Lawrence Berkeley National Laboratory
Recent Work

Title

COLLINEAR COLLISION CHEMISTRY. I. A SIMPLE MODEL FOR INELASTIC AND REACTIVE
COLLISION DYNAMICS

Permalink

https://escholarship.org/uc/item/9gr193dh

Author
Mahan, Bruce H.

Publication Date
1973-12-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/9gr193dh
https://escholarship.org
http://www.cdlib.org/

Submitted to Journal of LLB1.-2537
Chemical Education .

COLLINEAR COLLISION CHEMISTRY.
I. A SIMPLE MODEL FOR INELASTIC
AND REACTIVE COLLISION DYNAMICS

Bruce H. Mahan RECEIVED
LAWRENCE
RADIATION LABORATORY
December 1973 JAN 22 1974
LIBRARY AND

DOCUMENTS SECTION

Prepared for the U. S. Atomic Energy Commission
under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Division, Ext. 5545

~LeSe-T1d1

-2




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



COLLINEAR COLLISION CHEMISTRY. I.

A Simpie model for Inelastic

- and Reactive Collision Dynamics

Bruce H. Mahan
 University of California

Berkeley, 94720

Ih‘the last 15 years, enorméus progress has beeﬁ
made in understanding the fundamental colliéional processes
"by Which molecules are fransferred among their‘internal quantum
states or converted by dissociation or metathetical reactions
"tovnew chemical species (1). A variety of experiméntal
teehniques have produced informaticn tho
 détai1ed inﬁerpretation in termes of the structure and initial
states of the reactants and the potehtial energy surfaces on
which they interact. Consequently, a substantial and increasing
number of theoreticians have given their attention to the time
dependent problems of molecular dynamics. Unfortunately, much
of the theoreticai work has been at a level of sophistication'
which makes:it largely inaccessible to those outside the field
who may not be willing to devote a considerable amount of time
tb the study of molecular collision theory.v However, it 1is
now becoming clear that many of the most obvious collisional
phenomena can be understood at leasﬁ qualitatively ih terms

of the classical mechanics which is taught in introductory
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college-physics.- It would be appropriqte'énd valuable to
introduce some of this material in the junior level physical
chemistry course. It is the oorpose of this article to make
available a concise treatment of the simplest model for
'inelastic and reactive scattering--the collinear collision
of ah atom with a diatomic molecule on an exceedinglyvsimplé
poteﬁtial curfaCe. ‘The model has qualitative or semi- |
quantitative relation to the behavior of real systems, but
its major advantage is'that it provides a framework for'
'thinkln:r about molecular collisions and reveals many of the
factors which affect the dynamlcs of reactive and inelastic
c0111s10ns.

Thé Kinetic Energy of a Triatomic‘Systcm

We consider an atom A and a diatomic molecule BC

Lmwn 4L
S wido

(2). What are the most convenient cocrdinates
_ dcscription of the system?' It is tempting to use a Cartesian
systém Whosc origin_is fiXed in the'laboratory. This would
give usb9 coordinates and 9 velocities to be concerned with

in any dynamic_problem.‘ However; an}important simplification
is possible if we realize that the motion of the center-of-
mass of the three-particle system is'unchanged by interactions
between'them. Consequently, this-center—of—mass motion is of
no ihtefeét in the discussion of the dynamics of the collision.
Therefore, we want to use a coordinate system which moves with

the center-of-mass and .which describes only the relative motion

of the three particles.



Perhaps the most obvious such system would be the
"chemists coordinates": the internuclear separations r and
rz, the bond angle 6, and the three angles needed to specify
the orientation of the triatomic system in space. That is,
r and z, considered as vectors provide the 6 numbers necessary
.to locate the 3 particles relative tQ the center-of-mass. Sueh
coordinates might be used; but are not the-most convenient. It
is m&ch simpler to consider the behavior of the system as made
up -of the motion of B and C relative to each other, end the
motion ef A relative to theiBC center-of’maes. The corresponding
coordinate system in effeet makes e "mobile" of ﬁhe ABC system,
| aefFig. 1 shows. |

It is now possible to wriﬁe downbthe expression for'
‘the kinetic. energy of the syStem in a very straightforward
_ ma?:er. ,Recalling that the relalive hinetic energy of 2
}pérficles’is Just the‘square of their relative velocity times
one half their reduced mass, we see that the relative kinetic
energy of B and C is just

BC
B+ C

1
Tge = 3

BC 12 = %‘ BG (¥2 + Y262 + Y2sin®692) (1)

B+ C

where B and C stand for the masses of the particles, and 6

and ¢ are a pair of angles which locate the direction of the

BC akie in space. Likewise; the syetem of A moving relative
te_the center—of-maes of BC is an effective 2-particle problem,
and has associated with it a relative kinetic energy given by |

(R +C) A ) (s 28 i ;
1 A(B E %2 - £ A(B + (x2 + x262 + x®sin®0¢)

7 _ + C
A(BC) " 2A+B+C = 2A+B+C

(2)



where © and ¢ are the angles which giveithe direction of line
joining A to the center-of-mass of BC (the x axis) in space.

