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COLLINEAR COLLISION CEEtvliSTRY. I. 

A Simple model for Inelastic 

and Reactive Collision Dynamics 

Bruce H. Mahan 

University of California 

Berkeley, 94720 

In the last 15 years, enormous progress has been 

made· in understanding the fundamental collisional processes 

by which molecules are transferred among their internal quantum 

states or converted by dissociation or metathetical reactions 

to new chemical species ( 1) . A variety of experi!~enta~ 

~Prhn5qUPB h~v~ pro~~c~d infcr~~t~2= t~~~ ~a~r~n~~ ~~ttcr 
'· 

detailed interpretation in terms of the structure and initial 

states of the reactants and the potential 2nergy surfaces on 

which they interact. Consequently, a substantial and increasing 

number of theoreticians have given their attention to the time 

dependent problems of molecular dynamics. Unfortunately, much 

of the theoretical work has been at a level of sophistication 

which makes it largely inaccessible to those outside the field 

who may not be willing to devote a cons1derable amount of time 

to the study of molecular collision theory. However, it is 

now becoming clear that many of the most obvi0us collisional 

phenomena can be understood at least qualitatively in terms· 

of the classical mechanics which 1~ taught in introductory 
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college physics. It would be appropriate and valuable to 

introduce some of this material in the junior level physical 
' 

chemistry course. It is the purpose of this article to make 

available a concise treatment of the simplest model for 

inelastic and reactive scattering--the collinear collision 

of an atom with a diatomic molecule on an exceedingly simpl~ 

potential surface. The model has qualitative or semi

qua~titative relation to the behavior of real systems, but 

its major advantage is that it provides a frame\'JOrk for 

thinking about molecular collisions and reveals many of the 

factors which affect the dynamics of reactive and inelastic 

collisions. 

The Kinetic Energy of a Triatomic System 

We consider an atom A and a diatomic molecule BC 

(?.) . What Rre the most conve~i~nt ~oordinates 
'· 

description of the system? It is tempting to use a Cartesian 

system whose origin is fixed in the laboratory. This would 

give us 9 coordinates and 9 velocities to be concerned with 

in any dynamic problem. However, an important simplification 

is possible if we realize that the motion of the center-of-

mass of the three-particle system is unch~nged by interactions 

between them. Conseqtiently, this center-of-mass motion is of 

no interest in. the discussion of the dynamics of the collision. 

Therefore, we want to use a coordinate system which moves with 

the center-of-mass and.which describes only the relative ·motion 

of the three particles. 
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Perhaps the most obvious such system would be the 

"chemists coordinates": the internuclear separations r and 
l. 

r , the bond angle e, and the three angles needed to specify 
2 

the orientation of the triatomic system in space. That is, 

r and r considered as vectors provide the 6 numbers necessary 
"'l. "'2 

to locate the 3 particles relative to the center-of-mass. Such 

coordinates might be used, but are not the most convenient. It 

is much simpler to consider the behavior of the system as made 

up of the motion of B ~nd C relative to each 6ther, and the 

motion of A relative to the BC center-of-mass. The corresponding 

coordinate system in effect makes a "mobile 11 of the ABC system, 

as Fig. 1 shows. 

It is now possible to write down the expression for 

the kinetic energy of the system in a very straightforward 

particles is just the square of their relative velocity times 

one half their reduced mass, we see that the relati~e kinetic 

energy of B and C is just 

1 BC 
TBC = 2 B + C 

y2 = 1. BC 
"' 2B+C 

where B and C stand for the masses of the particles, and 0 

and ~ are a pair of angles which locate the direction of the 

(1) 

BC axis in space. Likewise, the system of A moving relative 

to the center-of-mass of BC i~ an effective 2-particle problem, 

and has associated with it a relative kinetic energy given by 

= 1_ A(B + C) 
2 A + B + C 

-3-
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where 0 and 4l are the angles wh1ch give the direction of line 

joining A to the center-of-mass of BC (the x axis) in spac~. 

