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Leaf anthracnose (LA) and anthracnose crown rot (ACR) represent serious fungal
diseases that pose significant threats to strawberry production. To characterize the
pathogen diversity associated with above diseases, 100 strawberry plants, including
varieties of “Hongjia,” “Zhangji,” and “Tianxianzui,” were sampled from Jiande and
Zhoushan, the primary plantation regions of Zhejiang province, China. A total of
309 Colletotrichum isolates were isolated from crown (150 isolates) and leaves (159
isolates) of affected samples. Among these, 100 isolates obtained from the plants
showing both LA and CR symptoms were selected randomly for further characterization.
Based on the morphological observations combined with phylogenetic analysis of
multiple genes (ACT, ITS, CAL, GAPDH, and CHS), all the 100 tested isolates
were identified as C. gloeosporioides species complex, including 91 isolates of C.
siamense, 8 isolates of C. fructicola causing both LA and ACR, and one isolate of C.
aenigma causing ACR. The phenotypic characteristics of these isolated species were
investigated using the BIOLOG phenotype MicroArray (PM) and a total of 950 different
metabolic phenotype were tested, showing the characteristics among these isolates
and providing the theoretical basis for pathogenic biochemistry and metabolism. The
pathogenicity tests showed that even the same Colletotrichum species isolated from
different diseased tissues (leaves or crowns) had significantly different pathogenicity
toward strawberry leaves and crown. C. siamense isolated from diseased leaves (CSLA)
was more aggressive than C. siamense isolated from rotted crown (CSCR) during the
infection on “Zhangji” leaves. Additionally, C. fructicola isolated from affected leaf (CFLA)
caused more severe symptoms on the leaves of four strawberry varieties compared to
C. fructicola isolated from diseased crown (CFCR). For crown rot, the pathogenicity of
CSCR was higher than that of CSLA.
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INTRODUCTION

Strawberry (Fragaria × ananassa Duch.) is the most extensively
cultivated berry in the world. In recent years, the occurrence
of strawberry diseases become increasingly serious, especially
in the wet and rainy season (Henz et al., 1992). Strawberry
leaf anthracnose (LA) and anthracnose crown rot (ACR) are
important fungal diseases that mainly occur during both the
nursery and colonization periods of strawberries worldwide
(Freeman and Katan, 1997; Freeman et al., 2001; Curry
et al., 2002). Colletotrichum spp. as the causing agents of the
above diseases are able to cause irregular circular spots on
leaves (Karimi et al., 2019), invade the shortened crown and
expands into an annular ring, making strawberry seedlings
unable to absorb water and nutrients and killing seedlings
(Paynter et al., 2016).

Colletotrichum gloeosporioides, C. acutatum, and C. fragariae
are the main causing agents of LA in strawberry plants
(Freeman et al., 1998). Compared to LA, crown rot (CR) is
more complicated. At present, as many as about 20 different
species of pathogens have been reported in the main strawberry-
producing areas, including C. gloeosporioides (Jacobs et al., 2020),
Fusarium oxysporum (Juber et al., 2014), and Phytophthora spp.
(Li et al., 2011). In the past, LA and ACR on strawberries
were considered to be caused by the same Colletotrichum
species, namely: C. acutatum, C. fragariae, and C. gloeosporioides
caused similar disease symptoms on the crowns and leaves
of strawberry (Freeman and Rodriguez, 1994). C. acutatum
has been found on stubs, petioles, and fruits in most areas
of the US and on runner stubs, petioles, and leaves of
plants in Florida. However, it was also hypothesized that
strawberry LA and ACR in Florida was cause by different
Colletotrichum spp. (Howard et al., 1992). C. fragariae cause
all symptoms, except leaf spots, and C. acutatum causes all
symptoms, except ACR (Howard et al., 1992). Interestingly,
previous researchers also speculated that different Colletotrichum
spp. are specific to the organ of infection, even though they
can cause LA and ACR. C. gloeosporioides and C. fragariae
usually infect petioles, stolons, and the crown, but they
occasionally cause fruit rot (Peres et al., 2005). C. acutatum
(species complex) often infects petiols and the crown as
well as fruits (Peres et al., 2005). Both species can cause
both LA and ACR, however, C. gloeosporioides is most often
associated with ACR, while C. acutatum is considered the
main LA pathogen (Ureña-Padilla et al., 2002). According
to the survey on strawberry diseases conducted by Zhong
et al. (2020), three species of Colletotrichum, C. fructicola,
C. siamense, and C. nymphaeae were isolated and identified
to infect different strawberry organs. C. siamense showed
strong aggressiveness toward fruit and leaves. C. fructicola
showed strong aggressiveness toward the crown. C. siamense
showed more pathogenic than C. fructicola or C. nymphaeae.
The difference in pathogenicity may be related to metabolic
phenotype characterization (Wang et al., 2015). In 2019, our
previous study showed that all pathogenic fungi on strawberry
plants belong to the C. gloeosporioides species complex in
Zhejiang (Chen et al., 2020).

