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1 Introduction

The perturbative QCD calculations of a wide class of hard-scattering observables lead to
logarithmically-enhanced contributions that are due to the radiation of soft and collinear
partons (see, e.g., refs. [1, 2] and references therein). These large contributions have to be
computed at high perturbative orders in the QCD coupling αS, and possibly resummed to
all orders in perturbation theory. For instance, in the case of hadron collisions two topical
observables that can be treated through resummation are the transverse momentum of
produced high-mass systems [3] and the N -jettiness shape variable [4].

In this paper we consider the logarithmically-enhanced contributions produced by
collinear radiation. These contributions originate from the singular behaviour of QCD
scattering amplitudes in the multiparton collinear limit. At the squared amplitude level,
the singular behaviour is factorized and controlled by perturbative splitting kernels that
have a process-independent structure [5–12].
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We exploit collinear factorization of the squared amplitudes to introduce collinear func-
tions that contribute to QCD resummation formulae for hard-scattering cross sections. The
collinear functions have a process-independent structure and are obtained by integration
of the splitting kernels over the observable-dependent phase space. Different phase-space
constraints lead to corresponding collinear functions for different hard-scattering observ-
ables. Specifically, we consider differential collinear functions that upon integration lead
to transverse-momentum dependent (TMD) collinear functions and beam functions, which
can be used for transverse-momentum and N -jettiness resummations, respectively.

Our collinear functions depend on an auxiliary vector nµ, which is future-like (i.e.,
n2 ≥ 0). Such auxiliary vector directly appears in the expressions of the splitting kernels
for collinear factorization of the squared amplitudes. Applications of collinear factorization
typically use a light-like (n2 = 0) auxiliary vector. We also use a time-like (n2 > 0) auxiliary
vector. In the case of TMD collinear functions we show that the time-like vector avoids
the presence of rapidity divergences, which instead occur if n2 = 0 [13–17].

Our collinear functions are, in general, process dependent for radiation from initial-
state colliding partons. Their process dependence originates from the violation of strict
collinear factorization [12], namely, from the corresponding process dependence of the
splitting kernels for amplitude factorization in the space-like (SL) collinear region. The
SL collinear functions are actually process independent up to O(α2

S), and their process
dependence only occurs at higher perturbative orders. In the case of radiation from final-
state fragmenting partons, the collinear functions are process independent as a consequence
of the validity of strict collinear factorization in the time-like (TL) collinear region.

In the TL region our TMD and beam functions with n2 = 0 are equivalent to the
corresponding parton level functions defined by using Soft Collinear Effective Theory
(SCET) [18–21]. This perturbative equivalence directly follows from the relation [22] be-
tween SCET collinear functions and collinear factorization of squared amplitudes. In the
SL region, setting n2 = 0 a similar equivalence applies up to O(α2

S).
The collinear functions can be computed order-by-order in αS through the phase-space

integration of the corresponding perturbative expansion of the splitting kernels. The per-
turbative computation of the collinear functions lead to infrared (IR) divergences that can
be properly factorized with respect to the IR finite contributions to the hard-scattering cross
sections. In this paper we discuss these perturbative features, and we present the explicit
calculation at O(α2

S) of the azimuthal-correlation components of the collinear functions. In
particular, from our calculation of the TMD functions we derive the O(α2

S) contributions
of linearly-polarized gluons to transverse-momentum resummation, and we find agreement
with the results of independent calculations for both the SL [23, 24] and TL [23] regions.

The outline of the paper is as follows. In section 2 we recall the known structure of
the collinear contributions to the formalism of transverse-momentum and N -jettiness re-
summations. Section 3 is devoted to introduce the collinear functions. We first recall the
collinear factorization formula of QCD squared amplitudes, and then we define the differ-
ential collinear functions, the TMD functions and the beam functions. The perturbative
features of the SL collinear functions are illustrated in section 4. We perform the explicit
calculation of the collinear functions at O(αS), we present a detailed discussion of their
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dependence on the auxiliary vector nµ, and we explain their IR factorization structure. In
section 5 we carry out the calculation at O(α2

S) of the azimuthal-correlation component
of the SL collinear functions, and we present the ensuing results for the contribution of
linearly-polarized gluons to transverse-momentum resummation. Section 6 is devoted to
the perturbative features of the TL collinear functions, including the O(α2

S) calculation of
the their azimuthal-correlation components. A brief summary of the paper is presented in
section 7.

2 Transverse-momentum and N -jettiness resummations

In this section we briefly recall some main features of perturbative QCD resummations
for two ‘classical’ hard-scattering observables. We consider transverse-momentum [3] and
N -jettiness [4] resummations and, in particular, the structure of the corresponding contri-
butions due to partonic collinear radiation.

QCD transverse-momentum resummation is fully developed for the inclusive-production
processes of high-mass colourless systems (e.g., vector and Higgs bosons) in hadron-hadron
collisions. In the kinematical region where the transverse momentum qT of the produced
system is much smaller than its invariant mass M , the perturbative QCD computation
of the qT -differential cross section leads to large logarithmic contributions of the type
lnn(M2/q2

T ). The resummation procedure organizes and systematically sums these large
contributions to all perturbative orders in the coupling αS.

In the following we specifically refer to the transverse-momentum resummation formal-
ism of refs. [3, 25–27]. Other equivalent formulations of transverse-momentum resumma-
tion, based either on TMD factorization [14] or on SCET methods [18–21], are presented
and discussed in refs. [14–17].

Transverse-momentum resummation [3, 25–27] is conveniently carried out in impact
parameter space, where the impact parameter vector b is the Fourier conjugate variable
of the transverse-momentum vector qT. The differential cross section dσ/d2qT is then
obtained by inverse Fourier transformation of the result in b space.

We directly consider and refer to the notation in ref. [27] (see, in particular, eqs. (6)–
(16) therein). The b space cross section at bM � 1 is expressed in terms of the parton
distribution functions (PDFs) of the colliding hadrons and of perturbatively calculable
factors. In this paper we are mainly interested in the process-independent partonic factors
Cca (see eqs. (11) and (14) in ref. [27]). Here the subscript a (a = q, q̄, g) denotes the type
of initial-state colliding parton, while the subscript c (c = q, q̄, g) refers to the parton that
produces the high-mass system through hard scattering. The factors Cca have a definite
dynamical origin [25]: they are due to the initial-state partonic transition a → c + X

produced by final-state partonic radiation (X) that is collinear to the parton a. In the
context of formulations of transverse-momentum resummation that are based on SCET
methods, the factors Cca are directly related to the so-called ‘matching coefficients’ between
TMD parton distributions and customary PDFs.

The quark collinear function Cqa depends on the longitudinal-momentum fraction z

that is transferred in the collinear-radiation process, and it is computable as a power series
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expansion in αS. We write its perturbative expansion as follows

Cqa (z;αS) = δqaδ(1− z) + αS
π
C(1)
qa (z) +

∞∑
m=2

(
αS
π

)m
C(m)
qa (z) . (2.1)

The antiquark collinear function Cq̄a is directly related to the quark collinear function
through the relation Cq̄a = Cqā, which follows from charge conjugation invariance.

The gluon collinear function Cµνga has a richer structure since it also depends on the
Lorentz indices µ and ν of the gluon that produces the high-mass system (µ and ν are the
Lorentz indices of the gluon in the hard-scattering amplitude and its complex-conjugated
amplitude, respectively). The structure of the partonic tensor is [26]

Cµνga (z; p1, p2,b;αS) = dµν(p1, p2)Cga(z;αS) +Dµν(p1, p2; b)Gga(z;αS), (2.2)

where

dµν(p1, p2) = −gµν + pµ1p
ν
2 + pµ2p

ν
1

p1p2
, (2.3)

Dµν(p1, p2; b) = dµν(p1, p2)− 2b
µbν

b2 . (2.4)

The light-like vectors pµ1 and pµ2 (p2
i = 0, i = 1, 2) in eq. (2.2) denote the momenta of the

initial-state colliding partons or, equivalently, the directions of the momenta of the two
colliding hadrons as treated in the massless approximation. In a reference frame in which
the colliding hadrons are back-to-back, we can consider light-cone coordinates and we have
pµ1 = (p+

1 ,0T, 0) and pµ2 = (0,0T, p
−
2 ). The momentum bµ = (0,b, 0) in eq. (2.4) is the

impact parameter vector in the four-dimensional notation (bµbµ = −b2, p1b = p2b = 0).
The gluon collinear functions Cga and Gga in eq. (2.2) have the following perturbative

expansions:

Cga (z;αS) = δgaδ(1− z) + αS
π
C(1)
ga (z) +

∞∑
m=2

(
αS
π

)m
C(m)
ga (z) , (2.5)

Gga (z;αS) = αS
π
G(1)
ga (z) +

(
αS
π

)2
G(2)
ga (z) +

∞∑
m=3

(
αS
π

)m
G(m)
ga (z) . (2.6)

Charge conjugation invariance implies the relations Cga = Cgā and Gga = Ggā. We note
that the expansion of Cga in eq. (2.5) is completely analogous to that of the quark function
Cqa in eq. (2.1). At variance, the perturbative expansion of Gga in eq. (2.6) starts at O(αS).

The structure of eq. (2.2) is the consequence of collinear correlations [26] that are
produced by the evolution of the colliding hadrons into gluon partonic states. In partic-
ular, the contribution of the tensor factor Dµν in eq. (2.2) leads to spin and azimuthal
correlations [26, 28] in the hard-scattering production of the observed high-mass system at
small values of qT . This contribution is sometimes denoted as the contribution of linearly-
polarized gluons [29] to TMD factorization and transverse-momentum resummation. The
size of the azimuthal correlations of collinear origin is controlled by the perturbative func-
tion Gga in eq. (2.6). The quark collinear function Cqa in eq. (2.1) and the gluon collinear
function Cga in eq. (2.5) do not lead to spin- and azimuthal-correlation effects.
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We recall [25, 27] that the quark and gluon collinear functions in eqs. (2.1) and (2.2)
are precisely defined (and computable) modulo the following resummation-scheme trans-
formations:

Cqa(z;αS)→ hq(αS)Cqa(z;αS), (2.7)
Cµνga (z;αS)→ hg(αS)Cµνga (z;αS), (2.8)

where ha(αS) = 1 +
∑∞
m=1(αS/π)m h(m)

a (a = q, g) is an arbitrary perturbative function
that does not depend on the momentum fraction z. As a consequence of the arbitrariness
in eqs. (2.7) and (2.8), the explicit results for Cqa and Cµνga have to be accompanied by
the specification of a resummation scheme. In the computation of the qT cross section,
the resummation scheme dependence of the collinear functions cancels a corresponding
dependence of the other factors that contribute to the transverse-momentum resummation
formula [25].

The azimuthally-uncorrelated quark and gluon collinear functions Cqa and Cga in
eqs. (2.1) and (2.5) are known up to next-to-next-to-next-to-leading order (N3LO) in QCD
perturbation theory, namely up to O(α3

S). The first process-independent computation of
the next-to-leading order (NLO) terms C(1)

qa (z) and C(1)
ga (z) was carried out in ref. [30]. The

next-to-next-to-leading order (NNLO) terms C(2)
qa (z) and C

(2)
ga (z) were first computed in

refs. [31–34]. Subsequent independent computations of these NNLO terms were presented
in refs. [23, 35, 36]. The N3LO terms C(3)

qa (z) and C(3)
ga (z) have been computed very recently

and independently by two research groups [37–39].
The azimuthally-correlated gluon collinear functions Gga(z;αS) in eqs. (2.2) and (2.6)

are known up to O(α2
S). The first-order coefficients G(1)

ga are resummation-scheme indepen-
dent, and they read [26]

G(1)
ga (z) = Ca

1− z
z

, a = q, g, (2.9)

where Ca is the Casimir colour coefficient of the parton a, with Cq = CF = (N2
c −1)/(2Nc)

and Cg = CA = Nc in SU(Nc) QCD with Nc colours. The second-order terms G(2)
ga (z) have

been obtained more recently by the independent computations of refs. [23] and [24].
The transverse-momentum resummation formalism can be extended to processes that

are related by ‘kinematical crossing’ to the hadroproduction processes of high-mass colour-
less systems. Crossing related processes are double-inclusive hadron production in e+e−

annihilation [14, 40] and single-inclusive hadron production in deep-inelastic lepton-hadron
scattering [14, 41, 42]. The corresponding transverse-momentum resummation formu-
lae [14, 40–42] are analogous to that for hadron-hadron collisions and they involve a main
difference through the replacement of the PDFs of the colliding hadrons with the parton
fragmentation functions (PFFs) of the triggered hadrons in the final state. In the resum-
mation formulae the PFFs are convoluted with computable perturbative functions that
embody the effect of QCD radiation collinear to the final-state partons that are produced
by the hard scattering and that fragment in the triggered hadrons. These perturbative
functions for time-like (TL) collinear evolution have the same structure as the initial-state
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collinear functions Cqa, Cga and Gga in eqs. (2.1), (2.2), (2.5) and (2.6), and they are
denoted by CTL

qa , C
TL
ga and GTL

ga in this paper.
The azimuthally-uncorrelated quark and gluon collinear functions CTL

qa and CTL
ga are

known up to the N3LO. The NLO terms CTL(1)
qa (z) and CTL(1)

ga (z) were obtained in refs. [41]
and [35]. The NNLO terms CTL(2)

qa (z) and C
TL(2)
ga (z) were computed in refs. [35] and

refs. [23, 36]. The N3LO terms CTL(3)
qa (z) and CTL(3)

ga (z) have been obtained very recently
through the independent computations of refs. [39, 43]. The azimuthally-correlated gluon
collinear functions GTL

ga have been evaluated up to O(α2
S). The first-order coefficients GTL(1)

ga

are resummation-scheme independent, and they are

GTL(1)
gg (z) = CA z(1− z), (2.10)

GTL(1)
gq (z) = −TR z(1− z), (2.11)

where TR = 1/2. The second-order coefficients GTL(2)
ga were computed in ref. [23]. Our

independent computation of GTL(2)
ga (see section 6.3) confirms the results of ref. [23].

