the networks
generated, that are, therefore, suitable for comparisons with the
HMF theory where this simplification was adopted. Averages
were computed using more than 20 different network samples.

The determination of the threshold, estimated as the peak
of susceptibility, is shown in Fig. 7.
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(2006).

032314-9

http://dx.doi.org/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1103/PhysRevE.66.047104
http://dx.doi.org/10.1103/PhysRevE.66.047104
http://dx.doi.org/10.1103/PhysRevE.66.047104
http://dx.doi.org/10.1103/PhysRevE.66.047104
http://dx.doi.org/10.1145/1284680.1284681
http://dx.doi.org/10.1145/1284680.1284681
http://dx.doi.org/10.1145/1284680.1284681
http://dx.doi.org/10.1145/1284680.1284681
http://dx.doi.org/10.1214/09-AOP471
http://dx.doi.org/10.1214/09-AOP471
http://dx.doi.org/10.1214/09-AOP471
http://dx.doi.org/10.1214/09-AOP471
http://dx.doi.org/10.1103/PhysRevLett.105.218701
http://dx.doi.org/10.1103/PhysRevLett.105.218701
http://dx.doi.org/10.1103/PhysRevLett.105.218701
http://dx.doi.org/10.1103/PhysRevLett.105.218701
http://dx.doi.org/10.1103/PhysRevE.86.041125
http://dx.doi.org/10.1103/PhysRevE.86.041125
http://dx.doi.org/10.1103/PhysRevE.86.041125
http://dx.doi.org/10.1103/PhysRevE.86.041125
http://dx.doi.org/10.1038/srep00371
http://dx.doi.org/10.1038/srep00371
http://dx.doi.org/10.1038/srep00371
http://dx.doi.org/10.1038/srep00371
http://dx.doi.org/10.1103/PhysRevLett.111.068701
http://dx.doi.org/10.1103/PhysRevLett.111.068701
http://dx.doi.org/10.1103/PhysRevLett.111.068701
http://dx.doi.org/10.1103/PhysRevLett.111.068701
http://arxiv.org/abs/arXiv:1203.2972
http://dx.doi.org/10.1103/PhysRevLett.109.128702
http://dx.doi.org/10.1103/PhysRevLett.109.128702
http://dx.doi.org/10.1103/PhysRevLett.109.128702
http://dx.doi.org/10.1103/PhysRevLett.109.128702
http://dx.doi.org/10.1103/PhysRevE.63.066117
http://dx.doi.org/10.1103/PhysRevE.63.066117
http://dx.doi.org/10.1103/PhysRevE.63.066117
http://dx.doi.org/10.1103/PhysRevE.63.066117
http://dx.doi.org/10.1073/pnas.0937490100
http://dx.doi.org/10.1073/pnas.0937490100
http://dx.doi.org/10.1073/pnas.0937490100
http://dx.doi.org/10.1073/pnas.0937490100
http://dx.doi.org/10.1103/PhysRevLett.96.038701
http://dx.doi.org/10.1103/PhysRevLett.96.038701
http://dx.doi.org/10.1103/PhysRevLett.96.038701
http://dx.doi.org/10.1103/PhysRevLett.96.038701
http://dx.doi.org/10.1103/PhysRevE.84.066102
http://dx.doi.org/10.1103/PhysRevE.84.066102
http://dx.doi.org/10.1103/PhysRevE.84.066102
http://dx.doi.org/10.1103/PhysRevE.84.066102
http://dx.doi.org/10.1088/1367-2630/16/5/053006
http://dx.doi.org/10.1088/1367-2630/16/5/053006
http://dx.doi.org/10.1088/1367-2630/16/5/053006
http://dx.doi.org/10.1088/1367-2630/16/5/053006
http://dx.doi.org/10.1140/epjb/e2010-00165-7
http://dx.doi.org/10.1140/epjb/e2010-00165-7
http://dx.doi.org/10.1140/epjb/e2010-00165-7
http://dx.doi.org/10.1140/epjb/e2010-00165-7
http://dx.doi.org/10.1103/PhysRevE.73.036116
http://dx.doi.org/10.1103/PhysRevE.73.036116
http://dx.doi.org/10.1103/PhysRevE.73.036116
http://dx.doi.org/10.1103/PhysRevE.73.036116


FERREIRA, SANDER, AND PASTOR-SATORRAS PHYSICAL REVIEW E 93, 032314 (2016)

[24] R. Pastor-Satorras, A. Vázquez, and A. Vespignani, Phys. Rev.
Lett. 87, 258701 (2001).

[25] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1972).

[26] J. A. Hołyst, J. Sienkiewicz, A. Fronczak, P. Fronczak, and K.
Suchecki, Phys. Rev. E 72, 026108 (2005).
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