The total relative kinetic energy is therefore 

T _ 1. A ( B + , C) X 2 + 1. BC y2 
-2 M 2B+C 

·where M is the sum of the masses of all three.particles. 

(3) 

To study the exact classical mechanics of a triatomic 

system moving under the influence of an arbitrary potential 

V(X,~), the expressions for the kinetic energy and the potential 
"''"" . 

energy would be conbined to give the Lagrangian function 

L = T -.V, or the. Hamiltonian function B = T + v. Then the 6 

coupled setond order differential Lagrange equations of the 12 

coupled first order differential Hamilton equations would be 

solved nlli~erically for the exact trajectories which result from 

chosen initial conditions. In this article, we shall make two 

drastic simplif1cations that will a~low us to obtain the exact 

results of a collision by doing only trigonometry and algebra. 

First, we assume that all particles interact pairwise by angle 

independent potentials which are of the hard sphere or square 

well type indicated in Fig. (2). Second, the particles are 

arranged collinearly, and their initial motion is along this 

axis only. These two assumptions cause substanital loss of 

generality, but if used cautiously, the resulting model still 

demonstrates many of the essential physical characteristics 

of actual molecular collisions. 

Since the three particles ~nitially move collinearly 

and interact pairwise through spherical potentials, they will 
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remain. collinear throughout the collision. Cbns~quently~ the 

time derivatives of the angles in Eqns. (1) and (2) are zero, 

and we can ~eplace i and tin Eqn. (3) by their scalar 
' "" "" 

magnitudes~ .and get 

T _ l A(B + C) X2 + 1 BC C y2 
-2A+B+C 2B+ (4) 

~quation (4) is a simple expression for the totaL~elative energy, 
. 

particularly since it does not involve any cross terms in X and 
. 
Y. This simplication is a result of using the "mobile" coordinate 

system whose formal relation to the "chemists coordinates" r and 
'Vl. 

r is 
"'2 

where 

X = r + -yr 
"' "'1. 'V 2 

Y = r 
"' "'2 

'Y = C/(B + C) 

(5) 

However, there is a further transformation which allows a simple 

visualization of the behavior of the three particle collinear 

system. Let 

X = X 
(6) 

y = 
y 
a 

where a is a constant~ and substitute into Eqn. (4). The 

result is 

T l A(B + C) •2 1 2 BC ·2 
= 2 M X + 2 a B + C y 

-5·· 



Now choze a so that the coefficicntz of the tvJO velocity terms 

are the same. This requires 

A(B + C) 2 

= -: BCl~l 

. and as a result 

The significance of Eqn~ (7). is that if ~ and y are 

used as Cartesian coordinates and the potential energy V(x,y) 

is represented in the third dimension, then a single particle 

of mass A(B + c)/M sliding frictionless on the potential 

surface will carry out an x-y motion which exactly represents 

the behavior of the r~al three particle system. In other 

(7) 

w6rds, the motion of three particles in two dimensions {collinear 

r ;·., r ) has been reduced to something v1hich can be more easily 
l. 2 

·visualized: the motion of one particle in two dimensions. 

The relation between the x,y coordinates and the bond 

distances r ,r can be found in the fdllowing manner. From 
l. 2 

Eqns. (5) and (6) 

r 
y=-E.= a 

_1_ (x - r ) 
-ya J: 

Thus a line of constant r is parallel to the x axis, and a line. 
2" 

of constant r has a slope of 1/-ya when plotted in the Cartesian 
l. 

x - y coordinate system. This is shown in Fig. 3, where it is 

evident that lines of constant r and r appear skewed in the 
l. 2 . 

x - y coordinate system. If the angle between lines of 

constant r and r is ~, then 
l. 2 
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. tan2f3 - (.l\ 2 - BM - -ya; - AC 

and by straightforward trigonometic manipulation 

• 2~ BM 
s1 n ~ = (A+ B)(B +C) 

AC 
= (A + B)(B + c) 

V~bration Excitation of a Square-well Oscillator 

The x - y coordinate system described above was 

intr6duced by Wigner in an early paper by Eyring and Polanyi 

(3). It has been discussed by several authors (4-7) since 

then, for the most part in connection with metathetical or 

recombination reactions. As our first example of its use, 

we shall discuss the simpler problem of the collision of a 

hard sphere particle A with an o::;cillator BC bound by a square 

wetl potential. Initial translational energy of A relative to 

BC is partly converted to vibrational energy of BC, and hence 

the process is a simple example of an inelastic collision. 