The classification and identification of Colletotrichum spp.
according to morphological characteristics is difficult because
of their instability (Cannon et al., 2012). Phylogenetic analysis
based on internal transcribed spacer (ITS) rDNA may also be
uncertain (Xie et al., 2010). At present, combining multi-gene
phylogenetic analysis with morphological characteristics is being
used to identify many important pathogens (Cai et al., 2009).
Wang et al. (2019) combined ITS, TUB2, GAPDH, and CHS1
with morphology to confirm that the species of pathogenic
fungi causing fruit and crown rot was the C. acutatum species
complex. Bi et al. (2017) combined multi-gene phylogenetic
analysis with morphological characteristics to verify that C.
truncatum was the species causing LA and fruit rot. However,
analysis and comparison of Colletotrichum spp. causing LA and
ACR on strawberries in China has not been performed. In
this study, we first identified the LA and ACR causing agents
using morphological characterization and phylogenetic analysis
of multiple genes (ACT, ITS, CAL, GAPDH, and CHS), and
the isolates were further tested for metabolic phenotype and
pathogenicity analysis to compare the different biological and
pathogenic characteristics among Colletotrichum spp.

MATERIALS AND METHODS

Disease Symptoms, Sampling, and
Fungal Isolation
For diseased sample collections, we sampled three strawberry
varieties including “Hongjia,” “Zhangji,” and “Tianxianzui.” For
each variety, ten strawberry plants were randomly sampled
from two greenhouses. The strawberry varieties “Hongjia” and
“Zhangji” were collected from four greenhouses in Zhoushan,
varieties “Hongjia,” “Zhangji,” and “Tianxianzui” were collected
from six greenhouses in Jiande. A total of 100 strawberry
plants were collected from 10 greenhouses in the main growing
areas of Zhejiang Province (27◦02′ to 31◦11′ N, 118◦01′ to
123◦10′ E), China.

For Colletotrichum spp. isolation, the diseased tissues were
washed with running tap water, cut into 5 × 5 mm pieces using
sterilized scissors, soaked in 75% alcohol for 30 s, and then soaked
in 3% sodium hypochlorite solution for 2 min, washed with sterile
distilled water three times, and dried on sterile filter paper. Each
tissue piece was placed on a plate containing potato dextrose
agar (PDA) medium supplemented with kanamycin sulfate and
streptomycin sulfate (100 mg/L) and incubated at 25◦C. After
3 to 5 days incubation, the corresponding mycelia were then
transferred to a new PDA plate (Phoulivong et al., 2010; Noman
et al., 2018). The single-conidium isolates were stored on PDA
slants at 4◦C.

Morphological Characterization
Morphological and cultural characterizations were performed
according to the methods described by Cai et al. (2009). Briefly,
the mycelia plugs (5 mm in diameter) taken from the margin of
5-day-old colony of tested isolates were transferred to the new
PDA plates and incubated at 25◦C. The experiment was designed
as a randomized complete block, with three replicates for each

Frontiers in Microbiology | www.frontiersin.org 2 April 2022 | Volume 13 | Article 860694

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-860694 April 8, 2022 Time: 14:44 # 3

Hu et al. Colletotrichum Causing Two Strawberry Disease

isolate. After 7 days, the colony diameter was measured, and the
growth rate was calculated; the colony color of the aerial hyphae
and morphology were recorded as previously described (Cai et al.,
2009; Weir et al., 2012).

Conidial suspensions of each isolate were prepared in lactic
acid from conidial masses on PDA. The shape and color of
the conidia were observed, and the sizes of 50 conidia from
each isolate were measured at 400× magnification under a
light microscope (Carl Zeiss Microscopy GmbH, Gottingen,
Germany). The sporulation and germination rates of each isolate
were calculated as previously described (Johnny et al., 2011).

Molecular Identification and
Phylogenetic Analysis
The total DNA of each tested isolate was extracted using the
fungi genomic DNA rapid extraction kit (B518229-0100; Sangon
Biotech). The target genes selected in this study were actin
(ACT), calmodulin (CAL), chitin synthase (CHS), glyceraldehyde
3-phosphate dehydrogenase (GAPDH), and internal transcribed
spacer (ITS). The cycling parameters and primers to amplify
ACT, CAL, CHS, GAPDH, and ITS used in this study were
the same as those described by Damm et al. (2012) and
Weir et al. (2012). The primers selected for corresponding
PCR amplification are shown in Table 1. The PCR products
from a 50 µL amplification system were verified on 1.0%
agarose gel at 254 nm (UV) and further sequenced by Shanghai
Sangon Biological.

All sequences were grouped and aligned using DNAMAN
v. 7.0. Sequences with single nucleotide polymorphisms were
amplified and sequenced three times to ensure that the observed
polymorphisms were not due to sequencing errors. The 100
tested isolates and referenced standard isolates (Weir et al.,
2012; Diao et al., 2017) used in this study are listed in
Supplementary Table 1. C. boninense (CBS: 123755) was used
as the outgroup (Weir et al., 2012). All sequences were aligned
using Clustal X 2.0.10 (Larkin et al., 2007). Gene sequences were
compared and corrected using the “W” function in MEGA 5.0
(Tamura et al., 2011). The gene sequences were concatenated.
Modeltest3.7.win, Win-paup4b10-console, and Mrmodeltest2,
as implemented in MrMTgui, were used to estimate the best
model of nucleotide substitution (Vaidya et al., 2011). Bayesian
inference (BI) phylogenies were constructed using Mr. Bayes
v. 3.1.2 (Ronquist and Huelsenbeck, 2003). Six simultaneous
Markov chains were run for 1,000,000 generations each, and
trees were sampled every 100th generation. The first 2,000 trees,
representing the burn-in phase of the analyses, were discarded,
and the remaining 8,000 trees were used to calculate the posterior
probability (PP) in the majority rule consensus tree. Phylogenetic
trees were drawn using treeView (Page, 1996). The alignments
and trees were deposited in treeBase.