The total relative kinetic energy 1is therefore

A(B+4.C) v2.. 1 _BC w2
M- X tagrclY S (3)

T -3
~where M is the sum of the masses of all three particles.

:To study the exact classical‘mechanics of a triatomic
system moVing under the influence of an arbitrary potential
V(X,Y), the expressions for ‘the kinetic energy and the potential
energj would be conbined to give the Lagrengian function |
L =T -V, or the Hamiltonian function H = T 4 V. Then the 6
ooupled seoond order differential Lagrange equations or the 12
coupied first order differential Hamilton equations would be
Soived numerioally for tnefexact trajectories which result from
cﬁosen;initial conditions. In this articie, we‘shall make two
‘drastic simplifications that will allow us to obtain the exact
results'of a collision by doing only trigonometry and algebra.’
‘First, we assume that all particles interact pairwise by angle
independent potentials which are of the hard sphere or square
well type indicated in Fig. (2). Second{'the particlee are
arranged collinearly, and their initial motion is along this
axis only. These two assumptions cause substanital loss of
generality, but if used cautiously, the resulting model still
demonstrates many of the essential physical characteristics
of actoal molecular collisions.

Since the three particles initially move collineariy

and interact pairwise through spherical potentials, they will

.-.4_..



remain“collincat throughout the collision. COnséquéntly,‘thc
time derivatives of the angles in Egns. (1) and (2) are zero,
and we can replace z and g'in'Eqn. (3) by their scalar

magnitudes, .and get

T2 ABEC) o, 1. BC g y (4)

Equation (4) is a simple expression for the total relative energy,
particularly since it does not involve any cross termsvih X and
Y. This simplication is a result of using the "mobile" coordinate

‘system whose formal relation to the "chemists coordinates"” I, and

r is
~D .
X5t E, )
Y=r
~ ~2
- where
v = C/(B + C)

However, there is a further tranSformation'which al1ows a éimple
visualization of the behavior of the three particle collinear

system. Let

X =

(6)

B -

y:

where a is a constant, and substitute into Eqn. (4). The

result is

b ]
jos}
=+
O
e
N

<+

_ 1
T=2



Now chose a so. that the coefficients of ‘the two velocity terms

are the same. Thié requires

a2 = A(B+ C)

- BCM
.and as a result

i G L N m

‘The significance bf Eqn. (7). is that if-x'andvy'are
used as Cartesian coordinates and the‘potential enefgy V(x,y)
is'répresentéd in the third dimension, then a single particle
of»méss A(B.+'C)/M>sliding frictioniess on the.pOtential
surface will carry Quﬁvan X~y motion which exaétly represénts
the béhaviép of the réal three particle éystem. In other . |
'Wdrds,_the-motiqnlof three.pafﬁicleé in two dimenSions-(collinear
fi,ra) has beeh feduced to something which.can be more easily
| ’visualized: the motion of one particle iﬁ two'diménSions,-
The relation between the,x,y‘cobfdinates.and the bond
: diétancés r.,r, can.be found in the fdll@wing manner. 'From .
Eqns.. (5) and (6)

T _ 1 -
Y= =72 (x - rl)

Thus avliné'of.consfaﬁt fa‘is parallel to the X axié,'and a 1iné?.
of ¢onétant r1 has a slope of 1/va when plotted'in_fhe Carfesian
X -y coordinate system."This is shown in Fig,'3; where‘itaisf
évident that lines of: constaﬁt r and r, éppear skewed in thev

X -y coordinate system.. If the angle between lines of .

constant r and r2 is B, then

b » '..6..



