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1 Introduction

Our knowledge of the structure of quantum field theory (QFT) is rapidly advancing. On

the one hand this steady progress allows us to answer fundamental questions about the

interactions of nature by deriving precise predictions for the outcome of scattering experi-

ments that can be compared with experimental observation. On the other hand we learn

about the mathematical structures that underly this description.

Progress in QCD perturbation theory has allowed us to venture to predictions at next-

to-next-to-next-to leading order (N3LO) in the strong coupling constant for select inclusive

and differential cross sections at the Large Hadron Collider (LHC) [1–9]. Resummation

of kinematic limits of cross sections has reached the similarly astounding precision for a

multitude of observables [10–18]. Nevertheless, the difficulty of describing the scattering

of fundamental particles is ever rising with increasing demand for precision and for more

complex observables. To overcome seemingly insurmountable complexity, parametric or

kinematic expansions have proven highly effective. For example, expanding the gluon

fusion Higgs boson production cross section around the production threshold of the Higgs

boson allowed for the computation of the first hadron collider cross section at N3LO in

QCD perturbation theory [1].

Kinematic expansions in hadron collisions have been studied since a long time. For ex-

ample, such expansions provide the bases of factorization theorems for inclusive processes

in hadron collisions [19–26]. They have also been used to derive universal quantities like

emission currents or splitting amplitudes (see for example refs. [27–43]), for studying the

high energy behavior of amplitudes and cross sections (see for example refs. [44–52]) as well

as in the calculation of counterterms for subtraction algorithms (see for example refs. [53–

58]). In the method of regions, one expands Feynman integrals in all relevant kinematic

limits to simplify their evaluation [59]. More generally they can be used to study divergence

structures of Feynman integrals [60] or to approximate hadronic cross sections [61–66]. Soft-

Collinear Effective Theory (SCET) is based on the kinematic expansion of scattering am-

plitudes and the realisation that such limits can be described by effective field theories [67–

71]. These techniques have also been used to derive the factorization of several infrared

observables for color-singlet processes at hadron colliders, see for example refs. [72–84].

In this article we detail a technique for the efficient expansion of differential partonic

cross sections for the production of a color singlet final state h in hadron-hadron collisions

in the kinematic limit that all radiation produced alongside h is collinear to one of the

collision axis of our scattering process. The method outlined here is based on the work

mentioned before and extends existing technology. It also shares many similarities with the

method developed in refs. [85–89] to expand cross sections around the limit of all radiation

being soft. Our expansion is carried out at the integrand level, i.e., before loop or phase

space integrals are carried out. The resulting expressions can be interpreted diagram-

matically. This in turn greatly simplifies the analytic computation of matrix elements by

employing powerful loop integration techniques like the reverse unitarity framework [90–94]

or integration-by-part (IBP) identities [95, 96]. Our expansion is systematically improvable

as we can compute to arbitrarily high power in our expansion parameter. The mathemat-
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ical functions that appear in each term of the expansion are determined by the first few

expansion coefficients.

The collinear expansion of cross sections can find many applications in the computation

of higher order corrections to scattering processes. Cross sections for the production of hard

probes h can be approximated by performing a systematic collinear expansion. Recently, an

all-order factorization theorem was derived for the first order in this collinear expansion [26].

While the usefulness of our expansion technique depends on the specific observable in

question, it is obvious that key observables like the rapidity or transverse momentum of

a hard probe are amenable to such an expansion. We demonstrate the applicability of

our collinear expansion to the rapidity distribution of the Higgs boson produced via gluon

fusion. By calculating the collinear expansion to its second order, we demonstrate the

excellent convergence of our series towards the full result at NNLO in perturbation theory.

Kinematic limits of cross sections can also be used to identify universal structures of

quantum field theories. Our expansion technique allows to gain access to splitting functions

or integrated counter terms that may find application in subtraction algorithms used for

the computation of fully differential cross sections. Universal building blocks that find their

application in the resummation of perturbative cross sections can be accessed efficiently

using this expansion technique.

One example of such universal building blocks are so-called beam functions [72, 97]

which arise in SCET and play a crucial role in factorization theorems of hadronic ob-

servables. We demonstrate how to relate beam functions to the kinematic limit of our

perturbative cross sections and how they can be extracted efficiently. Specifically, we in-

vestigate the transverse momentum (qT ) dependent beam functions and N -jettiness (TN )

beam function. We illustrate our method by computing these quantities through NNLO,

up to the second order in the dimensional regularization parameter ǫ, confirming recent

results in the literature [98–100]. These results are necessary input for the calculation of

aforementioned beam functions at N3LO in QCD, where much progress has been already

made for the quark TN beam function [101–103], and which has already been achieved for

the quark qT beam function and TMDPDF [104]. In our companion papers [105, 106], we

complete this task by computing the qT and T0 beam functions in all channels at N3LO

based on the methods outlined in this article.

In recent years the universal structure of cross sections beyond leading power in kine-

matic expansions within SCET have been explored [107–139]. As this avenue of research is

still growing rapidly, our expansion techniques may provide analytic information towards

the structure of cross sections at higher power. In fact, the method developed in this paper

is inspired by the calculation of power corrections in fixed order SCET for T0 [117, 118, 129]
and qT [130]. It will be interesting to extend these studies to higher order in αs and the

power expansion. We hope that our techniques will provide readily accessible tools for the

computation of yet unknown universal building blocks.

This article is structured as follows: in section 2 we setup a parameterization for differ-

ential cross sections for color singlet production at hadron colliders. This will mainly serve

to develop a notation and to identify the objects that we aim to expand. In section 3 we

introduce the general strategy of expanding differential hadronic cross sections around the
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collinear limit, identifying the relevant kinematic regions and formally defining what we

intend by collinear expansion. We then continue the discussion about collinear expansions

in section 4 by showing in practice how to perform the collinear expansion for squared ma-

trix elements. We will show explicit examples of the expansion of two loop cut diagrams at

leading and beyond leading power, both for real radiation as well as for loop corrections. In

section 5 we explain how our collinear expansion of cross section is related to the effective

field theory framework of SCET and in particular to the factorization of hadronic differen-

tial cross sections. In section 6 we review the role of SCET beam functions in the factoriza-

tion of hadronic differential cross sections and we show that they are naturally connected

to the leading term of our collinear expansion of cross sections. We discuss in detail how to

obtain beam functions both in the case of qT and TN . In section 7 we apply our formalism

to compute the rapidity spectrum of the Higgs in gluon fusion at NNLO in QCD via the

collinear expansion of the partonic cross section. We conclude in section 8. Our two-loop

results for the qT and TN bare beam functions are provided as supplementary material.

2 Setup for differential cross sections

In this section, we develop the notation for differential cross sections at hadron colliders.

In section 2.1, we introduce our generic notation for the production of a colorless hard

probe h in a proton-proton collision. In section 2.2 we provide a detailed derivation of the

required differential phase space.

2.1 General setup and notation

We consider the production of a colorless hard probe h and an additional hadronic state X

in a proton-proton collision. Examples of such processes are the gluon fusion production

cross section of a Higgs boson or the hadronic production of a Z boson or virtual photon

(Drell-Yan).

P (P1) + P (P2) → h(−ph) +X(−k) . (2.1)

Here, P1,2 are the momenta of the incoming protons, which in the hadronic center-of-mass

frame are given by

Pµ
1 =

√
S
nµ

2
, Pµ

2 =
√
S
n̄µ

2
, (2.2)

where S = (P1 + P2)
2 is the hadronic center-of-mass energy and the protons are aligned

along the directions

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1) . (2.3)

In eq. (2.1), ph is the momentum of the hard probe h, and k is the total momentum of the

hadronic state X, and as indicated both momenta are taken to be incoming.

The hadronic process in eq. (2.1) receives contributions from the partonic processes

i(p1) + j(p2) → h(−ph) +Xn(−p3, . . . ,−pn+2) , (2.4)

where i and j are the flavors of the incoming partons, and their momenta are given by

pµ1 = x1P
µ
1 , pµ2 = x2P

µ
2 , (2.5)
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such that the partonic center of mass energy is given by

s = (p1 + p2)
2 = x1x2S . (2.6)

In eq. (2.4), Xn is a hadronic final state consisting of n ≥ 0 partons with momenta

{p3, · · · , pn+2} and total momentum kµ ≡∑i>2 p
µ
i .

We are interested in describing processes that are differential in the four momentum

pµh, which we parameterize in terms of its rapidity Y and virtuality Q,

Y =
1

2
log

(

n̄ · ph
n · ph

)

, Q2 = p2h , (2.7)

and by momentum conservation its transverse momentum pµh⊥ is fixed to be pµh⊥ = −kµ⊥.
The momentum kµ is parameterized in terms of the variables

w1 = − n̄ · k
n̄ · p1

, w2 = − n · k
n · p2

, x =
k2

(n̄ · k)(n · k) = 1−
~k2⊥

(n̄ · k)(n · k) . (2.8)

We refer to the hadronic cross section differential in the above variables as the general

differential cross section,

dσ

dQ2dY dw1dw2dx
=
σ0
τ

∑

i,j

x1fi (x1)x2fj (x2)
dηij

dQ2dw1dw2dx
. (2.9)

Here, the sum runs over all possible initial state configurations i, j, the fi(x) denote the

parton distribution functions, and dηij/(dQ
2dw1dw2dx) is the general partonic coefficient

function. Eq. (2.9) is normalized by σ0, which contains all constant factors appearing in

the Born level cross section. The Bjorken momentum fractions x1,2 can be expressed in

terms of the variables introduced above.

x1 =
xB1
z1

= xB1

[

√

1 + (kT /Q)2 − n̄ · k
Q

e−Y

]

,

x2 =
xB2
z2

= xB2

[

√

1 + (kT /Q)2 − n · k
Q

e+Y

]

, (2.10)

where the momentum fractions appearing at Born level are given by

xB1 =
√
τeY , xB2 =

√
τe−Y , (2.11)

where τ = Q2/S and we use the functions

z1 =

√

1− w1

1− w2

√
1− w1 − w2 + w1w2x, z2 =

√

1− w2

1− w1

√
1− w1 − w2 + w1w2x. (2.12)

At Born level, kµ = 0, such that the momentum fractions x1,2 reduce to xB1,2, while in the

presence of real radiation the kinematic constraint kµ < 0 dictates that x1,2 ≥ xB1,2.

The general partonic coefficient function in eq. (2.9) is given by

dηij
dQ2dw1dw2dx

=
τ

σ0

Nij

2Q2

∑

Xn

∫

dΦh+n

dw1dw2dx
|Mij→h+Xn

|2 . (2.13)
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Here, the sum runs over all hadronic final states Xn consisting of n partons, and dΦh+n is

the phase space measure of the h + Xn final state which will be discussed in more detail

in section 2.2. |Mij→h+Xn
|2 is the associated squared matrix element summed over final

and initial state colors and helicities. We have also pulled out the overall normalization

factor Nij , related to the spins and polarizations of the incoming partons. Depending on

the initial state, it is given by

Ngg =
1

4(n2c − 1)2(1− ǫ)2
,

Nqg = Ngq =
1

4(n2c − 1)nc(1− ǫ)
,

Nqq = Nqq̄ = Nqq′ = Nqq̄′ =
1

4n2c
. (2.14)

Here, g, q (q̄) and q′ (q̄′) indicate a gluon, (anti-)quark, and (anti-)quark of different flavor

than q, respectively.

We expand the general partonic coefficient function in αs as

dηij
dQ2dw1dw2dx

=

∞
∑

ℓ=0

(αs

π

)ℓ dη
(ℓ)
ij

dQ2dw1dw2dx
(2.15)

=ηVijδ(w1)δ(w2)δ(x)+
∞
∑

ℓ=1

(αs

π

)ℓ
ℓ
∑

n,m=1

w−1−mǫ
1 w−1−nǫ

2

dη
(ℓ,m,n)
ij (w1,w2,x,Q

2)

dQ2dw1dw2dx
.

Here, ηVij contains the Born cross section and purely virtual corrections, and can itself be

expanded in αs/π with the first term η
V (0)
ij = δīj for flavour diagonal processes like Drell-

Yan or Higgs production. The η
(ℓ,m,n)
ij are separately holomorphic in the vicinity of w1 = 0

or w2 = 0.

The differential cross section for a specific observable T that only depends on pµh and

kµ is obtained from our general differential cross section given in eq. (2.9) as

dσ

dQ2dY dT = σ0
∑

i,j

fi(x
B
1 )⊗xB

1

dηij(x
B
1 , x

B
2 )

dQ2dY dT ⊗xB
2
fj(x

B
2 ). (2.16)

Here, the convolution integral is defined as

f(x)⊗x g(x) =

∫ 1

x

dz

z
f(z)g

(x

z

)

. (2.17)

The corresponding partonic coefficient function differential in T is given by

dηij(y1, y2)

dQ2dY dT =

∫ 1

0
dx

∫ ∞

0
dw1dw2 δ (y1 − z1) δ (y2 − z2)

× δ
[

T − T (Q,Y,w1, w2, x)
] dηij
dQ2dw1dw2dx

, (2.18)

where T (Q,Y,w1, w2, x) picks out the value of the observable at a given phase space point.