In the case of hadron-hadron collisions, the formalism of transverse-momentum re-
summation can be extended to production processes of high-mass colourful systems (i.e.,
systems that contain particles with QCD colour charge). Example of such extension are
those for the associated production of a (vector or Higgs) boson and a jet [44–49] and for
the production of heavy quarks [50–52]. In particular, in the case of the hadroproduction
of a heavy-quark pair, the transverse-momentum resummation formalism is fully developed
up to next-to-next-to-leading logarithmic accuracy and through the explicit computation
of all the resummation factors up to NNLO [50, 51, 53, 54].

The extension from colourless to colourful systems produces significant differences
within the formalism of transverse-momentum resummation. These differences are ba-
sically due to QCD radiation from the colourful particles of the observed high-mass system
and, hence, they are mostly related to soft radiation at wide angles with respect to the direc-
tions of the initial-state colliding partons. Beyond the NNLO level of perturbative accuracy,
non-abelian soft wide-angle interactions of absorptive origin lead to violation of strict (i.e.,
process-independent) factorization of collinear radiation from the initial-state partons [12].
Therefore, the quark and gluon collinear functions Cqa and Cµνga in eqs. (2.1) and (2.2)
are expected not to be process-independent contributions to transverse-momentum resum-
mation for the production of high-mass colourful systems. They are certainly process
independent up to O(α2

S) (see the accompanying comments to eqs. (3.24) and (3.25) and
section 4.2), but they can acquire process-dependent structures starting from some higher
perturbative orders [12, 55, 56] and consistently with studies on the violation of generalized
TMD factorization [57, 58].

The N -jettiness τN [4] is a shape variable that measures the amount of radiation that
accompanies the hard-scattering production of N distinct hadronic jets in hadron and
lepton collisions. The limit τN → 0 corresponds to an almost exclusive configuration of
the N jets. In this limit, or generically in the region where τN � Q (Q is the typical
hard scale of the process), the perturbative computation of the N -jettiness cross section

– 6 –



J
H
E
P
0
3
(
2
0
2
3
)
2
0
0

produces large logarithmic contributions of the type ln(Q/τN ). These large contributions
can be organized and treated by the N -jettiness resummation formalism.

The N -jettiness resummation formula [4] has a process-independent structure and it
includes various factors that embody the effect of the radiation of soft and collinear partons
in the final state. In the case of hadron collisions one of the factors in the N -jettiness
resummation formula is the beam function of the colliding hadron [59]. The beam function
is due to QCD radiation that is collinear to the direction of the initial-state colliding hadron
(parton), and it depends on the ‘transverse virtuality’ of the parton that enters the hard
scattering after collinear evolution.

At small values of transverse virtuality t (which correspond to small values of the N -
jettiness τN ) the beam function Bc(z; t) of the parton c is related to the customary PDF
fa of the parton a through the following convolution structure [59]:

Bc(z; t) =
∑
a

∫ 1

z

dx

x
Îca(x, t;µF , αS(µ2

F )) fa(z/x;µ2
F ), (2.12)

where z is the fraction of the hadron longitudinal momentum carried by the parton c,
and µF is the evolution scale of the PDF fa. The convolution kernels Îca (c, a = q, q̄, g)
are known as ‘matching coefficients’ of the beam function and they are perturbatively
computable as power series in the QCD coupling αS.

The matching coefficients Îca for N -jettiness resummation and the collinear functions
Cca in eqs. (2.1) and (2.5) for transverse-momentum resummation originate from the same
underlying dynamics, namely from QCD radiation that is collinear to the colliding parton
a. Note that the radiation that contributes to the beam function is integrated over the
entire azimuthal region and, consequently, in the case of N -jettiness resummation there is
no analogue of the azimuthal-correlation function Gga in eq. (2.6).

In view of the renormalization properties of the beam function [59] it is convenient
to consider its Laplace transformation with respect to the transverse virtuality. Corre-
spondingly, we introduce the Laplace transformation Ica of the matching coefficient Îca in
eq. (2.12), and we define

Ica(z, σ;µF , αS(µ2
F )) ≡

∫ +∞

0
dt e−σt Îca(z, t;µF , αS(µ2

F )), (2.13)

where σ is the Laplace space variable that is conjugated to the transverse virtuality t.
The matching coefficients Ica have the following perturbative expansion:

Ica
(
z, σ;µF , αS(µ2

F )
)

=δcaδ(1−z)+αS(µ2
F )

π
I(1)
ca (z, σ;µF )+

∞∑
m=2

(
αS(µ2

F )
π

)m
I(m)
ca (z, σ;µF ) ,

(2.14)
and they fulfil the relation Ica = Ic̄ā, which follows from charge-conjugation invariance.
The first-order coefficients I(1)

ca were first computed in refs. [60, 61]. The evaluation of the
second-order coefficients I(2)

ca was performed in refs. [62, 63]. Partial results for the N3LO
coefficients I(3)

ca were obtained in refs. [64–67]. The complete N3LO results are presented
in ref. [68].
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The beam function for N -jettiness resummation has a corresponding TL function,
known as fragmenting jet function [69]. We do not consider this TL function in this paper.

In our previous discussion on transverse-momentum resummation we have mentioned
the possible occurrence of high-order factorization breaking effects of collinear radiation.
We note that similar factorization breaking effects can affect N -jettiness resummation for
multijet production in hadron-hadron collisions.

3 Collinear functions

In this paper we compute the collinear functions of section 2 by starting from the evaluation
of QCD scattering amplitudes. At the bare level the computation exhibits ultraviolet (UV)
and IR divergences. We regularize both divergences by working in d = 4 − 2ε space-time
dimensions. In particular, we use the scheme of conventional dimensional regularization
(CDR) [70–73], in which on-shell gluons have d−2 physical states of spin polarizations and
on-shell massless quarks (or antiquarks) have 2 spin polarization states. The dimensional
regularization scale is denoted by µ0.

3.1 Collinear factorization of scattering amplitudes

QCD scattering amplitudes are singular in the kinematical configurations in which two or
more momenta of their external massless partons become collinear. The singular behaviour
in the collinear limit is described by a factorization formula [5–12] that has a universal (i.e.,
process-independent) structure.

We write the collinear factorization formula in its most general form as follows (see
also ref. [12])

|M ({qi}; k1, . . . , kN ) |2 = 〈M
(
{qi}; k̃

)
| P

(
{qi}; k1, . . . , kN ;n

)
|M

(
{qi}; k̃

)
〉+ . . . , (3.1)

where the dots on the right-hand side denote non-singular terms in the collinear limit.
Here, M denotes the on-shell scattering amplitude of a generic hard-scattering process,
and |M|2 is the corresponding squared amplitude summed over the spins and colours of
its external particles. In eq. (3.1) we are considering the limit in which the momenta
k1, . . . , kN of N external massless QCD partons (gluons, quarks and antiquarks) of M
become collinear. The momenta of the other external particles of M are q1, q2, . . . and so
forth. The dependence on the momenta and quantum numbers of the non-collinear particles
is generically denoted as dependence on {qi}. The singular behaviour in the collinear limit
is embodied by the factor P , while M

(
{qi}; k̃

)
denotes the scattering amplitude that is

obtained fromM ({qi}; k1, . . . , kN ) by replacing theN collinear partons with a single parent
parton with momentum k̃ (k̃ is the collinear limit of

∑N
i=1 ki). In the right-hand side of

eq. (3.1) we are using the colour+spin space notation of ref. [74], so that |M〉 and 〈M| are
vectors in the colour+spin space of the external particles of M and, correspondingly, the
collinear splitting kernel P is an operator acting onto this vector space (i.e., P is a matrix
in the colour and spin indices of the external particles ofM

(
{qi}; k̃

)
).

The scattering amplitudeM can be computed in QCD perturbation theory as a power
series (loop) expansion in αS. We note that the factorization formula (3.1) is valid to all
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perturbative orders and, consequently, the collinear splitting kernel P has a corresponding
loop expansion in powers of αS. The dependences on αS and on the CDR parameters ε
and µ0 are not explicitly denoted in the arguments ofM and P .

In eq. (3.1), k̃ and k1, . . . , kN are the outgoing momenta of the corresponding external
partons. The scattering amplitudeM (and the kernel P) is evaluated in different physical
kinematical regions depending on the sign of the ‘energies’ (i.e., time components) of the
outgoing momenta. If the energies of k1, . . . , kN are all positive, we are dealing with the TL
collinear region, in which all the collinear partons are produced in the physical final state of
the hard-scattering process. If one (or more) of the collinear partons has negative energy,
we are considering the SL collinear region. The parton with negative energy corresponds
to its antiparton in the physical initial state of the hard-scattering process. The distinction
between TL and SL collinear regions is, in general, very relevant. Indeed, in the case of the
TL collinear region the splitting kernel P has the relevant property of being completely
process independent: it does not depend on the momenta and quantum numbers of the non-
collinear partons inM. This property of strict (process-independent) collinear factorization
is instead violated in the SL collinear regions [12], where the collinear splitting kernel P
can depend on the non-collinear particles ofM and, hence, on the specific hard-scattering
process. In both the TL and SL collinear regions, the splitting kernel P depends on an
auxiliary vector n, as discussed in section 3.2.

The splitting kernels P for the various partonic collinear configurations at O(αS) are
well known (see, e.g., section 4.3 in ref. [74]), and they are directly proportional to the real-
emission contributions to the Altarelli-Parisi kernels for the leading order (LO) evolution
of the PDFs. The collinear splitting kernels P at O(α2

S) are fully known [9, 10, 75–79] for
both the TL and SL collinear regions [12]. Various contributions to the splitting kernels
P at O(α3

S) have been computed in refs. [11, 80–91], and some results on the SL collinear
regions are presented in refs. [12, 56].

3.2 Differential (unintegrated) collinear functions and the auxiliary vector nµ

The splitting kernels P of the factorization formula (3.1) describe collinear emission at
the fully exclusive level. We use these splitting kernels to introduce collinear-radiation
functions at a more inclusive level.

We first consider the TL collinear region. In this case the splitting kernels P are
process independent, and they have a non-trivial dependence only on the flavours, spins and
momenta of the collinear partons. We introduce the subscript c→ a1 . . . aN in Pc→a1...aN

to denote the dependence on the flavours: ai (i = 1, . . . , N) is the flavour of the collinear
parton with momentum ki, and c is the flavour of the parent collinear parton (i.e., the
flavour of the parton with momentum k̃ in M

(
{qi}; k̃

)
). The TL splitting kernel P is

proportional to the unit matrix in color space and it is also proportional to the unit matrix
in the spin indices of the non-collinear partons. The dependence of Pc→a1...aN on the spin
of the parent collinear parton c can be instead non-trivial [10] and it is different for the
cases c = q, q̄ and c = g.

In the case of the TL collinear splitting of a quark or antiquark, spin correlations are
completely absent [10]. Projecting the kernel P onto basis vectors in colour + spin space,
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we have

〈s; ri, · · · |Pc→a1···aN
(
k1, . . . , kN ;n

)
|s′; r′i, · · · 〉 (3.2)

= Pc→a1···aN
(
k1, . . . , kN ;n

)
δss
′ 〈ri, · · · |1 |r′i, · · · 〉 , c = q, q̄,

where 1 is the unit matrix in colour+spin space. In eq. (3.2) s and s′ are the spin indices
of the parent collinear parton c in 〈M| and |M〉, respectively, while the indices ri, · · · and
r′i, · · · denote the other spin and colour indices of the external particles in M

(
{qi}; k̃

)
.

Spin correlations are instead present in the case of the collinear splitting of a gluon [10],
and we write

〈µ; ri, · · · |Pg→a1···aN
(
k1, . . . , kN ;n

)
|ν; r′i, · · · 〉=Pµνg→a1···aN

(
k1, . . . , kN ;n

)
〈ri, · · · |1|r′i, · · · 〉,

(3.3)
where µ and ν are the Lorentz indices of the parent collinear gluon in 〈M| and |M〉,
respectively.

The scalar kernel Pc→a1···aN (c = q, q̄) in eq. (3.2) and the tensor kernel Pµνg→a1···aN in
eq. (3.3) are c-number functions (i.e., they are not matrices in colour and spin indices).
The tensor dependence of Pµνg→a1···aN [10] is due to terms that are proportional to either the
metric tensor gµν or to quadratic terms of the type kµi Tkνj T (i, j = 1, . . . , N), where kµi T is
the transverse momentum of the i-th collinear parton (the parton with momentum ki) with
respect to the collinear direction. The remaining dependence of Pc→a1···aN (c = q, q̄, g) is
due to scalar functions of the collinear momenta k1, . . . , kN . These functions are the sub-
energies sij = 2kikj and the ratios xi/xj of the longitudinal-momentum fractions xi and
xj of the momenta ki and kj with respect to the collinear direction.

The most general definition [10] of the longitudinal-momentum fractions of the collinear
partons is obtained by introducing an auxiliary reference vector nµ that is far away from
the collinear direction. Then the collinear splitting kernels depend on the ratios xi/xj that
are defined as

xi
xj

= nki
nkj

. (3.4)

In the literature the reference vector nµ is usually chosen to be a light-like vector (i.e.,
n2 = 0). Indeed this choice is very convenient for direct specific computations of the
collinear kernels [10, 11, 79, 83, 84] and for many applications of the collinear factorization
formula (3.1). However, we emphasize that we can also set n2 6= 0.