1\
‘tan 6‘—_(7a> = A0 o | (8)

and by straightforward trigonometic manipulation

I

si0°f = TT LB TE (%)

cos®p = (A + g?(B T ¢y | | B (10)

Vibration Excitation of a Square-well Oscillator

| :(The X - y'coordinéte‘system described‘above was
introduced by Wigner in an early péper by”Eyring and Polanyi
(3).;'It has been discussed by several authors (4-7) since
then, for the most part in connection with metathetical or
recombination reactions. As our first example of its use,
we shall discuss the simpler problem of the collision of a
hafd sphere particle A with an oscillator BC bound by a square
WQilvpotential. Initial translational energy.of A relative to
BC iS'partly converted to vibrationalvenergy of BC, and.hence
the process is a simple example of an inelastic collision.
The'appfopriate potential energy surface is shown in Fig. 4.
A flat bottomed trough is boundéd by two infinitely high walls
which correspond to the hard sphere repulsion between A and B,
and between B and‘C. The outer or attractive wall of the BC
poteﬁtial constitutes the third wall of the trough, and is |
parallel to'thé X axis.

L The simplest trajectory for this system results if
B and C are ihitiallyvat rest at a separation-halfway between

the parallel walls of the trough. The representative particle



thénvslides straightjddwn the trough paréllgl to the x axis,
' as the real particle A-approaches the'réale. The A-B collision
oécurs as the}represéntatiVe particle encounte}s the 1éft~hand
‘wall of the trough where it is specularly reflected. The |
‘inﬁernal angle between the incoming and initial outgoing.leg
of” the trajectory is easily seen to be T —'26 - If the 1nterna1'
energy acquired by BC is 1nsuff1c1ent to- dlssoc1ate the
molecule, the trajectory is completed byﬁthe'zig-zag path
shown in Fig. 4, vwhiéh_répresents the departure pf A ffom thé
oscn,llat:m‘7 BC | |

The flnal translatlonal veloc1tv of A relative to uhe
BC center of—mass is Just the progectlon of the flnal veloc1ty

vector on the X axis, or.

v, = v cos (# —'28).= - v cos (2B) - ’ (11)
where v is the magﬁitude of the initial velocity of A relative
- to BC, and‘a positi?e value.of O corresponds  to séparatiohvof
A from-BC afterrthe collision. The change in the'relative' |
translational energy due to the collision can be obtained in
the following manner. If E is the initial, and B’ is the final
relativertranslatiohal energy, then squarlng Eqn (1l)land»
multlplylnﬂ by 1/2 A(B + C)/M gives us

E = E cos (25)

The quantity ¢, the difference between the final and initial
translational energy is therefore

Q = E = E[cos? (2B) - 1] - - E siﬁ2 (25)” (12)



vSince the'change'in the vibrational energy AEU is just the
~ negative of Q, we get ‘ e
AEU
E

It

sin® (2p)
| (13)

it

4 sin® B cos® B
4ABCM - .
(A + B)3(B + C)2

Equétion(lb'is the exact expression for the change
in vibrational energy AED which occurs as a_result of a
single hard—sphere A-B interaction. It applies.not only to
fhe'case in which BC is bound.by a squaré-welllpotential,
But to any BC force law, as long as the A-B interaction is
of the hard sphere type. The sin2®(2B) factor is the most
cémpact cxpression of how the mass‘distribufion effects the
inelasticity of the collision,>and appears (or should appear)
' explicity_the expression for the inelasticity when the potential
 of intéraction is more‘realistic. For'éxampie, if BC is a
harmonic oscillator of circular frequency w and the A-B
inteiaction pofential is an exponential repulsion with a range

parameter L, that 1is,

Vag = V, exp (-rAB/L)

then the expression for the inelasticity can be shown (8) to

be



AEU._'O. 2(2-)~ TwL = hé TwL, S . (14)
T = sin B o csc o .v.

Thus finite interaction between B and C_(represented by o!

in Eqn. (14)) and the finite range of the A-B potential act
to dimiqish'the inelas£icity of the collision below the value
sinz(éﬁ) given by the ﬁass distribution alone.