Note that in the above equation the variables zi are still functions of w1, w2 and x as

specified in eq. (2.12).

– 6 –
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The partonic coefficient function in (2.16) contains ultraviolet (UV) and infrared (IR)

divergences. We regulate such divergences using conventional dimensional regularisation

by extending the space time dimension by an infinitesimal amount to be d = 4 − 2ǫ. UV

divergences are removed by renormalization in the MS scheme. IR singularities are removed

by the standard mass factorization redefinition of the PDFs. Specifically, the unsubtracted

PDF fi(x) is given in terms of the finite PDF in the MS scheme fRi (x) as

fi(x) =
∑

j

Γij(z)⊗z f
R
j (z) , (2.19)

where the sum runs over all parton flavors j, Γij is the PDF counterterm that is known

through three loops [140, 141], and we suppress the associated factorization scale µ. This

allows us to write the hadronic differential cross section of eq. (2.16) in terms of finite

quantities,

dσ

dQ2dY dT = σ0
∑

i,j

fRi (xB1 )⊗xB
1

dηRij(x
B
1 , x

B
2 )

dQ2dY dT ⊗xB
2
fRj (xB2 ) , (2.20)

with
dηRij(z1, z2)

dQ2dY dT =
∑

k,ℓ

Γki(z1)⊗z1

dηkℓ(z1, z2)

dQ2dY dT ⊗z2 Γℓj(z2) . (2.21)

2.2 Differential phase space

To derive the phase space differential in the variables defined in eq. (2.8), we start from

the generic expression for the phasespace of the h+Xn system,

dΦh+n =
ddph
(2π)d

(2π)δ+(p
2
h −Q2)

[

n+2
∏

i=3

ddpi
(2π)d

(2π)δ+(p
2
i )

]

(2π)dδd(p1 + p2 + ph + k) , (2.22)

where

δ+(p
2 −m2) = θ(−p0 −m)δ(p2 −m2) , (2.23)

and kµ =
n+2
∑

i=3
pµi is the total momentum of Xn. Next, we separate the integration over ph

and k by inserting the unity

1 =

∫

ddk

(2π)d
(2π)dδd(k − p3 − · · · − pn+2)

∫ ∞

0

dµ2

2π
(2π)δ+(k

2 − µ2) . (2.24)

This splits the h+Xn phase space measure into an integral over the phase space Φm
2 for two

massive particles and the phase space Φ0
n for n massless partons of total invariant mass µ2,

dΦh+n =

∫ ∞

0

dµ2

2π
dΦm

2 (µ
2) dΦ0

n(µ
2) . (2.25)

The two phase space measures are defined as

dΦm
2 (µ

2) =
ddph
(2π)d

(2π)δ+(p
2
h −Q2)

ddk

(2π)d
(2π)δ+(k

2 − µ2) (2π)dδd(p1 + p2 + ph + k) ,

dΦ0
n(µ

2) =

[

n+2
∏

i=3

ddpi
(2π)d

(2π)δ+(p
2
i )

]

(2π)dδd

(

k −
n+2
∑

i=3

pi

)

. (2.26)
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The on-shell constraint for ph is used together with the definition of the rapidity of eq. (2.7)

to define the born momentum fractions xB1,2. Transforming from kµ to the variables intro-

duced in eq. (2.8), we obtain the desired result for the differential phase space,

dΦh+n

dw1dw2dx
=

(w1w2s)
1−ǫ (1− x)−ǫ

(4π)2−ǫΓ(1− ǫ)
θ[x(1− x)] θ(w1) θ(w2) dΦ

0
n (sw1w2x) . (2.27)

In the special case of having zero or one final state parton, eq. (2.27) becomes

dΦh+0

dw1dw2dx
=

(2π)

s
δ(x)δ(w1)δ(w2) ,

dΦh+1

dw1dw2dx
=

(w1w2s)
−ǫ

2(4π)1−ǫΓ(1− ǫ)
δ(x)θ(w1)θ(w2) . (2.28)

The inclusive phase space volume is obtained by integrating over the differential phase

space volume,

Φh+n =

∫

dw1dw2dx δ
(

1− w1 − w2 + w1w2x−Q2/s
) dΦh+n

dw1dw2dx
. (2.29)

3 Collinear expansion of color-singlet cross sections

In this section, we introduce the general strategy of expanding cross sections around the

collinear limit. We begin by identifying the key kinematic regions in which we want to

expand cross sections in section 3.1. Next, we define the collinear expansion of hadronic

cross sections in section 3.2. Finally, we comment on the use of different coordinates in

performing a collinear expansion in section 3.3. We will provide explicit examples on how

to implement this in practice for matrix elements in section 4.

In this section, it will be very convenient to work with light-cone coordinates.1 We

decompose a momentum pµ as

pµ = p+
n̄µ

2
+ p−

nµ

2
+ pµ⊥ ≡ (p+, p−, p⊥) , (3.1)

where the p± components are explicitly given by

p− = n̄ · p = p0 + pz , p+ = n · p = p0 − pz , (3.2)

and p⊥ is the remaining transverse component.

3.1 Power counting and modes

Hadronic color singlet cross sections for infrared and collinear safe observables are finite

quantities. The perturbative description of such observables becomes inadequate when the

value of the observable forces hadronic radiation produced on top of the colorless final

state to be in the infrared or collinear regime. For example, it is well known that when

1Note that another popular conventions in the literature defines light-cone coordinates through the

decomposition pµ = p− n̄µ

√
2
+ p+ nµ

√
2
+ pµ⊥ with p± = (p0 ± pz)/

√
2.
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imposing an infrared-sensitive measurement T , the cross section receives contributions of

up to two logarithms L = ln(Q/T ) per order of the coupling constant, i.e. σ ∼ αn
sL

2n. In

the limit of T vanishing the presence of such logarithms hence signals the sensitivity to

infrared physics and truncated perturbation theory does not yield an accurate description

of the observable, as the large logarithms L can overcome the suppression in αs.

In order to understand cross sections in their infrared and collinear kinematic regimes,

it is necessary to identify and characterize these regimes. Simply speaking, one can classify

two particles with momenta pi and pj as collinear to each other when pi · pj → 0, while

a particle with momentum pi is considered soft when pµi → 0. More precisely, particles

should be classified as soft and collinear relative to the hard scale of the process.

pi collinear to pj : pi · pj ≪ Q2 , pi soft : pµi ≪ Q . (3.3)

In the case of sufficiently inclusive color-singlet processes, there are only two designated

directions, namely the lightlike directions nµ and n̄µ of the incoming protons. Employing

the lightcone notation introduced in eq. (3.1), we can thus classify a momentum pµi =

(p+, p−, p⊥) in the different dominant kinematic regions as

hard : pµi ∼ Q (1, 1, 1) ,

n-collinear : pµi ∼ Q (λ2, 1, λ) ,

n̄-collinear : pµi ∼ Q (1, λ2, λ) ,

soft : pµi ∼ Q (λm, λm, λm) , m = 1, 2 . (3.4)

Here, λ ≪ 1 is an auxiliary power counting parameter indicating the suppression of the

different modes relative to the hard scale Q. Let us discuss eq. (3.4) in more detail:

• The hard region describes momenta directly associated with the production of the

hard probe h. Since h has invariant mass p2h = Q2, parametrically hard momenta also

have virtuality p2i ∼ Q2. For example, virtual corrections to the partonic process, i.e.

the form factor, are sensitive to this scaling.

• The n-collinear region describes a momentum where n · pi ≪ n̄ · pi, and hence pi
is aligned with the n-direction. The scaling of the transverse component follows by

noting that for on-shell particles p+i p
−
i ∼ p2i,⊥ ∼ λ2Q2.

• The soft region describes low-energetic, but isotropic radiation, as is manifest from the

homogeneous scaling in eq. (3.4). The choice ofm in eq. (3.4) depends on whether the

observable T under consideration is sensitive to the lightcone momenta only (m = 2)

or also to transverse momenta (m = 1). In the SCET literature, these two cases are

referred to as ultrasoft and soft, respectively, but in this work we simply refer to both

cases as soft.

Note that in more general cases, such as also measuring final-state jets or complicated

observables, more modes may arise, and this has given rise to a plethora of “scaling hi-

erarchies” in the literature, see for example refs. [82, 142–159]. For sufficiently inclusive

observables as considered in this paper it suffices to only consider eq. (3.4).
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Above, we have only given heuristic arguments for the observation that the scalings

in eq. (3.4) are the only relevant ones. In fact, it is precisely the modes stated in eq. (3.4)

that arise in proofs of QCD factorization. These proofs are based on the insight that there

is a one-to-one correspondence between the momentum regions giving rise to the large

Q behavior and mass divergences in massless perturbation theory [160, 161]. These mass

divergences arise at pinch-singular surfaces, i.e. momentum regions when loop momenta can

not be deformed away from singularities in the appearing propagators, and thus correspond

to classically allowed scatterings. The position of these singular surfaces can be determined

using the Landau criteria [162], and one can then derive power counting rules for these

singular surfaces to approximate amplitudes in the vicinity of the surface, and these rules

precisely lead to the momentum regions shown in eq. (3.4). For a more comprehensive

discussion of these proofs, we refer to refs. [24, 163, 164]. Similarly, these singular surfaces

also arise when analysing Feynman diagrams using the method of regions [59]. They are

also the basis for the formulation of SCET [67–71], an effective field theory to describe

QCD in the infrared limit that separates quark and gluon fields into modes corresponding

to eq. (3.4). We will discuss this connection in more detail in section 5.

3.2 Expanding cross sections around the collinear limit

Having characterized the relevant kinematic regions for infrared-sensitive observables, we

now discuss the expansion of hadronic cross sections of eq. (2.16) around the particular limit

where all final state radiation becomes collinear to one of the incoming proton momenta.

Let us define our collinear expansion: we want to expand around the limit where all

real momenta are treated as n-collinear, and thus the total momentum kµ of the hadronic

final-state is n-collinear as well, i.e. it scales as

kµ ∼ k−
nµ

2
+ λ2k+

n̄µ

2
+ λkµ⊥ . (3.5)

We then want to expand the hadronic differential cross section in eq. (2.16) to obtain a

power series in λ,

dσ

dQ2dY dT = λ−2 dσ(0)

dQ2dY dT + λ−1 dσ(1)

dQ2dY dT + . . . . (3.6)

Here, the leading-power cross section σ(0) scales as λ−2,2 the next-to-leading power (NLP)

cross section3 σ(1) as λ−1, and so forth. Depending on the observable T , this series may

start at higher orders in λ, but for the infrared-sensitive observables discussed in this paper

we always encounter a leading O(λ−2) term.

It is desirable that Born quantities like Q2 and Y are unaffected by the expansion

we want to carry out, as they set the hard scales of the process. The importance of this

for expansions at subleading power in λ was already stressed in refs. [129, 130]. As a

2This leading-power collinear limit precisely corresponds to the generalized threshold limit of ref. [26].
3Note that for a large class of observables, as for example qT and beam thrust, the odd powers in this

series vanish. It is therefore common practice to indicate as NLP the first non vanishing contribution

beyond leading power, which in those cases would be σ(2).
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consequence, the Bjorken momentum fractions given in eq. (2.10) need to be expanded.

Expressing them in terms of hard quantities and the momentum k we find

x1

xB1
=
√

1 + k2T /Q
2 − k−

Q
e−Y = 1− k−e−Y

Q
+O(λ2) ,

x2

xB2
=
√

1 + k2T /Q
2 − k+

Q
e+Y = 1 +O(λ2) . (3.7)

Since the momentum fractions enter as arguments of the PDFs, a pure hadronic expansion

to higher orders in λ will automatically involve derivatives of PDFs, as firstly noted for T0
in ref. [117]. Furthermore, the variables w1 and w2 we introduced in eq. (2.8) must also be

expanded,

w1 =
−k−
x1

√
S

=
−k−

xB1
√
S − k−

+O(λ2) w2 =
−k+
x2

√
S

=
−k+
xB2

√
S

+O(λ4) , (3.8)

where xB1,2 are the momentum fractions at Born level, see eq. (2.11). As a consequence we

find that the n-collinear limit of eq. (2.18) becomes

lim
n−coll.

dηij(y1, y2)

dQ2dY dT = δ (1− y2)

∫ 1

0
dx

∫ ∞

0
dw1dw2 δ [y1 − (1− w1)] (3.9)

× lim
n−coll.