In this paper we introduce and use a time-like auxiliary vector nµ (n2 > 0), in addition
to using also the customary light-like choice. Note that we do not modify any formal
expression of the splitting kernels P in the literature. These kernels depend on nµ through
the ratios in eq. (3.4), and we use the freedom of arbitrarily choosing n2 ≥ 0 in the collinear
limit. This arbitrariness follows from the fact that changing the value of n2 produces ratios
xi/xj that differ between themselves by terms of order ki T or kj T , which therefore vanish
in the collinear limit. In other words, varying n2 from n2 = 0 to n2 ≥ 0 in the kernel P
of eq. (3.1) only produces differences in terms that are non-singular in the collinear limit
(these terms can be regarded as ‘power corrections’ in the context of squared amplitude
computations in the collinear limit). Using n2 ≥ 0 we also note that the quantity nki
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(i = 1, . . . , N) can vanish1 only if ki → 0 (using n2 = 0, nki vanishes also if ki is collinear
to n). We observe that, independently of the value of n2, the collinear kernels P (and the
ratios in eq. (3.4)) are invariant under the rescaling nµ → ξ nµ, where ξ is an arbitrary
parameter.

After our discussion of the structure of eq. (3.1) in the TL collinear region, we define
differential TL collinear functions FTL

ca (c, a = g, q, q̄) as follows. We consider the produc-
tion of a parton of flavour a and momentum pµ in the physical final state and we fully
integrate over the accompanying collinear radiation by keeping its total (d-dimensional)
momentum k fixed.

If the parent collinear parton c is a gluon, we have to take into account the spin
correlations in eq. (3.3), and the precise definition of the collinear function FTLµν

ga is

FTLµν
ga (p, k;n) =

+∞∑
N=2

[
N−1∏
m=1

∫
ddkm

(2π)d−1 δ+
(
k2
m

)]
δ(d)
(
k −

N−1∑
i=1

ki

)

×
∑

a1,...,aN−1

P̃µνg→a1...aN (k1, . . . , kN ;n)
SF (a1, . . . , aN−1)

∣∣∣∣∣
kN= p
aN= a

, (3.5)

where SF (a1, . . . , aN−1) is the Bose symmetry factor for the identical particles in the set
{a1, . . . , aN−1} (e.g., SF (a1, . . . , aN−1) = (N − 1)! if all these partons ai are gluons).

The parton momentum pµ precisely specifies the collinear direction, and we can use
a light-cone reference frame where pµ = (p+,0T, 0) with p+ > 0. In this frame we have
kµi = (k+

i ,ki T, k
−
i ) and kµ = (k+,kT, k

−). The auxiliary time-like vector n has coordinates
nµ = (n+,0T, n

−), with n2 = 2n+n− > 0. The case of a light-like vector nµ is obtained by
setting n+ = 0.

The gluonic kernel P̃µν in eq. (3.5) is related to the collinear kernel in eq. (3.3) as
follows

P̃µνg→a1...aN (k1, . . . , kN ;n) = dµµ′(p;n) Pµ′ν′g→a1...aN (k1, . . . , kN ;n) d ν
ν′ (p;n), (3.6)

where the spin polarization tensor dµν(p;n) is

dµν(p;n) = −gµν + pµnν + nµpν

np
− n2pµpν

(np)2 . (3.7)

The use of P̃µν in eq. (3.5) removes purely longitudinal terms, proportional to pµ or pν ,
from FTLµν

ga (such terms are physically harmless, since they do not contribute to eq. (3.1)
as a consequence of the gauge invariance relation pµMµ

(
{qi}; k̃

)
= 0). The function FTLµν

depends on the vectors p, k, n and it is orthogonal to both p and n. Therefore it has the
following decomposition in tensor structures:

FTLµν
ga (p, k;n) = dµν(p;n) FTL

ga, az.in.(p, k;n) +Dµν(p, n; kT, ε) FTL
ga, corr.(p, k;n), (3.8)

1Considering a space-like auxiliary vector nµ (n2 < 0), the scalar product nki vanishes also at a finite
value of ki inside the physical region (though far from the collinear limit). We do not introduce and use
space-like auxiliary vectors in our splitting kernels and collinear functions (see also some related comments
at the end of section 4.2).
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where
Dµν(p, n; kT, ε) = dµν(p;n)− (d− 2) k

µ
Tk

ν
T

kT
2 . (3.9)

The tensor Dµν in eq. (3.8) leads to correlations with respect to the azimuthal angle of
the transverse-momentum vector kT. The scalar function FTL

ga, corr. controls the size of
the azimuthal correlations of FTLµν

ga . The azimuthal-independent component of FTLµν
ga is

proportional to the scalar function FTL
ga, az.in..

The tensors in eqs. (3.7) and (3.9) are the d-dimensional generalization of those in
eqs. (2.3) and (2.4). They fulfil the following relations:

dµν(p;n)Dµν(p, n; kT, ε) = 0 ,
dµν(p;n) dµν(p;n) = d− 2 , (3.10)

Dµν(p, n; kT, ε)Dµν(p, n; kT, ε) = (d− 2)(d− 3) ,

with d− 2 = 2− 2ε and d− 3 = 1− 2ε.
The scalar functions FTL

ga, az.in. and FTL
ga, corr. can be directly expressed in terms of the

collinear splitting kernels Pµνg→a1...aN . These expressions are obtained from eq. (3.5) through
the replacements FTLµν

ga → {FTL
ga, az.in.,FTL

ga, corr.} and P̃µν → {Paz.in.,Pcorr.} in the left-hand
and right-hand sides, respectively. The corresponding collinear splitting kernels Paz.in. and
Pcorr. are obtained from eq. (3.6), and they are given by the following relations:

Paz.in.
g→a1...aN = dµν(p;n)

d− 2 P̃µνg→a1...aN = dµν(p;n)
d− 2 Pµνg→a1...aN , (3.11)

Pcorr.
g→a1...aN = Dµν(p, n; kT, ε)

(d− 2)(d− 3) P̃
µν
g→a1...aN = Dµν(p, n; kT, ε)

(d− 2)(d− 3) P
µν
g→a1...aN . (3.12)

The TL collinear function FTL
ca (p, k;n) (c = q, q̄) of a parent collinear fermion c (quark

or antiquark) is defined analogously to the gluon collinear function FTL
ga (p, k;n), taking

into account the relevant simplification of the absence of spin correlations in the collinear
splitting kernels Pc→a1...aN (see eq. (3.2)). Therefore, we simply perform the replacements
FTLµν
ga → FTL

ca and P̃g→a1...aN → Pc→a1...aN in eq. (3.5), and we define

FTL
ca (p, k;n) =

+∞∑
N=2

[
N−1∏
m=1

∫
ddkm

(2π)d−1 δ+
(
k2
m

)]
δ(d)
(
k −

N−1∑
i=1

ki

)

×
∑

a1,...,aN−1

Pc→a1...aN (k1, . . . , kN ;n)
SF (a1, . . . , aN−1)

∣∣∣∣∣
kN= p
aN= a

, c = q, q̄, (3.13)

where Pc→a1...aN is the collinear splitting kernel in the right-hand side of eq. (3.2).
We can briefly and straightforwardly illustrate our definition of differential collinear

functions for the SL collinear regions. Our main point is that the SL collinear splitting
kernels P in the factorization formula (3.1) are, in general, process dependent and, in
particular, they can depend on the colour indices and momenta of the non-collinear partons
and on the colour indices of the parent collinear parton c in the hard-scattering process.
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The general extension F ca of the TL collinear functions in eqs. (3.5) and (3.13) to the
SL collinear regions is as follows

F ca({qi}; p, k;n) =
+∞∑
N=2

[
N−1∏
m=1

∫
ddkm

(2π)d−1 δ+
(
k2
m

)]
δ(d)
(
k −

N−1∑
i=1

ki

)
(3.14)

×
∑

a1,...,aN−1

P̃ c̄→a1...aN ({qi}; k1, . . . , kN ;n)
SF (a1, . . . , aN−1)

∣∣∣∣∣
kN=−p
aN= ā

Nc(ε)
Na(ε)

, c = g, q, q̄.

The SL collinear functions F ca({qi}; p, k;n) depend on the flavour a of the parton with
momentum pµ = (p+,0T, 0) (with p+ > 0) that collides in the physical initial state of
the scattering process. The flavour c refers to the incoming parton of the hard-scattering
process after the radiation of the final-state collinear partons with total momentum kµ.
Similarly to the TL collinear functions, the auxiliary vector nµ = (n+,0T, n

−) is time-like
(n2 = 2n+n− > 0), in general (the light-like case can be obtained by setting n+ = 0).

The function Na(ε) in the right-hand side of eq. (3.14) depends on the number of
space-time dimensions, and it is Na(ε) = (−1)2Sans(a, ε)nc(a), where Sa denotes the spin
of the parton with flavour a, ns(a, ε) is number of spin polarization states of that parton,
and nc(a) is its number of colours. Therefore, we have Nq(ε) = Nq̄(ε) = −2Nc and
Ng(ε) = 2(1− ε)(N2

c − 1).
The SL function F ca is the contribution of initial-state colliner radiation at the cross

section level. The cross section is proportional to the square of the scattering amplitude
M, averaged over the spins and colours of the initial-state partons. This average procedure
introduces the factor Nc(ε)/Na(ε) in the right-hand side of eq. (3.14) (the factor (−1)2Sa

in Na(ε) is due to the crossing of the parton a from the final state to the initial state of
the scattering process).

The spin dependence of P is similar in the TL and SL collinear regions. The SL
collinear kernel Pc→a1...aN is proportional to the unit matrix in the spin indices of the
non-collinear partons and it depends on the spin of the parent collinear parton c as in
eqs. (3.2) and (3.3). Analogously to the TL collinear functions in eqs. (3.13) and (3.5),
the kernel P̃c→a1...aN in eq. (3.14) is exactly equal to Pc→a1...aN in the quark or antiquark
cases c = q, q̄, and it is given as in eq. (3.6) in the gluon case c = g.

As we have already stated, the kernels P in the SL collinear region are, in general,
process dependent and, correspondingly, the SL collinear functions F ca in eq. (3.14) are
also process dependent. We consider the perturbative expansion of P in terms of the
unrenormalized QCD coupling αuS, and we write

P =
+∞∑
L=0

P(L), (3.15)

where P(0) is the tree-level contribution to P , P(1) is its one-loop contribution, and so
forth. The term P(L)

c→a1...aN is proportional to (αuS)N−1+L. The process dependence of P
and, hence, of F ca first occurs at O(α3

S) and it is due to the one-loop and two-loop contri-
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butions P(1)
c→a1a2a3 and P(2)

c→a1a2 [12, 55, 56], while P(0)
c→a1a2a3a4 is process independent.2 In

particular, such process dependence at O(α3
S) leads to non-abelian colour-matrix structures

in P and F ca in the case of collinear radiation from scattering amplitudes for the produc-
tion of two or more QCD hard partons (jets, heavy quarks or hadrons) in parton-parton
(hadron-hadron) collisions.

Considering perturbative contributions at O(αS) and O(α2
S), the SL collinear kernels

P and functions F are process independent and proportional to the unit matrix in the
colour space of the hard-scattering partons. Therefore, we can factorize such overall (and
trivial) colour space dependence in both sides of eq. (3.14), and we can simply deal with
c-number SL collinear functions, analogously to the TL collinear case. Such SL collinear
functions are denoted as

F µν
ga (p, k;n), Fga, az.in.(p, k;n), Fga, corr.(p, k;n) and Fca(p, k;n) (c = q, q̄) , (3.16)

and they are analogous to the TL collinear functions in eqs. (3.5), (3.8), and (3.13).
The SL collinear kernel P in eq. (3.1) and the collinear function F ca in eq. (3.14)

are proportional to the unit matrix in colour space also in the case of scattering am-
plitudes M

(
{qi}; k̃

)
with a single external non-collinear QCD parton in addition to the

parent collinear parton with momentum k̃. This feature is valid to arbitrary orders in αS
since it simply follows from the fact that the colour space of such scattering amplitudes is
one dimensional. Considering this class of processes, the trivial colour space dependence
factorizes and we can directly deal with c-number collinear functions Fca also in the SL
regions. The production of high-mass colourless systems, which is considered in section 2,
is included in this class of processes.

We note that our TL and SL collinear functions, FTL
ca and F ca, in eqs. (3.5), (3.13),

and (3.14) are related to corresponding SCET differential functions, namely, to the dif-
ferential fragmenting jet functions and the differential beam functions of refs. [92–94].
Their relation follows from the fact that all these functions are differential with respect to
the (d-dimensional) momentum kµ of the final-state collinear radiation. The differential
functions of refs. [92–94] are defined as matrix elements of appropriate SCET operators
and, considering parton matrix elements, they lead to quantities that can directly be com-
pared with FTL

ca and F ca at small values of k− and kT (i.e., in the collinear region where
k+ = O(p+), k− � p+ and k2

T � (p+)2). In the following we can briefly comment on some
general aspects of this comparison.