The appropriate potential energy surface is shown in Fig. 4. 

A flat bottomed trough is bounded by two infinitely high walls 

which correspond to the hard sphere repulsion between A and B, 

and between B and c. The outer or attractive wall of the BC 

potential constitutes the third wall of the trough, and is 

parallel to the x axis. 

The simplest trajectory for this system results if 

B and C are initially at rest at a separation halfway between 

the parallel walls of the trough. The representative particle 

(8) 

(9) 

(10) 



then slides straight down the trough parallel to the x axis, 

as the real particle A approaches the· real B. The A-B collision 

occurs as the repres~nt~tive particle encounters the left-hand 

wall of the trough where it is specularly reflected. The 

.internal angle between the incoming and initial outgoing l~g 

or the trajectory is easily seen to be 1r - 2t3. If the internal 

energy acquired by BC is insufficient to dissociate the 

molecule, the trajectory is completed by the zig-zag path 

shown in Fig. 4, which represents the departure of A from the 

oscillating BC. 

The final translational velocity of A relative to the 
-

BC center-of-mass is just the projection of the final yelocity 

vector on the x axis, or. 

ux = u cos (7r - 2t3) - u cos (2t3) 

where u is the magnitude of the initial velocity of A relative 

to BC, and a positive value of u corresponds to separatioh of 
X 

A from BC after the collision. The change in the relative· 

translational energy due to the collision can be obtained in 
I 

(11) 

the foilowing manner. If E is the initial, and E is the final 

relative translational energy, then squaring Eqn. (11) and 

multiplying by 1/2 A(B + c)/M gives us 

E1 = E cos (2t3) 

The quantity ~-, the difference between the final and initial 

translational energy is therefore 

Q = E' - E = E[cos 2 (2t3) - 1] = - E sin 2 (2t3) 

-8-
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Since the change in the vibrational energy AE is just the 
\) 

negative of Q, we get 

6E 
_u = sin2 (2~) 

E 

= _____ 4=A=B=C=M~~--

(A + B) 2 (B + C) 2 

Equation(l~ is the exact expression for the change 

in vibrational energy ~E which occurs as a result of a 
u 

~ingle hard-sphere A-B interaction. It applies not only to 

the case in which BC is ~ound by a square-well potential, 

but to any BC force law, as long as the A-B interaction is 

of the hard sphere type. The sin 2 (2~) factor is the most 

compact 2xpression of how the mass distribution effects the 

inelasticity of the collision, and appears (or should appear) 

(13) 

explicity the expression for the inelasticity when the potential 

of interaction is more realistic. For example, if BC is a 

harmonic oscillator of circular frequency w and the A-B 

interaction potential is an exponential repulsion with a range 

parameter L, that is, 

then the expression for the inelasticity can be shown (8) to 

be 

-9-



.Thus finite interaction between B and C (represented by w! 

in Eqn. (14)) and the finite range of the A-B potential act 

to diminish the inelasticity of the collisiqn below the value 

sin2 (2~) given by the mass di~tribution alone. 

Some comments concerning the qualitative relation 

(14) 

between the mass distribution, the ahgle ~~ and the inelasticity 

of the collision are in order. If the mass of B is much 

greater than the masses of A and C, the angle ~ approaches 

90°, an~ sin2 (2~) and.the inelasticity approach zero. Consider, 
' - . - . . 

for example, a helium atom hitting the iodine end of the HI 

molecule. -4 In this case ~ =. 89.1°; and only 9.8 x 10 of 

the initial relative energy would appear as vibration after 

the collision, according to this model. If the masses of B 

and C are comparable, but that of A remains small, ~ decreases 

and the inelasticity increases. For a collinear collision of 

02+ with He, ~ = 71.5°, and ~E /E = 0.359. In our (9) experiu 

mental studies of this system, we have found in~lasticities 

which approach this amount, and in fact are given more accurately 

by the refined expression, Eqn. (14). 