{

δ [T − T (Q,Y,w1, w2, x)]
dηij

dQ2dw1dw2dx

}

,

where w1,2 are evaluated according to eq. (3.8). The definition of our observable T itself

may not be invariant under rescaling according to our power counting. In order to achieve

a pure expansion of the hadronic cross section we may either expand the observable con-

straint or solve the constraint using one of the remaining integration variables and expand

subsequently. We address how the general partonic coefficient function
dηij

dQ2dw1dw2dx
can be

expanded in section 4.

Constructing a collinear expansion can be done with different objectives in mind. One

objective can be to obtain a pure series expansion of the hadronic cross section as discussed

above. Another objective can be to simplify the computation of the partonic coefficient

function which does not require a pure expansion of the hadronic cross section. In the latter

scenario one would only expand the partonic coefficient function ηij on the right-hand side

of eq. (2.18), but not expand the w1,2 and the momentum fractions x1,2 as presented above.

This approach can also serve as a suitable proxy to a collinear expansion, where parts of

the cross section are kept exact.

3.3 Expansions using different coordinates

So far, we defined our power counting such that the invariant mass Q2 and rapidity Y of

the produced hard probe h scale homogeneously as O(λ0) and the lightcone components

of the total momentum kµ of the hadronic final state have a homogeneous power counting

in λ. This is reasonable, since one can only measure directly the final-state particles in the

hadronic collision, which are then used to define the power counting. In particular, Q2 and

Y are the only hard scales in the considered hadronic cross section dσ/(dQ2dY dT ).
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This setup immediately implies that the momenta p1 and p2 of the incoming partons

do not have a homogeneous power counting, as it is evident from their explicit expressions

in terms of Q2, Y and kµ,

p−1 (Q
2, Y, k+, k−, x) = −k− + e+Y

√

Q2 + k+k−(1− x) ,

p+2 (Q
2, Y, k+, k−, x) = −k+ + e−Y

√

Q2 + k+k−(1− x) , (3.10)

see eq. (2.10). Thus, p1 and p2 give rise to an infinite tower of power corrections in λ, which

in turn requires an expansion of w1 and w2 used to define the general partonic coefficient

function, as shown in eq. (3.8).

Since one has access to all incoming and outgoing momenta in the calculation of the

partonic coefficient function, the collinear expansion can also be defined by assigning a

homogeneous power counting to p1, p2 and k. Since this assignment is only meaningful for

the partonic process, we refer to it as partonic collinear expansion. In this approach, the

rescaling appropriate for the collinear limit is given by

p−1 → p−1 , p+2 → p+2 , w1 = −k
−

p−1
→ w1 , w2 = −k

+

p+2
→ λ2w2 , x→ x . (3.11)

The key advantage of this assignment is that w1 and w2, which are the natural variables

to express the partonic coefficient function, now have homogeneous power counting and do

not need to be re-expanded themselves. Thus, the collinear expansion has been reduced to

an expansion in w2. The drawback of the partonic collinear expansion is that the rapidity

Y of hard probe h no longer uniformly scales as O(λ0), which is evident from the expression

Y (p−1 , p
+
2 , k

+, k−, x) =
1

2
log

(

p−1 + k−

p+2 + k+

)

=
1

2
log

(

p−1 + k−

p+2

)

+O(λ2) , (3.12)

which now is a quantity derived from p−1 and p+2 , rather than fixing these as in eq. (3.10).

Comparing the rescalings in eqs. (3.8) and (3.11), we see that both approaches agree

at leading power, but differ at subleading power. Since there is a well-defined relation

between the two approaches, one can easily obtain one expansion from the other, but care

has to be taken to consistently apply the power expansion.

In practice, each choice of defining the expansion has its advantages and disadvantages.

We can discuss these by classifying the expansions according to the choice of independent

variables used to express the partonic coefficient function, which by Lorentz invariance only

requires four independent invariables. It is useful to summarize the above observations for

the following possibilities:

• (Q2, Y, k+, k−, x): this parameterization has the advantage that is entirely expressed

in terms of information about the final state momenta, including the Born measure-

ments Q and Y of the hard probe h. As properties of the final state, Q and Y need not

be expanded, and the collinear expansion is a strict expansion in kµ. Since partonic

matrix elements are typically more concise when expressed in terms of the incom-

ing momenta and the final-state radiation, the main drawback of this expansion is
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that it leads to lengthier expressions for the expanded matrix element. Furthermore,

measuring the rapidity Y fixes a reference frame for all momenta, such that boost

invariance is not manifest anymore.

• (Q2, w1, w2, x): since w1 and w2 are defined as ratios of Lorentz scalars, boost in-

variance is manifest in this parameterization. Its disadvantage is that w1 and w2 do

not have manifest power counting in terms of the observables Q2 and Y , and instead

must be expanded in kµ according to their definitions in eq. (2.8). Alternatively, one

can assign homogeneous power counting to w1 and w2 using eq. (3.11), which then

requires to expand the rapidity Y in λ.

• (p−1 , p
+
2 , k

+, k−, x): here, we trade Q2 and Y for the lightcone momenta (p−1 , p
+
2 ) of the

incoming partons. This parameterization has the advantage of expressing everything

in terms of the momenta of massless particles, i.e. the incoming momenta and the

hadronic radiation. A disadvantage of this parameterization is that p−1 and p+2 do

not have manifest power counting in terms of hadronic variables Q2 and Y , and thus

must be expanded in λ.

These parameterizations are of course equivalent, and in practice the preferred parameter-

ization depends on the intended application. While the general illustration of the power

expansion is made most manifest using (Q2, Y, k+, k−, x), expanding the partonic cross

sections is simplified using (Q2, w1, w2, x).

Finally, we give the explicit relation between the different parameterizations. We can

change variables from (w1, w2) to (k+, k−) using

dηij
dQ2dY dk+dk−dx

=
z(w1, w2)

Q2

dηij
dQ2dw1dw2dx

∣

∣

∣

∣w1=w1(Q,Y,k)
w2=w2(Q,Y,k)

, (3.13)

where the required variable transformations are given by

w1(Q,Y, k) =
−k−

p−1 (Q,Y, k)
, p−1 (Q,Y, k) = −k− + e+Y

√

Q2 + k+k−(1− x) ,

w2(Q,Y, k) =
−k+

p+2 (Q,Y, k)
, p+2 (Q,Y, k) = −k+ + e−Y

√

Q2 + k+k−(1− x) ,

z(w1, w2) = 1− w1 − w2 + xw1w2 , (3.14)

and for brevity we keep implicit that kµ is parameterized in terms of (k+, k−, x). Note

that since k+ and k− are defined in the hadronic center-of-mass frame, manifest boost-

invariance is lost, and thus eq. (3.13) becomes explicitly Y -dependent. Eq. (3.13) makes

it clear that defining the power counting in terms of Q2 and k requires a expansion of w1

and w2 on the right hand side.

We can further change variables from (Q2, Y ) to (p−1 , p
+
2 ),

dηij

dp−1 dp
+
2 dk

+dk−dx
=

dηij
dQ2dY dk+dk−dx

∣

∣

∣

∣Q2=Q2(p1,p2,k)
Y=Y (p1,p2,k)

, (3.15)
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where the required variable transformations are given by

Q2 = (p−1 + k−)(p+2 + k+)− (1− x)k+k− , Y =
1

2
ln
p−1 + k−

p+2 + k+
. (3.16)

Here, fixing the power counting of p−1 , p
+
2 and k requires to expand Q2 and Y accordingly.

4 Collinear expansion of matrix elements

In this section we show how the technique of collinear expansions developed in the previous

section is applied in practice. To setup our conventions for this section, we first discuss

the phase space volume for producing the hard probe h with additional emissions in sec-

tion 4.1, before illustrating the collinear expansion of matrix elements explicitly for both

real radiation in section 4.2 and for loop integrals in section 4.3.

Throughout this section, we will consider the scenario where kµ is collinear to the

incoming parton with momentum pµ1 = p−1 n
µ/2. According to eq. (3.4), this implies that

we assign the following scaling to k:

kµ = (k+, k−, k⊥) ∼ (λ2, 1, λ) . (4.1)

In order to obtain a strict power series expansion of the hadronic cross section it is necessary

to expand the partonic momentum components p−1 and p+2 around the collinear limit.

For the purpose of this section we instead perform a partonic collinear expansion (see

section 3.3), treating p1,2 as external variables and thus as O(λ0) quantities. All final

results are functions of k−/p−1 and k+/p+2 and one can straightforwardly recover a pure

expansion in terms of hadronic observables following section 3.3.

4.1 Collinear phase space

The phase space volume for producing the hard probe h with two emissions, as defined in

eq. (2.25), is given by

Φh+2 =

∫

dΦh+2

dw1dw2dx
=

p2

p1

p2

p1

h

p3

p4

=
1

s2
(k+k−)1−2ǫ(1− x)−ǫx−ǫ

128π3(1− 2ǫ)Γ(1− 2ǫ)
. (4.2)

It follows immediately that the phase space volume in eq. (4.2) scales as Φh+2 ∼ λ2−4ǫ.

As usual, we take all momenta to be incoming, and denote the total momentum of all

outgoing partons by k = p3 + p4. In the above diagram and those below, the dashed line

indicates the on-shell constraints of the final state particles, with the solid lines representing

massless partons and the double line representing the heavy color-singlet state h.

The scaling of Φh+2 ∼ λ2−4ǫ can be easily deduced without calculating the actual

phase space integrals. Since k is treated collinear to p1, both final-state momenta p3 and
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p4 must be collinear to p1 as well. The associated integration measures and δ functions

entering eqs. (2.25) and (2.26) transform as
∫

ddpi δ+(p
2
i ) → λ2−2ǫ

∫

ddpi δ+(p
2
i ) , δ(k2) → λ−2δ(k2) . (4.3)

As a consequence, the double-real phase space measure scales as
∫

dΦh+2

dw1dw2dx
→ λ2−4ǫ

∫

dΦh+2

dw1dw2dx
, (4.4)

which is precisely the scaling observed in eq. (4.2). Similarly, it follows that the more

general case of the h + n real emission phase space has the scaling
∫

dΦh+n

dw1dw2dx
→ λn(2−2ǫ)−2

∫

dΦh+n

dw1dw2dx
. (4.5)

4.2 Collinear limit of real radiation

We consider the following example of a more complicated, purely real Feynman integral,

IRR =
p2

p1

p2

p1

p3

p4

h

=

∫

dΦh+2

dw1dw2dx

1

(p2 + p3)2(p2 + p3 + p4)2
. (4.6)

Let us first consider the case where both p3 and p4 are collinear to p2. In this scenario, since

both propagators in eq. (4.6) only involve collinear momenta, and thus scale homogeneously

as λ2 under the n̄-collinear rescaling of eq. (3.4) and no expansion of eq. (4.6) in λ is needed.

In contrast, if we consider p3 and p4 to be collinear to p1, then the second propagator

is not homogeneous in λ anymore, as it contains both n-collinear and n̄-collinear momenta.

To expand the propagator in this limit, we apply the n-collinear rescaling of eq. (3.4) to

p3 and p4,

pµ3,4 → p−3,4
nµ

2
+ λ2 p+3,4

n̄µ

2
+ λ pµ3,4⊥ . (4.7)

With these rescalings, it is now straightforward to expand the second propagator in eq. (4.6)

in λ,

1

(p2 + p3 + p4)2
=

1

p+2 (p
−
3 + p−4 ) + 2p3 · p4

p1−coll−→ 1

p+2 (p
−
3 + p−4 ) + λ2 2p3 · p4

=

∞
∑

n=0

(λ2)n
(−2p3 · p4)n

[

p+2 (p
−
3 + p−4 )

]n+1 . (4.8)

For n = 0, this propagator is linear in the real momenta p3 and p4, and thus corresponds

to an eikonal propagator. Higher orders in λ only involve pure powers of the eikonal

propagator, thus yielding a relatively simple structure of the expansion. Together with

eq. (4.4), the integral in eq. (4.6) can thus be expanded as

IRR
p1−coll−→

∞
∑

n=0

(λ2)n+1−2ǫ

∫

dΦh+2

dw1dw2dx

(−2p3 · p4)i

(p2 + p3)2
[

p+2 (p
−
3 + p−4 )

]n+1 . (4.9)
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This expansion can be represented diagrammatically as

p2

p1

p2

p1

p3

p4

h

→ λ2−4ǫ

[

p2

p1

p2

p1

p3

p4

h

− λ2
p2

p1

p2

p1

p3

p4

h
2p3·p4

+O(λ3)

]

. (4.10)

Here, the dotted line indicates the expanded (eikonal) propagator and the dot on the line

represents higher powers of this propagator. The label denotes the additional kinematic

factor arising from eq. (4.8).