We first note that the SCET differential functions depend on a light-like vector nµ,
which specifies the direction of Wilson line operators that enter the definition of the SCET
operators [18–21]. The differential fragmenting jet functions [92] at partonic level directly
correspond to our TL collinear functions FTL

ca (p, k;n) with the choice of a light-like aux-
iliary vector nµ. Such direct correspondence is also true between the differential beam
functions [92–94] and our SL collinear functions F ca with n2 = 0, but the correspondence
is limited up to O(α2

S). Indeed the SCET differential functions are process independent,

2The tree-level kernels P(0)
c→a1...aN (N ≥ 2) are process independent for both TL and SL collinear

radiation.
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while our SL collinear functions F ca become process dependent at O(α3
S) and higher or-

ders. We also note that the TL and SL collinear functions, FTL
ca and F ca, with a time-like

auxiliary vector nµ do not directly correspond to SCET differential functions. Perturbative
computations of SCET differential jet and beam functions are presented in refs. [92–96].
The perturbative calculation of the SL and TL collinear functions, F ca and FTL

ca , with
n2 ≥ 0 is presented in sections 4.1, 5.1, 6.1 and 6.3.

The differential collinear functions in eqs. (3.5), (3.13), and (3.14) are defined by inte-
grating the splitting kernels P with the constraint of fixing the total momentum k of the
final-state collinear radiation. Applications of the collinear factorization formula (3.1) to
different types of hard-scattering observables can require different or additional phase-space
constraints (e.g., constraints related to jet definitions or to angular/rapidity limitations)
on the momenta of the produced collinear partons. These constraints can be implemented
on the phase-space integrations in the right-hand side of eqs. (3.5), (3.13) and (3.14), thus
leading to the definition of corresponding collinear functions. Some main features of these
functions (e.g., their nµ dependence and their process dependence in the SL collinear re-
gion) are equal to those of the collinear functions that we explicitly consider in this paper.

3.3 TMD collinear functions and beam functions

The TL and SL differential collinear functions that we have introduced in section 3.2 can be
used to define inclusive functions that are directly related to the perturbative computation
and resummation of large logarithmic contributions to hard-scattering observables. In
the following we define TMD collinear functions and beam functions that lead to the
resummation coefficients which we have discussed in section 2.

We first consider the TL collinear region. We use the gluon collinear function
FTLµν
ga (p, k;n) of eq. (3.5) and we define the gluon TMD function FTLµν

ga by integrating
over the radiated collinear momentum k as follows

FTLµν
ga (z; p/z,qT;n) = δ(1− z) δ(d−2)(qT) δga dµν(p;n)

+
∫
ddk δ(d−2)(kT + qT) δ

(
k+

p+ −
1− z
z

)
FTLµν
ga (p, k;n). (3.17)

The TMD function FTLµν
ga describes the inclusive perturbative fragmentation of a gluon into

a parton a. The collinear fragmentation process transfers the transverse momentum qT and
the longitudinal-momentum fraction z, with 0 ≤ z ≤ 1. The gluon function FTLµν

ga depends
on the Lorentz indices (and, hence, on the spin polarizations) of the fragmenting gluon. As
a consequence of eq. (3.8), the tensor function FTLµν

ga fulfils the following decomposition:

FTLµν
ga (z; p/z,qT;n) = dµν(p;n) FTL

ga, az.in.

(
z; qT

2,
n2qT

2

(2np/z)2

)

+Dµν(p, n; qT, ε) FTL
ga, corr.

(
z; qT

2,
n2qT

2

(2np/z)2

)
, (3.18)

where FTL
ga, az.in. and FTL

ga, corr. are the azimuthally-independent and azimuthally-correlated
components, respectively. These components are straightforwardly related to the collinear

– 15 –



J
H
E
P
0
3
(
2
0
2
3
)
2
0
0

functions FTL
ga, az.in. and FTL

ga, corr. of eq. (3.8). We have

FTL
ga, az.in.

(
z; qT

2,
n2qT

2

(2np/z)2

)
= δ(1− z) δ(d−2)(qT) δga

+
∫
ddk δ(d−2)(kT + qT) δ

(
k+

p+ −
1− z
z

)
FTL
ga, az.in.(p, k;n),

(3.19)

FTL
ga, corr.

(
z; qT

2,
n2qT

2

(2np/z)2

)
=
∫
ddk δ(d−2)(kT + qT) δ

(
k+

p+ −
1− z
z

)
FTL
ga, corr.(p, k;n).

(3.20)

The quark (or antiquark) TMD function FTL
ca (c = q, q̄) is defined analogously to the gluon

TMD function in eq. (3.17), and we have

FTL
ca

(
z; qT

2,
n2qT

2

(2np/z)2

)
= δ(1− z) δ(d−2)(qT) δca

+
∫
ddk δ(d−2)(kT + qT) δ

(
k+

p+ −
1− z
z

)
FTL
ca (p, k;n),

(3.21)

where FTL
ca (p, k;n) is the collinear function in eq. (3.13) .

We note that FTL
ga, az.in., F

TL
ga, corr., and FTL

ca (c = q, q̄) are scalar functions that depend
on z and the vectors pµ, nµ,qT. Therefore they depend on the scalar quantities z,qT

2

and n2qT
2

(2np/z)2 , as explicitly denoted by their argument in eqs. (3.18)–(3.21). In particular,
the dependence on n2qT

2

(np)2 is a consequence of the invariance under the arbitrary rescaling
nµ → ξnµ.

As discussed in the following sections, the perturbative computation of the TL TMD
functions FTL

ca (c = g, q, q̄) leads to IR divergences that can be factorized in terms of IR
singular and IR finite contributions. The IR finite contributions are directly related to the
collinear functions CTL

ca of section 2.
The general SL TMD function Fca is obtained by analogy with the TL functions in

eqs. (3.17) and (3.21) and by taking into account that the SL collinear function F ca in
eq. (3.14) is, in general, process dependent. The explicit definition of Fca is

Fca({qi}; z; zp,qT;n) = 1 δ(1− z) δ(d−2)(qT) δca

+ z

∫
ddk δ(d−2)(kT + qT) δ

(
k+

p+ − 1 + z

)
F ca({qi}; p, k;n),

(3.22)

where the symbol 1 in the right-hand side denotes the unit matrix in colour+spin space.
The TMD function Fca is a process-dependent operator that acts onto the colour and spin
indices of the external QCD partons of the scattering amplitude vectors |M

(
{qi}; k̃

)
〉 and

〈M
(
{qi}; k̃

)
| (see eq. (3.1)). The parton c in Fca({qi}; z; zp,qT;n) carries the transverse
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momentum qT and the fraction z (with 0 ≤ z ≤ 1) of the momentum p of the initial-state
parton a.

Using the SL collinear function F ca we also introduce the partonic beam function Bca

as follows

Bca({qi}; z; zp, t;n) = 1 δ(1− z) δ(t) δca

+ z

∫
ddk δ(t− 2zpk) δ

(
k+

p+ − 1 + z

)
F ca({qi}; p, k;n), (3.23)

where the kinematical variable t denotes the transverse virtuality and z (with 0 ≤ z ≤ 1)
is the longitudinal-momentum fraction that is transferred by the initial-state parton a to
the colliding parton c. Similarly to the SL TMD function in eq. (3.22), the beam function
Bca is, in general, a process-dependent operator in colour and spin space.

The SL functions Fca and Bca are relevant in the context of transverse-momentum
resummation and N -jettiness resummation for general hard-scattering processes, respec-
tively. The process-dependent features of Fca and Bca directly follow from the correspond-
ing features of the SL collinear function F ca, which have been discussed in section 3.2.

In particular, considering either computations up to O(α2
S) or computations (at ar-

bitrary orders in αS) for processes with two hard-scattering partons, Fca and Bca are
proportional to the unit matrix in colour space. In these cases the trivial colour space
dependence can be factorized with respect to c-number TMD functions Fca and beam
functions Bca for the SL collinear region. In the case of TMD functions we can deal with
the gluon functions

F µν
ga (z; zp,qT;n), Fga, az.in.

(
z; qT

2,
n2qT

2

(2zpn)2

)
, Fga, corr.

(
z; qT

2,
n2qT

2

(2zpn)2

)
, (3.24)

and the quark (or antiquark) functions

Fca

(
z; qT

2,
n2qT

2

(2zpn)2

)
, (c = q, q̄), (3.25)

which are the SL analogue of the TL TMD functions in eqs. (3.17)–(3.21). In the case of
the gluon beam functions, the integration over kT in eq. (3.23) cancels the contribution
of the azimuthal-correlation component of F µν

ga (p, k;n) (i.e., Bµνga = dµνBga), and we can
simply deal with c-number scalar functions

Bca

(
z; t, n2 t

(2zpn)2

)
, (c = g, q, q̄), (3.26)

for both the gluon and quark (or antiquark) partonic channels.
In the following sections we discuss the perturbative computation of the functions in

eqs. (3.24), (3.25), and (3.26). After appropriate factorization of IR divergences, these
TMD functions lead to the SL collinear coefficients Cqa and Cµνga in eqs. (2.1) and (2.2),
while the partonic beam functions lead to the matching coefficients in eqs. (2.12) and (2.14).
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Setting n2 = 0, our TMD functions (see eqs. (3.17), (3.21) and (3.22)) and beam
functions (see eq. (3.23)) are related to the partonic matrix elements of corresponding SCET
function operators. Such relation between collinear splitting kernels and SCET functions
was already observed in ref. [22], and it is also used in recent high-order perturbative
computations [64–67, 97]. In particular (see the related comments on differential collinear
functions at the end of section 3.2), our collinear functions and the partonic SCET functions
are perturbatively equivalent in the TL region. In the SL region the equivalence is, in
general, limited up to O(α2

S). Such limitation follows from the general process dependence
of the collinear splitting kernels P beyond O(α2

S). Our SL collinear functions directly
acquire the general process dependence of the collinear splitting kernels. The SL partonic
SCET functions instead have a process-independent form, and they are directly related to
the collinear limit and corresponding splitting kernels of the QCD scattering amplitudes
for a specific class of processes, namely, the production processes of high-mass colourless
systems (see section 2). Therefore, the all-order equivalence between our collinear functions
and the partonic SCET functions in the SL region is specific for this class of processes.

4 SL collinear functions: IR factorization and perturbative results

In this section and in the following section we discuss the perturbative calculation of the SL
collinear functions introduced in sections 3.2 and 3.3. We consider explicit computations
up to O(α2

S) and, hence, we simply refer to the process-independent c-number functions of
eq. (3.16) and eqs. (3.24)–(3.26).

4.1 Differential collinear functions at O(αS)

The perturbative expansion of the collinear functions in eq. (3.16) can be written as follows

F(p, k;n) = F (1R)(p, k;n) +
[
F (2R)(p, k;n) + F (1R1V )(p, k;n)

]
+O(α3

S). (4.1)

The notation in eq. (4.1) applies to any specific collinear function and, therefore, we have
not explicitly denoted the corresponding subscripts and superscripts in F . The terms in
the right-hand side of eq. (4.1) are directly related to the loop expansion of the collinear
splitting kernels P (see eq. (3.15)). The contribution to F at O(αS) is due to F (1R), which
corresponds to single real emission in the final state at the tree-level, and it is obtained by
using the tree-level kernel P(0)

c→a1a2 in the right-hand side of eq. (3.14). The contributions
to F at O(α2

S) are F (2R) (double real emission at the tree level) and F (1R1V ) (single real
emission with one-loop virtual corrections). The terms F (2R) and F (1R1V ) are obtained
from eq. (3.14) by using the tree-level kernel P(0)

c→a1a2a3 and the one-loop kernel P(1)
c→a1a2 ,

respectively.
We express the perturbative contributions in eq. (4.1) in terms of the unrenormalized

(bare) QCD coupling αuS, which is related as follows to αS(µ2
R), the renormalized coupling

at the scale µR in the MS renormalization scheme:

αuS µ
2ε
0 Sε = αS(µ2

R)µ2ε
R

[
1− αS(µ2

R)
π

β0
ε

+O
(
α2

S(µ2
R)
)]
, (4.2)
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where β0 = (11CA − 2Nf )/12 and Nf is the number of massless quark flavours. The
d-dimensional spherical factor Sε is Sε = (4π e−γE )ε and γE is the Euler number (γE =
0.5772 . . . ).

The definition in eq. (3.14) leads to a direct relation between F (1R) and the well-
known expressions of the collinear kernels P(0)

c→a1a2 (see, e.g., refs. [10, 74]). In the case
of the azimuthally-independent functions F (1R)

ca, az.in., the collinear kernels are proportional
to P̂ca(x; ε), which are the d-dimensional real emission contributions to the Altarelli-Parisi
splitting functions for the LO evolution of the PDFs. We have

F (1R)
ca, az.in.(p, k;n) = αuS µ

2ε
0 Sε
π

eεγE

π1−ε
δ+(k2)
pk

1
zn

P̂ca(zn; ε), c = g, q, q̄, (4.3)

where we have introduced the notation F (1R)
ca ≡ F (1R)

ca, az.in. (c = q, q̄) for the collinear func-
tions in the quark and antiquark partonic channels. The azimuthal-correlation contribution
in the gluon channel is

F (1R)
ga, corr.(p, k;n) = − αuS µ

2ε
0 Sε
π

eεγE

π1−ε
δ+(k2)
pk

Ca
1− zn
z2
n

, (4.4)

where Ca is the Casimir colour coefficient of the parton a = q, q̄, g, as in eq. (2.9). The
expressions of F (1R) in eqs. (4.3) and (4.4) depend on the auxiliary vector nµ through the
variable zn,

zn = n(p− k)
np

. (4.5)

In the exact collinear limit (i.e., k− = 0) the parent hard-scattering parton c in F (1R)
ca

carries the momentum znp
µ, independently of the value of n2.

