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1 Introduction

Realistic comparisons of experimental data for hard processes at high-energy hadron collid-

ers with theoretical predictions based on QCD factorization formulas [1–4] require Monte

Carlo simulation via parton shower event generators. While great progress has been

achieved in the last decade on matching and merging methods [5–7] to combine parton

showers with perturbative calculations through next-to-leading order (NLO), important

open questions still remain, both conceptual and technical, on the appropriate use of par-

ton distribution functions in parton showers (see e.g. [8–11]) and on the treatment of the

shower’s transverse momentum kinematics (see e.g. [12–14]). The relevance of these effects

is known to increase with energy [15–18], and they thus constitute an important theme for

physics at the Large Hadron Collider (LHC) and at colliders of the next generation [19].

Candidate approaches to tackle such questions in complex, multi-scale collider pro-

cesses generally include theoretical constructs designed to extend the concept of collinear

parton density and decay functions, as in the case of Soft Collinear Effective Theory

(SCET) [20–23] or of transverse momentum dependent (TMD) formalisms [24–26]. For

instance, in ref. [27] the TMD gluon density is determined, based on the high-energy fac-

torization [28–30] and CCFM evolution equation [31–33], from fits to the high-precision
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deep inelastic scattering (DIS) data [34, 35], and used in a parton shower calculation [18]

to make predictions for W -boson + jets hadro-production, which can be compared with

LHC experimental measurements [36, 37].

Although the analysis in [18, 27] proves to be successful in achieving a meaningful

TMD description of both DIS and Drell-Yan measurements, it is based on a TMD form

of factorization valid at high energy, and requires a matching method (provided by the

CCFM equation) to include non-asymptotic contributions at collider energies. Because of

the high-energy expansion, the method is predominantly sensitive to the gluon density, and

quark contributions enter systematically at subleading orders.

In ref. [38] we have proposed a different approach, based on solving coupled quark

and gluon DGLAP [39–41] evolution equations using parton branching methods, and de-

termining from this both collinear (integrated over transverse momenta, iTMD) and TMD

parton densities. Rather than starting from high-energy resummed equations, this work

relies on renormalization group evolution equations. The approach uses the unitarity for-

mulation of these evolution equations which forms the basis of parton showering Monte

Carlo simulation [2, 42]. In this sense, it is close in spirit to the works in refs. [43–51], in

refs. [52–58], and in refs. [59, 60]. Ref. [38] shows that the evolution of parton distribu-

tion functions can be calculated, including the transverse momentum dependence, from a

parton branching approach, provided infrared contributions to evolution are treated by a

method which takes into account consistently soft gluon emissions, near the endpoint for

lightcone momentum fractions z → 1, not just at inclusive level but at exclusive level. In

particular, ref. [38] shows that this can be done by using a finite soft-gluon resolution scale

in the evolution equations.

In this paper we provide details of the approach set out in [38], we show that it can

be applied to higher accuracy order-by-order in the strong coupling αs, and we present

numerical results at the next-to-leading order (NLO). Further we present the results of

fits, based on this approach, to the high-precision DIS data [61]. First results from this

work have appeared in [62, 63].

The paper is organized as follows. In section 2 we describe the main elements of

the parton-branching formulation of the coupled QCD evolution equations. In section 3

we present the numerical Monte Carlo solution of the coupled quark and gluon evolution

equations at NLO. We compare collinear parton density functions obtained by our parton-

branching solution with results obtained via the evolution package Qcdnum [64–66]. In

section 4 we illustrate an application of our method by performing a fit to the high-precision

DIS data [61]. For the fit we use an updated version of the program [67] within the

xFitter open-source QCD fit platform [68]. By the method of the present paper we are

able to extend the fit [27] to precision DIS data significantly toward higher x and higher

Q2. In section 5 we turn to TMD parton density functions [24, 69]. We discuss the

identification of the transverse momentum in the initial-state parton distribution in terms

of the shower’s kinematics and evolution variable. We present a new set of quark and gluon

TMDs including NLO evolution kernels. We give conclusions in section 6.
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2 Unitarity approach to QCD evolution equations

In this section we give the main elements of the parton-branching approach to the evolu-

tion equations. We introduce a soft-gluon resolution scale into the renormalization group

evolution equations, and describe resolvable and non-resolvable emissions. We discuss the

relationship of our results with the angular-ordered, coherent branching [70–73] and the

behavior of the endpoint z → 1 region in transverse momentum distributions [74, 75]. We

construct an iterative Monte Carlo solution of the evolution equations, and apply it to the

case of collinear and TMD parton densities.

2.1 The renormalization group evolution

The renormalization group evolution of parton distribution functions can be written in

terms of parton splitting processes as follows

∂ fa(x, µ2)

∂ lnµ2
=
∑

b

∫ 1

x

dz

z
Pab(αs(µ

2), z) fb(x/z, µ
2) , (2.1)

where fa(x, µ2) are parton distributions for a = 1, . . . , 2Nf + 1 species of partons (with

Nf the number of quark flavors) as functions of longitudinal momentum fraction x and

evolution mass scale µ, and Pab(αs, z) are the DGLAP splitting functions, depending on

the running coupling αs and the splitting variable z, and computable as a perturbation

series expansion

Pab(αs, z) =

∞∑

n=1

(αs

2π

)n
P

(n−1)
ab (z) . (2.2)

We will work with the momentum-weighted parton distribution functions f̃a,

f̃a(x, µ2) ≡ xfa(x, µ2) , (2.3)

for which the evolution equations read

∂ f̃a(x, µ2)

∂ lnµ2
=
∑

b

∫ 1

x

dz Pab(αs(µ
2), z) f̃b(x/z, µ

2) . (2.4)

In the physical picture of eq. (2.4), a finite resolution scale in the transverse distance

between emitted partons implies, by energy-momentum conservation, that one cannot re-

solve partons radiated with longitudinal momentum fractions closer to z = 1 than a certain

cut-off value, z > zM with 1 − zM ∼ O(ΛQCD/µ), where µ is of the order of the hard-

scattering scale and ΛQCD ≈ 1 fm−1 is the natural scale of the strong interactions. Remov-

ing non-resolvable radiative contributions from the evolution, on the other hand, leads to a

violation of unitarity. The key idea of the parton branching method is to restore unitarity

by recasting the evolution equations in terms of no-branching probabilities (Sudakov form

factors) and real-emission branching probabilities. We will introduce the resolution scale

parameter zM formally into the evolution equations in section 2.3, and describe the unitary

branching method in the subsequent sections.
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To set up our formalism, we decompose the splitting functions Pab(αs, z) as