The expansion in eq. (4.9) results in several advantages. First, we observe that each

term in the expansion is homogeneous under the n-collinear rescaling transformation in

eq. (4.7). As a consequence, we may directly determine the functional dependence of

each term in the expansion on k+ similarly to the case of the phase space volume. In

other words, the resulting functions will be simpler since they only depend on k+ via a

multiplicative pre-factor. Second, the structure of expanded Feynman integrals is amenable

to IBP reduction techniques via the framework of reverse unitarity [90–94]. The benefit is

that the appearing integrals can be related to so called master integrals. In our example

we find the IBP relations

p2

p1

p2

p1

p3

p4

h

= − 1− 2ǫ

ǫ(p+2 k
−)2

× p2

p1

p2

p1

h

p3

p4 , (4.11)

p2

p1

p2

p1

p3

p4

h
2p3·p4

= −k
+x

p+2

1− 2ǫ

ǫ(p+2 k
−)2

× p2

p1

p2

p1

h

p3

p4 . (4.12)

Clearly, it is very advantageous that any higher order term in our expansion is related to

the same master integrals as the first, which in our example is just the phase space volume.

The unexpanded integral of our example in eq. (4.6) is itself related to the phase space

volume by an IBP identity,

p2

p1

p2

p1

p3

p4

h

= − (1− 2ǫ)

ǫ(p+2 k
−)2

(

1 +
k+x

p+2

)−1

× p2

p1

p2

p1

h

p3

p4 . (4.13)

From this we can easily see that the coefficients obtained in eq. (4.11) and eq. (4.12)

correspond exactly to the coefficients of the expansion of the exact result.

In summary, we outlined a procedure that allows us to perform an expansion of real

radiation integrals around the limit of all final state partons becoming collinear to an ini-

tial state momentum. This expansion is carried out by simply performing the appropriate
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collinear rescaling transformation of eq. (3.4) on all final state parton momenta and subse-

quently expanding the integrand of our real radiation integral in the artificial parameter λ,

prior to actually evaluating the integral. Each term in the expansion in λ then corresponds

to exactly one term in the expansion of the integral in k+. The computation of the terms in

the expansion is greatly facilitated by applying techniques like IBP identities via the reverse

unitarity framework. In particular, any term appearing at higher orders in the expansion

will be expressible in terms of master integrals that appear already in the first few terms.

4.3 Expansion of loop integrals

In contrast to the phase space integral over real momenta considered in section 4.2, where

the requirement of k being collinear to p1 restricted p3,4 to be collinear to p1 as well, such

a restriction does not appear for loop momenta. Despite this, it is still useful to expand

loop integrals in a similar fashion around the hard, collinear and soft regions. As discussed

in section 3.1, for factorization proofs this is crucial to separate these different regions

into distinct matrix element, while in the method-of-regions approach of ref. [59] it used

to simplify loop integrals by expanding the integrand in all relevant limits and combining

their individual results.

Here, we will show for a simple example how one can easily approximate and expand

loop integrals in the discussed regimes, and that the sum of all regions indeed reproduces

the full result. This will be illustrated using the following real-virtual diagram,

IRV =

p1

p2

p1

p2
h

p3

p4
=

∫

dΦh+1

dw1dw2dx

ddp4
(2π)d

1

p24 (p1+p4)
2 (p1+p3+p4)2 (p2−p4)2

=
icΓ

128π4ǫ2
δ(x)

[

(k+k−)−ǫ

s4(−s)ǫ
∞
∑

n,m=0

(ǫ+1)n (ǫ+2)m+n

(n+m+1)m!n! (ǫ+2)n

(

k+

p+2

)m(
k−

p−1

)n

− (k+k−)−ǫ

s3(p−1 k
+)1+ǫ

(4π)−2ǫ
2F1

(

1,−ǫ;1−ǫ; k
−

p−1

)]

. (4.14)

Here, the total final-state hadronic momentum is k = p3, and thus the p3 integral is

actually fixed. In eq. (4.14), (a)n = Γ(a+n)/Γ(a) is the (rising) Pochhammer symbol, and

we abbreviate common loop factors by

cΓ =
Γ(1 + ǫ)Γ(1− ǫ)

Γ(1− 2ǫ)
. (4.15)

As before, we consider the limit where k is collinear to p1, such that k+ ∼ O(λ2) and

k− ∼ O(λ0). This immediately implies that eq. (4.14) scales as

IRV
coll−→ δ(x)

icΓ
128π4ǫ2

[

λ−2ǫ (k
+k−)−ǫ

s4(−s)ǫ
∞
∑

n,m=0

λ2m
(ǫ+ 1)n (ǫ+ 2)m+n

(n+m+ 1)m!n! (ǫ+ 2)n

(

k+

p+2

)m(
k−

p−1

)n

− λ−2−4ǫ (k+k−)−ǫ

s3(p−1 k
+)1+ǫ

(4π)−2ǫ
2F1

(

1,−ǫ; 1− ǫ;
k−

p−1

)]

. (4.16)

– 17 –



J
H
E
P
0
9
(
2
0
2
0
)
1
8
1

The second line has homogeneous scaling in λ−2−4ǫ, and is the dominant contribution in

the limit λ → 0. We will see below that this result is entirely from the region where the

loop momentum is collinear to p1. In other words, the leading-power limit of IRV arises

from the region where both loop and real momenta are collinear to p1. The first line in

eq. (4.16) does not scale homogeneously in λ, but is suppressed at least as O(λ2) compared

to the leading-power limit. We will see that this line entirely arises from the region where

the loop momentum is hard. In particular, the two contributions have different fractional

scalings in λ−2ǫ and λ−4ǫ, respectively. These scalings arise entirely from the loop integral

measures, and thus can be easily distinguished between the different contributions.

4.3.1 Collinear limit

We first consider the loop momentum p4 to be collinear to the incoming parton with

momentum p1. According to eq. (3.4), we hence transform

pµ4 → p−4
nµ

2
+ λ2 p+4

n̄µ

2
+ λ pµ4⊥ . (4.17)

The first three propagators in eq. (4.14) scale homogeneously as O(λ−2) under this rescal-

ing, while the last propagator in eq. (4.14) is not homogeneous in λ and must be expanded,

1

(p2 − p4)2
=

1

−2p2 · p4 + p24

p1−coll−→ 1

−2p2 · p4 + λ2p24
=

∞
∑

n=0

λ2n
(−p24)n

(−2p2 · p4)n+1
. (4.18)

Together with eq. (4.5), this allows us to expand the integrand in eq. (4.14) as

IRV
p1−coll−→ λ−2−4ǫ

∞
∑

n=0

λ2n
∫

dΦh+1
ddp4
(2π)d

(−p24)n
p24 (p1 + p4)2 (p1 + p3 + p4)2 (−2p2 · p4)n+1

(4.19)

= λ−2−4ǫ

[
∫

dΦ̃h+1

dw1dw2dx

ddp4
(2π)d

1

p24 (p1 + p4)2 (p1 + p3 + p4)2 (−2p2 · p4)

− λ2
∫

dΦh+1

dw1dw2dx

ddp4
(2π)d

1

(p1 + p4)2 (p1 + p3 + p4)2 (−2p2 · p4)2
+O(λ4)

]

.

The overall scaling in λ−4ǫ arises from ddp4 ∼ λ4−2ǫ and dΦh+1 ∼ λ−2ǫ, and thus is

independent of the structure of the diagram itself. Each order of the expanded integrand

is now homogeneous in λ. The expansion in eq. (4.19) can be illustrated graphically as

IRV
coll−→ λ−2−4ǫ

[

p1

p2

p1

p2
h

p3

p4
− λ2

p1

p2

p1

p2
h

p3

+O(λ4)

]

. (4.20)

Here, the dotted lines are linear (eikonal) propagators, and the dot on the line denotes that

the propagator is raised to one power. Note that in the second diagram, the explicit 1/p24
propagator is canceled, indicated by the contracted vertex. Being able to represent collinear

expanded diagrams again in a diagrammatic fashion is extremely useful. In particular, the

structure observed in the collinear loop expansion makes it possible to use IBP techniques

for the computation of loop and phase space integrals.
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The leading-power integral in eq. (4.19) can be evaluated as

IRV
coll
= −δ(x)λ−2−4ǫ icΓ

128π4ǫ2
(k+k−)−ǫ

s3(p−1 k
+)1+ǫ

(4π)−2ǫ
2F1

(

1,−ǫ; 1− ǫ;
k−

p−1

)

×
[

1 +O(λ2)
]

,

(4.21)

and thus correctly reproduces the last line of eq. (4.16). Note that the higher-order terms in

λ, such as the second integral in eq. (4.19), can be shown to vanish identically in dimensional

regularization.

4.3.2 Hard limit

The hard region is characterised by treating the loop momentum as uniformly larger than

our expansion parameter λ, while the final state momentum p3 is still treated as collinear

to p1. Only one propagator in eq. (4.14) involves p3, and can be expanded in λ as

1

(p1 + p3 + p4)2
=

1
[

p24 + p+4 (p
−
1 + p−3 )

]

+ p+3 (p
−
1 + p−4 ) + 2p3⊥ · p4⊥

p4 hard−→
p3 ‖ p1

1
[

p24 + p+4 (p
−
1 + p−3 )

]

+ λ2p+3 (p
−
1 + p−4 ) + 2p3⊥ · p4⊥

=
∞
∑

n=0

(−λ)n
[

λp+3 (p
−
1 + p−4 ) + 2p3⊥ · p4⊥

]n

[

p+4 (p
−
1 + p−3 ) + p24

]n+1 . (4.22)

All other propagators in eq. (4.14) scale as O(λ0) and are not expanded. Together with the

rescaling of the phase space measure according to eq. (4.5), the leading-power hard limit

of eq. (4.14) becomes

IRV
hard−→ λ−2ǫ

∫

dΦh+1

dw1dw2dx

ddp4
(2π)d

1

p24 (p1 + p4)2 (p2 − p4)2
[

p+4 (p
−
1 + p−3 ) + p24

]×
[

1+O(λ)
]

.

(4.23)

The overall scaling in λ−2ǫ arises entirely from the phase space measure, as the hard loop

measure scales as ddp4 ∼ λ0. This shows that hard and collinear loops never have the same

dependence on ǫ, and thus can be easily distinguished by their overall scalings.

Despite the modified propagator in this integral, it can still be subjected to the usual

loop integration techniques like IBPs and differential equations. The same holds true for

all higher order terms in the expansion of the full loop integral. The explicit example in

eq. (4.23) is also easily performed using Feynman parameters. We obtain

IRV
hard−→ icΓ

128π4ǫ(1 + ǫ)
δ(x)λ−2ǫ (k

+k−)−ǫ

p+2 k
−s3+ǫ

[

1−
(

1 +
k−

p−1

)−1−ǫ
]

×
[

1 +O(λ)
]

. (4.24)

This result exactly agrees with the infinite sum over n in eq. (4.16) evaluated for m = 0,

i.e. the O(λ−2ǫ) to eq. (4.16). Furthermore, every higher-order term in the expansion in

k+ of the second to last line of eq. (4.14) corresponds to exactly one term in the integrand

expansion of IRV in λ. Terms proportional to odd powers of λ drop out identically. Since

higher order terms in the expansion essential just modify the powers of the propagators at

the integrand level according to eq. (4.22) it is particularly convenient to use IBP techniques

in such a computation.
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4.3.3 Anticollinear limit

For completeness, we also consider the limit where p4 is collinear to the incoming parton

with momentum p2, in contrast to k which is chosen collinear to p1. According to eq. (3.4),

we hence transform

pµ4 → λ2 p−4
nµ

2
+ p+4

n̄µ

2
+ λ pµ4⊥ , ddp4 → λdddp4 . (4.25)

With this rescaling, we need to expand two propagators of the integrand in eq. (4.14),

1

(p1 + p4)2
p2−coll−→ 1

p−1 p
+
4

×
[

1 +O(λ2)
]

,

1

(p1 + p3 + p4)2
p2−coll−→ 1

(p−1 + p−3 )p
+
4

×
[

1 +O(λ2)
]

, (4.26)

For brevity, we only show the two leading terms each. Together with eq. (4.5), this allows

us to expand the integrand in eq. (4.14) as

IRV
p2−coll−→ λ−4ǫ

∫

dΦh+1

dw1dw2dx

ddp4
(2π)d

1

p24 (p
−
1 p

+
4 ) [(p

−
1 + p−3 )p

+
4 ] (p2 − p4)2

×
[

1 +O(λ2)
]

,

(4.27)

which is scaleless and thus vanishes in pure dimensional regularization. Note that the

integral from expanding the propagators through O(λn) scales as λn−4ǫ. Since the only

term with this ǫ dependence in eq. (4.16) is fully given by the n-collinear limit of eq. (4.21),

the p2-collinear limit must in fact vanish to all orders in λ.