The explicit expressions of the real emission kernels P̂ca(x; ε) are

P̂qq(x; ε) = 1
2 CF

[
1 + x2

1− x − ε(1− x)
]
, (4.6)

P̂qg(x; ε) = 1
2 TR

[
1− 2x(1− x)

1− ε

]
, (4.7)

P̂gg(x; ε) = CA

[
x

1− x + 1− x
x

+ x(1− x)
]
, (4.8)

P̂gq(x; ε) = 1
2 CF

[
1 + (1− x)2

x
− εx

]
, (4.9)

P̂qq̄(x; ε) = P̂qq′(x; ε) = P̂qq̄′(x; ε) = 0, (4.10)

where q and q′ denote quarks with different flavour. The expressions of P̂ca for the remain-
ing partonic channels are obtained by using the relation P̂ca(x; ε) = P̂c̄ā(x; ε), which follows
from charge conjugation invariance. For subsequent use we also introduce the decomposi-
tion of P̂ca in their singular (P̂ sing

ca ) and regular (P̂ reg
ca ) parts around the point x = 1. We
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write

P̂ca(x; ε) = P̂ sing
ca (x) + P̂ reg

ca (x; ε), (4.11)

P̂ sing
ca (x) = δca

A
(1)
c

1− x, (4.12)

P̂ reg
ca (x; ε) = P̂ reg

ca (x; ε = 0) + ε P̂ ′ca(x; ε). (4.13)

The coefficients A(1)
c (c = q, q̄, g) in eq. (4.12) measure the intensity of soft and collinear

gluon radiation from the parton c, and we have

A(1)
q = A

(1)
q̄ = CF , A(1)

g = CA. (4.14)

The explicit expressions of P̂ reg
ca (x; ε = 0) and P̂ ′ca(x; ε) are readily obtained by direct

comparison of eqs. (4.6)–(4.10) and eqs. (4.11)–(4.13).
As discussed at the end of section 3.2, we can relate the collinear functions Fca(p, k;n)

to the SCET differential beam functions [92–94]. More precisely, setting n2 = 0 and intro-
ducing the variables qT = kT and t = 2zpk, the first-order collinear function F (1R)

ca (p, k;n)
is equal to the first-order contribution to the partonic differential beam function Bca(z, t,qT)
of ref. [92]. The expressions in eqs. (4.3) and (4.4) agree with the first-order results pre-
sented in ref. [92].

4.2 TMD functions

The SL TMD functions Fca are obtained from the differential collinear functions Fca by
using eq. (3.22). The contribution of O(αS) to Fca is denoted by F (1R)

ca , and it is obtained
from the corresponding contribution F (1R)

ca to the differential collinear functions. At O(α2
S),

the terms F (2R)
ca and F (1R1V )

ca in eq. (4.1) produce corresponding contributions to the TMD
functions that are denoted as F (2R)

ca and F (1R1V )
ca , respectively.

The explicit expressions of F (1R)
ca are obtained through eq. (3.22) by using the corre-

sponding expressions of F (1R)
ca (p, k;n) in eqs. (4.3) and (4.4). At this perturbative order

the integration over the momentum k in eq. (3.22) is trivial, and F
(1R)
ca turns out to be

proportional to the overall factor 1/qT
2 times a function of z and qT

2. This functional de-
pendence on z and qT

2 is due to the corresponding dependence on zn in eqs. (4.3) and (4.4).
The overall factor 1/qT

2 is singular in the limit qT → 0, and it corresponds to the singu-
lar behaviour of QCD cross sections that we can consistently compute by exploiting the
collinear factorization formula (3.1). Therefore, considering the residual dependence of
F

(1R)
ca on zn we can set qT = 0, provided the limit qT → 0 is smooth and non-singular.

We immediately discuss the dependence on the auxiliary vector nµ, which affects F (1R)
ca

through the variable zn (see eq. (4.5)). The key point regards the effect of the singular
contribution P̂ sing

ca (zn) (see eqs. (4.11)–(4.13)) to F (1R)
ca and, hence, to F (1R)

ca . Such contri-
bution is proportional to the following factor:

1
1− zn

= np

nk
= p+

k+ + n2

2np
k−

n− p
+

= 1
1− z + n2qT2

(1−z)(2np)2

, (4.15)
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where in the last equality we have implemented the kinematics of the TMD collinear
function at O(αS) (i.e., k2 = 0, k+ = (1− z)p+,kT = −qT). Setting n2 = 0, the factor in
eq. (4.15) becomes (1 − z)−1 and, therefore, it is divergent (and not integrable over z) at
z = 1. Correspondingly, the first-order contributions F (1R)

ca to the TMD collinear functions
are divergent. Such divergences, which are known as rapidity divergences [13–17] in the
literature, are a general feature of SCET formulations of TMD functions, and they can be
treated by introducing appropriate regularization procedures [14, 98–102]. In the following
computations of the TMD functions we use n2 > 0, thus avoiding rapidity divergences.
Further comments on the origin of the rapidity divergences are postponed to the final part
of this subsection.

Using a time-like auxiliary vector nµ, the factor in eq. (4.15) is not divergent, and it
can be further approximated in the limit qT → 0. Indeed, setting λ = n2qT

2/(2pn)2 in
eq. (4.15), we can use the following relation:

1
1− z + λ

1−z
=
( 1− z

(1− z)2 + λ

)
+

+ δ(1− z)
∫ 1

0
dz′

1− z′

(1− z′)2 + λ

= 1
2 ln

( 1
λ

)
δ(1− z) +

( 1
1− z

)
+

+O(
√
λ), (4.16)

where the symbol
(
f(z)

)
+ denotes the customary ‘plus-distribution’ of the function f(z)

with respect to the variable z. The term of O(
√
λ) ∼ O(qT) in eq. (4.16) smoothly vanishes

in the limit qT → 0 and, therefore, it can be neglected in the computation of F (1R)
ca . We

can similarly neglect other smooth terms in the limit qT → 0 by using zn = z+O(qT
2) in

the remaining zn dependence of F (1R)
ca .

In summary, we obtain the following first-order results for the azimuthal-independent
component of the TMD collinear functions:

F
(1R)
ca, az.in.

(
z; qT

2,
n2qT

2

(2zpn)2

)
= αuS µ

2ε
0 Sε
π

eεγE

π1−ε qT2 (4.17)

×
{
P̂ reg
ca (z; ε) + δca A

(1)
c

[( 1
1− z

)
+
− 1

2 ln
(
n2qT

2

(2zpn)2

)
δ(1− z)

]}
, c = g, q, q̄,

where, similar to eq. (4.3), we have introduced the notation F (1R)
ca ≡ F (1R)

ca, az.in. (c = q, q̄) for
the TMD collinear functions in the quark and antiquark partonic channels. The first-order
result for the azimuthal-correlation components in the gluon channel is

F (1R)
ga, corr.

(
z; qT

2,
n2qT

2

(2zpn)2

)
= − αuS µ

2ε
0 Sε
π

eεγE

π1−ε qT2 Ca
1− z
z

. (4.18)

We note that the result in eq. (4.18) is independent of the auxiliary vector nµ. We recall
that we have neglected terms of relative order qT in the right-hand sides of eqs. (4.17)
and (4.18). Such terms are actually controlled by the parameter n2qT

2/(2pn)2. However,
we remark on the fact that we are not performing approximations in the limit n2 → 0.
In our framework the value of n2 is arbitrary, and it is not regarded as a small expansion
parameter.
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We introduce the Fourier transformation of the TMD collinear function Fca to the
purpose of having a more direct relation with the discussion in section 2 on the transverse-
momentum resummation formalism in impact parameter space. The Fourier transforma-
tion F̃ca in b space of the TMD collinear function Fca for the quark and antiquark partonic
channels is

F̃ca

(
z; b2

b20
,

n2b20
(2zpn)2 b2

)
≡
∫
dd−2qT e−ib.qT Fca

(
z; qT

2,
n2qT

2

(2zpn)2

)
, c = q, q̄, (4.19)

where the impact parameter b is a (d − 2)-dimensional vector. The numerical coefficient
b0 = 2e−γE is conveniently and customarily introduced in b space resummation formulae
(see, e.g., ref. [27]). We note that the nµ dependence of F̃ca (c = q, q̄) occurs through
the variable n2(b20/b2)/(2zpn)2. In the gluon partonic channel we introduce the Fourier
transformation F̃µνga of the TMD tensor function Fµνga , and we have

F̃µνga (z; zp,b;n) ≡
∫
dd−2qT e−ib.qT Fµνga (z; zp,qT;n). (4.20)

Analogously to the TMD gluon function in eq. (3.18), the b space tensor function F̃µνga
can be decomposed in its azimuthal-independent and azimuthal-correlation components,
F̃ga, az.in. and F̃ga, corr.:

F̃µνga (z; zp,b;n) = dµν(p;n) F̃ga, az.in.

(
z; b2

b20
,

n2b20
(2zpn)2 b2

)

+Dµν(p, n; b, ε) F̃ga, corr.

(
z; b2

b20
,

n2b20
(2zpn)2 b2

)
. (4.21)

Similarly to F̃ca in eq. (4.19), the scalar functions F̃ga, az.in. and F̃ga, corr. depend on the
auxiliary vector nµ through the variable n2(b20/b2)/(2zpn)2.

The fixed-order perturbative contributions to the TMD functions Fca depend on qT
through powers and logarithms. To move from Fca to F̃ca we have to perform the Fourier
transformation of this type of functional dependence on qT. The required most general
Fourier transformations are as follows∫

dd−2qT e
−ib.qT

lnm(qT
2)

(qT2)1+δ = π1−ε dm

dρm

∣∣∣∣
ρ=0

(b2

4

)ε+δ−ρ Γ(ρ− ε− δ)
Γ(1 + δ − ρ)

 ,
(4.22)∫

dd−2qT e
−ib.qT

lnm(qT
2)

(qT2)1+δ D
µν(p, n; qT, ε) = −Dµν(p, n; b, ε) π1−ε

× dm

dρm

∣∣∣∣
ρ=0

(b2

4

)ε+δ−ρ Γ(1 + ρ− ε− δ)
Γ(2 + δ − ρ)

 ,
(4.23)

where eqs. (4.22) and (4.23) refer to azimuthal-independent and azimuthal-correlation con-
tributions, respectively. The function Γ(x) denotes the Euler Γ-function of the variable x.
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These basic Fourier transformations are sufficient to go from qT space to b space in the
computation of the TMD functions at arbitrary perturbative orders.

The perturbative expansion of the azimuthal-independent component of the TMD
collinear functions in b space is as follows

F̃ca, az.in.

(
z; b2

b20
,

n2b20
(2zpn)2 b2

)
= δca δ(1− z) + F̃

(1R)
ca, az.in.

(
z; b2

b20
,

n2b20
(2zpn)2 b2

)
+O(α2

S),

c = g, q, q̄,

(4.24)

where, analogously with the notation in eq. (4.17) we have defined F̃ca ≡ F̃ca, az.in. for
c = q, q̄. The first-order term F̃

(1R)
ca, az.in. is obtained from eq. (4.17) by using the Fourier

transformations in eq. (4.22) with δ = 0 and m = 0, 1. We obtain the following result:

F̃
(1R)
ca, az.in.

(
z; b2

b20
,

n2b20
(2zpn)2 b2

)
= αuS Sε

π

(
µ2

0 b2

b20

)+ε
e−εγE Γ(1− ε)

(−ε)

{
P (1)
ca (z) + ε P̂ ′ca(z; ε)

− δca δ(1− z)
[
A

(1)
c

2

(
1
ε

+ ψ(1− ε)− ψ(1) + ln n2b20
(2zpn)2 b2

)
+ γc

2

]}
, c = g, q, q̄,

(4.25)

where ψ(x) = d ln Γ(x)/dx is the Euler ψ-function, and we have introduced the lowest-order
Altarelli-Parisi kernel P (1)

ca (x) for the evolution of the PDFs:

P (1)
ca (x) = P̂ reg

ca (x; ε = 0) + δca

[
A(1)
c

( 1
1− x

)
+

+ 1
2 γc δ(1− x)

]
. (4.26)

The functions P̂ reg
ca and P̂ ′ca are given in eqs. (4.11)–(4.13) and the coefficients γc (c = q, q̄, g)

are
γq = γq̄ = 3

2CF , γg = 1
6 (11CA − 2Nf ) . (4.27)

The azimuthal-correlation component F̃ga, corr. of the gluon TMD function F̃µνga in eq. (4.21)
has the following perturbative expansion:

F̃ga, corr.

(
z; b2

b20
,

n2b20
(2zpn)2 b2

)
= F̃ (1R)

ga, corr.

(
z; b2

b20
,

n2b20
(2zpn)2 b2

)

+
[
F̃ (2R)
ga, corr.

(
z; b2

b20
,

n2b20
(2zpn)2 b2

)
+ F̃ (1R1V )

ga, corr.

(
z; b2

b20
,

n2b20
(2zpn)2 b2

)]
+O(α3

S). (4.28)

The first-order term F̃
(1R)
ga, corr. is obtained from eq. (4.18) by using the Fourier transformation

in eq. (4.23) with δ = 0 and m = 0. The result is

F̃ (1R)
ga, corr.

(
z; b2

b20
,

n2b20
(2zpn)2 b2

)
= αuS Sε

π

(
µ2

0 b2

b20

)+ε

e−εγE Γ(1− ε) Ca
1− z
z

. (4.29)

The results in eqs. (4.25) and (4.29) are valid in arbitrary d = 4 − 2ε space-time dimen-
sions. Considering the physical four-dimensional limit ε → 0, we see that the azimuthal-
correlation components are finite while the azimuthal-independent terms are divergent.
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The divergences are due to double and single poles, 1/ε2 and 1/ε, and they have an IR
(soft and collinear) origin.