Pathogenicity Testing
Each of the 100 tested isolate was cultured on a PDA medium for
5 days at 25◦C. The spore suspensions were prepared following
Gale et al. (2005). Five hyphae blocks (diameter of 5 mm) taken
from the colony margin were transferred to 100 mL PD liquid

medium and shaken at 160 r/min and 25◦C to induce conidia
production. After 5 days, spores were collected and adjusted to
1.0× 106 conidia/mL using a hemocytometer.

Strawberry seedlings (“Hongjia,” “Zhangji,” and “Tianxianzui”
varieties) were planted in pots filled with sterilized nutrient soil
and placed at 25± 5 ◦C under 12 h light and 12 h darkness. Five-
week-old healthy strawberry plants had not been treated with any
chemicals, were adopted for inoculation. Each leaf was inoculated
with 10 µL spore suspension drop, and each crown was sprayed
with 30 mL of the spore suspension. The negative control was
inoculated with sterile water, three plants were inoculated for
each isolate and all 100 isolates were tested. The plants were then
placed back in a greenhouse at 25 ± 5◦C with 90% humidity for
7 days under a 12 h light/dark cycle. The pathogens were re-
isolated from the diseased leaves or crowns to complete Koch’s
postulates (Chen et al., 2020).

Comparison of Pathogenicity Differences
We randomly selected representative isolates to determine the
pathogenicity on leaves (“Hongjia,” “Zhangji,” “Tianxinazui,”
“Hongyu”) and the crown (“Hongjia,” “Zhangji,”, “Tianxinazui”).
These included, JD-J-ZJ-3-2, JD-J-ZJ-5, and JD-J-ZJ-9 from C.
fructicola obtained from crown rot (CFCR), ZS-J-ZJ-54, ZS-J-ZJ-
111, and JD-J-HX-A-6 from C. siamense obtained from crown rot
(CSCR), JD-HX-Y-H-22, JD-ZJ-Y-H-69, and ZS-ZJ-Y-2-2 from
C. fructicola obtained from leaf anthracnose (CFLA), JD-HX-Y-
B-7, JD-ZJ-Y-H-60, and ZS-HX-Y-8 from C. siamense obtained
from leaf anthracnose (CSLA) were adopted.

The spore suspension was prepared, and the leaves and crown
were inoculated according to the methods described above.
Both wounded and non-wounded plants were inoculated, the
wounded condition using pin-pricking method (Karimi et al.,
2019). Depending on the size of the leaf, using a sterile sharp
needle pricking 4–12 wounds on the adaxial surface of each
leaf. Before inoculation, leaves were surface sterilized by dipping
in 1% sodium hypochlorite for 30 s and ethanol 70% followed
by washed three times with distilled water, and then left to
dry on sterile paper. For crown, using sterilizing blades caused
several wounds at the crown. For each isolate, the inoculation
was repeated three times with three leaves and crowns for each
repeat. The diameter of the lesions on the leaves was measured
7 days after inoculation (Han et al., 2016). The severity standard
of crown rot was recorded following (Haack et al., 2018). One-
way ANOVA was performed to analyze the significance difference
using IBM SPSS Statistics V22 software, and the least significant
difference (LSD) test was applied to separated mean values for
different species in the pathogenicity test at P = 0.05 level.

Phenotype Characterization
Three Colletotrichum spp. were characterized to determine the
phenotype using the Biolog standard procedure (Bochner et al.,
2001; Bochner, 2003; von Eiff et al., 2006). The concentration
of the spore suspension was adjusted to 1 × 106 conidia/mL.
Metabolic plates 1–10 were used to assess the metabolic pathways
of carbon (PM1–2), nitrogen (PM3), phosphorus and sulfur
(PM4), bio-synthetic pathways (PM5), peptide nitrogen (PM 6-
8), osmotic and ionic conditions (PM9), and pH conditions
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TABLE 1 | Primers used in this study with sequences and sources.

Gene Primers Direction Length (bp) Sequence References

ACTz ACT-512F Forward 399 ATGTGCAAGGCCGGTTTCGC Carbone and Kohn, 1999

ACT-783R Reverse TACGAGTCCTTCTGGCCCAT Carbone and Kohn, 1999

CAL CL1C Forward 773 GAATTCAAGGAGGCCTTCTC O’Donnell et al., 2000

CL2C Reverse CTTCTGCATCATGAGCTGGAC O’Donnell et al., 2000

CHS-I CHS-79F Forward 779 TGGGGCAAGGATGCTTGGAAGAAG Carbone and Kohn, 1999

CHS-354R Reverse TGGAAGAACCATCTGTGAGAGTTG Carbone and Kohn, 1999

GAPDH GDF Forward 870 GCCGTCAACGACCCCTTCATTGA Templeton et al., 1992

FDR Reverse GGGTGGAGTCGTACTTGAGCATGT Templeton et al., 1992

ITS Its-1F Forward 593 CTTGGTCATTTAGAGGAAGTAA Gardes and Bruns, 1993

Its-4 Reverse TCCTCCGCTTATTGATATGC White et al., 1990

zATC, actin; CAL, calmodulin; CHS-1, chitin synthase 1; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; ITS, internal transcribed spacer.