4.3.4 Soft limit

We want to compare the result of the collinear expansion to a soft expansion of Feynman

diagrams. To obtain the purely soft region, we rescale the loop momentum p4 in eq. (4.14) as

pµ4
soft−→ λ2p−4

nµ

2
+ λ2p+4

n̄µ

2
+ λ2pµ4⊥ . (4.28)

To obtain the soft-collinear overlap, we first rescale p4 as collinear, followed by a subsequent

soft rescaling,

pµ4
coll−→ p−4

nµ

2
+ λ2p+4

n̄µ

2
+ λpµ4⊥

soft−→ λ2p−4
nµ

2
+ λ2p+4

n̄µ

2
+ λ2pµ4⊥ . (4.29)

Let us explicitly discuss the transformation of two of the propagators in eq. (4.14) under

eq. (4.29),

1

(p2 − p4)2
=

1

p24 − p+2 p
−
4

coll−→ 1

λ2p24 − p+2 p
−
4

soft−→ 1

λ2(λ2 p24 − p+2 p
−
4 )

,

1

(p1 + p4)2
=

1

p24 + p−1 p
+
4

coll−→ 1

λ2(p24 + p−1 p
+
4 )

soft−→ 1

λ2(λ2 p24 + p−1 p
+
4 )

. (4.30)

In the first case, rescaling the collinear limit as soft only amounts to an overall rescaling

by λ−2, but does not change the relative scaling of the two terms in the propagator. In the
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second case, we observe both that only one term in the denominator gets rescaled in the

soft limit, and thus one will encounter a different kinematic structure when expanding this

propagator in λ than in the collinear limit. However, in both cases shown in eq. (4.30), it

is easy to see that the soft-collinear limit is identical to taking the soft limit directly. The

same holds for the two other propagators in eq. (4.14) that are not explicitly shown here.

In conclusion, we find that at the diagram level, the soft-collinear overlap is equal to soft

limit itself.

Finally, we note that the leading-power soft limit of eq. (4.14) is given by

IRV
soft−→ λ−2−6ǫ

∫

dΦ̃h+1

dw1dw2dx

ddp4
(2π)d

1

p24 (p
−
1 p

+
4 ) [(p

−
1 +p−3 )p

+
4 +p−1 p

+
3 ] (−p+2 p−4 )

×
[

1+O(λ)
]

.

(4.31)

This integral is scaleless and vanishes in dimensional regularization.

4.4 Discussion

To summarize the key results of this section, we have shown how Feynman diagrams can

be systematically expanded in their collinear limit by assigning the appropriate scalings

to all loop and real momenta, which allows one to expand the integrand in λ. In partic-

ular, the expanded integrands allow for a diagrammatic representation and are amenable

to standard integral techniques such as IBP [95, 96] relations or the method of differen-

tial equations [165–169]. This significantly simplifies evaluating the expanded integrals

compared to the exact integral, and thus provides a convenient strategy to approximate

Feynman diagrams in the collinear limit. The illustrated methods are conceptually very

simple, and thus easily extend to more complicated diagrams with additional external

partons or multi-loop integrals.

In the case of real radiation, the requirement that the total real momentum kµ is

collinear implies that all real momenta are collinear individually. This does not apply for

loop momenta, which are not confined to be in the collinear region. As a consequence we

need to follow the method of regions [59] and compute the regions where the loop momenta

are hard and where they are collinear. The sum of both regions yields the correct expansion

of our Feynman integrals. The results of the different regions give rise to different scalings

as λ−4ǫ and λ−2ǫ, respectively. This difference is entirely due to the loop measure, and

thus hard and collinear contributions can be easily identified by their scaling exponent. In

other words, since the expansion of the loop integrand itself is a simple Laurent series in

λ, the loop measure fully determines the non-integer powers of λ−nǫ.

We also discussed the soft limit of matrix elements. We found in an explicit example

that the soft region of a loop integral can be obtained by first computing the collinear region

of this integral and subsequently taking the soft limit. As a matter of fact this property

holds more generally. The soft-collinear overlap of a partonic coefficient function can either

be computed by first performing the collinear expansion and then the soft expansion, or

vice versa. More precisely, expanding the first n terms in the collinear expansion around

the production threshold up to n terms will correctly reproduce the nth power in the

threshold expansion. This provides a stringent test of the collinear expansion by comparing
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to existing analytic results for which a threshold expansion was performed. It also provides

a considerable simplification for the calculation of collinear master integrals. For example, if

the method of differential equations is utilized to compute master integrals for the collinear

expansion, then the boundary conditions for these differential equations can be chosen to

be the threshold-expanded integrals. For the computation of threshold expanded integrals

see for example refs. [85, 86, 170].

5 Kinematic expansions and SCET

Differential cross sections may be kinematically enhanced in all different momentum re-

gions shown in eq. (3.4). Above we only discussed the expansion cross sections around one

particular limit, namely the collinear limit. However, in order to perform a physically sen-

sible and consistent expansion of a hadronic cross section we need to expand in observable

quantities. A collinear expansion of a hadronic cross section alone typically does not satisfy

this requirement. In order to obtain a physical expansion in an observable all momentum

regions where the observable is kinematically enhanced must be considered. Depending on

the observable of interest, the necessary ingredients to achieve this goal may vary.

Soft-Collinear Effective Theory (SCET) [67–71] provides an excellent tool to organize

the expansion in such kinematic limits, and we discuss in section 5.1 how the tools devel-

oped in the previous section connect to factorization theorems derived in SCET. In such

factorization theorems, it is crucial to account for the overlap of regions when combining

multiple kinematic expansions, which we address in section 5.2.

5.1 Kinematic expansions and factorisation theorems

The momentum regions shown in eq. (3.4) are precisely the basis for the formulation of

SCET, which is an effective field theory describing QCD in its collinear and soft limits,

i.e. the leading infrared region. Schematically, the SCET Lagrangian is expanded as

LSCET = L(0)
SCET +

∑

k>0

L(k) . (5.1)

Here, the superscript (0) indicates the leading-power (LP) terms in the expansion in λ≪ 1,

where as before λ is an auxiliary power counting parameter. The L(k) indicate subleading

power Lagrangians [107–111, 120–123, 126, 127] that are suppressed by λk w.r.t. to the

leading power. The leading-power SCET Lagrangian can be organized as

L(0)
SCET = L(0)

h + L(0)
n + L(0)

n̄ + L(0)
s + L(0)

G . (5.2)

Here, L(0)
h contains the hard scattering operators mediating the underlying hard interaction,

and L(0)
n,n̄,s are the SCET Lagrangians for n-collinear, n̄-collinear and soft fields as defined

by eq. (3.4), respectively.4 More generally, in the presence of multiple collinear directions

as required e.g. for multijet processes, eq. (5.2) contains a sum over all relevant collinear

4For soft modes, m = 1, this is referred to as SCETII [171], otherwise as SCETI.
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directions {ni}. SCET also allows for a treatment of Glauber modes, which appear as

non-local potentials in L(0)
G , the leading power Glauber Lagrangian [172].

In SCET, factorization is achieved by a field redefinition of soft and collinear fields

which decouples the soft and collinear Lagrangians from each other [70]. These modes can

still interact with each other through the Glauber Lagrangian L(0)
G , which thus can break

factorization. In this work we will consider observables where the Glauber contributions

from L(0)
G either cancel identically [19–21, 23, 24, 164, 173] or start contributing to higher

perturbative orders that the one we consider in this work [174, 175].

In SCET, the leading kinematic regions are made manifest and decoupled from each

other at the Lagrangian level, which greatly simplifies the derivation of factorization formu-

las. For suitable factorizable infrared-sensitive observables T , which we take to vanish as

T → 0 in the Born limit, the hadronic cross section eq. (2.20) can be factorized as [20, 72]

dσ

dQ2dY dT = σ0
∑

i,j

Hij(Q
2)
[

Bi(x
B
1 , T )⊗Bj(x

B
2 , T )⊗ S(T )

]

×
[

1 +O(T /Q)
]

. (5.3)

As usual, Q and Y are the invariant mass and rapidity of the colorless final state. The

sum runs over all flavor combinations (i, j) contributing at Born level, ij → h, and σ0
is the corresponding Born partonic cross section.5 The hard function Hij encodes virtual

corrections to the Born process ij → h, i.e. it is given as the corresponding renormalized

form factor. The beam functions Bi(x, T ) encode the probability to extract a parton of

type i with momentum fraction x from the proton, together with the contribution from

collinear radiation to the observable T , while the soft function S(T ) encodes the effect

of soft exchange between the protons. Since S(T ) only differs between quark- and gluon-

induced processes, we suppress an explicit flavor label. Finally, ⊗ denotes a convolution

in T , whose precise structure depends on the chosen observable T , and often can be made

multiplicative in a suitable conjugate space. Note that in eq. (5.3) we suppress explicit

renormalization scales that are present in all functions.

The factorisation of degrees of freedom at the Lagrangian level makes the ingredients

for the various functions in eq. (5.3) evident. The hard function, n-collinear and n̄−collinear

beam functions and the soft function are each defined in terms of only hard, n-collinear,

n̄-collinear and soft degrees of freedom, respectively. This implies that the expansion

techniques developed in this article are perfectly suited to determine beam functions from

a perturbative computation using a pure collinear expansion of cross sections. Here, it is

important that both real and loop momenta are expanded as collinear. We will provide

explicit examples by obtaining the NNLO beam functions for T = qT and T = TN (N -

jettiness) in section 6. We also note that in a similar fashion, one can also obtain the soft

function by considering a purely soft expansion.

We also stress that since SCET is an effective field theory, it can be systematically ex-

tended by including the power-suppressed Lagrangians L(k>0) in eq. (5.1). This is the EFT

analog of expanding cross sections to subleading order in λ about the soft and collinear

limits. However, at subleading powers, collinear and soft interactions do not simply factor-

ize similar to eq. (5.3) anymore, and factorization theorems and the resummation of large

5For ease of notation, we suppress the possibility of σ0 depending on the flavors i, j.
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logarithms become much more involved [112–115, 117–137]. Since our expansion technique

allows us to perform collinear expansions of partonic cross sections to arbitrary order in

λ, we hope that it will also provide insights into the structure of factorisation theorems

beyond the leading power, and that it can be used to determine universal quantities like

generalizations of soft and beam functions at subleading power.

5.2 Soft-collinear overlap and zero-bin subtractions

In order to obtain a full description of a cross section in its infrared limit, we need to

combine all collinear and soft regions. Schematically, we expand

lim
IR

σ

dQ2dY dT =
σ(n)

dQ2dY dT +
σ(n̄)

dQ2dY dT +
σ(s)

dQ2dY dT + · · · , (5.4)

where the σ(n,n̄,s) correspond to the expansion of the cross sections where all emissions

are treated as n-collinear, n̄-collinear and soft, respectively. The ellipses denote mixings of

these cases, as well as power-suppressed corrections. Note that here in the following, we do

not consider the hard region. While it is required to obtain an infrared-finite cross section,

it corresponds to physics at the hard scale µ2 ∼ Q2, and does not affect the soft-collinear

overlap discussed in the following.

In practice, eq. (5.4) is often too naive, as there is a nontrivial overlap between the

collinear and soft regions. This arises because the soft limit of a squared matrix element is

equal to the soft limit of the collinear limit of the same matrix element. As discussed and

illustrated in more detail in section 4.3.4, this can be understood since the soft limit can

be equivalently obtained by either directly rescaling

kµ = (k+, k−, k⊥)
soft

−−−−−−−→ (λ2, λ2, λ2) , (5.5)

or by first rescaling into the collinear limit with a subsequent soft rescaling,

kµ = (k+, k−, k⊥)
n−collinear
−−−−−−−→ (1, λ2, λ)

soft
−−−−−−−→ (λ2, λ2, λ2) . (5.6)

Since the second rescaling only lowers the scaling of each component, no information is

lost, and eqs. (5.5) and (5.6) produce the same expansion of a matrix element.

Consequently, when one integrates over a collinearly-rescaled momentum, the integral

will always contain contributions from the soft region. Schematically, if we write

∫

ddp f(p+, p−, p⊥)
n−coll
−−−−→ λd

∫

dp+dp−dd−2~p⊥ f
(n)(p+ ∼ λ2, p− ∼ 1, p⊥ ∼ λ) (5.7)

for the collinear expansion f (n) of an arbitrary integrand f , then clearly the integration

range extends into a region where the assumed collinear scaling is not justified. In par-

ticular, the p− integral extends to p− → 0, which corresponds to a soft region. This

contribution to the soft region can be identified and extracted by further expanding f (n)

as indicated in eq. (5.6).