Some comments concerning the qualitative'relation
'beﬁween phe.mass distributidn,'the'angle B, and the inelasticify
of the collisiOn-are'in:order; If the mass of B is much |
gfeater,than the masses of A and C, the ahgle B -approaches
QOf, and,sina(Zé) and the inelasticity approach zero. Consider;
for example, a helium atom hitting fhe iodine end of the HI
~molecule. in“this cése B = 89.1°, and only 5.8 X 10"4 of
the initial relative energy would appear as vibraﬁion after
vthe collision,-according to this model. If.the masses of B
and C are compéfablé, but that of A remains small, B_decreases
and the‘ihelasticity increases._'For.a collinear colliSion of
02" with He, B = 71.56, and AED/E = 0.359.: In our (9)’experi;
mental studies of this systém, we have found inelasticities -
whiéh approach this amount, and in fact are given more accurateiy
by the refined expfession,.Eqn. (14). |
| o When the mass of B is comparable to or Smalleriﬁhan
the masses of A and C, or 'if "stepéh or wells are introduced
into thglpotential surface, slightly more‘compiicated
trajectories result.. Some of these situations'are'iilustrated‘_

in Fig. 5. If:B is less than 51°, the trajectory encounters thé

i



reflécting wall .at the end of the trough moré than once, as
‘Figure 5a shows. That is, A hits B, B hits C and then B

- returns tp hit A a second time before the systems seéarate.
As a result of the second A-B encounter, the internal energy
of BC is modified'considerably, and Egn. (13) must be |

replaced with

AE

,-EQ :lsina(ZnB) ‘- | . o (15)

where n is the number of A-B encountérs."Equatioh'(ls) can
ﬁe derived by using’the principle of the kaieidoscope outlined
by'Jepson and Hirschfelder (4), or by more tedious but straight-
forward geometric considerations. '

| For more realistic potentials, the idea of multiple
A-B cneounters bedomcé rather imprcci:é, éincc'it i:‘csscntiaily.
impoésible to tell when the first A-B interaction ends and
second begins. However, exact trajectory calculations withISuch
potentials do show that when B is smaller than 50°, there is
éonsiderable compression of the BC oscillator dﬁring the
collisioﬁ, a rather extended A-B interaction time, and a
diminished inelasticity, all of which would be expected from
the multipie encounter phenomena observed on the hard sphere-
square well surface. .

Some new effects occur if the potentiél surface has
a well, or a step down to a lower value as A approaéhes BC.

The éimplest such situation is shown in Figure S5b. We have

chosen to have the boundary of the potential well perpendicular

_ll..



to the x-axis, which corresponds to an atfraction.of.A_to
the centervof-mass of BC.' That is, tnere is equal attfection ‘ .5
of A to B and to C. The consequences of this type of weil |
are easy to deducee_ The repfesentative pefticle proceeds..

down the ‘trough with initial energy E and crossee step into

the region of the well. At.this point, the potential'enefgy

decreases from zero to the (negative) value 9, so the kinetic

energy increases to E-¢. The representati?e'particle'then |

.strlkes the.wall at the end of the trouﬂh as the A-B colllslon
"occurs, and is reflected through the anole 2p. After the

: reflectlon, the v;bratlonal energy of oscillator is the product}

b.of the local total‘kinetic'energy E-g, and sina(zﬁ); by exact

analogy to Eqn. (15). As.A:and BC separate, %he representetive ' E
particle crosses the step again. 'Sinee the step is perpendieular .
to the X-axis, only thefrelative transla%ional energy is

changed (by'm) as it is crossed, and the excitation energy

that the oscillator1ACQuired”upon reflectionris'unchanged.’; _ E

Thus the final vibrational energy of'thevoecillator is
BE, = (E - 9) sin®*(2 B) R - (18)

In effect, this type of step makes it appear'thet tne collision
took place on a flat potential surface, but with an increased
kinetic enefoy of E-9.. As far as the A-B interaction is
concerned that 1s Just what happened.

The attraction of A to the center-of-mass of.BC,is
only one simple form fhat’the potential'surface might take.

Another simple situatien'occurs when A is attracted to B alone.

-12-



Then, as,Figure Sc shows, the potential Step makes an angle B
with the x-aXis. In thié case, when thevrepresentative particle
crosses the step on the incoming leg of the trajectory, it is
refracted according to Snell'é law. That is, the component of
.velocity parallel to the step is unchanged, but the perpendicular
compohent of.the velocity is changed by an amount (2{¢|/h)%,
whéreﬂm.= A(B + C)/M is the mass of the fepfésentative particle.
Consequently, a change in the diréction of the ﬁréjectory results.
The.magnitude of the deflection can be found in the following
mgﬁner. ‘Since the:compoﬁent of velocity parallel to the step
iévunchanged,~we have - .

v s8in 6 = v sin ©
1 1. 2 2

where o and‘bz are the magnitudes of the velocities before
‘ahd»afﬁer"the step, ahd-él énd 62 are tﬁe»usuélvangle; df
ihcidencg and refracﬁion, measured from the perpendicular to
the potential step. Squaring ahd multiplying by one half the:
'méss gives