(PM10). To each well of the PM plates, 100 µL of a cell suspension
was added with 62% transmittance. The metabolic phenotype
test plate was placed in the Biolog system incubator at 28◦C
for 7 days. Phenotypic data were recorded every 15 min by
the OmniLog 2.4 system. Heatmaps of phenotype analysis were
generated with HemI software (Heatmap Illustrator, version 1.0;
Zhao et al., 2017).

RESULTS

Fungal Isolates of Pathogenic
Colletotrichum spp. From Strawberries
A total of 309 Colletotrichum spp. were isolated, with 150
from the crown and 159 from leaves. Pathogenicity was
determined according to the Koch’s postulate, and all isolates
were pathogenic. We selected 50 strawberry plants at random,
from which Colletotrichum spp. were successfully isolated from
both the crown and leaves. In Jiande, 10, 10, and 9 plants were
selected for “Hongjia,” “Zhangji,” and “Tianxianzui,” respectively.
In Zhoushan, 11 and 10 plants were selected for “Hongjia” and
“Zhangji,” respectively. A total of 100 isolates were collected for
further characterization, including 50 for LA and 50 for CR.

According to morphological and cultural characterizations, all
the 100 isolates were grouped into three Colletotrichum species.
The colony morphology of the above three Colletotrichum species
on PDA media did not differ substantially (Figure 1). C. fructicola
produced a gray-white colony with irregular edges and colony
was black on the back on PDA plates; the conidium heap was
orange, and conidia were cylindrical, with both ends obtuse or
pointed. Appressoria were single or scattered, and most were light
brown to dark brown, spherical, cylindrical, or fusiform, rare
for irregular type; a few produced two suborbicular appressoria.
The C. siamense colony was fluffy, gray in the middle and white
at the edge, neat, yellow in the middle on the back, and white
at the edge. The conidia were dark yellow, straight, cylindrical,
blunt and round at both ends, colorless, and smooth. Appressoria
were brown, and/or oval or spindle-shaped, with complete edges,
and a few irregularities. The aerial hyphae of C. aenigma were
sparse, light gray to white. The colony was pale white on the back
and gray–green in the center. Conidia heaps were rare, and the

conidia were stick-like, blunt, and round at both ends, single, or
loosely distributed; appressoria were dark brown and ovate or
irregularly shaped.

The significant morphological differences among three
Colletotrichum spp. were listed in Table 2. C. fructicola had the
largest spores, and C. aenigma had the largest appressoria. C.
siamense had a higher growth rate, sporulation ability, and spore
germination rate than that of C. fructicola and C. aenigma.

Phylogenetic trees were constructed using combined ACT,
GADPH, CHS, CAL, and ITS datasets consisting of 100
Colletotrichum isolates with Colletotrichum boninense (CBC
123755) as the outgroup taxa. The concatenated alignment
included 1256 characters. The boundaries of the loci used in
the alignment were as follows: ACT: 1–152; CAL: 153– 448;
CHS: 449–658; GADPH: 659–866; and ITS: 867–1256. All isolates
were identified as C. gloeosporioides species complex and fell
into three clades, with 91 isolates clustered in C. siamense, 8
isolates clustered in C. fructicola, and one isolate clustered in C.
aenigma (Figure 2).

Pathogenicity of Colletotrichum Species
on Strawberry Leaves
We conducted the pathogenicity analysis of each isolate on
leaves using four varieties: “Hongjia,” “Zhangji,” “Hongyu,” and
“Tianxianzui.” Under wounded conditions, C. siamense and
C. fructicola had significant differences (P < 0.01) in the
pathogenicity on “Zhangji“ and “Hongyu” (Figures 3A,B), and
the pathogenicity ofC. siamensewas significantly higher than that
of C. fructicola. C. siamense showed stronger pathogenicity to the
“Hongyu” and “Tianxianzui” varieties but weaker pathogenicity
to “Hongjia” and “Zhangji” (Figure 4A).

The disease spot diameters on wounded leaves caused
by C. siamense on “Hongyu” and “Tianxianzui” were 19.65
and 18.44 mm, respectively, and on “Hongjia” and “Zhangji,”
they were 13.33 and 12.65 mm, respectively. C. fructicola
showed stronger pathogenicity to “Tianxianzui,” with a disease
spot diameter of 15.5 mm. Under non-wounded conditions,
C. siamense and C. fructicola had significantly different
pathogenicity indicated by mean disease spot diameters
on “Hongjia,” “Hongyu,” and “Tianxianzui” (P < 0.01;
Figures 3C,D). The pathogenicity of C. siamense was significantly
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FIGURE 1 | Colony morphology of CACR (Colletotrichum aenigma causing crown rot), CSCR (C. siamense causing crown rot), CSLA (C. siamense causing leaf
anthracnose), CFCR (C. fructicola causing crown rot) and CFLA (C. fructicola causing leaf anthracnose) on PDA (a1–e1,a2–e2), conidia (a3–e3) and appressoria
(a4–e4,a5–e5), scale bar in 3 = 20 µm in (a3–e3,a4–e4,a5–e5).

higher than that of C. fructicola on “Hongyu” and “Tianxianzui”
but weaker than that of C. fructicola on “Hongjia.”