In conclusion, the collinear limit of the cross section has an overlap with the soft limit,

which can be extracted by an additional reexpansion in the soft limit, which has been
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demonstrated explicitly for a mixed real-virtual integral in section 4.3.4. We thus need to

modify eq. (5.4) as

lim
IR

σ

dQ2dY dT =

[

σ(n)

dQ2dY dT − σ(n→s)

dQ2dY dT

]

+

[

σ(n̄)

dQ2dY dT − σ(n̄→s)

dQ2dY dT

]

+
σ(s)

dQ2dY dT + · · · , (5.8)

where the soft limit of the collinear cross sections are denoted by σ(n→s) and σ(n̄→s),

respectively. The terms in brackets hence correspond to the true n- and n̄-collinear limits

of the cross section. Note that in general, σ(n→s) 6= σ(s), because the observable T itself

has to be expanded in the collinear and soft limits.

Let us connect these observations to the corresponding treatment in SCET. As a

modal EFT, SCET is built to separately describe soft and collinear modes, and hence as

a matter of principle collinear momenta are not allowed to overlap with the soft sector. In

practice, it is not feasible to introduce a cutoff between soft and collinear modes. Instead,

one follows the same strategy outlined above: after calculating a collinear integral, one

subtracts its soft limit to obtain the pure collinear result. This procedure is referred to

as zero-bin subtraction [176], and is crucial to a well-defined separation of modes in the

EFT. In practice, the zero-bin subtractions are often absent in dimensional regularization

or equal to the soft function itself, and thus can be easily taken into account.

6 Beam functions from the collinear limit

In this section we show how the collinear expansions can be used to compute beam func-

tions. We briefly introduce the notion of beam functions in section 6.1, and then show

in section 6.2 how they are related to the collinear expansion of cross sections developed

before. Our method is briefly contrasted with other methods of calculating beam functions

in section 6.3. We show explicitly how to obtain the N -jettiness and the qT beam functions

at NNLO using this method in section 6.4 and section 6.5, respectively.

6.1 Beam functions

Beam functions are defined as gauge-invariant hadronic matrix element that measure the

large lightcone momentum entering the hard interaction, as well as the contribution to the

observable T from collinear radiation. For example, the quark beam function Bq is defined

in SCET as [72]

Bq(x = p−/P−, T ) =
〈

pn(P )
∣

∣χ̄n(0)
/̄n

2

[

δ(p− − n̄ · P) δ(T − T̂ )χn(0)
]∣

∣pn(P )
〉

. (6.1)

Here, the χn =W †
nq are collinear quark fields defined in SCET as quark fields dressed with

collinear Wilson lines Wn, pn(P ) is a proton moving along the n-direction with momentum

P , and n̄ · P is the SCET momentum operator that determines the lightcone momentum

of all fields to its right. By boost invariance, the beam function only depends on the
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momentum fraction x = p−/P−. Similarly, T̂ is the appropriate measurement operator

determining the observable T in terms of all momenta of the fields to its right.

Beam functions are a natural generalization of PDFs, which in SCET are defined as [71]

fq(x = p−/P−) =
〈

pn(P )
∣

∣χ̄n(0)
/n

2

[

δ(p− − n̄ · P)χn(0)
]∣

∣pn(P )
〉

. (6.2)

Comparing eqs. (6.1) and (6.2), it is evident that the beam function extends the PDF

by measuring an additional observable T on top of the longitudinal momentum fraction

carried by the struck parton.

Both beam functions and PDFs are in general intrinsically nonperturbative matrix

elements. For perturbative T ≫ ΛQCD, one can perform an operator product expansion of

the beam function onto the PDF [72],

Bi(x, T , µ) =
∑

j

Iij(x, T , µ)⊗x f
R
j (x, µ)×

[

1 +O(ΛQCD/T )
]

. (6.3)

Here, the only nonperturbative input is given in terms of the PDFs, while the matching

kernel Iij are perturbatively calculable.

For completeness, we remark that PDFs and beam functions can also be defined with-

out invoking SCET by expressing the collinear quark fields χn in terms of standard quark

fields and collinear Wilson lines Wn, which are defined as path-ordered exponentials of

the gluon field projected onto the appropriate collinear direction. Beam functions are also

often written as the Fourier transform of a position-space correlator, where the separation

between the quark fields corresponds to the exchanged momentum and often avoids the

need for the momentum operator P in eq. (6.1). PDFs and TMDPDFs were originally

defined in this way [20, 177], and the equivalence of both formulations was also discussed

in the context of TN beam functions in refs. [72, 97]. Note that the study of parton distri-

butions from lattice QCD requires the definition in position space, see e.g. refs. [178–186]

for recent progress towards calculating TMDPDFs on lattice, and refs. [187, 188] for a more

general overview of parton physics from lattice QCD. For perturbative calculations, both

formulations are equivalent.

6.2 General strategy

In section 5.1, we discussed that the hard, beam and soft functions in the factorized cross

section in eq. (5.3) are each defined only in terms of the hard, collinear and soft modes

of eq. (3.4), respectively. Hence, in the limit where all loop and final-state momenta

are treated as n-collinear, the hard function, the n̄-collinear beam function, and the soft

function only contribute at their respective tree level, where they are normalized to unity

and flavor diagonal. Thus, the strict n-collinear limit of eq. (5.3) is given by

lim
strict n−coll.

dσ

dQ2dY dT = σ0
∑

i,j

Bi(x
B
1 , T )fj(x

B
2 ) , (6.4)

where we remind the reader that the flavor sum runs over all flavors contributing at Born

level, ij → h, and σ0 is the associated Born partonic cross section.
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We remark that eq. (6.4) is to be understood at the bare level, as it for example does

not encode scale independence. Indeed, as we will see, even after UV renormalization and

IR subtraction one encounters leftover poles in ǫ, which in the full factorized cross section

in eq. (5.3) cancel with the other ingredients.

In the following, we assume that the Born process is diagonal in flavor, i.e. only the gg

channel (as in Higgs production in gluon fusion) or the qq̄, q̄q channels (as in Drell-Yan or

bb̄ initiated Higgs production) contribute, where q is an arbitrary quark flavor. With this

assumption, we can fix j = ī in eq. (6.4), which allows us to easily read off the bare beam

function by comparing with the n-collinear limit of the cross section given in eqs. (2.16)

and (2.18),

Bi(x
B
1 , T ) =

∑

j

∫ 1

xB
1

dz1
z1
fj

(

xB1
z1

)

×
∫ 1

0
dx

∫ ∞

0
dw1dw2 δ [z1 − (1− w1)]

× lim
strict n−coll.

{

δ [T − T (Q,Y,w1, w2, x)]
dηjī

dQ2dw1dw2dx

}

. (6.5)

By fixing the flavor of the n̄-collinear parton as ī, we extract the correct beam function for

the flavor i in a flavor-diagonal process.

Eq. (6.5) has precisely the structure of eq. (6.3), and we can immediately read off the

bare matching kernel as the collinear limit of the partonic coefficient function,

Ibare
ij (z, T ) =

∫ 1

0
dx

∫ ∞

0
dw1dw2 δ [z − (1− w1)]

× lim
strict n−coll.

{

δ [T − T (Q,Y,w1, w2, x)]
dηjī

dQ2dw1dw2dx

}

. (6.6)

We stress that the partonic coefficient function here is limited to strictly collinear modes

only. In contrast, in the collinear expansion for cross sections discussed before, we also

included non-collinear modes when computing loop integrals. However, we showed that

the collinear and non-collinear modes can easily be separated by looking at their respective

generalized scaling behaviour. Extracting the required parts is consequently easy. In the

strictly collinear limit the general partonic coefficient function of eq. (2.15) becomes

lim
strict n−coll.

dηjī
dQ2dw1dw2dx

(6.7)

= δjīδ(w1)δ(w2)δ(x) +
∞
∑

ℓ=1

(αs

π

)ℓ

w−1−lǫ
2

ℓ
∑

m=1

w−1−mǫ
1

dη
(ℓ,m,n)

jī
(w1, 0, x,Q

2)

dQ2dw1dw2dx
.

The strict collinear limit for the partonic coefficient function for the observable T in

eqs. (6.5) and (6.6) is then obtained in analogy to eq. (3.9).

A special case of eq. (6.6) is the bare matching kernel differential in w1, w2 and x

itself, from which one can project out all other beam functions we are interested in. In

fact, this double-differential beam function can be related to the fully unintegrated parton

distribution first formulated in refs. [189, 190] and within SCET in refs. [191, 192], where

it is also known as double-differential beam function (dBF). Importantly, in general the
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projection of (w1, w2, x) onto the desired observable T only holds at the bare level, not

after renormalization of the dBF [192]. The renormalization of the dBF is also significantly

more complicated than that of the TN and qT beam functions we are interested in, see

refs. [193, 194] for explicit results at NNLO.

Ibare
ij still contains infared poles that cancel upon PDF renormalization in eq. (6.5).

Even after αs renormalization, this still leaves divergences that cancel in the cross section

when combining the n-collinear limit with the n̄-collinear and soft limits, but are remnant

in the bare matching kernel. In the EFT, these divergences are of ultraviolet origin and

thus can be absorbed in the standard fashion through a counterterm. Subtracting both IR

and UV poles in this manner, we obtain the renormalized matching kernel as

Iij(x, T , µ) =
∑

j′

Γjj′(z, ǫ)⊗z Z
i
B(T , µ, ǫ)⊗T Ẑαs(µ, ǫ) Ibare

ij′ (x, T , ǫ) , (6.8)

where ⊗T denotes the appropriate convolution in T . According to eqs. (6.6) and (6.8), we

can obtain the beam function matching kernel as follows:

1. Obtain the bare kernel Ibare
ij from the strict collinear limit of the partonic cross

section.

2. Apply αs renormalization through Ẑαs , which renormalizes the bare coupling constant

αb
s in the MS scheme.

3. Subtract the EFT UV divergences with the beam-function counterterm Zi
B. This

renormalization does not change the parton flavor i, and only differs between quark

and gluons, but is independent of the quark flavor. In general, this counterterm enters

through a convolution in T , which can be trivialized by going to suitable conjugate

space.

4. Subtract IR divergences by convolving with the PDF counterterm Γjj′ , which as usual

mixes parton flavors.

Since the Γjj′ and Zi
B commute, one can freely rearrange their order in eq. (6.8). Since

the beam function counter term Zi
B gives rise to the renormalization group equation of the

beam function, in practice one can either predict Zi
B from the RGEs and check that this

cancels all poles in ǫ, or determine Zi
B by absorbing all poles remaining after QCD UV and

IR subtraction and verify that it reproduces the RGE dictated by the EFT. For the TN
and qT beam functions, this is discussed in more detail in our companion papers [105, 106].

In eq. (6.6), we assumed that the partonic coefficient function is taken in the strict

n-collinear limit. As discussed in section 5.2, for certain observables there can be overlap

with the soft limit, which in the factorized cross section in eq. (5.3) is already accounted for

by the soft function. In such instances, one has to subtract off the soft-collinear overlap,

Ibare
ij (z, T ) =

∫ 1

0
dx

∫ ∞

0
dw1dw2 δ [z − (1− w1)]

×
[

lim
strict n−coll.

dηjī
dQ2dY dT − lim

s−coll.
lim

strict n−coll.

dηjī
dQ2dY dT

]

. (6.9)
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The second term in the above equation denotes that the collinear limit is further re-

expanded in the soft limit.

6.3 Comparison to alternative methods

Before illustrating our method for the TN and qT beam functions in sections 6.4 and (6.5),

we briefly contrast our approach to methods previously used in the literature. Here, we

focus on how to calculate the bare beam function, since the renormalization and subtraction

of UV and IR divergences always proceeds in the same fashion.

Most calculations of beam functions explicitly calculate matching coefficients from

matrix element of the beam function operator, see e.g. refs. [97–99, 104, 193–201]. Let us

explain some features of this approach for the concrete example of a quark beam function

as shown in eq. (6.1), whose bare matching kernel Iqj is obtained by evaluating the matrix

element in eq. (6.1) with an external on-shell parton of flavor j. In ref. [97], the analytic

structure of these matrix elements was discussed in detail for the TN beam function, and

it was shown that one can calculate it by taking the discontinuity of matrix elements of

the time-ordered operator.

Firstly, this implies that the beam function can be calculated using SCET Feynman

rules. Since a single collinear sector in SCET is equal to a boosted copy of QCD, one

can equivalently employ QCD Feynman rules. In this case, eikonal vertices arise from the

Feynman rules of the Wilson lines Wn that are part of the collinear quark fields χn =W †
nq.

These can be avoided in lightcone gauge, where n̄ · A = 0 such that Wn = 1, but similar

terms arise from the gluon propagator in ligthcone gauge. Since the beam function is

defined as a gauge-invariant matrix element, both approaches yield equal results.