More generally, the perturbative computation at O(αnS) of the TMD functions in b
space leads to divergent pole terms 1/εm with 1 ≤ m ≤ 2n. These divergences are of UV
and IR origin. The UV divergences are removed by using eq. (4.2) which is used to express
the bare coupling αuS in terms of the renormalized coupling αS(µ2

R). The IR divergences
are then factorizable.

The TMD functions in b space fulfil the following IR factorization formulae:

F̃ca,az.in.

(
z; b2

b20
,

n2b20
(2zpn)2 b2

)
=Zc

(
αS(b20/b2), n2b20

(2zpn)2 b2

)
(4.30)

×
∑
b

∫ 1

z

dx

x
C̃cb

(
x;αS(b20/b2), ε, n2b20

(2zpn)2 b2

)
Γ̃ba(z/x;b20/b2),

F̃ga,corr.

(
z; b2

b20
,

n2b20
(2zpn)2 b2

)
=Zg

(
αS(b20/b2), n2b20

(2zpn)2 b2

)
(4.31)

×
∑
b

∫ 1

z

dx

x
G̃gb

(
x;αS(b20/b2), ε, n2b20

(2zpn)2 b2

)
Γ̃ba(z/x;b20/b2).

Note that in the right-hand side of eqs. (4.30) and (4.31) we use the renormalization scale
µ2
R = b20/b2. Therefore, the various functions Zc, Γ̃ba, C̃cb and G̃gb depend on αS(b20/b2). A

generic renormalization scale µR can be introduced in a straightforward way by expressing
αS(b20/b2) in terms of αS(µ2

R), ln(b20µ2
R/b2) and ε (see eq. (4.2)).

The factor Γ̃ba(x;µ2
F ) in the right-hand side of eqs. (4.30) and (4.31) is the customary

collinear-divergent function that defines the scale-dependent PDF fb(z;µ2
F ) in the MS

factorization scheme. We have

fb(z;µ2
F ) =

∑
a

∫ 1

z

dx

x
Γ̃ba(z/x;µ2

F ) f (0)
a (x), (4.32)

where f (0)
a (x) is the bare (scale-independent) PDF of the parton a. The perturbative

expansion of Γ̃ba is

Γ̃ba(z;µ2
F ) = δba δ(1− z)− αS(µ2

F )
π

P
(1)
ba (z)
ε

+O(α2
S), (4.33)

where P (1)
ba (z) is the lowest-order Altarelli-Parisi kernel in eq. (4.26).

After factorization of the collinear-divergent ε poles embodied in Γ̃ba, the b space TMD
functions still contain IR divergences that are factorizable in the perturbative functions Zc
of eqs. (4.30) and (4.31). The functions C̃cb and G̃gb are then finite and independent of n2

(i.e., n2(b20/b2)/(2zpn)2) in the limit ε → 0, order-by-order in the perturbative expansion
in powers of αS(b20/b2).

We note some main features of the IR factor Zc of F̃ca in eqs. (4.30) and (4.31). The
factor Zc depends on the hard-scattering parton c of F̃ca, and it is independent of the initial-
state parton a. The dependence of Zc on the parton c occurs through the perturbative
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coefficients (see eq. (4.35)) and the momentum zp (i.e., n2(b20/b2)/(2zpn)2), which is the
longitudinal momentum transferred to the parton c by the collinear emission. The function
Zc has no additional dependence on the momentum fraction z. We remark on the fact that
in the gluon channel, the IR factor Zg is the same for both the azimuthal-independent
and azimuthal-correlation components (i.e., Zg is the overall IR factor of the tensor F̃µνga in
eq. (4.21)). The factor Zc embodies ε poles and also possible IR finite contributions that
depend on n2. Moreover, Zc can include arbitrary IR finite terms that are independent of n2

(see eq. (4.35)). Such arbitrariness corresponds to the IR factorization scheme dependence
of eqs. (4.30) and (4.31), and it is related to the resummation-scheme dependence [25, 27]
of the transverse-momentum resummation formalism of QCD cross sections.

Comparing the structure of eq. (4.30) with the results in eqs. (4.24) and (4.25), we can
immediately derive the explicit expression of Zc up toO(αS). Setting λ̃=n2(b20/b2)/(2zpn)2,
we obtain

Zc(αS, λ̃) = 1 + αS
π
Z(1)
c (λ̃) +O(α2

S), (4.34)

Z(1)
c (λ̃) = 1

2

[
A(1)
c

( 1
ε2

+ 1
ε

ln λ̃
)

+ 1
ε
γc

]
− π2

24A
(1)
c + h(1)

c + h̃(1)
c (ε, λ̃), (4.35)

where h(1)
c and h̃(1)

c (ε, λ̃) are introduced to specify the scheme dependence of Zc (we have
h

(1)
c = h

(1)
c̄ and h̃

(1)
c = h̃

(1)
c̄ because of charge conjugation invariance). The function

h̃
(1)
c (ε, λ̃) vanishes in the limit ε → 0. The coefficient h(1)

c is related to the resummation-
scheme dependence (see eqs. (2.7) and (2.8)). Setting h(1)

c = π2A
(1)
c /24 corresponds to a

‘minimal’ scheme in which Z(1)
c contains only ε pole contributions. The hard scheme [27]

is instead obtained by setting h(1)
c = 0 (see eq. (4.37)).

The IR finite function C̃ca of the azimuthal-independent component of the TMD func-
tion in eq. (4.30) has the following perturbative expansion:

C̃ca(z;αS, ε, λ̃) = δca δ(1− z) + αS
π
C̃(1)
ca (z; ε, λ̃) +

(
αS
π

)2
C̃(2)
ca (z; ε, λ̃) +O(α3

S),

c = q, q̄, g.

(4.36)

The limit ε→ 0 of this function is finite and independent of λ̃. The limit gives the collinear
functions in eqs. (2.1) and (2.5), namely C̃

(m)
ca (z; ε = 0, λ̃) = C

(m)
ca (z) (c = q, q̄, g). We

obtain

C(1)
ca (z) = −P̂ ′ca(z; ε = 0)− δca δ(1− z) h(1)

c , c = q, q̄, g, (4.37)

in agreement with the known results in the literature. In particular, as first derived in
ref. [30], the non-trivial z dependence of C(1)

ca (z) is due to P̂ ′ca(z; ε = 0) (see eqs. (4.11)–
(4.13)), which is the contribution of O(ε) to the d-dimensional real emission kernel P̂ca(z; ε)
in eqs. (4.6)–(4.10). In the hard scheme [27] C(1)

ca (z) has no contributions proportional to
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δ(1− z) and, therefore, h(1)
c = 0. In explicit form and for a general scheme we have

C(1)
qq (z) = 1

2CF (1− z)− h(1)
q δ(1− z), (4.38)

C(1)
qg (z) = TR z(1− z), (4.39)

C(1)
gg (z) = −h(1)

g δ(1− z), (4.40)

C(1)
gq (z) = 1

2CF z, (4.41)

C
(1)
qq̄ (z) = C

(1)
qq′ (z) = C

(1)
qq̄′ (z) = 0, (4.42)

and we recall that the expressions in the other partonic channels are obtained by the charge
conjugation relation C(1)

ca (z) = C
(1)
c̄ā (z). The complete ε dependence of C̃(1)

ca is

C̃(1)
ca (z; ε, λ̃) = − e−εγE Γ(1− ε) P̂ ′ca(z; ε) + 1− e−εγE Γ(1− ε)

ε
P (1)
ca (z) (4.43)

− δca δ(1− z)
{1− e−εγE Γ(1− ε)

2ε

[
A(1)
c

(1
ε

+ ln λ̃
)

+ γc

]
− e−εγE Γ(1− ε)

2ε A(1)
c (ψ(1− ε)− ψ(1))− π2

24A
(1)
c + h(1)

c + h̃(1)
c (ε, λ̃)

}
c = q, q̄, g.

Such dependence is relevant to compute the contributions at higher orders in αS through
the implementation of the IR factorization formula in eq. (4.30).

The perturbative expansion of the azimuthal-correlation component F̃ga, corr. in
eq. (4.28) starts at O(αS). Therefore, no IR factorization procedure is required at this
perturbative order. The IR finite function G̃ga in eq. (4.31) has the following perturbative
expansion:

G̃ga(z;αS, ε, λ̃) = αS
π
G̃(1)
ga (z; ε, λ̃) +

(
αS
π

)2
G̃(2)
ga (z; ε, λ̃) +O(α3

S). (4.44)

The first-order term G̃
(1)
ga is simply obtained from eq. (4.29) by expressing αuS in terms of

αS(b20/b2), and we obtain

G̃(1)
ga (z; ε, λ̃) = e−εγE Γ(1− ε) Ca

1− z
z

. (4.45)

In the four-dimensional limit ε → 0, G̃ga gives the transverse-momentum resummation
function Gga in eqs. (2.2) and (2.6), and specifically we have G̃(m)

ga (z; ε = 0, λ̃) = G
(m)
ga (z).

By inspection of eq. (4.45) we see that G̃(1)
ga (z; ε = 0, λ̃) = Ca(1− z)/z, in agreement with

the known result [26] reported in eq. (2.9).
We briefly comment on the relation between the IR factorization formulae in eqs. (4.30)

and (4.31) and the transverse-momentum resummation formulae of QCD cross sections
(see the discussion in section 2). The TMD functions in eqs. (4.30) and (4.31) embody the
collinear contributions to the cross section, and they lead to the resummation coefficients
C̃ca and G̃ga (i.e., Cca and Cµνga of eqs. (2.1) and (2.2) in the limit ε → 0) and to the
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IR singular factors Zc. In the small-qT (or large-b2) region, the cross section receives
additional relevant contributions from soft, but non-collinear, radiation. Such contributions
have to be properly evaluated and combined with the factors Zc and with the purely-virtual
contributions to the cross section. The combination of all these contributions in transverse-
momentum resummation formulae produces the cancellation of the IR divergences, and it
leads [27] to the large logarithmic terms (i.e., ln b2 terms) of the Sudakov form factor and
to the hard (i.e., IR finite) virtual factors.

We remark on the fact that the soft non-collinear contribution to the cross section de-
pends on the auxiliary vector nµ that is used in the TMD collinear functions. Indeed, the
soft non-collinear contribution is obtained from the complete soft terms (which are inde-
pendent of nµ) by subtracting the soft limit of the terms (which depend on nµ) included in
the TMD collinear functions. This subtraction is necessary to avoid double counting of soft
and collinear terms. The n2 dependence of the soft non-collinear contribution cancels the
n2 dependence of the collinear factors Zc, and the result for the cross section is independent
of n2. At O(αS) we have explicitly verified this cancellation, and we have reobtained the
complete contributions to the transverse-momentum resummation formula [27].

We conclude this subsection with some comments on rapidity divergences. The order-
by-order perturbative computation of qT -differential cross sections at any values of qT
can be carried out in exact form without encountering rapidity divergences. From this
computation one can then (‘a posteriori’) extract the small-qT behaviour of the cross section
by simply neglecting subdominant terms at small values of qT . Therefore, the rapidity
divergences are an artifact of ‘a priori’ approximations that are introduced to evaluate
only the dominant terms of the cross section in the small-qT region. These ‘a priori’
approximations regard the QCD scattering amplitudes and the qT -dependent phase space.

The dominant collinear contributions at small qT can be consistently evaluated by ap-
proximating the squared amplitudes through the collinear factorization formula (3.1) and
by introducing the differential collinear function Fca(p, k;n) in eq. (3.14). In the compu-
tation of the cross section the upper value of the momentum kµ is bounded by kinematics
and, in particular, k− . O(p+). Moreover, the validity of the collinear factorization for-
mula is, strictly speaking, limited to the collinear region where k− . O(k+). Introducing
the TMD collinear function Fca in eq. (3.22), the cross section kinematics is approximated
by removing any upper bounds on k− and integrating over the entire region 0 < k− < +∞.
Such approximation is justified only if the collinear factorization formula and the collinear
function Fca(p, k;n) are sufficiently well behaved at large values of k−, so that the large-k−

region eventually leads only to subdominant terms at small values of qT .
The nµ dependence of Fca(p, k;n) is harmless in the collinear region where k− . O(k+),

but it is very relevant at large values of k−. If n2 = 0, the nµ dependence of Fca(p, k;n) in
the limit k− → +∞ produces the rapidity divergences. However, if n2 > 0, Fca(p, k;n) is
integrable over the large-k− region and, actually, it is effectively (dynamically) damped in
the region where k− & O(2(n−)2 k+/n2) (see, e.g., eqs. (4.15) and (5.16)), namely, outside
the region of validity of the collinear approximation of the squared amplitudes. Therefore,
if n2 > 0, the TMD function Fca in eq. (3.22) can be consistently used to approximate and
evaluate the dominant collinear contributions to the qT cross sections at small values of
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qT . We note that the dependence of Fca(p, k;n) on the auxiliary time-like vector nµ affects
the soft limit k → 0 and, consequently, the small-qT limit of the TMD function depends on
n2. As previously mentioned, such n2 dependence is properly compensated and cancelled
by the corresponding n2 dependence of the soft non-collinear contributions to the cross
section.