Pab(αs, z) = Dab(αs)δ(1 − z) + Kab(αs)
1

(1 − z)+
+ Rab(αs, z) , (2.5)

where the plus-distribution 1/(1 − z)+ is defined for any test function ϕ as

∫ 1

0

1

(1 − z)+
ϕ(z) dz =

∫ 1

0

1

1 − z
[ϕ(z) − ϕ(1)] dz . (2.6)

Eq. (2.5) provides a classification of the singular behavior of the splitting functions

Pab(αs, z) in the non-resolvable radiation region z → 1. It decomposes the splitting func-

tions into the δ(1 − z) distribution, the 1/(1 − z)+ distribution, and the function R(αs, z)

which contains logarithmic terms in ln(1 − z) and analytic terms for z → 1. The δ(1 − z)

and 1/(1 − z)+ contributions to splitting functions are diagonal in flavor,

Dab(αs) = δabda(αs) , Kab(αs) = δabka(αs) (2.7)

(no summation over repeated indices). The functions Dab and Kab, or equivalently da and

ka, and the functions Rab in eq. (2.5) have the perturbation series expansions

da(αs) =
∞∑

n=1

(αs

2π

)n
d(n−1)
a , ka(αs) =

∞∑

n=1

(αs

2π

)n
k(n−1)
a , (2.8)

Rab(αs, z) =
∞∑

n=1

(αs

2π

)n
R

(n−1)
ab (z) . (2.9)

The treatment which we develop in this section only relies on the decomposition in

eq. (2.5) and is valid at any order in αs. In practical applications one takes a given

truncation of the expansions in eqs. (2.8), (2.9). The numerical results in sections 3, 4

and 5 are based on the expansion to NLO (i.e., n = 2 in eqs. (2.8), (2.9)).

Charge conjugation and SU(Nf ) flavor symmetries imply that the splitting functions

Pab obey the following relations to all orders,

Pqig = Pq̄ig ≡ Pqg, Pgqi = Pgq̄i ≡ Pgq ,

Pqiqj = Pq̄iq̄j ≡ PNS
qq δij + PS

qq, Pqiq̄j = Pq̄iqj ≡ PNS
qq̄ δij + PS

qq̄ , (2.10)

where the superscripts NS and S stand respectively for non-singlet and singlet. Therefore,

Pab has three independent quark-gluon or gluon-gluon components (Pqg, Pgq and Pgg) and

four independent quark-quark components (the NS components PNS
qq , PNS

qq̄ and the S

components PS
qq, P

S
qq̄).

1

In the next section we give explicit expressions at one-loop and two-loop orders for the

Dab, Kab and Rab terms in eq. (2.5).

1The independent quark-quark components can alternatively be taken [1, 76, 77] to be the three which

correspond to the three linear combinations diagonalizing the evolution of non-singlet distributions, plus

the one which controls the evolution of the singlet quark distribution coupled to gluons.
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2.2 Expansion in powers of αs

At one-loop order the coefficients of the perturbative expansions (2.8), (2.9) for da, ka and

Rab can be read from [39–41]. At this order, one has PNS
qq̄ = PS

qq = PS
qq̄ = 0, so that all

quark-quark components are degenerate. The one-loop expressions for da, ka and Rab are

given by

d(0)q =
3

2
CF , d(0)g =

11

6
CA − 2

3
TR Nf , (2.11)

k(0)q = 2 CF , k(0)g = 2 CA (2.12)

and

R(0)
gg (z) = 2CA

[
1 − z

z
+ z(1 − z) − 1

]
,

R(0)
gqi

(z) = R
(0)
gq̄i

(z) = CF
1 + (1 − z)2

z
,

R(0)
qig

(z) = R
(0)
q̄ig

(z) = TR

[
z2 + (1 − z)2

]
, (2.13)

R(0)
qiqj

(z) = R
(0)
q̄iq̄j

(z) = −CF (1 + z) δij , R
(0)
qiq̄j

(z) = R
(0)
q̄iqj

(z) = 0 ,

where the SU(Nc) color factors (with Nc = 3 the number of colors) are given by

CA = Nc , CF =
N2

c − 1

2Nc
, Tr (tktm) = δkm TR =

1

2
δkm . (2.14)

At two-loop order the perturbative coefficients for da, ka and Rab start to depend on

the renormalization scheme. In the MS scheme the results can be read from [77, 78]. At the

level of two loops also PNS
qq̄ , PS

qq, P
S
qq̄ are nonvanishing so that the degeneracy of the quark

splitting functions is lifted. However a residual degeneracy remains because PS
qq = PS

qq̄ at

this order.2 The two-loop coefficients for da and ka are given by

d(1)q = C2
F

(
3

8
− π2

2
+ 6 ζ(3)

)
+ CFCA

(
17

24
+

11π2

18
− 3 ζ(3)

)
− CFTRNf

(
1

6
+

2π2

9

)
,

d(1)g = C2
A

(
8

3
+ 3 ζ(3)

)
− 4

3
CATRNf − CFTRNf , (2.15)

where ζ is the Riemann zeta function, and

k(1)q = 2 CF Γ , k(1)g = 2 CA Γ ,

where Γ = CA

(
67

18
− π2

6

)
− TRNf

10

9
. (2.16)

The expressions for the two-loop coefficients for the functions Rab are lengthier, and are

given in appendix A.

We will use these expansions through two loops for the numerical calculations in sec-

tions 3, 4, 5.

2The degeneracy is fully lifted starting at three-loop order [79, 80].
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2.3 Resolvable and non-resolvable emissions

We now introduce the soft-gluon resolution parameter zM into the evolution equations (2.4),

by splitting the integration range on the right hand side into the resolvable (z < zM ) and

non-resolvable (z > zM ) regions, where 1 − zM ∼ O(ΛQCD/µ). In each region, we use the

decomposition (2.5) in the evolution equations. We include terms through (1 − zM )0 but

neglect power-suppressed contributions O(1 − zM )n, n ≥ 1.

Consider first the endpoint z → 1 contribution from the Kab term in eq. (2.5). Using

eq. (2.6), we rewrite this as

∑

b

∫ 1

x

dz Kab(αs(µ
2))

1

(1 − z)+
f̃b(x/z, µ

2) (2.17)

=
∑

b

∫ 1

x

dz Kab(αs(µ
2))

1

1−z
f̃b(x/z, µ

2) −
∑

b

∫ 1

0
dz Kab(αs(µ

2))
1

1−z
f̃b(x, µ

2).