The discontinuity can be obtained by using the Cutkosky rules [202] (see also ref. [203]),

which corresponds to taking particles exchanged between the quark fields in eq. (6.1) on-

shell. This is analogous to our approach, where we explicitly consider on-shell radiation

into the final state. Alternatively, one can not apply an on-shell constraint and integrate

over all particles, and explicitly take the discontinuity afterwards. Both approaches are

discussed in more detail in ref. [196], where they are referred to as on-shell and dispersive

method, respectively.

An alternative method that does not directly rely on the definition of the beam function

in SCET was pointed out in ref. [204], where it was shown that one can equivalently

calculate the beam function from phase-space integrals over QCD splitting functions. This

approach was used in refs. [100–103], where the required splitting function at N3LO was

obtained following the method of ref. [205]. This approach requires to use a physical gauge

where gluons are explicitly transverse, for example the lightcone gauge n̄ ·A = 0.

Similar to ref. [204], our method does not rely on directly calculating SCET matrix

elements. However, our approach is manifestly gauge invariant as it is based on a physical

cross section, similar to the direct calculations. The connection of our approach to these

previous methods can be understood as follows: prior to integrating over real radiation,

the collinear expansion reproduces precisely the collinear limit of QCD, which in the SCET

approach is immediately encoded in the structure of the SCET matrix element, whereas

in the approach of ref. [204] it is obtained from the QCD splitting function. In practice,
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one advantage of our method is that it can be easily integrated with standard methods

of generating Feynman diagrams. One can then use standard methods to evaluate the

integrals using IBPs [95, 96] and the method of differential equations [165–169] in the

reverse unitarity framework [90–94] over the real radiation phase space, keeping only the

total momentum k fixed. This intermediate result, dηij/(dQ
2dw1dw2dx), is the bare fully

differential beam function, from which one can then project out the desired beam functions.

6.4 TN beam functions

6.4.1 Factorization

N -jettiness is an inclusive event shape that yields an N -jet resolution variable. It was first

introduced in ref. [206], and its factorization was derived using SCET in refs. [72, 206, 207].

Since the same beam function appears for all TN , we focus only on the simplest case T0, also
known as beam thrust, that is relevant to color-singlet processes. Beam thrust is defined

as [206, 207]

T0 =
∑

i

min

{

2q1 · (−ki)
Qa

,
q2 · (−ki)

Qb

}

. (6.10)

Here, q1,2 are the Born-projected momenta of the incoming partons, given by

qµ1 = xB1
√
S
nµ

2
= QeY

nµ

2
, qµ2 = xB2

√
S
n̄µ

2
= Qe−Y n̄

µ

2
, (6.11)

where as before Q and Y are the invariant mass and rapidity of the color-singlet final

state h, respectively. The sum in eq. (6.10) runs over all final-state particles excluding h,

and as usual all final-state momenta are taking as incoming. The Qa,b are measures that

determine different definitions of 0-jettiness. The original definitions are [72, 208]

leptonic: Qa = Qb = Q , T lep
0 = −

∑

i

min
{

eY n · ki , e−Y n̄ · ki
}

hadronic: Qa,b = Qe±Y , T cm
0 = −

∑

i

min
{

n · ki , n̄ · ki
}

. (6.12)

The precise choice does not affect the calculation of the beam function, but it becomes

important for the calculation of power corrections [129]. We note in passing that at sub-

leading power, the leptonic definition is clearly preferred as it gives rise to smaller power

corrections that the hadronic definition [117, 129].

At small T0 ≪ Q, the cross section can be factorized as [72]

dσ

dQ2dY dT0
= σ0

∑

i,j

Hab(Q
2, µ)

∫

dta dtbBa(ta, x
B
1 , µ)Bb(tb, x

B
2 , µ)S

(

T0 −
ta
Qa

− tb
Qb
, µ

)

×
[

1 +O
(T0
Q

)]

. (6.13)

As indicated, this factorization holds up to power corrections suppressed by T0/Q that were

studied in refs. [117, 118, 129, 209, 210] and the relevant SCET operators have been derived

in refs. [120–122]. In the case of fiducial cuts applied to the decay products of h, these
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corrections can be enhanced as O(
√

T0/Q) [211]. Furthermore, starting at N4LO it also

receives contributions from perturbative Glauber-gluon exchanges that are not captured

by eq. (6.13) [174, 175].

The beam function Bi(t, x, µ), sometimes also referred to as the virtuality-dependent

beam function, appears in the factorization of all TN [206], deep-inelastic scattering [212],

and in the factorization of color-singlet processes in the generalized threshold limit [26]. It

is known at NNLO [97, 195, 196, 208], and we compute it at N3LO for all partonic channels

in our companion paper [106]. Previous progress towards the calculation of the quark beam

function at N3LO was made in refs. [101–103].

In eq. (6.13), the beam functions are defined to measure the Qa,b-independent com-

binations ta = −q−1 k+ and tb = −q+2 k−, while the measurement-dependent normalization

factors Qa,b only arise in the convolution in eq. (6.13). This definition naturally arises

because T0 simplifies in the n-collinear limit to

lim
n−coll.

T0 =
∑

i

2q1 · (−ki)
Qa

=
q−1 (−k+)

Qa
, (6.14)

and similarly in the n̄-collinear limit.

The soft function in eq. (6.13) only differs between quark annihilation and gluon fusion,

but is independent of quark flavors, and we suppress the explicit color index in eq. (6.13).

S(T , µ) is a hemisphere soft function for two incoming lightlike Wilson lines. Through

NNLO, it is equal to the hemisphere soft function for e+e− → dijets [72, 213], which itself

is known at NNLO [72, 97, 214–218].

6.4.2 Calculation of TN -dependent beam functions

Since the collinear limit of T0 given in eq. (6.14) only depends on the total momentum kµ

of all real emissions, the TN beam function can be calculated using the method outlined

in section 6.2. In contrast, the soft limit of eq. (6.10) requires knowledge of all individual

momenta {ki}, and thus can not be calculated in this fashion.

Using eqs. (6.6) and (6.14), we can calculate the bare beam function kernel as

Ibare
ij (z, t, ǫ) =

∫ 1

0
dx

∫ ∞

0
dw1dw2 δ[z − (1− w1)] δ

(

t−Q2w2

)

lim
strict n−coll.

dηjī
dQ2dw1dw2dx

.

(6.15)

The zero-bin for the TN beam function is known to be scaleless and thus vanishes in pure

dimensional regularization, and hence need not be included explicitly [206]. Note that

w2 > 0 implies t > 0, which we keep implicit.

The bare kernel contains UV divergences from the limit w1 = 1 − z → 0 and w2 =

t/Q2 → 0, which are both regulated using dimensional regularization. The divergences

from small t can be made manifest through the standard identity

1

µ2

(

µ2

t

)1+aǫ

= −δ(t)
aǫ

+

[

1

t

]

+

+ aǫ

[

ln(t/µ2)

t

]

+

+O[(aǫ)2] , (6.16)
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where [lnn x/x]+ is the standard plus distributions. Following section 6.2, we obtain the

renormalized matching as

Iij(t, z, µ) =
∑

k

∫

dt′ Zi
B(t− t′, ǫ, µ)

∫ 1

z

dz′

z′
Γjk

(

z

z′
, ǫ

)

Ẑαs(µ, ǫ) Iik(t′, z′, ǫ) , (6.17)

where the structure of convolution in t [97, 208] is made explicit. In practice, it is more

useful to perform the renormalization in Fourier or Laplace space, where the convolution

in t turns into a simple product. In particular, the structure of Zi
B can be easily predicted

from the beam function RGE in Fourier space. For details on this, we refer to ref. [106].

We have implemented the described procedure at one loop through O(ǫ4) and at two

loops through O(ǫ2), as required for the calculation of the three-loop beam function. We

use the collinear limit of the cross sections for Higgs and Drell-Yan production to extract

the gluon and quark beam functions, respectively. As intermediate checks, we verified that

the UV and IR counterterms correctly cancel all appearing divergences. The final renormal-

ized results agrees with the NNLO results reported in refs. [195, 196], and the higher-order

terms in ǫ agree with ref. [100]. Our bare results are provided as supplementary material.

6.5 qT beam functions

6.5.1 Factorization

The factorization of the transverse-momentum (~qT ) distribution of a colorless probe h in the

limit qT ≪ Q was first derived by Collins, Soper, and Sterman (CSS) in refs. [20, 219, 220]

and elaborated on in refs. [33, 34, 37, 164]. The factorization was also discussed using SCET

in refs. [73–75, 221]. The factorized cross section is commonly formulated in Fourier (impact

parameter) space, with ~bT being Fourier-conjugate to ~qT , as this significantly simplifies the

resummation of large logarithms [222]. We write the factorized ~qT spectrum as

dσ

dQ2dY d2~qT
=σ0

∑

i,j

Hij(Q
2,µ)

∫

d2~bT e
i~qT ·~bT B̃i

(

xB1 ,bT ,µ,
ν

ωa

)

B̃j

(

xB2 ,bT ,µ,
ν

ωb

)

S̃(bT ,µ,ν)

×
[

1+O
(

q2T /Q
2
)]

. (6.18)

It receives power corrections suppressed by q2T /Q
2, which were studied at fixed order in

perturbation theory in ref. [130]. The study of their all-order structure has been initiated

using the SCET operator formalism in refs. [116, 120–122, 223], and their nonperturbative

structure has been explored in refs. [224, 225]. These corrections are enhanced as O(qT /Q)

when applying fiducial cuts to h [211], but for Drell-Yan and Higgs production can be

uniquely included in the factorization theorem [226], and are also linear when one includes

radiation from massive final states [227].

TMD factorization is complicated by the fact that the bare beam and soft functions

not only contain IR and UV divergences, but also so-called rapidity divergences. These

must be regularized using a dedicated rapidity regulator, and after removing the regulator

this gives rise to the rapidity renormalization scale ν. Several such regulators are known

in the literature [73–75, 130, 164, 172, 219, 221, 228, 229], leading to several equivalent
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schemes for defining TMD beam and soft functions. It is also common to combine beam

and soft functions into a ν-independent TMDPDF as

f̃i(x, bT , µ, ζi) = B̃i(x, bT , µ, ν/
√

ζi)

√

S̃(bT , µ, ν) , (6.19)

where ζi ∝ ω2
i is known as the Collins-Soper scale [219, 220].

The TMD beam and soft functions appearing in eq. (6.18) are known at NNLO in

various regulators [98, 99, 197, 198, 200, 201, 230–233]. The quark beam function and the

soft function are also known at N3LO [104, 234] using the exponential regulator of ref. [221].

An important remark is in order concerning differences between quark- and gluon-

induced processes. In the quark case, eq. (6.18) exactly applies, while the gluon beam

functions can also depend on the gluon helicity due the vectorial nature of ~bT . As first

pointed out in ref. [37], the gluon beam function can be decomposed into a polarization-

independent piece B1 and a polarization-dependent piece B2 as

B̃ρλ
g (x, bT , µ, ν) =

gρλ⊥
2
B̃1(x, bT , µ, ν) +

(

gρλ⊥
2

− bρ⊥b
λ
⊥

b2⊥

)

B̃2(x, bT , µ, ν) . (6.20)

Here, bµ⊥ is a Minkowski four vector with b2⊥ = −b2T , and g
ρλ
⊥ is the transverse component of

the metric tensor. In this case, the hard function in eq. (6.18) also depends on the helicities

of the colliding gluons.

We will only focus on the production of scalar particles such as a Higgs boson, where

the hard function has the trivial helicity structure

Hρλρ′λ′
gg (Q,µ) = Hgg(Q,µ)g

ρρ′

⊥ gλλ
′

⊥ . (6.21)

Thus, the only combination that enters the factorized cross section in this case is

Hgg ρλρ′λ′B̃ρλ
g B̃ρ′λ′

g = HggB̃
ρλ
g B̃g ρλ =

1

2
Hgg

[

B̃1B̃1 + B̃2B̃2

]

, (6.22)

where we suppress the arguments of all functions for brevity. Since B̃2 describes a spin flip

of the incoming gluon, it vanishes at tree level, and thus the B̃2B̃2 term first contributes at

O(α2
s). Thus, for a scalar process, the B̃2B̃2 term does not show up in the strict n-collinear

limit, which hence can be used to calculate B̃1 in the same fashion as for the quark case.

Nevertheless, B̃2 could be calculated with the same technique for a different process that

induces a cross term B̃1B̃2, for example the production of a pseudoscalar probe h. We also

note that since B̃2 is already known at NNLO [99, 201], the B̃2B̃2 term in eq. (6.22) is

already known at N3LO.