When the mass of B is comparable to or smaller than 

the masses of A and C, orif "steps" or wells are introduced 

into the potential surface, slightly. more complicated 

trajectories result. Some of these situations are illustrated 

in Fig. 5. If ~ is less than 51°, the trajectory encounters the 

-10-



reflecting wall at the end of the trough more than once, us 

Figur~ 5a shows. That is, A hits B, B hits C and then B 

returns to hit A a second time before the systems separate. 

As a result of the second A-B encounter, the internal energy 

of BC is modified considerably, and Eqn. (13) must be 

replaced with 

6E 
E" = sin 2 (2nt3) ( 15) 

where n is the number of A-B encounters. Equation (15) can 

be derived by using the pxinciple of the kaieidoscope outlined 

by Jepson and Hirschfelder (4), or by more tedious but straight-

forward geometric considerations. 

For more realistic potentials, the idea of multiple 

A-B cnccuntcrc be~omcs rather ~=prccicc, cincc ~t i= c~ccnt~~!!y 

impossible to tell when the first A-B interaction ends and 

second begins. However, exact trajectory calculations with such 

potentials do sho1-1 that when t3 is smaller than 50°, there is 

considerable compression of the BC oscillator during the 

collision, a rather extended A-B interaction time, and a 

diminished inelasticity, all of which would be expected from 

the multiple encounter phenomena observed on the hard sphere

square well surface. 

Some new effects occur if the potential surface has 

a well, or a step down to a lower value as A approaches BC. 

The simplest such situation is shown in Figure 5b. We have 

chosen to have the boundary of th~ potential well perpendicular 

-11-



to the x-axis, which corresponds to an attr&ction of A to 

the center~of-mass of BC. That is, thert is equal attraction 

of A to B and to c. The consequences of this type of well 

are easy to deduce. The representative particle proceeds. 

down the trough with initial energy E and crosses step into 

the region of the well. At this point, the potential energy 

decreases from zero to the (negative) value ~' so the kinetic 

energy increases to E-cp. The representative particle then 

strikes t~e wall at the end of the trough as the A-B collision 

oc:eurs, and is reflected through the angle 2t3. After the 

reflection, the vibration.al energy of pscillator is the product 

of the local total kinetic energy E-~, and sin2 (2~), by exact 

analogy to Eqn. (13). As A ~nd BC separate, the representative 

particle crosses the step again. Since the step is perpendicular 

to the x-axis, only the' relative translational energy is 

changed (by cp) as it is crossed, and the excitation energy 

that the oscillator acquired upon reflection is unchanged. 

Thus the final vibrational energy of the oscillator is 

(16) 

In effect, this type of step makes it appear that the collision 

took place on a flat potential surface, but with an increased 

kinetic energy of E-cp .. · As far as the A -B interaction is 

concerned, that is just what happened. 

The attraction of A to the center-of-mass of BC is 

only one simple form that the potential surface might take. 

Another simple situation occurs when A is attracted to B alone. 

-12-



Then, as.Figure 5c shows, the potential step makes an angle ~ 

with the x-axis. In this case, when the representative particle 

crosses the step on the incoming leg of the trajectory, it is 

refracted according to Snell's law. That is, the component of 

velocity parallel to the step is unchanged, but the perpendicular 
1 

component of the velocity is changed by an amount (2l~l/m) 2 , 

where m = A(B + C)/M is t"he mass of the representative particle. 

Consequently, a change in the direction of the trajectory results. 

The magnitude of the deflection can be found in the following 

m~nner. Since the component of velocity parallel to the. step 

is unchanged, ·we have 

u sin G = u sin e 
1 1 2 2 

where u and u are the magnitudes of the velocities before 
1 2 

d +' .+"- t . R d ~ t.. l 1 ~ an a~ter ~•le s ep, ana - an ~ are he usua ang~es o! 
1 2 

incidence and refraction, measured from the perpendicular to 

the potential step. Squaring ahd multiplying by one half the 

mass gives 

E sin 2 e = E sin2 e 
1 1 2 2 

(17) 

which is the form of Snell's law which is appropriate for 

particle trajectories. 