In the region 1 > z > zM we expand the momentum-weighted parton density as

f̃b(x/z, µ
2) = f̃b(x, µ

2) + (1 − z)
∂f̃b
∂ lnx

(x, µ2) + O(1 − z)2 . (2.18)

Then we see that the contribution to eq. (2.17) from the non-resolvable region is of order

O(1 − zM ), and thus, up to O(1 − zM ), we have

∑

b

∫ 1

x

dz Kab(αs(µ
2))

1

(1 − z)+
f̃b(x/z, µ

2) (2.19)

=
∑

b

∫ zM

x

dz Kab(αs(µ
2))

1

1−z
f̃b(x/z, µ

2) −
∑

b

∫ zM

0
dz Kab(αs(µ

2))
1

1−z
f̃b(x, µ

2).

Next, we consider the contributions to the evolution equations (2.4) from the other two

terms, Dab and Rab, in eq. (2.5). The Rab contribution can be combined with the first term

on the right hand side of eq. (2.19) to yield a contribution to the evolution proportional to

f̃b(x/z, µ
2). The Dab contribution can be combined with the second term on the right hand

side of eq. (2.19), using the δ(1 − z), to yield a contribution to the evolution proportional

to f̃b(x, µ
2). Further, we use that Rab has no power divergences (1 − z)−n and is at most

logarithmic for z → 1, so that the integration over Rab for z > zM gives O(1− zM ). Thus,

we can write

∂ f̃a(x, µ2)

∂ lnµ2
=
∑

b

∫ zM

x

dz

(
Kab(αs(µ

2))
1

1 − z
+ Rab(αs(µ

2), z)

)
f̃b(x/z, µ

2)

+
∑

b

{∫ 1

x

Dab(αs(µ
2)) δ(1−z) dz−

∫ zM

0
Kab(αs(µ

2))
1

1−z
dz

}
f̃b(x, µ

2).

(2.20)

The first line in eq. (2.20) contains contributions to evolution from real parton emission,

while the second line contains contributions from virtual corrections. It is convenient to

– 6 –
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define the kernels in the bracket of the first line as the real-emission branching probabilities

P
(R)
ab (αs, z),

P
(R)
ab (αs, z) = Kab(αs)

1

1 − z
+ Rab(αs, z) . (2.21)

That is, the real-emission branching probabilities P
(R)
ab (αs, z) are obtained from the splitting

functions Pab(αs, z) in eq. (2.5) by subtracting the δ(1 − z) terms and replacing the plus-

distribution 1/(1 − z)+ by 1/(1 − z). So we have

∂ f̃a(x, µ2)

∂ lnµ2
=
∑

b

∫ zM

x

dz P
(R)
ab (αs(µ

2), z) f̃b(x/z, µ
2) (2.22)

+
∑

b

{∫ 1

x

Dab(αs(µ
2)) δ(1−z) dz−

∫ zM

0
Kab(αs(µ

2))
1

1−z
dz

}
f̃b(x, µ

2).

The virtual terms in the second line of eq. (2.22) can be dealt with by using the momentum

sum rule, as we see next.

2.4 Momentum sum rule

We will now use the momentum sum rule to systematically eliminate the D-terms in

eq. (2.5) from the evolution equations in favor of the K-terms and R-terms. To this

end, we insert the momentum sum rule

∑

c

∫ 1

0
z Pca(αs(µ

2), z) dz = 0 (for any a) (2.23)

into the evolution equations, by subtracting the momentum sum integral in the curly

bracket in the second line of eq. (2.22). Recall from eq. (2.7) that the Dab and Kab terms

in this equation are diagonal in flavor. Therefore, by interchanging indices, we obtain from

eq. (2.22)

∂ f̃a(x, µ2)

∂ lnµ2
=
∑

b

∫ zM

x

dz P
(R)
ab (αs(µ

2), z) f̃b(x/z, µ
2) (2.24)

+
∑

c

{∫ 1

x

Dca(αs(µ
2)) δ(1 − z) dz −

∫ zM

0
Kca(αs(µ

2))
1

1 − z
dz

−
∫ 1

0
z Pca(αs(µ

2), z) dz

}
f̃a(x, µ2) .

Let us now use again the decomposition (2.5) for Pca(αs(µ
2), z) in the last line of

eq. (2.24). We observe that the Dca term in Pca(αs(µ
2), z) cancels against the first term in

the curly bracket in eq. (2.24), while the Rca term in Pca(αs(µ
2), z) may be restricted to

the region z < zM , up to order O(1 − zM ). Finally, the Kca term in Pca(αs(µ
2), z) may be

combined with the second term in the curly bracket in eq. (2.24). Putting pieces together,

– 7 –



J
H
E
P
0
1
(
2
0
1
8
)
0
7
0

we get

∂ f̃a(x, µ2)

∂ lnµ2
=
∑

b

∫ zM

x

dz P
(R)
ab (αs(µ

2), z) f̃b(x/z, µ
2) (2.25)

−
{
∑

c

∫ zM

0
z Kca(αs(µ

2))
1

1−z
dz +

∑

c

∫ zM

0
z Rca(αs(µ

2), z) dz

}
f̃a(x, µ2) .

We thus recognize, by using eq. (2.21), that the evolution equations (2.22) can be written as

∂ f̃a(x, µ2)

∂ lnµ2
=
∑

b

{∫ zM

x

dz P
(R)
ab (αs(µ

2), z) f̃b(x/z, µ
2)

−
∫ zM

0
dz z P

(R)
ba (αs(µ

2), z) f̃a(x, µ2)

}
. (2.26)

2.5 Sudakov form factor

Eq. (2.26) recasts the evolution of each parton a in terms of the real-emission probabilities

P
(R)
ab and P

(R)
ba and of the resolution parameter zM . It can be rewritten in a form which

has the advantage of being solvable by an iterative Monte Carlo procedure if we introduce

the Sudakov form factor, defined as

∆a(zM , µ2, µ2
0) = exp

(
−
∑

b

∫ µ2

µ2
0

dµ′2

µ′2

∫ zM

0
dz z P

(R)
ba (αs(µ

′2), z)

)
. (2.27)

The Sudakov form factor ∆a(zM , µ2, µ2
0) has the interpretation of probability for parton

a to undergo no branching between evolution scale µ0 and evolution scale µ, where the

branchings are understood to be classified according to the given resolution zM .