E sin® 6 =E sinZ? 6 ) | v (17)
- 1 T2 T T2 : | |

which is the form of Snell's law which is éppropriate for
particle trajectories. |

| By using the laws of refraction and specular reflectigh,
it is possible to'déduce that if the repfesentative particle
follows the trajectory shown in Figure 5c, the result for the
vibrational energy is just that given by Eqn. (13). That is,

this type of potential step with this type of trajectory has
N

_13_



no influcnce on the ihelésticiiy,: This;reeult is in faet rather
obvious. In effect, the atom C is a spectator to the A-B
_collision‘for the trejectory'shown in Figure 5¢c. The veloeity
changes that occur in an isolated head-on A-B collision are
:deﬁermined-solely-by energy and momentum cbﬁservation laws,

and not by the form of their interaction potential. Thus it
does notematter whetherbthe step is up, down, or how large it
is, as'loﬁg as it makes an angle-tho @heix-axie; and B-does
not hit C while the sYsﬁem is in_fhe vicinity of the step.

o Figure 5d iilustfates another'important-phenomenon
that'ocqﬁrSIWhep the‘peﬁential surfaee.contains a ﬁell.' With
thevetep again peipendiculaf to the x-axis, the initial parts
of fhe frajectory“are‘the same'as in Figdre Sb. However when

'the representatlve particle attempts to cross the step on the
outgoing leg of the tragec»ory, 1t flnds that it has 1nsuff1c¢ent
_ translational energy‘to do so. The conqltlon Wthh must be met

to cross the step oh'the first try is

<E - 9) cos® (2 B) /;cp'; |

so that if l¢l is large enough, or B or Eesmall epeugh
v:'temporary trapplng of the replesentatlve partlcle w1ll oceuf
In the example uhown, a second A-B- colllslon converts all the
.energy'to relative translation of A and BC, The representatlve
_particle_theh crosses the step‘on its second tfy, and a perfectly
elastic coliisioh isrcompleted.

The most important éspect of this.example is that it
dembnstrafes how and whyi"stickj“ collieioné occur. A potential

well and ahzinternal.dégree of freedom (the B-C vibration) are

-7 4 -




necessary. The collision is prolonged_when SOme of the'ehergy
necessarylto separate_the partners resides temporarily in- an
internal degree of freedom. The model makes it clear why
deepening the well, decreasing the initial collisional energy,
and increasing~the'number of internal“degrees of-freedomr
increases thevchance that a.sticky collisioo will occur.

The potential energy surfaces used in this dlscus51on
are very prlmltlve, and the restrlctlon of the system to |
colllnearlty is hlghly unreallstlc, so the quantltatlve applica~
tlon of the model to real phenomena must be done with caution.
Nevertheless, the several examples discucsed here qualitatively
erpose much of the basic physics of vibrational excitation by
collision.. The extension of'this type of analysis to reactive
collisions is straightforward, and will be discussed in a |
subsequent paper. |

lAcknowledgement: The value of this way of examining
| molecﬁlar‘collision phenomena was made clear to me by my
'experimental research on inelastic and reactive ion-molecular
collision-processes, which is supported by the U. S. Atomic

Energy Commission.
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Figure Captions

Figure 1.  Coordinates for the atom-diatom>system. The
set X,Y which gives a simple expression for the kinefic
energy ale makes a "mobile" ofvthe:system, since X

connects atom A to the center-of-mass of the BC pair.

Figure 2. -Interaction potentials for the hard sphere
square-wéll oscillator system. (a) The interaction

pbtential of A with B. _(b) The BC interaction'potential.

Figure 3. In the Cartesian x-y cdordinate'system, lines

. _ ' - RS
"of c¢constant rl and r2 intersect at an angle R = tan 1 (RM/40)2,

Figure'4, Potential energy surface and trajectory for the
collinear interaction of the hard spheré A_with the square

well oscillator BC.

Figure 5. Potentiél energy gurfaée féétures which intioducé
éomplicétions info the trajeétbriés. - (a) be B léssbthan
approximately 51°, multiple A-B encounters occur. (b) When
| the sufface has a stepvperpendicuiar to the x axis; the

inelasticity is increased or decreased depénding_on_thcvsign

-17_



of the poténtial step ¢. (c). When A is attracted to B
‘alone, the step makes an angle B with the x axis, and AED '
is unaffected. (d) If the potential well is deep enough,

temporary.trappihg of-ﬁhe_;epreséntatiVe'partiéle mayloccur.
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