Pathogenicity of Colletotrichum Species
on Strawberry Crown
On the crown, we tested the pathogenicity of three strawberry
varieties: “Hongjia,” “Zhangji,” and “Tianxianzui.” Under

wounded conditions (Figures 4A,B), the pathogenicity of C.
siamense and C. fructicola was significantly different on “Hongjia”
and “Tianxianzui” but not on “Zhangji.” The pathogenicity of
C. siamense was significantly higher than that of C. fructicola
on “Tianxianzui”; the disease index achieved by C. siamense
and C. fructicola were 68.83 and 50.00, respectively. However,
the pathogenicity of C. siamense was significantly weaker than
that of C. fructicola on “Hongjia”; the disease index were 113.12
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TABLE 2 | Size of spore, appresoria, hyphae growth rates, sporulation and spore germination rate of different Colletotrichum species from strawberry.

Species Characteristicsx Conidiay Appresoriay Growth rate (mm/
day)y

Sporulation
(×106)y

Germination rate
(%)y

Length (µm) Width (µm) Length (µm) Width (µm)

C. fructicola Off White, with 17.69 ± 0.22 a 7.21 ± 0.17 a 8.55 ± 0.13 b 6.81 ± 0.10 a 13.71 ± 0.11 b 18.03 ± 3.93 a 15.92 ± 2.60 b

C. siamense Off White, with 16.28 ± 0.32 b 7.14 ± 0.20 a 7.23 ± 0.10 c 6.35 ± 0.08 b 14.22 ± 0.05 a 21.22 ± 3.07 a 24.94 ± 1.67 a

C. aenigma Off White, with 15.03 ± 0.19 c 4.96 ± 0.08 b 9.38 ± 0.30 a 6.66 ± 0.13 ab 13.45 ± 0.10 b 5.62 ± 1.85 b 9.27 ± 1.64 b

xColony characteristics: off white, with, off white mycelia with mass conidial masses.
yData is the mean ± standard error. Mean values with the same letters were not statistically different (P > 0.05) according to the least significant difference (LSD) Test.

FIGURE 2 | Bayesian inference phylogenetic tree of the Colletotrichum spp. isolated from strawberry belonging to Colletotrichum gloeosporioides species complex.
The tree was constructed based on ACT, CAL, CHS, GAPDH, and ITS. C. boninense was used as an outgroup. The scale bar shows 0.07 expected changes
per site.

and 126.9, respectively. In general, C. siamense and C. fructicola
showed the strongest pathogenic ability toward “Hongjia,”
followed by “Tianxianzui” and “Zhangji” (Figures 4A,C).
There were no significant differences under the non-wounded
conditions (Figure 4D).

Phenotype Characterization of
Colletotrichum Species From Strawberry
Using PM plates 1–10, three Colletotrichum spp. were
characterized. Overall, 950 different growth nutrient conditions

were tested, including 190 carbon substrates (PM1-2), 95
nitrogen substrates (PM3), 59 phosphorus substrates (PM4),
35 sulfur substrates (PM4), 94 bio-synthetic pathways (PM5),
285 peptide nitrogen substrates (PM6-8), 96 osmotic and ionic
conditions (PM9), and 96 pH environments (PM10) (Figure 5).

For carbon source, all three Colletotrichum spp. could
metabolize 190 carbon sources, such as sugars, nucleotides, and
carboxylic acids, and produce color reactions (Figures 5A,B).
C. fructicola had a relatively high availability, especially in
L-arabinose (PM1, A02), glycerin (PM1, B03), and dulcitol (PM1,
A12), whereas C. siamense and C. aenigma had a relatively

Frontiers in Microbiology | www.frontiersin.org 6 April 2022 | Volume 13 | Article 860694

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-860694 April 8, 2022 Time: 14:44 # 7

Hu et al. Colletotrichum Causing Two Strawberry Disease

FIGURE 3 | Pathogenicity of Colletotrichum fructicola and C. siamense to different varieties of leaves. ∗∗P = 0.01, ns = not significant. (A,B) To strawberry leaves of
different varieties under wounded condition. (C,D) To strawberry leaves of different varieties under non-wounded condition. Values with the same letters were not
statistically different (P > 0.05) according to the least significant difference (LSD) Test.

low availability. The three species showed higher utilization
rates with arbutin (PM2, B08) (Figure 5C). For amino acid
nitrogen substrate metabolization, C. siamense, C. fructicola,
and C. aenigma had high utilization rates. For phosphorus and
sulfur substrate metabolization (Figure 5D), C. fructicola had
a relatively high availability, and C. siamense and C. fructicola
had a relatively low availability. For the bio-synthetic pathways
(Figure 5E), C. aenigma had the highest overall utilization
of nutritional supplement elements, followed by C. siamense
and C. fructicola. For peptide nitrogen substrate metabolization
(Figures 5F–H), C. fructicola had the best utilization of various
peptide nitrogen elements, especially in Ala-Pro (PM6, A12),
Arg-Ala (PM6, B05), Arg-Arg (PM6, B06), and Gly-Arg (PM6),
E03), and had the highest utilization capacity, followed by C.

aenigma and C. siamense. For osmotic and ionic adaptability
(Figure 5I), C. aenigma had the highest utilization rate. The three
Colletotrichum spp. had basically the same metabolic profiles
under the condition of 80 mM sodium nitrite (PM9, H11),
but the utilization rate was not high. In the pH environmental
adaptability tests, C. aenigma had the highest utilization of pH
under different conditions (Figure 5J). The three Colletotrichum
spp. had basically the same metabolic profile under 5% ethylene
glycol (PM10, D09) and showed extremely high utilization rates.