Noting that

∂ ∆a(zM , µ2, µ2
0)

∂ lnµ2
= −∆a(zM , µ2, µ2

0)
∑

b

∫ zM

0
dz z P

(R)
ba (αs(µ

2), z) , (2.28)

we obtain from eq. (2.26) (removing zM and µ2
0 from the argument list for better readability)

∂ f̃a(x, µ2)

∂ lnµ2
=
∑

b

∫ zM

x

dz P
(R)
ab (αs(µ

2), z) f̃b(x/z, µ
2)

+
1

∆a(µ2)

∂ ∆a(µ2)

∂ lnµ2
f̃a(x, µ2) . (2.29)

This evolution equation can be written in a form similar to eq. (2.4), but now in terms of

real-emission probabilities P
(R)
ab and Sudakov form factors:

∂

∂ lnµ2

(
f̃a(x, µ2)

∆a(µ2)

)
=
∑

b

∫ zM

x

dz P
(R)
ab (αs(µ

2), z)
f̃b(x/z, µ

2)

∆a(µ2)
. (2.30)
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Integrating this equation we obtain, with ∆a(µ2
0) = 1,

f̃a(x, µ2) = ∆a(µ2) f̃a(x, µ2
0) +

∑

b

∫ µ2

µ2
0

dµ′2

µ′2

∆a(µ2)

∆a(µ′2)

∫ zM

x

dz P
(R)
ab (αs(µ

′2), z) f̃b(x/z, µ
′2) .

(2.31)

We recognize that introducing the Sudakov form factor has led to an equation which

is an integral equation of Fredholm type,

f(t) = f0(t) + λ

∫ b

a

K(t, y)f(y)dy . (2.32)

This can be solved by iteration as a series [38]

f(t) = lim
n→∞

n∑

i=0

λiui(t) , (2.33)

where

u0(t) = f0(t) ,

u1(t) =

∫ b

a

K(t, y)f0(y)dy ,

u2(t) =

∫ b

a

∫ b

a

K(t, y1)K(y1, y2)f0(y2)dy2dy1 ,

· · ·
...

un(t) =

∫ b

a

∫ b

a

∫ b

a

K(t, y1) · · ·K(yn−1, yn)f0(yn)dyn · · · dy2dy1 . (2.34)

We observe that while at LO in αs the splitting functions are positive definite, this is

no longer the case at NLO. However, although the integrands can be negative, the integrals

over the splitting functions which appear in the evolution kernels and Sudakov form factors

remain positive also at NLO. We will exploit this in the next section to apply a Monte

Carlo method for solving the evolution equations.

2.6 Solution of the evolution equation applying a Monte Carlo method

The solution of the evolution equation can be obtained by applying a Monte Carlo method.

By this method the problem is reduced to that of generating the splitting variable z and

the evolution scale µ.

Fig. 1 depicts the parton evolution: we start with a parton a and evolve from scale µi

to scale µ either without any branching, or having one branching at scale µi+1, or having

a second branching at scale µi+2, and so on. The probability to evolve from µi to µi+1

without any resolvable branching is provided by the Sudakov form factor ∆a(zM , µ2
i+1, µ

2
i ).

By introducing a random number R0 in [0, 1], we generate the value µi+1 by solving

eq. (2.27) for µi+1 at a given µi,

R0

∫ µ2
max

µ2
i

d∆a(zM , µ2, µ2
0) =

∫ µ2
i+1

µ2
i

d∆a(zM , µ2, µ2
0) , (2.35)
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zi+1 = xi+1/xi, µi+1

x, µ

xi, µi
xi, µi

x, µ

P (zi+1)

xi, µi

zi+1 = x/xi, µi+1

x, µ

P (zi+2)zi+2 = x/xi+1, µi+2

P (zi+1)

Figure 1. Illustration of the evolution process by iteration: a parton can evolve from scale µi to

scale µ without any branching (left), having one branching (middle), two branchings (right) and so

on. The relevant variables are indicated.

that is,

−R0

(
1 − ∆a(µ2

max)

∆a(µ2
i )

)
+ 1 =

∆a(µ2
i+1)

∆a(µ2
i )

, (2.36)

where the upper bound may be taken to be µmax → ∞, leading to the simple expression

R0 = 1 − ∆a(µ2
i+1)/∆a(µ2

i ).
3

The splitting variables z are generated from

∫ zi+1

zmin

dz′ P
(R)
ba (z′, αs(µi+1)) = R1

∫ zM

zmin

dz′ P
(R)
ba (z′, αs(µi+1)), (2.37)

where R1 is a random number in [0, 1], zM is the resolution parameter, and zmin is the

lowest kinematically allowed value.

Generating a pair of zi, µi values many times, we obtain a true and unbiased estimate

of the integrals, and a solution of the evolution equations.

We have implemented the Monte Carlo method to solve the evolution equations in

a numerical program. The program is a development of the code [67] which was earlier

employed by some of us for studies of the CCFM equations [27]. It is worth observing

that the application to the case of the evolution equations studied in this paper presents

different features with respect to the case of the CCFM equations. The differences involve

especially the flavor structure of the two equations, and the behavior of the kernels at

small longitudinal momentum fractions. While CCFM equations are dominated by the

gluon channel, eq. (2.31) has fully coupled flavor structure. The small-x behavior of CCFM

kernels is controlled by the non-Sudakov form factor [31–33]. In the case of eq. (2.31) it

is essential to work with momentum-weighted distributions to improve the convergence of

the numerical integration over the region of small x. In sections 3, 4, 5 we will employ this

program to compute numerical results.

3See [81] for a detailed discussion of the role of integration bounds in the form factor.
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a

cz = xa/xb

xbp
+, kt,b

xap
+, kt,a

qt,c → µ

b

Figure 2. Branching process b → a + c.

2.7 Transverse momentum distributions and ordering variables

The use of the Sudakov form factors and the iterative method of the previous subsection

allows one to generate step by step each resolvable branching. In addition to providing

the solution of the evolution equation, this approach has the advantage of keeping track

of detailed information about each individual branching. For example, the kinematics in

each branching can be calculated, similarly to what is done in a parton shower process.

In particular parton distributions can be obtained, not only depending on x and µ (as in

f̃a(x, µ2)), but also depending on the transverse momentum k⊥ of the propagating parton

(as in TMD parton distributions Aa(x, k⊥, µ)).