By using the laws of refraction and specular reflection, 

~t is possible to deduce that if the representative particle 

follows the trajectory shown in Figu~e 5c, the result for the 

vibrational energy j_s just that given by Eqn. (13). That is, 

this type of potential step with this type of trajectory has 

\ 
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no influence 011 the inel~sticity., This result is in fact rather 

obvious. In effect, the atom C is a spectator to the A-B 

collision for the trajectory shown in Figu~e 5c. The velocity 

changes that occur in an. isolated head-bn A-B collision are 

·determined solely by energy and momentum conservation laws, 

and not by the form of their interaction potential. Thus it 

does not matter whether the step is up, down, or how large it 

is, as long as it makes an angle ~ to the x-axis, and B does 

not hit C while the system is in the vicinity of the step. 

Figure 5d illustrates another important phenomenon 

that occurs when the potential surface contains a well. With 

the step again perpendicular to the x-axis, the initial parts 

of the trajectory are the ~arne as in Figure Sb. However, when 

the representative particle attempts to cross the step on the 

outgoing leg of the trajectbry, it finds that it has insufficient 

translational energy to do so. The condition which must be met 

to cross the step on the first try is 

(E- cp) cos 2 (2 ~) ~lcpl 

so that if jcpl is large enough, or ~ or E small enough, 

temporary trapping of the representative particle will occur~ 

In the example shown, a second A-B collision converts all the 

~nergy to relative translation of A and BC. The representati~e 

particle then crosses the step on its second try, and a perfectly 

elastic collision is completed. 
I 

The most important aspect of this example is that it 

demonstrates how and \'Jhy "sticky" collisions occur. A potential 

well and ati ~nternal d~gree of freedom {the B-C vibration) are 



.. 

necessary. The collision is prolonged when some of the energy 

necessary to separate the partners resides temporarily in ~n 

internal degree of freedom. The model makes it clear why 

deepening the well, decreasing the initial collisional energy, 

and increasing the number of internal ·degrees of .freedom 

increases the chance that a sticky collision will occur. 

The potential energy surfaces used in this discussion 

are very primitive, and the restriction of the system to 

collinearity is highly unrealistic, so the quantitative applica

tion of the model to real ,phenomena must.be done with caution. 

Nevertheless, the severaL examples discussed here qualitatively 

expose much of the basic physics of vibrational excitation by 

collision. The ·extension of this type of analysis to reactive 

collisions is straightforward, and will be discussed in a 

subsequent paper~ 
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Figure Captions 

Figure 1. Coordinates for the atom-diatom system. The 

set X~Y which gives a simple expression for the kinetic 

energy also makes a "mobile" of .. the system, since X 

connects atom A to the center-of-mass of the BC pair. 

Figure 2. ·Interaction potentials for the hard. sphere 

square-well osc:l,..llator system. (a) The interaction 

pbtential of A with B. (b) The BC interaction potenti~l. 

Figure 3. In the Cartesian· x-y coordinate system~ lines 
-1 1 

·of constant r and r intersect at an angJ e ~ = t.R.n (BM/LJ:' ) 2 . 
.l 2 

Figure 4. Potential energy surface and trajectory for the 

collinear interaction of the hard sphere A with the square 

well oscillator BC. 

Figure 5. Potential energy s.urface features which introduce 

complications into the trajectories. (a) For~ less than 

approximately 51°, multiple A-B encounters occur. (b) When 

the surface has a step perpendicular to the x axis, the 

inelasticity is increased or decreased depending on the sign 
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of the potential step cp. (c) , Vlhcn A i.s attracted to B 

alone, the step makes an angle ~ with the x axis, and ~Eu 

is ~naffected. (d) If the p6tenti~l well is deep enough, 

temporary trappi~g of fhe representative parti~le mai,occur. 
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