Colletotrichum Species Causing LA and
Anthracnose Crown Rot on Strawberry
The LA and ACR in Zhejiang province were caused by different
Colletotrichum species. Total 50 isolates from LA samples were
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FIGURE 4 | Pathogenicity of Colletotrichum fructicola and C. siamense to different varieties of crown of strawberry. ∗P = 0.05, ∗∗P = 0.01, ns = not significant. (A,B)
To strawberry crown of different varieties under wounded condition. (C,D) To strawberry crown of different varieties under non-wounded condition. Values with the
same letters were not statistically different (P > 0.05) according to the least significant difference (LSD) Test.

grouped into two clusters with 8% (4 isolates) as C. fructicola
and 92% (46 isolates) as C. siamense. For ACR, 4 isolates (8%)
were identified as C. fructicola, 45 isolates (90%) were identified
as C. siamense, and one isolate (2%) was identified as C. aenigma.
Moreover, C. siamense was the most frequently pathogenic
species, causing both LA and ACR in sampled greenhouses.

In Jiande, C. siamense, C. fructicola, and C. aenigma accounted
for 87.99, 10.31, and 1.7% of all collected isolates, respectively.
They caused 82.76, 13.79, and 3.45% ACR, and 93.10, 6.89, and
0.0% LA, respectively. In Zhoushan, C. siamense and C. fructicola

accounted for 95.23 and 4.76% for ACR, 90.48% and 9.52% for
LA, respectively (Figure 6).

The size of appressoria and conidia, and the growth
rate of hyphae of the five types of Colletotrichum spp. are
shown in Table 3. The sporulation and germination abilities
were significantly different between the same Colletotrichum
species obtained from plants showing LA or CR symptoms.
The sporulation of C. fructicola causing crown rot (CFCR)
was less than C. fructicola causing leaf anthracnose (CFLA),
the C. siamense causing crown rot (CSCR) was higher than
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FIGURE 5 | (A) Carbon substrate. (B) Carbon substrate. (C) Nitrogen substrate. (D) Phosphorus and sulfur substrate. (E) Biosynthetic pathways. (F) Peptide
nitrogen substrate. (G) Peptide nitrogen substrate. (H) Peptide nitrogen substrate. (I) Osmotic and ionic adaptability. (J) pH. Overview of metabolic phenotypes of
Colletotrichum fructicola, C. siamense, C. aenigma. Heatmap of maximum area values of sources expressed as maximum curve area monitored during 84 h of
incubation. The legend of color code from blue to green, and red shades indicate low, moderate, and high utilization of sources, respectively, assessed as arbitrary
Omnilog values.

C. siamense causing leaf anthracnose (CSLA). The spore
germination rate of the CSCR and CFCR was lower than the
CSLA and CFLA. However, there was no significant difference
(P > 0.05) in the size of spores, appressorium size, hyphal growth
rate, and sporulation between the same Colletotrichum species
obtained from plants showing LA and CR symptoms.

Pathogenicity of Colletotrichum spp.
Causing LA and CR
All the Colletotrichum spp. obtained from plants showing both
LA and CR symptoms can cause leaf and crown disease when re-
inoculated on strawberry, but the pathogenicity was significantly
different (Supplementary Figure 1). Under wounded conditions,
there were no significant differences in the pathogenicity of
CSCR and CSLA to the leaves of “Hongjia” and “Hongyu.” The
pathogenicity of CSLA was higher than that of CSCR to the
leaves of “Zhangji”; the disease spot diameters caused by CSLA
and CSCR were 13.39 and 11.85 mm, respectively. While in
“Tianxianzui,” the pathogenicity of CSLA was weaker than that
of CSCR, the disease spot diameters caused by CSLA and CSCR
were 16.88 and 20.13 mm, respectively. Under non-wounded
conditions, the pathogenicity of CSLA was weaker than that of

CSCR in the “Zhangji” and “Hongyu” varieties (Table 4). For the
crown, under wounded conditions, the pathogenicity of CSCR in
different varieties was higher than that of CSLA (P< 0.05). Under
non-wounded conditions, there was no significant difference in
the pathogenicity of CSCR and CSLA (Table 5).

CFLA and CFCR had significant differences in pathogenicity
toward the leaves of the four varieties (Table 4). Under wounded
and non-wounded conditions, the pathogenicity of CFLA to
leaves was higher than that of CFCR (P < 0.01). For the
crown, under wounded conditions, CFLA and CFCR showed
significant differences in pathogenicity to the three varieties; the
pathogenicity of CFCR on different varieties was higher than
that of CFLA (Table 5). Under non-wounded conditions, there
was no significant difference in the pathogenicity of CFCR and
CFLA. CFCR and CFLA were the most pathogenic to “Hongjia,”
followed by “Hongyu” and “Zhangji.”

DISCUSSION

Based on morphological and phylogenetic analysis, three species
of Colletotrichum, C. siamense, C. fructicola, and C. aenigma
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FIGURE 6 | The proportion of Colletotrichum spp. associated with LA and CR in Zhejiang province, China. A, all strains; L, leaf strains; C, crown strains, the scale is
1:54,000,000.

TABLE 3 | Size of spore, appressoria, growth rates, sporulation and spore germination rate of Colletotrichum species from leaf and crown of strawberry.