Consider the splitting process b → a + c in figure 2. Using the notation in the figure,

with plus light-cone momenta p+a = zp+b , p+c = (1−z)p+b , we have, by applying conservation

of minus light-cone momentum,

p2b =
p2a + q2

c

z
+

p2c + q2
c

1 − z
, (2.38)

where qc is the (euclidean) transverse momentum vector of particle c. For a space-like

branching [82–84] with µ2 = −p2a and p2b = p2c = 0, taking z → 0 in the high-energy

limit gives

µ = |qc| . (2.39)

Eq. (2.39) is referred to as transverse momentum ordering. If, on the other hand, the

evolution variable µ is associated with the angle Θ of the momentum of particle c with

respect to the beam direction, we obtain the angular ordering relation [42, 73, 83]

µ = |qc|/(1 − z) . (2.40)

The transverse momentum of the propagating parton is calculated as

k = −
∑

c

qc . (2.41)

The method thus enables one to determine the corresponding transverse momentum de-

pendent (TMD) parton distribution Aa(x,k, µ2), in addition to the inclusive distribution
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f̃a(x, µ2), integrated over k,
∫

x Aa(x,k, µ2)
d2k

π
= f̃a(x, µ2) . (2.42)

It has been pointed out in [38] that the transverse momentum generated radiatively

by the recoils in the evolution cascade depends strongly on the treatment of the non-

resolvable region z → 1. Unlike the integrated distribution f̃a(x, µ2), the TMD distribution

Aa(x,k, µ2) is infrared-sensitive. The origin of this behavior lies with singularities, present

at fixed k, which arise from branching processes in figure 2 with gluons at large negative

rapidities, y ∼ ln q+/q− → −∞ [75]. While in the integrated distribution such singularities

cancel between real and virtual non-resolvable emissions, this is not, in general, the case

for the TMD distribution. As a result, supplementary conditions are needed to define the

TMD distribution consistently [75].

In the framework of the parton branching solution of evolution equations discussed

in the present paper, one such set of conditions is provided by the angular ordering in

eq. (2.40). By using the angular-ordered branching, consistent TMD distributions are

defined, which are independent of the soft-gluon resolution parameter zM , for sufficiently

large values of zM . In contrast, the transverse momentum ordered branching, based on

eq. (2.39), while entirely suitable as long as one is working at the level of integrated parton

distributions, does not allow one to define TMD distributions consistently, as the transverse

momentum at any given evolution scale would depend on the choice of the resolution

parameter zM . In [38] the above observation is made by working at LO in the strong

coupling αs. In section 5 of the present paper, we confirm and extend these findings to NLO.

Using eq. (2.31) and the angular ordering (2.40), we write the branching equation for

the evolution of TMD distributions as

Ãa(x,k, µ2) = ∆a(µ2) Ãa(x,k, µ2
0) +

∑

b

∫
d2q′

πq′2

∆a(µ2)

∆a(q′2)
Θ(µ2 − q′2) Θ(q′2 − µ2

0)

×
∫ zM

x

dz P
(R)
ab (αs(q

′2), z) Ãb(x/z,k + (1 − z)q′,q′2) , (2.43)

where Ã is the momentum weighted distribution Ã ≡ xA. By applying the method in

section 2.6, we solve this iteratively as

Ãa(x,k, µ2) =

∞∑

i=0

Ã(i)
a (x,k, µ2) , (2.44)

where

Ã(0)
a (x,k, µ2) = ∆a(µ2) Ãa(x,k, µ2

0) , (2.45)

Ã(1)
a (x,k, µ2) =

∑

b

∫
d2q′

πq′2

∆a(µ2)

∆a(q′2)
Θ(µ2 − q′2) Θ(q′2 − µ2

0)

×
∫ zM

x

dz P
(R)
ab (αs(q

′2), z) ∆b(q
′2) Ãb(x/z,k + (1 − z)q′, µ2

0) , (2.46)

and so forth.
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From the solution of the branching equations (2.31) and (2.43) we will obtain collinear

and TMD parton distributions. The behavior at small transverse momenta, in particu-

lar, is controlled in this formulation by the nonperturbative distributions at scale µ0 and

by Sudakov form factors, which embody the perturbative resummation and are defined as

functions of the soft-gluon resolution scale separating resolvable and non-resolvable branch-

ings. According to eqs. (2.27), (2.31), (2.43) this is expressed in terms of integrals over

the branching probabilities P (R)(αs, z) in eq. (2.21). It depends on the residues Kab at

the poles z = 1 in eq. (2.21), given at one-loop and two-loop orders by the coefficients in

eqs. (2.12) and (2.16). The relationship of the z = 1 behavior with small transverse mo-

menta is important to construct reliable theoretical predictions for transverse momentum

q⊥ spectra at low q⊥ in the production of massive states in hadronic collisions [4, 24, 85–94].

We next move on to numerical results based on the methods described in this section.

3 Numerical parton-branching solution at NLO

In this section we present numerical results from the parton-branching solution at NLO.

We compare the answer thus obtained for the collinear parton density functions with the

answer from the evolution package Qcdnum [64]. The corresponding comparison at LO

has been shown in [38].

For the purpose of this comparison we use as input parton distributions the distribu-

tions which are the default set given in Qcdnum. These distributions are parameterized

at the starting scale µ2
0 = 2 GeV2 as

xuv(x) = 5.11 x0.8(1 − x)3, xū(x) = 0.19 x−0.1(1 − x)7,

xdv(x) = 3.06 x0.8(1 − x)4, xd̄(x) = 0.19 x−0.1(1 − x)6,

xs̄(x) = 0.2 (xd̄(x) + xū(x)), xs(x) = xs̄(x),

xg(x) = 1.7 x−0.1(1 − x)5. (3.1)

Three light active flavors are assumed at the starting scale, while charm and bottom quarks

are produced during the evolution, for evolution scales µ > mc = 1.73 GeV and µ > mb =

5.0 GeV respectively. The running coupling αs is used at two loops, with αs(m
2
Z) = 0.118.

In figure 3 we show the momentum-weighted parton densities (integrated over trans-

verse momenta, iTMD) obtained from the parton branching solution of the evolution equa-

tions, compared to the predictions obtained by Qcdnum, starting from µ2
0 = 2 GeV2 for

different scales µ2 = 10, 103, 105 GeV2. The parton branching solution is obtained for a

fixed value of zM = 1 − 10−5.4 The overall agreement between the parton-branching and

Qcdnum calculations is better than 1% throughout the whole range in x and µ2.

In figure 4 we show a comparison using different values of the soft-gluon resolution

scale parameter zM . For all zM values chosen, no dependence on the actual choice of the

parameter zM is observed, confirming the findings of [38], and extending them to NLO in

accord with the formalism developed in section 2.