The rapidity divergences of the TMD function Fca in eq. (3.22) can also be avoided by
considering collinear functions Fca(p, k;n) that are defined as in eq. (3.14) by using a space-
like auxiliary vector nµ (n2 < 0). However, the use of a space-like vector nµ can introduce
unphysical divergences at finite values of k−. These features can be clearly seen by setting
nµ = (n+,0T, n

−) with n2 = 2n+n− < 0 and by considering the computation of Fca(p, k;n)
and Fca at O(αS). If n2 < 0, the factor 1/(1−zn) of eq. (4.15) leads to a dynamical damping
in the large-rapidity region where k− � k+ (similarly to the case in which n2 > 0), but it
also produces a divergence at the value k− = −2(n−)2 k+/n2. This divergence has to be
regularized (for instance, we can perform the replacement 1/(1 − zn) → PV[1/(1 − zn)],
where PV denotes the principal value prescription) to carry out the integration over k−

and to properly define the TMD function Fca. In view of the unnecessary complications
(with respect to using n2 > 0) of introducing and, consequently, regularizing unphysical
divergences, we do not use a space-like auxiliary vector nµ in the definition (see section 3)
of the splitting kernels P and of the ensuing collinear and TMD functions.

Auxiliary space-like vectors are used in the formulation of TMD factorization that is
worked out in ref. [14]. However, as briefly discussed below, those auxiliary vectors are
not related to the space-like auxiliary vector that can be introduced through the collinear
splitting kernels P .

The formalism of ref. [14] regards TMD factorization for the specific class of produc-
tion processes involving colourless high-mass systems and corresponding processes related
by kinematical crossing (see section 2). The TMD functions defined in ref. [14] embody
both collinear and soft contributions that depend on several Wilson line operators. The
dressing of the collinear contributions uses Wilson line operators along the direction nµ,
while the soft contributions depend on Wilson line operators along the directions nµ and
nµS , where n

µ
S is a space-like vector (n2

S < 0). The auxiliary vector nµ in the collinear
and soft contributions is light-like (although the limit n2 = 0 is approached from space-
like values). The ensuing TMD functions eventually depend on the space-like vector nµS
that is introduced through the soft contributions. Such nS dependence is not related to
the auxiliary-vector dependence that is introduced in our collinear functions through the
collinear splitting kernels P .

4.3 Beam functions

The partonic beam function Bca is obtained from the differential collinear function Fca
by using eq. (3.23). The contribution of O(αS) to Bca is denoted by B(1R)

ca , and it is
obtained from the corresponding contribution F (1R)

ca to the differential collinear function.
The computation of B(1R)

ca is performed by using the expression of F (1R)
ca (p, k;n) in eq. (4.3),

similarly to our computation of the TMD functions in section 4.2. The integration over
k in eq. (3.23) is trivial at O(αS), and B(1R)

ca turns out to be proportional to the overall
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factor t−1−ε (1 − z)−ε zε times a function of z and t, which is due to the corresponding
dependence of eq. (4.3) on zn (see eq. (4.5)). Using the collinear factorization formulae, we
compute the singular terms of Bca in the limit t → 0. Such terms are due to the overall
factor t−1−ε in B(1R)

ca and, therefore, the residual zn dependence can be approximated by
setting t = 0, provided the limit t → 0 is smooth and non-singular. In complete analogy
with our discussion of the TMD functions (see section 4.2), we can set zn = z + O(t) in
all the contributions to B(1R)

ca with the exception of those that are due to P̂ sing
ca (zn) (see

eqs. (4.11)–(4.13)) in eq. (4.3).
The contribution of P̂ sing

ca (zn) to B(1R)
ca is proportional to the following factor

1
1− zn

= np

nk
= p+

k+ + n2

2np
k−

n− p
+

= 1
1− z + n2t

z(2np)2

, (4.46)

where in the last equality we have implemented the kinematics of the beam function (i.e.,
k+ = (1−z)p+, k− = t/(2zp+)). Setting n2 = 0, this factor is divergent (and not integrable
over z) at z = 1, analogously to the corresponding factor in eq. (4.15) for the TMD
functions. However, as previously noted, B(1R)

ca contains an overall factor (1− z)−ε, which
is produced by the integration over kT (at O(αS) we have kT

2 = t(1−z)/z). In the context
of dimensional regularization the factor (1− z)−ε regularizes the singular factor (1− z)−1

and, therefore, B(1R)
ca is well defined (though it is IR divergent in the limit ε→ 0) by using

a light-like auxiliary vector nµ. In other words, if n2 = 0 the beam function B(1R)
ca does

not contain rapidity divergences (in contrast to the case of the TMD function F (1R)
ca ). Few

other comments on the absence of rapidity divergences are presented at the end of this
subsection.

The first-order term B(1R)
ca is well defined if n2 = 0 and, also, if n2 > 0. In the following

we consider the explicit computation of the beam function for a generic auxiliary vector
with n2 ≥ 0.

Independently of the specific value of n2, the contribution of the factor in eq. (4.46)
to B(1R)

ca can be approximated in the relevant limit t → 0. Considering the effect of
the additional factor (1 − z)−ε and setting λ′ = n2t/(2pn)2, we can use the following
approximation:

(1− z)−ε

1− z + λ′

z

=
(

(1− z)−ε

1− z + λ′

z

)
+

+ δ(1− z)
∫ 1

0
dz′

(1− z′)−ε

1− z′ + λ′

z′

=
[
(λ′)−εΓ(1 + ε) Γ(1− ε)− 1

] 1
ε
δ(1− z) +

(
(1− z)−ε

1− z

)
+

+O(λ′), (4.47)

which is valid for arbitrary values of ε. Owing to the factor (λ′)−ε in eq. (4.47), we note
that the limit t → 0 and the transition from n2 > 0 to n2 = 0 are not smooth (i.e., the
limits t→ 0 or n2 → 0 do not commute with the limit ε→ 0). The term of O(λ′) ∼ O(t)
in the right-hand side of eq. (4.47) smoothly vanishes in the limit t → 0 (i.e., it vanishes
order-by-order in the ε expansion around ε = 0) and, therefore, it can be neglected in the
computation of B(1R)

ca .
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Using eq. (4.47) and neglecting subdominant terms that smoothly vanish in the limit
t→ 0, we obtain the following result for the beam function at O(αS):

B(1R)
ca

(
z; t, n2 t

(2zpn)2

)
= αuS µ

2ε
0 Sε
π

eεγE

Γ(1− ε) t
−1−ε

{(1− z
z

)−ε
P̂ reg
ca (z; ε) (4.48)

+ δcaA
(1)
c

[
(zε − 1)(1− z)−ε

1− z +
(

(1− z)−ε

1− z

)
+

+ δ(1− z)

(
n2t

(2zpn)2

)−ε
Γ(1 + ε) Γ(1− ε)− 1

ε

]}
,

where the kernels P̂ reg
ca (z; ε) are given in eqs. (4.6)–(4.14). The singular t dependence of

eq. (4.48) is due to the terms t−1−ε and t−1−2ε, which can be customarily expanded in the
limit ε→ 0 (see, e.g., ref. [22]) and lead to ε poles and plus-distributions of the variable t.
Setting n2 = 0, it is straightforward to check that the ε expansion of eq. (4.48) agrees with
the expressions of B(1R)

qq and B(1R)
qg obtained in ref. [22].

In the following we consider the Laplace transformation B̃ca of the beam function Bca
with respect to the transverse virtuality t. We define B̃ca as follows

B̃ca

(
z;σ, n2σ0

(2zpn)2σ

)
≡
∫ +∞

0
dt e−σt Bca

(
z; t, n2t

(2zpn)2

)
, (4.49)

where σ is the conjugate variable to t in Laplace space, and σ0 = e−γE is a customary
numerical coefficient [103, 104] that appears in Mellin or Laplace transformations of plus-
distributions.

In Laplace space, the singular terms of Bca in the limit t → 0 become logarithmic
contributions of the type ln σ, which are large in the limit σ → +∞. We use the following
result: ∫ ∞

0
dt e−σt

lnm t
t1+δ = dm

dρm

∣∣∣∣
ρ=0

[
(σ)δ−ρ Γ (ρ− δ)

]
, (4.50)

which is the most general Laplace transformation that is necessary to go from Bca to B̃ca
at arbitrary perturbative orders in αS.

The perturbative expansion of B̃ca is

B̃ca

(
z;σ, n2σ0

(2zpn)2σ

)
= δca δ(1− z) + B̃(1R)

ca

(
z;σ, n2σ0

(2zpn)2σ

)
+O(α2

S). (4.51)

The first-order contribution B̃(1R)
ca is obtained from the expression of B(1R)

ca in eq. (4.48) by
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using the Laplace transformations in eq. (4.50) with δ = ε, 2ε and m = 0. We have

B̃(1R)
ca

(
z;σ, n2σ0

(2zpn)2σ

)
= αuS Sε

π

(
µ2

0 σ

σ0

)+ε 1
ε

{
−
(1− z

z

)−ε
P̂ reg
ca (z; ε)

− δcaA(1)
c

[
(zε − 1)(1− z)−ε

1− z +
(

(1− z)−ε

1− z

)
+

+ δ(1− z)
2ε

((
n2σ0

(2zpn)2σ

)−ε
e−εγE Γ(1 + ε) Γ(1− 2ε)− 2

)]}
,

(4.52)

which is the result for arbitrary d = 4 − 2ε space-time dimensions. In the limit ε → 0,
B̃(1R)
ca contains double and single poles, 1/ε2 and 1/ε, of IR origin. At higher perturbative

orders, the computation of B̃ca leads to ε poles of UV and IR origins. The UV divergences
are removed by renormalizing the bare coupling αuS (see eq. (4.2)), while the IR divergences
are factorizable.

The IR factorization formula for the beam function B̃ca in Laplace space is

B̃ca

(
z;σ, n2σ0

(2zpn)2σ

)
= Zc

(
αS(µ2

F ), σ, µF ; n2σ0
(2zpn)2σ

)

×
∑
b

∫ 1

z

dx

x
Ĩcb

(
x, σ;µF , αS(µ2

F ), ε, n2σ0
(2zpn)2σ

)
Γ̃ba(z/x;µ2

F ) ,

(4.53)

where the functions Zc, Ĩcb and Γ̃ba are expressed in terms of the renormalized coupling
αS(µ2

F ) at the renormalization scale µR = µF . The structure of eq. (4.53) is closely analo-
gous to that of the corresponding IR factorization formulae in eqs. (4.30) and (4.31) for the
TMD functions in b space. The factor Γ̃ba(x;µ2

F ) in eq. (4.53) is the collinear-divergent
function that defines the scale-dependent PDFs fb(z;µ2

F ) at the scale µF in the MS factor-
ization scheme (see eqs. (4.32) and (4.33)). The function Zc embodies ε poles of IR origin
and the function Ĩcb is finite in the limit ε→ 0. Using a time-like auxiliary vector nµ, B̃ca
explicitly depends on n2. In the limit ε → 0 any IR finite dependence on n2 is absorbed
in the factor Zc, so that the function Ĩcb is independent of n2 and it leads to the matching
coefficient Icb in eqs. (2.13) and (2.14).

The explicit expression of Zc up to O(αS) is derived by comparing the factorized
structure in eq. (4.53) with the results in eqs. (4.51) and (4.52). Setting λ̃′ = n2σ0

(2zpn)2σ , we
obtain

Zc(αS(µ2
F ), σ, µF ; λ̃′) = 1 + αS(µ2

F )
π
Z(1)
c (σ, µF ; λ̃′) +O(α2

S), (4.54)

Z(1)
c (σ, µF ; λ̃′) = A(1)

c

[
1
ε2

+ 1
ε

ln
(
µ2
F σ

σ0

)]
+ γc

1
2ε −A

(1)
c r(1)(ε, λ̃′;µF , σ), (4.55)

where the function r(1) is

r(1)
(
ε,

n2σ0
(2zpn)2σ

;µF , σ
)

= 1
2ε2

(
µ2
F σ

σ0

)+ε(
n2σ0

(2zpn)2σ

)−ε
e−εγE Γ(1 + ε) Γ(1− 2ε). (4.56)
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Analogously to the IR factor Zc for the TMD functions (see eq. (4.35)), the beam
function factor Zc in eq. (4.53) has a factorization scheme dependence, which is specified by
IR finite contributions. If n2 = 0, the function r(1) in eq. (4.56) vanishes and, consequently,
the expression of Z(1)

c in eq. (4.55) contains only ε poles. Therefore, such expression
corresponds to a ‘minimal’ scheme, in which Z(1)

c has no IR finite contributions. This
minimal scheme is customarily used for the SCET definition of the beam functions [22, 59–
61]. If n2 > 0, r(1) is not vanishing and, in particular, Z(1)

c in eq. (4.55) embodies the
entire dependence (i.e., the dependence at arbitrary orders in the ε expansion) of B̃(1R)

ca on
n2 (see eq. (4.52)). In the limit ε→ 0 the expression of r(1) for n2 > 0 is

r(1)
(
ε,

n2σ0
(2zpn)2σ

;µF , σ
)

= 1
2ε2−

1
2ε ln

(
n2σ2

0
(2zpn)2σ2µ2

F

)
+1

4 ln2
(

n2σ2
0

(2zpn)2σ2µ2
F

)
+5π2

24 +O(ε).

(4.57)
As we have already noticed (see eq. (4.47) and accompanying comments), the limit n2 → 0
is not smooth (i.e., it does not commute with the limit ε→ 0). Indeed, the result r(1) = 0
for n2 = 0 cannot be recovered by setting n2 = 0 in the expression in the right-hand side
of eq. (4.57).

The IR finite contribution Ĩca in eq. (4.53) has the following perturbative expansion:

Ĩca

(
z,σ;µF ,αS(µ2

F ),ε, n2σ0
(2zpn)2σ

)
= δcaδ(1−z)+αS(µ2

F )
π

Ĩ(1)
ca

(
z,σ;µF ,ε,

n2σ0
(2zpn)2σ

)
+O(α2

S).