Speciesx Conidiay Appressori Growth Rate (mm/day)y Sporulation (×106) Germination rate (%)y

Length (µm) Width (µm) Length (µm) Width (µm)

CACRz 15.03 ± 0.19 c 4.96 ± 0.08 c 9.38 ± 0.30 a 6.66 ± 0.13 b 13.45 ± 0.10 c 5.62 ± 1.85 b 9.27 ± 1.64 c

CSCR 15.07 ± 0.49 c 6.26 ± 0.26 b 7.09 ± 0.11 d 6.46 ± 0.09 bc 13.51 ± 0.17 bc 22.50 ± 6.76 a 17.48 ± 0.98 b

CSLA 17.58 ± 0.31 a 7.87 ± 0.109a 7.17 ± 0.15 d 6.58 ± 0.06 c 13.92 ± 0.07 ab 20.20 ± 2.44 ab 32.88 ± 1.75 a

CFCR 17.18 ± 0.23 ab 6.21 ± 0.19 b 8.19 ± 0.10 c 6.50 ± 0.13 bc 14.18 ± 0.02 a 16.56 ± 3.95 ab 2.10 ± 0.29 d

CFLA 16.28 ± 0.20 b 6.63 ± 0.13 b 8.90 ± 0.22 b 7.12 ± 0.12 a 14.26 ± 0.09 a 20.00 ± 5.05 ab 25.14 ± 2.03 b

xColony characteristics: off white, with, off white mycelia with mass conidial masses.
yData is the mean ± standard error. Mean values with the same letters were not statistically different (P > 0.05) according to the least significant difference (LSD) Test.
zCACR, C. aenigma causing crown rot; CSCR, C. siamense causing crown rot; CSLA, C. siamense causing leaf anthracnose; CFCR, C. fructicola causing crown rot;
CFLA, C. fructicola causing leaf anthracnose.

TABLE 4 | Disease spot diameters (mm) of Colletotrichum species from leaf and crown of strawberry toward leaves of different strawberry varieties.

Colletotrichum
spp.

Wounded condition Non-wounded condition

Hongjia Zhangji Hongyu Tianxianzui Hongjia Zhangji Hongyu Tianxianzui

CSCRy 13.92 ± 0.62 aBx 11.85 ± 0.39 bC 20.80 ± 1.44 aA 20.13 ± 0.67 aA 4.58 ± 0.29 bC 6.75 ± 0.29 aB 11.00 ± 0.98 aA 9.38 ± 0.81 aA

CSLA 12.73 ± 0.37 abC 13.39 ± 0.42 aC 18.96 ± 0.44 aA 16.88 ± 0.67 bB 3.81 ± 0.18 bB 4.21 ± 0.26 bcB 8.2 ± 0.63 bB 9.75 ± 0.54 aA

CFCR 11.33 ± 0.59 bA 7.75 ± 0.39 cC 9.42 ± 0.87 cB 12.06 ± 0.99 cA 6.00 ± 0.00 aA 3.25 ± 0.44 cB 3.50 ± 0.18 cB 3.5 ± 0.34 cB

CFLA 13.73 ± 0.50 aB 11.83 ± 0.46 bC 15.75 ± 0.77 bB 22.42 ± 1.60 aA 5.52 ± 0.51 bB 5.38 ± 0.20 bB 7.95 ± 0.62 bA 7.95 ± 0.68 bA

xData are mean ± standard error. Mean values with the same letters were not statistically different (P > 0.05) according to the least significant difference (LSD) test.
yCSCR, C. siamense causing crown rot; CSLA, C. siamense causing leaf anthracnose; CFCR, C. fructicola causing crown rot; CFLA, C. fructicola causing
leaf anthracnose.

were isolated and identified from strawberry plants showing
both LA and CR symptoms in Zhejiang province, China.
Among three identified species of C. gloeosporioides species
complex, C. siamense, C. fructicola were associated with both
leaf anthracnose and crown rot, while C. aenigma was only
responsible for crown rot of strawberry plants. Previously, the

C. gloeosporioides species complex has been reported to infect
strawberries (Denoyes-Rothan et al., 2003), which is consist
with the finding of Chen et al. (2020) that the Colletotrichum
spp. on strawberries in Zhengjiang were all belonged to the
C. gloeosporioides species complex, containing C. fructicola,
C. gloeosporioides, C. aenigma, and C. siamense. However, C.
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TABLE 5 | The disease index of Colletotrichum species from leaf and crown of strawberry toward crowns of different strawberry varieties.

Colletotrichum spp. Wounded condition Non-wounded condition

Hongjia Zhangji Tianxianzui Hongjia Zhangji Tianxianzui

CSCRy 98.55 ± 5.68 abAx 41.92 ± 6.69 aC 82.08 ± 11.65 aB 49.22 ± 5.35 bA 12.11 ± 1.64 aB 25 ± 11.90 aB

CSLA 81.5 ± 4.96 bA 38.42 ± 4.43 abC 60.00 ± 5.19 abB 63.00 ± 2.88 abA 14.54 ± 0.81 aC 26.88 ± 3.26 aB

CFCR 95.00 ± 4.19 aA 30.73 ± 4.58 abC 55.78 ± 10.26 abB 70.00 ± 4.03 aA 13.1 ± 1.32 aB 18.17 ± 2.02 aB