4The resolution scale parameter zM is in general a function of µ. For numerical illustrations in this

paper we limit ourselves to taking fixed values of zM .
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Figure 3. The transverse momentum integrated (iTMD) parton densities obtained from the parton

branching solution, compared with the prediction from Qcdnum. The densities are evolved up to

different scales µ2 using splitting kernels at NLO. The ratio plots show the ratio of the curves

obtained with the parton branching method divided by the prediction from Qcdnum.

4 Fit to precision DIS data

The initial parton density distributions have to be determined from fits to experimental

data. A general tool to perform such fits to collider measurements is the xFitter pack-

age [68]. As an application of our formalism, in this section we describe the method and

results of a fit to the precision DIS data [61].

To start with, we implement the parton branching solution of the evolution equation

in the xFitter package [68]. However, using a full Monte Carlo solution of the evolution

equation for every new set of initial parameters would be too time-consuming to be efficient.

Instead, we employ the approach developed in [27, 67]. Following this approach, first a

kernel Âb
a

(
x′′, µ2

)
is determined from the Monte Carlo solution of the evolution equation

for any initial parton of flavor b evolving to a final parton of flavor a;5 then, this is folded

5In practice, since the initial state partons can be only light quarks or gluons, it is enough to determine

the kernel Âb
a only for one initial state quark and a gluon.

– 14 –



J
H
E
P
0
1
(
2
0
1
8
)
0
7
0

 x
f(

x
)

4−10

3−10

2−10

1−10

1

10

2 = 10 GeV2µ  
 QCDnum

-8=1-10M z
-5=1-10M z
-3=1-10M z

gluon

x

 r
a

ti
o

0.9

0.95

1

1.05

1.1

5−
10

4−
10

3−
10

2−
10

1−
10 1

 x
f(

x
)

4−10

3−10

2−10

1−10

1

10

210

2 = 100000 GeV2µ  
 QCDnum

-8=1-10M z
-5=1-10M z
-3=1-10M z

gluon

x

 r
a

ti
o

0.9

0.95

1

1.05

1.1

5−
10

4−
10

3−
10

2−
10

1−
10 1

 x
f(

x
)

4−10

3−10

2−10

1−10

1

2 = 10 GeV2µ  
 QCDnum

-8=1-10M z
-5=1-10M z
-3=1-10M z

down

x

 r
a

ti
o

0.9

0.95

1

1.05

1.1

5−
10

4−
10

3−
10

2−
10

1−
10 1

 x
f(

x
)

4−10

3−10

2−10

1−10

1

10

2 = 100000 GeV2µ  
 QCDnum

-8=1-10M z
-5=1-10M z
-3=1-10M z

down

x

 r
a

ti
o

0.9

0.95

1

1.05

1.1

5−
10

4−
10

3−
10

2−
10

1−
10 1

Figure 4. The transverse momentum integrated (iTMD) parton densities obtained from the parton

branching solution, compared with the prediction from Qcdnum. The densities are evolved up to

different scales µ2 using splitting kernels at NLO, for different values of zM . The ratio plots show

the ratio of the curves obtained with the parton branching method divided by the prediction from

Qcdnum.

with the non-perturbative starting distribution A0,b(x):

f̃a(x, µ2) = x

∫
dx′
∫

dx′′A0,b(x
′)Âb

a

(
x′′, µ2

)
δ(x′x′′ − x)

=

∫
dx′A0,b(x

′) · x
x′

Âb
a

( x

x′
, µ2
)

. (4.1)

The kernel Âb
a includes the full parton evolution as in eq. (2.31), with Sudakov form factors

and splitting functions, and is determined with the parton branching method described

earlier. The kernel Â can be determined as a function of x, µ for the k⊥-integrated iTMD

distributions, or depending on x, k⊥, µ for the transverse momentum dependent (TMD)

distributions. The kernel is then folded with the initial condition A0,b(x
′). The integrated

parton density eq. (4.1) can be then used within the xFitter package to calculate the

cross sections and to determine the parameters of the starting distributions A0,b(x). We
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Figure 5. The reduced cross section σred as measured at HERA compared to the NLO fits from

the parton branching method (red line) for different values of Q2, obtained using xFitter.

use precision measurements, in neutral-current and charged-current interactions at various

beam energies from HERA 1+2 [61], of the reduced cross section

σred =
d2σep

dxdQ2
· Q4x

2πα2(1 + (1 − y)2)
(4.2)

in the range 3.5 < Q2 < 30000 GeV2.

Using two-loop running coupling with αs(mZ) = 0.118, starting scale for evolution

µ2
0 = 2 GeV2, heavy-quark masses mc = 1.73 GeV, mb = 5.0 GeV and mt = 175 GeV,

and a fixed zM = 1 − 10−5, a very good χ2/ndf ∼ 1.2 for 1132 ndf is obtained for

3.5 < Q2 < 30000 GeV2 (χ2/ndf ∼ 1.3 is obtained if only LO splitting kernels are included).

The form of the starting distributions is taken from ref. [61].

In figure 5 the calculated cross section σred, obtained from the fit using xFitter, is

compared with the precision measurements from HERA [61] for different values of Q2,

showing very good agreement from low to high values of Q2.

Comparing this result with the fit [27] to precision DIS data based on CCFM evolution

equations, note that in the case [27] the constraint x < 0.005 is applied on the data set,

while no x constraint is applied in the present case. By the approach of this paper the

description of precision DIS measurements can be significantly extended toward higher x

and thus higher Q2, without on the other hand introducing any extra constraint cutting

out lower x data.

We plan to analyze fits to data further in a future work.

5 TMD densities

By applying the parton branching method of this paper, we are able to construct TMD

parton densities as described in section 2.7. While large transverse momenta are generated

by perturbative evolution, the nonperturbative region of small k⊥ cannot be predicted

in our approach but is parameterized by nonperturbative distributions which are to be

determined from experimental measurements. For the calculations of this section we use the

parameterizations given in section 3 and take simple gaussian distributions exp(−|k2
⊥
|/σ2).
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Figure 6. Transverse momentum gluon distribution versus x at kt = 10 GeV and µ = 100 GeV

(upper row), µ = 1000 GeV (lower row) for different values of the resolution scale parameter

zM = 1− 10−3, 1− 10−5, 1− 10−8: (left) angular ordering; (right) transverse momentum ordering.

The widths σ are in general flavor-dependent. For the numerical illustrations that follow

we take the same width for all parton species, σ2 = q20/2 for all flavors with q0 = 0.5 GeV.

We present numerical results for the evolution of TMD parton densities, using the parton

branching solution of the evolution equations with NLO evolution kernels.