6.5.2 Calculation of qT -dependent beam functions

In our setup for the differential hadronic cross section, eq. (2.9), we measured the transverse

momentum of h indirectly through

x = 1− k2T
k+k−

= 1− k2T
sw1w2

, (6.23)
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as by momentum conservation kT = qT . Both are defined as the magnitude of a d − 2-

dimensional vector, with the associated solid angle already integrated over in the phase

space measure. The qT measurement can also be defined in different schemes to account

for extending the transverse vector into d−2 dimensions, but the scheme dependence must

cancel in the renormalized beam functions. For a more detailed discussion, see e.g. ref. [233].

Using eqs. (6.6) and (6.23) together with the leading-power relation Q2 = zs, we obtain

the matching kernel of the beam function as

Inaive
ij (z, qT , ǫ) =

∫ 1

0
dx

∫ ∞

0
dw1 dw2 δ[z − (1− w1)]δ

(

q2T − 1− x

z
w1w2Q

2

)

× lim
strict n−coll.

dηjī
dQ2dw1dw2dx

. (6.24)

Here, the superscript naive indicates that this is not yet the final result for the bare matching

kernel, as it requires further manipulation. First, we note that eq. (6.24) contains diver-

gences as x → 1 or z → 1 that are not regulated by dimensional regularization, and are a

manifestation of the aforementioned rapidity divergences. In our setup, we must regulate

these with a regulator that acts only on the total radiation momentum kµ, but not on

individual emissions. The only such regulator known in the literature is the exponential

regulator of ref. [221], where one inserts a factor exp[2τe−γEk0i ] into the phase of each real

emission ki. Inserting this regulator into eq. (6.24) and solving the δ functions, we obtain

Inaive
ij (z, qT , ǫ, τ/ω) = lim

τ→0
ǫ→0

∫ 1

0
dx

1

(1− x)(1− z)
exp

[

−τe−γE
q2T
ω

z

(1− z)(1− x)

]

× lim
strict n−coll.

dηjī
dQ2dw1dw2dx

∣

∣

∣

∣

w2=
q2
T

Q2
z

(1−x)(1−z)
, w1=1−z

, (6.25)

where we defined the so-called label momentum of the beam function as ω = QeY . In

eq. (6.25), all divergences as x→ 1 and z → 1 are manifestly regulated by the exponential,

and any leftover divergences are regulated by dimensional regularization. As indicated, the

limit τ → 0 should be taken before the limit ǫ→ 0.

To proceed, we Fourier transform to the conjugate ~bT space, which trades convolutions

in ~qT for simple products in Fourier space. In d−2 dimensions, the Fourier transform reads

Ĩnaive
ij (z, bT , ǫ, τ/ω) =

∫

dd−2~qT e
−i~bT ·~qT Inaive

ij (z, qT , ǫ, τ/ω) . (6.26)

We can then apply the zero-bin subtraction to subtract overlap with the soft function,

see section 5.2, which for the exponential regulator is equivalent to dividing by the soft

function in Fourier space [98]. This in turn completes the manipulations that forced us the

introduce the label naive before their execution. Next, we can apply the usual UV and IR

counterterms to obtain the renormalized matching kernel as

Ĩij(x, bT , µ, ν/ω) =
∑

j′

Γjj′(z, ǫ)⊗z Z̃
i
B(ǫ, µ, ν/ω)Ẑαs(µ, ǫ)

Ĩnaive
ij′ (z, bT , ǫ, τ/ω)

S̃(bT , ǫ, τ)
, (6.27)

– 34 –



J
H
E
P
0
9
(
2
0
2
0
)
1
8
1

where following ref. [234] we identify the rapidity renormalization scale as ν = 1/τ . The

all-order structure of the beam function counter term Z̃i
B can be predicted from the beam

function RGE, which we show in detail in ref. [105].

We have implemented the described procedure at NLO through O(ǫ4) and at NNLO

through O(ǫ2), as required for the calculation of the three-loop beam function. We use the

collinear limit of the cross sections for Higgs and Drell-Yan production to extract the gluon

and quark beam functions, respectively. Since the bare soft function required in eq. (6.27)

has not been published beyond NLO, we have similarly calculated it from the soft limit of

the cross section. Our bare results agree with those of refs. [98, 99], and the renormalized

beam functions also agree with ref. [233]. We provide these beam functions, as well as the

bare two-loop soft function, in the supplementary material.

7 Collinear expansion of rapidity distributions

Computing analytic coefficient functions at high orders is a complicated task, and finding

suitable approximations can be vital. Here we demonstrate that our expansion techniques

have the potential to approximate the rapidity spectrum of color neutral hard probes. We

perform a computation of the first two terms in the collinear expansion of the rapidity

distribution of the Higgs boson produced via gluon fusion at NNLO. This application also

demonstrates that our technique allows one to relatively easily obtain predictions beyond

leading power of the kinematic expansion.

The required partonic matrix elements were calculated exactly in ref. [53], and the

differential distribution was obtained for example in ref. [93]. Currently, this observable is

known at N3LO computed via a threshold expansion [5] and via an approximate differential

computation [4]. The exact computation of the partonic coefficient function is still elusive

due to its extreme difficulty, and a collinear expansion of the same could provide a useful

ingredient in future phenomenological studies.

We integrate out the degrees of freedom of the top quark and work in an effective

theory that couples the Higgs boson directly to gluons [235–243]. We generate all required

Feynman diagrams with QGRAF [244] and perform their collinear expansion up to the

second term as illustrated in section 4. To be precise, we only expand real emissions in

the collinear limit, but keep all virtual loops exact. This differs from the calculation of

beam functions presented in section 6, where a strict collinear limit was enforced by also

expanding virtual loops in the collinear limit. We then employ IBP identities [95, 96]

to reduce the expanded diagrams to master integrals, which we then compute using the

framework of reverse unitarity [90–94] and the method of differential equations [165–169].

With this we obtain the bare partonic coefficient function

dηij
dQ2dw1dw2dx

∣

∣

∣

∣

w2∼λ2

(7.1)

expanded up to the second term in ω2. Next, we perform a variable transformation from

(ω1, ω2) → (z1, z2) via eq. (2.10) and (2.18), and replace the variable x by ξ via

x =
ξ(z1 + z2)

2

[

ξz1(1− z2) + z2(1 + z1)
][

ξz2(1− z1) + z1(1 + z2)
] . (7.2)
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The expansion in ω2 is comparable to an expansion in z̄2 = 1 − z2, as can be seen by

applying the rescaling transformation of eq. (3.4). We find

z̄1 = 1− z1 = ω1 +O(λ2), z̄2 = ω2
2− ω1(1 + x)

2(1− ω1)
+O(λ4). (7.3)

Introducing the variable ξ has the advantage that its integration domain is independent

from z1 and z2 and ranges from 0 to 1. Next, we expand the partonic coefficient function

after this change of variables up the second power in z̄2 and integrate over ξ. The result

is an approximation for the partonic coefficient function of eq. (2.18) with the observable

integrated out. We perform UV renormalisation and combine our partonic matrix elements

with collinear counter terms in order to obtain a finite partonic coefficient function through

NNLO.

Obtaining the equivalent expansion in z̄1 can easily be done by simply relabelling

the variables, z̄1 ↔ z̄2. With this we obtain the following approximation for the full

renormalized partonic coefficient function,

dηR, approx.
ij (z1, z2)

dQ2dY
=

dηRij
dQ2dY

∣

∣

∣

∣

z̄2∼λ2

+
dηRij

dQ2dY

∣

∣

∣

∣

z̄1∼λ2

−
dηRij

dQ2dY

∣

∣

∣

∣

z̄1,2∼λ2

+O(λ2) . (7.4)

The last term in the above equation removes the overlap in the two expansions. The

hadronic cross section expanded to this order is then obtained by inserting eq. (7.4) into

eq. (2.20),

dσ(xB1 , x
B
2 )

dQ2dY
= τσ0

∑

i,j

fRi (xB1 )⊗xB
1

dηR, approx.
ij (xB1 , x

B
2 )

dQ2dY
⊗xB

2
fRj (xB2 ), (7.5)

Note that the leading-power limit of eqs. (7.4) and (7.5) precisely correspond to the leading-

power generalized threshold factorization theorem of ref. [26], cf. their eqs. (17) and (18).

We have implemented the approximate partonic coefficient function in eq. (2.20) in a

private C++ code. Note that we only expanded the NNLO correction to the partonic co-

efficient, but keep the lower orders exact. To illustrate our results numerically, we evaluate

eq. (7.5) for the LHC with a center-of-mass energy of 13TeV using the MMHT14 parton

distribution functions [245]. Figure 1 shows the rapidity distribution obtained with this

collinear expansion normalized to the exact results obtained from ref. [246]. The green

line shows our result using only the first term in the collinear expansion, while the red line

shows the result including also the second term in the collinear expansion. The blue band in

the figure represents the variation of the cross section under a variation of the factorization

and renormalisation scale by factor of two around their central values µF = µR = mH/2.

We observe that the collinear expansion approximates the shape of the rapidity spectrum

quite well, in particular towards large values of |Y |. This is kinematically expected, as

large rapidities enforce all final-state radiation to be collinear to the corresponding incom-

ing parton, such that the collinear expansion is in fact the correct kinematic limit, see

also ref. [26]. In addition, including the second-order term in the expansion clearly im-

proves the results, illustrating that the collinear expansion indeed can be used to produce

systematically improvable approximations of key collider physics observables.
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Figure 1. Comparison of the Higgs boson rapidity distribution in gluon fusion obtained with a

collinear expansion, normalized to the exact results of ref. [246].

The computation of the expanded partonic coefficient functions was greatly simplified

compared to the computation of the exact result obtained e.g. in ref. [246]. Explicitly, the

complexity of the analytic formulae is greatly reduced, and the function space required

to express the coefficient function is much simpler. We expect that a similarly drastic

simplification will also occur when applying our method at N3LO, which is a natural

application of this research.

8 Conclusions

We have developed a method to efficiently expand differential cross sections for the pro-

duction of colorless final states in hadron collisions around the particular kinematic limit

that all hadronic final-state radiation becomes collinear to one of the colliding hadrons.

This yields a generalized power expansion in a power counting parameter λ characterizing

this limit.

A key feature of our method is that the expansion is systematically improvable, as it

allows to compute to arbitrary order in the power counting parameter λ. Furthermore, λ is

treated as a purely symbolic power counting parameter agnostic of the actual observable.

This greatly simplifies the expansion, as it can be carried out at the integrand level, i.e.

before any phase space or loop integrations are carried out. Subsequently, carrying out

phase space and loop integrals is greatly facilitated as integrands become simpler as a result

of the expansion. Moreover, the expanded integrands have again a diagrammatic nature

very much like the original Feynman integrands they were derived from. This observation

makes it manifest that widely used and powerful loop integration techniques like IBP

relations and the method of differential equations are applicable to the coefficients of the

collinear expansion. We also stress that the basic functions (the so-called master integrals)

required in the computation of higher orders in the expansion are already obtained in the

lowest few nontrivial orders of the expansion.

Our method also sheds light on the connection between the collinear limit of hadronic

cross sections and factorization theorems derived in SCET. The latter include so-called
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beam functions, universal quantities defined as hadronic matrix elements of collinear fields

in SCET, which can be related to standard light-cone PDFs through convolutions with

perturbative matching kernels. We have shown that these kernels are precisely given by

the first term in a strict collinear expansion of hadronic cross sections. As a first application

of this, we reproduced the matching kernels for the N -jettiness and qT beam functions at

NNLO from a collinear expansion of the NNLO cross sections for the Drell-Yan process

and for Higgs boson production in gluon fusion. The analytic results of this computation

are provided as supplementary material and together with the arXiv submission of this

article.

As another application of the collinear expansion, we have demonstrated its useful-

ness to efficiently calculate approximate hadron collider cross sections. By combining the

collinear expansion with the limit where one partonic momentum fraction becomes equal

to its Born value, xi → xBi , we obtained the first two terms in the collinear expansion of

the rapidity distribution of a Higgs boson produced in gluon fusion through NNLO in QCD

perturbation theory. This example illustrates not only that key collider observables can

be approximated with high accuracy using our technique, but also that results beyond the

leading power can be easily obtained.

In summary, the method of collinear expansions is a great tool to study the infrared

limit of QCD. At leading power in the collinear expansion, it provides access to the universal

beam functions governing the collinear limit, which we employ to calculate the TN and qT
beam functions at N3LO in two companion papers [105, 106]. We also believe that the

collinear expansions will similarly shed light on the universal structure of hadron collision

processes beyond the leading power. Finally, it provides a powerful tool to achieve cutting-

edge phenomenological predictions at very high orders in perturbation theory.
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[209] R. Boughezal, A. Isgrò and F. Petriello, Next-to-leading-logarithmic power corrections for

N -jettiness subtraction in color-singlet production, Phys. Rev. D 97 (2018) 076006

[arXiv:1802.00456] [INSPIRE].
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