CFLA 84.9 ± 5.54 abA 21.53 ± 1.83 bC 40.00 ± 6.71 bB 58.24 ± 3.79 abA 12.00 ± 1.22 aB 23.33 ± 4.77 aB

xData are mean ± standard error. Mean values with the same letters were not statistically different (P > 0.05) according to the least significant difference (LSD) test.
yCSCR, C. siamense causing crown rot; CSLA, C. siamense causing leaf anthracnose; CFCR, C. fructicola causing crown rot; CFLA, C. fructicola causing
leaf anthracnose.

gloeosporioides was not identified in our study, which may be
due to the different sampling sites or the small sample base.
Analysis of the samples collected in Spain showed that most of
theColletotrichum spp. that caused strawberry CR areC. fragariae
and C. acutatum (MacKenzie et al., 2006), which often occur in
warm and humid regions. The species causing LA are primarily
C. fragariae and C. gloeosporioides, and C. fragariae is more
pathogenic than C. gloeosporioides on the petiole (Ureña-Padilla
et al., 2002). These results above indicated that the primary
causing agents of LA and CR on strawberries are different.
Consistently, in this study we speculated that the two diseases,
LA and CR, might be caused by different pathogen sources
and the species of pathogen were associated with the origin
place of collection.

The morphological characterization showed that three
Colletotrichum species differ greatly in growth rate, the size of
spores and appressoria, sporulation, as well as spore germination
rate, despite their similar colony morphology. The growth
rate, sporulation, and spore germination rate of C. siamense
was higher than those of C. fructicola and C. aenigma, which
is consistent with Zhang et al. (2020). Chen et al. (2020)
showed that sporulation of C. fructicola was the lowest, but
the germination rate of spores was the highest, which was
different from this study and may be due to reasons such as
different host sources.

The pathogenicity results showed that C. siamense and C.
fructicola can cause disease in the leaves and crown of different
varieties, and their pathogenicity was significantly different
among varieties. This may be related to disease resistance in the
different strawberry varieties. The inoculation of Colletotrichum
spp. onto the leaves and stolons of 12 varieties conducted by
Wang et al. (2008) showed that “Hongjia” was a susceptible
variety, and the incidence was more serious than that on
“Fengxiang” and “Zhangji,” which was consistent with the results
of this study. The results showed that the pathogenicity of C.
siamense to leaves and the crown was higher than that of C.
fructicola, which is also consistent with the results of Zhang et al.
(2020). Under non-wounded conditions, the pathogenicity of
Colletotrichum spp. to different strawberry varieties was relatively
weak than that on wounded conditions (Jayawardena et al.,
2016). This may occur because of the inefficient penetration of
pathogens on the non-wounded plant cell wall (Than et al., 2008;
Romero et al., 2018). Estrada et al. (2000) found that temperature
and humidity can affect the pathogenicity, conidial germination,

and appressoria formation of Colletotrichum spp., which raised
our interests in further studying the impacts of temperature and
humidity on the infection of Colletotrichum spp.

In this study, the phenotypic analysis of different
Colletotrichum spp. showed that the metabolic rates of the
three species on different nutrients were similar, but the
metabolic capacity of different Colletotrichum species showed
some differences. Among them, the nitrogen sources, nutritional
supplement elements, and pH were significantly utilized by C.
siamense. These substrates are widely found in plant tissues and
thus affect pathogenicity (Wang et al., 2015, 2018). However,
we did not compare the phenotype of crown and leaf isolates.
Therefore, it is necessary to further study the relationship
between Colletotrichum spp. diversity, metabolic phenotype,
and pathogenicity.

We also analyzed the biological and pathogenicity
characteristics of Colletotrichum spp. from strawberry plants
showing both LA and CR symptoms. The sporulation of CFCR
was less than that of CFLA, and CSCR was higher than CSLA.
The spore germination rates of CSCR and CFCR were lower
than those of CSLA and CFLA. The biological characteristics
of the Colletotrichum spp. were related to the isolation part of
strawberry plants. The spore germination rate may be related to
virulence (Lin et al., 2012). Our results showed that CSLA, CFLA,
CSCR, and CFCR can all infect the leaves and crown, but there
was a significant difference (Turechek et al., 2002; Jayawardena
et al., 2016). The pathogenicity of the isolates obtained from
strawberry plants showing LA symptoms on leaves was higher
than that on the crown, and the pathogenicity of CR isolates on
the crown was higher than that on leaves. However, these results
do not apply to all varieties and isolates. Curry et al. (2002)
found that different Colletotrichum spp. infected strawberry with
similar symptoms, but isolates from different isolation sites had
differing pathogenicity. The isolate collected from the source
part was more pathogenic at this part than at the non-source
part, indicating that the isolate had a certain degree of tissue
specialization. This was consistent with the results of Zhang
and Xu (2005). Inoculating different parts of persimmon with
C. gloeosporioides isolated from the fruit indicated that only the
fruits and new branches were infected, while leaves were not.
This indicates that the pathogenicity of pathogens from different
sources had a certain degree of difference during the evolution
process, and the level of disease resistance in the different
strawberry varieties varied among the pathogens.
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Supplementary Figure 1 | The pathogenicity of CSCR, CFCR, CSLA, CFLA to
leaf and crown of different varieties. (A) The pathogenicity of CSCR, CFCR, CSLA,
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non-wounded condition. (B) Pathogenicity of CSCR, CFCR, CSLA, CFLA to
crown of Hongjia, Zhangji, Tianxianzui under wounded condition.
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