It has been shown in [38] that the TMD distributions, unlike the collinear distributions,

are strongly influenced by the ordering variable in the branching. In particular, the cases of

the transverse momentum ordering (2.39) and angular ordering (2.40) have been examined

in [38] by an explicit calculation, working at LO in the strong coupling αs. We here confirm

and extend this analysis, working at NLO. We illustrate that the same behavior found at

LO applies at NLO as well.

In figures 6 and 7 we apply the NLO numerical solution of section 3 and the method

of section 2.7 to study the longitudinal and transverse momentum dependence of the gluon

distribution, and its behavior with the soft-gluon resolution parameter zM . Figure 6 shows

the TMD gluon distribution versus the longitudinal momentum fraction x for different

values of the resolution parameter, 1 − zM = 10−3, 10−5, 10−8. The curves are plotted

for a fixed value of transverse momentum kt ≡ |k| = 10 GeV, and two values of evolution

scale, µ = 100 GeV (top panels) and µ = 1000 GeV (bottom panels).6 On the right are the

6The plots in figures 6 and 7 are produced using the plotting tool TMDplotter [69, 95].
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Figure 7. Transverse momentum gluon distribution versus kt at x = 10−2 and µ = 100 GeV

(upper row), µ = 1000 GeV (lower row) for different values of the resolution scale parameter

zM = 1− 10−3, 1− 10−5, 1− 10−8: (left) angular ordering; (right) transverse momentum ordering.

results for transverse-momentum ordering; on the left are the results for angular ordering.

The transverse-momentum ordering, due to the effect of the non-resolvable region, does not

lead to results independent of zM . On the other hand, the angular ordering correctly takes

into account the cancellation of non-resolvable emissions due to soft-gluon coherence [73],

and no dependence is left on the resolution parameter zM .

Figure 7 shows the TMD gluon distribution versus the transverse momentum kt, at

fixed x = 10−2, for different values of the resolution parameter, 1− zM = 10−3, 10−5, 10−8.

As in figure 6, on the right are the results for transverse-momentum ordering, and on the

left are the results for angular ordering. The plots in figure 7 illustrate as a function of

kt the same effect of the ordering and behavior in the resolution parameter zM which we

have seen in the previous figure.

Analogous behavior to that in figures 6 and 7 was observed at LO in [38]. Figures 6

and 7 show that the zM dependence in the transverse momentum ordering case cannot be

avoided or reduced by inclusion of NLO evolution. It means that the different orderings

in eqs. (2.39), (2.40) should not be thought of as different factorization schemes, and the

results in the two cases will not be related by a change in the factorization scheme.

It is worth noting that the transverse momentum ordering (2.39) is widely used in

a variety of contexts, e.g. in low-x physics studies, as it results from approximating the
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Figure 8. Transverse momentum distributions at x = 0.001 and evolution scales µ = 10 GeV

(left), µ = 1000 GeV (right) for different flavors.

exact parton-splitting kinematics in the region of strongly ordered momentum fractions

z ≪ 1. The results in figures 6 and 7 imply that this approximation will not be valid for

observables sensitive to the detailed structure in transverse momentum of the initial state.

In particular, they emphasize the role of soft-gluon coherence effects leading to angular

ordering in constructing well-defined TMD distributions even at low x [15–17, 96–99].

In figure 8 we illustrate the flavor decomposition, at TMD level, resulting from per-

turbative evolution. We plot the TMD distributions obtained from the parton branch-

ing method for different flavors, by applying the evolution with appropriate angular-

ordering condition.

A numerical comparison of CSS and CCFM gluon TMDs, based respectively on

refs. [100] and [27], is performed in figure 12 of ref. [24]. It will be interesting to perform de-

tailed comparisons with the TMDs from the present paper. We leave this to future studies.

To summarize, in this section we have shown that a consistent set of TMD parton

distributions, valid over a large range in x, k⊥ and µ can be determined from a parton

branching solution of QCD evolution equations, as long as the soft gluon region is treated

appropriately, e.g. by applying angular ordering conditions. We have shown that under

these conditions the dependence on the resolution scale parameter zM drops out also for

the k⊥-distribution, provided zM is large enough, resulting in stable predictions for the

evolution of TMD parton densities.

6 Conclusions

Motivated by both conceptual and technical questions on the treatment of initial-state

kinematics and distribution functions in QCD parton-shower calculations, we have investi-

gated parton-branching solutions to QCD evolution equations. We have presented results

of constructing collinear and TMD parton densities from this approach at NLO.

By separating resolvable and non-resolvable branchings, and analyzing the role of the

soft-gluon resolution scale in the evolution, we have proposed a method to take into account
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simultaneously soft-gluon emission in the region z → 1 and transverse momentum q⊥ recoils

in the parton branchings along the QCD cascade.

This approach is potentially relevant for calculations both in collinear factorization and

in transverse momentum dependent factorization. The starting point of the approach are

the DGLAP equations, which are evolution equations valid for fully inclusive distributions.

The method developed in this paper provides the branching equations which apply at

exclusive level. Unlike DGLAP equations, these are necessarily sensitive to soft-gluon

emission in the infrared region. We have presented the evolution equations as a function

of the soft-gluon resolution scale and the ordering condition.

The advantage of the parton branching method is twofold: on one hand, in collinear

distributions additional features like angular ordering or different definitions of the fac-

torization scale can be studied; on the other hand, the method can be applied to obtain

transverse momentum dependent distributions.

The branching equations for TMD densities obtained in this paper can be compared

with existing TMD evolution equations: the CSS equations [4, 93, 94], which apply in the

low transverse momentum region q⊥ ≪ Q (where Q is the high mass scale of the hard

scattering) and can be used in the case of low-q⊥ TMD factorization [91, 92]; and the

CCFM equations [31–33], which apply in the high-energy region
√
s ≫ Q, and can be used

in the case of high-energy TMD factorization [28–30]. We have pointed to a few of the

main differences and similarities in the physics described by these different approaches.

The CSS and CCFM approaches are designed to achieve high logarithmic accuracy in

the resummation of higher-order logarithmic contributions in the restricted phase space

regions which identify their domains of validity, respectively q⊥ → 0 and
√
s → ∞. In

such approaches matching methods are required to go beyond these restricted domains

and arrive at predictions valid more generally (e.g., the Y -term matching for high q⊥ in

CSS, and the large-x terms in CCFM splitting functions). On the other hand, the spirit of

the approach proposed in this paper is to provide TMD distributions which can be applied

over a broad kinematic range from low to high energies, and from low to high q⊥. We

incorporate consistently renormalization group evolution, soft-gluon coherence and parton

branching kinematics. The approach is general and, although in this paper we focus on

longitudinal splitting functions, we believe it can accommodate further dynamical effects

such as transverse splitting functions [25, 75].

The formalism of this work implies that the soft-gluon resolution scale zM depends

on the evolution variable µ. In the numerical examples of this paper we have limited

ourselves to considering fixed values of zM . One of the main directions of development of

this approach will concern the µ dependence of zM .

Furthermore, we observe that, while power-suppressed contributions of order O(1 −
zM )n ∼ O(ΛQCD/µ)n are beyond the scope of the treatment given in this paper, logarith-

mically enhanced contributions in lnn(1 − zM ) could be taken into account, and could be

related [73] with threshold logarithms in production cross sections coupled to the parton

distributions. We regard this as a further potential advantage of the formalism of this work.

Given the results presented in this paper for the parton evolution including the full

flavor structure, we expect this approach to have a wide range of applications both at low

energies and at high energies.
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A The two-loop R coefficients

In this appendix we report the two-loop coefficients of the perturbative expansion (2.9) for

the functions Rab introduced in eq. (2.5). The coefficients can be read from the two-loop

results in [77, 78].

We introduce the functions

pqq(z) =
2

1 − z
− 1 − z, (A.1)

pqg(z) = z2 + (1 − z)2, (A.2)

pgq(z) =
1 + (1 − z)2

z
, (A.3)

pgg(z) =
1

1 − z
+

1

z
− 2 + z(1 − z), (A.4)

and

S2(z) = −2Li2(−z) +
1

2
ln2 z − 2 ln z ln(1 + z) − π2

6
, (A.5)

where the dilogarithm function is defined by

Li2(y) = −
∫ y

0

dt

t
ln(1 − t) . (A.6)

The two-loop contributions R
(1)
ab in eq. (2.9) are given for quark-gluon and gluon-gluon

cases by

R(1)
gq (z) = C2

F

[
− 5

2
− 7

2
z +

(
2 +

7

2
z

)
ln z +

(
1

2
z − 1

)
ln2 z − 2z ln(1 − z)

−
(

3 ln(1 − z) + ln2(1 − z)

)
pgq(z)

]
+ CFCA

[
28

9
+

65

18
z +

44

9
z2

+

(
− 12 − 5z − 8

3
z2
)

ln z + (4 + z) ln2 z + 2z ln(1 − z)

+pgq(z)

(
− 2 ln z ln(1 − z) +

1

2
ln2 z +

11

3
ln(1 − z) + ln2(1 − z) − π2

6
+

1

2

)

+pgq(−z)S2(z)

]
+ CFTRNf

[
− 4

3
z −

(
20

9
+

4

3
ln(1 − z)

)
pgq(z)

]
, (A.7)

R(1)
qg (z) =

1

2
CFTR

[
4 − 9z + (−1 + 4z) ln z + (−1 + 2z) ln2 z + 4 ln(1 − z)

+

(
− 4 ln z ln(1 − z) + 4 ln z + 2 ln2 z − 4 ln(1 − z) + 2 ln2(1 − z)

– 21 –



J
H
E
P
0
1
(
2
0
1
8
)
0
7
0

−2

3
π2 + 10

)
pqg(z)

]
+

1

2
CATR

[
182

9
+

14

9
z +

40

9z
+

(
136

3
z − 38

3

)
ln z

−4 ln(1 − z) − (2 + 8z) ln2 z +

(
− ln2 z +

44

3
ln z − 2 ln2(1 − z)

+4 ln(1 − z) +
π2

3
− 218

9

)
pqg(z) + 2pqg(−z)S2(z)

]
(A.8)

and

R(1)
gg (z) = CFTRNf

[
− 16 + 8z +

20

3
z2 +

4

3z
+ (−6 − 10z) ln z + (−2 − 2z) ln2 z

]

+CATRNf

[
2 − 2z +

26

9
z2 − 26

9z
− 4

3
(1 + z) ln z − 20

9

(
1

z
− 2 + z − z2

)]

+C2
A

[
27

2
(1 − z) +

67

9

(
z2 − 1

z

)
+

(
− 25

3
+

11

3
z − 44

3
z2
)

ln z

+4(1 + z) ln2 z + 2pgg(−z)S2(z) +
(
−4 ln z ln(1 − z) + ln2 z

)
pgg(z)

+

(
67

9
− π2

3

)(
1

z
− 2 + z − z2

)]
. (A.9)

The two-loop contributions R
(1)
ab for the non-singlet case, in the notation of eq. (2.10),

are given by

R
NS(1)
qq (z) = CF

(
CF − CA

2

)[
2pqq(−z)S2(z) + 2(1 + z) ln z + 4(1 − z)

]
, (A.10)

RNS(1)
qq (z) = C2

F

[
−
(

2 ln z ln(1 − z) +
3

2
ln z

)
pqq(z) −

(
3

2
+

7

2
z

)
ln z

−1

2
(1 + z) ln2 z − 5(1 − z)

]
+ CFCA

[(
1

2
ln2 z +

11

6
ln z

)
pqq(z)

−(1 + z)

(
67

18
− π2

6

)
+ (1 + z) ln z +

20

3
(1 − z)

]

+CFTRNf

[
− 2

3
ln zpqq(z) +

10

9
(1 + z) − 4

3
(1 − z)

]
. (A.11)

By defining the linear combination of the splitting functions in eq. (2.10)

Pqq = PNS
qq + PNS

qq̄ + Nf (PS
qq + PS

qq̄) , (A.12)

which controls the evolution of the singlet quark distribution coupled to gluons, the corre-

sponding two-loop contribution to the functions Rab in eq. (2.9) is given by

R(1)
qq (z) = C2

F

[
− 1 + z +

(
1

2
− 3

2
z

)
ln z − 1

2

(
1 + z

)
ln2 z + 2pqq(−z)S2(z)

−
(

3

2
ln z + 2 ln z ln(1 − z)

)
pqq(z)

]

+CFCA

[
14

3
(1 − z) − pqq(−z)S2(z) +

(
11

6
ln z +

1

2
ln2 z

)
pqq(z)
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−(z + 1)

(
67

18
− π2

6

)]
+ CFTRNf

[
− 16

3
+

40

3
z +

(
10z +

16

3
z2 + 2

)
ln z

−112

9
z2 +

40

9z
− 2(1 + z) ln2 z − 2

3
ln zpqq(z) +

10

9
(z + 1)

]
. (A.13)
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