(4.58)
The matching coefficient Ica of eqs. (2.13) and (2.14) corresponds to the limit ε→ 0 of Ĩca.
In particular, we have

Ĩ(1)
ca

(
z, σ;µF , ε = 0, n2σ0

(2zpn)2σ

)
= I(1)

ca (z, σ;µF ). (4.59)

By using the result in eq. (4.52), the IR factorization formula (4.53) and the expression
of Z(1)

c in eq. (4.55), the first-order term Ĩ
(1)
ca is independent of n2 and, setting ε = 0, we

obtain

I(1)
ca (z, σ;µF ) = −P (1)

ca (z) ln
(
µ2
F σ

σ0

)
− P̂ ′ca(z; ε = 0) + P̂ reg

ca (z; ε = 0) ln
(1− z

z

)
(4.60)

+ δca

{
A(1)
c

[( ln(1− z)
1− z

)
+
− ln z

1− z

]
+ δ(1− z)

[
A

(1)
c

2 ln2
(
µ2
F σ

σ0

)
+ γc

2 ln
(
µ2
F σ

σ0

)]}
.

This result for the matching coefficient I(1)
ca agrees with the Laplace transformation of the

known result in the literature [60, 61]. We recall that eq. (4.60) refers to a minimal scheme
in which Z(1)

c has only ε pole contributions if n2 = 0. The generic scheme dependence of
the beam functions at O(αS) can be explicitly denoted by introducing an ε-independent
function in the expressions of Z(1)

c and I
(1)
ca , similarly to the function h

(1)
c in eqs. (4.35)

and (4.37) for the TMD functions.
We conclude this subsection with some additional comments about the dependence of

the beam functions on the auxiliary vector nµ. As discussed in section 4.2, in the case of the
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TMD function Fca the singular dependence on n2 and the rapidity divergences originate in
eq. (3.22) from the k− integration of Fca(p, k;n) over the region O(p+) . k− < +∞, which
lies outside the region of validity of the collinear factorization formula (3.1) that is used to
define Fca(p, k;n). In the case of the beam function Bca the integration of Fca(p, k;n) over
the momentum kµ is specified in eq. (3.23), and it is always bounded inside the collinear
region. Indeed, we have k− = t/(2zp+) and the transverse virtuality t is fixed to be
small (i.e., t� O((p+)2)) in the computation of the beam function. The kT integration in
eq. (3.23) is also bounded to the region of small values of kT since we have kT

2 ≤ t(1−z)/z
(which follows from k2 ≥ 0).

In summary, due to its definition in eq. (3.23), the beam function Bca can be consis-
tently computed by using both time-like or light-like auxiliary vectors nµ, without encoun-
tering rapidity divergences. Varying the value of n2 varies the behaviour of Fca(p, k;n)
in soft limit k → 0 and, consequently, the effect of the soft contributions included in the
beam function Bca. This effect produces the n2 dependence of Bca, which can be factorized
in the function Zc of eqs. (4.53) and (4.55). In the computation of cross sections, the n2

dependence of Bca is cancelled by the n2 dependence of the soft non-collinear contributions,
through the same mechanism that leads to the cancellation of the n2 dependence due to
the TMD function (see the discussion at the end of section 4.2).

At O(αS) we have explicitly evaluated the beam function by using a time-like auxiliary
vector. Similar computations of the beam function Bca with n2 > 0 can be carried out at
higher orders in αS. Admittedly, such computations turn out to be much more cumbersome
than those with n2 = 0 [62–68].

5 Azimuthal correlations at O(α2
S) in the SL region

In this section we consider the perturbative calculation of the azimuthal-correlation terms
at O(α2

S). We present the results for the differential collinear function Fga, corr.(p, k;n) and,
subsequently, for the TMD function Fga, corr..

5.1 Differential collinear functions

At O(α2
S) the differential collinear function Fga, corr. receives the two contributions, F (1R1V )

ga, corr.

and F (2R)
ga, corr., in eq. (4.1). We discuss them in turn.

The term F (1R1V )
ca (p, k;n) is due to the one-loop virtual correction to the final-state

emission of a collinear parton with momentum k, and it is obtained from eq. (3.14) by using
the one-loop collinear kernel P(1)

c→a1a. The one-loop correction to the collinear splitting
process c→ a1a is known since a long time [9, 77–79]. The original results in the literature
regard collinear factorization at the amplitude level and they refer to the TL collinear
region. The extension to the SL region was worked out and discussed in ref. [12], by noticing
two main features: one-loop factorization for the collinear splitting c → a1a is process
dependent at the level of the scattering amplitudes, and it becomes process independent
at the squared amplitude level. We have computed the SL kernels P(1)

c→a1a by squaring the
amplitude level results of refs. [9, 77–79] and by applying the prescription of ref. [12] (see
section 7.2 therein) to derive the results in the SL region.
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The expression of F (1R1V )
ga, corr.(p, k;n) is directly proportional to P(1)

g→a1a (see eqs. (3.12)
and (3.14)) and we obtain the following results:

F (1R1V )
gg,corr. (p,k;n) =

(
αusµ

2ε
0 Sε
π

)2
e2εγEΓ(1+ε)Γ2(1−ε)

π1−εΓ(1−2ε)
CAδ+(k2)
(2pk)1+ε

{
−Nf

6 +CA
6 (5.1)

+CA
1−z
z2

[
1
ε2
− 1
ε

(
ln(1−z)−2ln(z)

)
−π

2

3 + 1
2 ln2(1−z)

]}
+O(ε),

F (1R1V )
ga,corr. (p,k;n) =−

(
αusµ

2ε
0 Sε
π

)2
e2εγEΓ(1+ε)Γ2(1−ε)

π1−εΓ(1−2ε)
CF δ+(k2)
(2pk)1+ε

1−z
z2

{
CF

[
− 2
ε2
− 3
ε
−8
]

+CA

[
1
ε2

+ 1
ε

(11
3 −2ln(z)+ln(1−z)

)
+ 76

9 +π2

3 −
1
2 ln2(1−z)

]

+Nf

[
− 2

3ε−
10
9

]}
+O(ε), (a= q,q̄). (5.2)

We note that in eqs. (5.1) and (5.2) we have neglected contributions of O(ε), since they are
not relevant to the four-dimensional limit at O(α2

S). Moreover, we have used the momentum
fraction z that is defined as

z = n̄(p− k)
n̄p

, (5.3)

where the light-like auxiliary vector n̄µ is

n̄µ ≡ nµ − n2pµ

2np . (5.4)

In our customary reference frame we have pµ = (p+,0T, 0), nµ = (n+,0T, n
−) and, there-

fore, n̄µ = (0,0T, n
−) and z = 1− k+/p+.

The use of the variable z = n̄(p−k)/n̄p in eqs. (5.1) and (5.2) deserves some comments,
since it is practically equivalent to compute F (1R1V )

ga, corr. (a = g, q, q̄) by setting n2 = 0.
As discussed in sections 4.2 and 4.3, the use of the time-like auxiliary vector nµ in the
computation of the collinear functions is, in general, essential to avoid unphysical behaviour
outside the collinear region. Nonetheless, already at O(αS) we noticed that we can correctly
compute the collinear functions by setting n2 = 0 in most of the n-dependent terms of
F (1R)
ca, az.in. in eq. (4.3) and in the entire n dependence of F (1R)

ga, corr. in eq. (4.4). Therefore,
in the expressions of eqs. (5.1) and (5.2) we have directly implemented the approximation
of setting n2 = 0 in terms with a harmless dependence on n2. The exact dependence of
F (1R1V )
ga, corr. on n2 can be recovered from eqs. (5.1) and (5.2) by replacing the variable z of

eq. (5.3) with the variable zn of eq. (4.5).
The term F (2R)

ga, corr.(p, k;n) in eq. (4.1) is due to the final-state emission of two collinear
partons at the tree level. It is obtained starting from the azimuthal-correlation component
of the tree-level collinear kernel P(0)µν

g→a1a2a(k1, k2, p;n) (see eqs. (3.12) and (3.14)). The tree-
level kernel is process independent, and the TL and SL regions are straightforwardly related
through the replacement p↔ −p. The explicit expressions of P(0)µν

g→a1a2a(k1, k2, p;n) for the
various partonic channels were obtained in refs. [10, 76]. We evaluate F (2R)

ga, corr.(p, k;n)
in eq. (3.14) by performing the integrations of the azimuthal-correlation component of
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P(0)
g→a1a2a(k1, k2, p;n) over k1 and k2 at fixed momentum k = k1 +k2. Such integrations can

be carried out to all orders in ε and for arbitrary values of n2 by using the d-dimenional
angular integrals of ref. [105]. In the following we present the results in a simplified form
that amounts to neglect contributions at high orders in ε and to set n2 = 0 in all the
contributions with a harmless (smooth and non-singular) dependence on n2. In particular,
we use the variable z of eq. (5.3) to express part of the n dependence of F (2R)

ga, corr.(p, k;n).
We write F (2R)

ga, corr. in terms of contributions with different colour factors:

F (2R)
gg, corr.(p, k;n) =

(
αusµ

2ε
0 Sε
π

)2
e2εγE Γ(1− ε)

2π1−ε Γ(1− 2ε) (k2)−ε (5.5)

×
[
CFTRNfF

(2R), CFTRNf
gg, corr. (p, k;n)+CATRNfF

(2R), CATRNf
gg, corr. (p, k;n)+C2

AF
(2R), C2

A
gg, corr. (p, k;n)

]
,

F (2R)
gq, corr.(p, k;n) =

(
αusµ

2ε
0 Sε
π

)2
e2εγE Γ(1− ε)

2π1−ε Γ(1− 2ε) (k2)−ε

×
[
C2
FF

(2R), C2
F

gq, corr. (p, k;n) + CACFF (2R), CACF
gq, corr. (p, k;n)

]
, (5.6)

and we recall that F (2R)
gq̄, corr.(p, k;n) = F (2R)

gq, corr.(p, k;n). The individual coefficients
F (2R), CFTRNf
gg, corr. , F (2R), CATRNf

gg, corr. and F (2R), C2
A

gg, corr. of eq. (5.5) for the gluon-gluon channel are
given by the following expressions:

F (2R),CFTRNf
gg,corr. (p,k;n) = (k2−2pk)2

2z2(pk)4

[1
ε

+4
]
+ (1+z)(k2−2pk)

z2(pk)3

[1
ε

+4
]

+ 1
z2(pk)2

[1+2z
ε

+1+8z
]
+ 2
zpk(k2−2pk)

[1
ε

+1
]
, (5.7)

F (2R),CATRNf
gg,corr. (p,k;n) = 4(1−z)(3+5ε)

9z2k2(k2−2pk) + (k2−2pk)2

6z2(pk)4 −
k2−2pk

6(1−z)(pk)3−
1

3(1−z)(pk)2

+ (1+2z)(k2−2pk)
6z2(pk)3 + 2+z+z2

3z2(pk)2−
2(1−2z)

3z2pk(k2−2pk) , (5.8)

F (2R),C2
A

gg,corr. (p,k;n) =− 1−z
z2k2(k2−2pk)

[2
ε

+ 11
3 + 67

9 ε
]
− 4
z(k2−2pk)2

1
ε

+ k2−2pk
12(1−z)(pk)3

− (k2−2pk)2

4z2(pk)4

[1
ε

+ 10
3

]
− k2−2pk

2z2(pk)3

[1+z
ε

+ 19+20z
6

]
+ 1

6(1−z)(pk)2−
1

z2(pk)2

[
2+z
ε

+ 14+19z+z2

6

]

− 1
z2pk(k2−2pk)

(1+4z
ε
− 11−28z

6

)
+K(p,k;n)

+Fn2−sing.(p,k;n) , (5.9)

where the functions K and Fn2−sing. are presented in eqs. (5.12)–(5.14). The individual
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coefficients F (2R), C2
F

gq, corr. and F (2R), CACF
gq, corr. of eq. (5.6) for the gluon-quark channel are

F (2R),C2
F

gq,corr. (p,k;n) =− 1−z
z2k2(k2−2pk)

[4
ε

+3+7ε
]
+ k2−2pk

4z2(pk)3

[1
ε

+2
]

(5.10)

− 1
2z2(pk)2

[1−z
ε

+3−2z
]
+ 1

2z2pk(k2−2pk)

[2(2−z)
ε

+3(1−2z)
]
,

F (2R),CACF
gq,corr. (p,k;n) = 2(1−z)

z2k2(k2−2pk)
1
ε
− 4
z(k2−2pk)2

1
ε
− k2−2pk

4z2(pk)3

[1
ε

+2
]

− 1
2z2(pk)2

[2+z
ε

+1+2z
]
− 1
z2pk(k2−2pk)

[3+2z
ε

+z
]

+K(p,k;n)+Fn2−sing.(p,k;n). (5.11)

The function K in eqs. (5.9) and (5.11) has the following expression:

K(p, k;n) = − 1
z2(k2 − 2pk)

[2(1− z)
k2 + 1

pk

] 1
ε
− 2
z2pk(k2 − 2pk)

(
kT

2

k2

)1+ε [1
ε

+ π2

6 ε
]

− 1
z2(k2 − 2pk)

[6(1− z)
k2 − 1

pk

]
ln
(

1 + k2

kT
2

)
− 2
z

k2

pk(k2 − 2pk)2

+ ln(z)
[ 4(2− z)pk

(k2 − 2pk)3 −
2(4− z)

z(k2 − 2pk)2

]
+ 1
z2kT

2pk
ln
(

1− kT
2

2pk

)

+
[ 1
z2pk(k2 − 2pk) −

2(1 + z)(1− z)
z2k2(k2 − 2pk)

]
k2

kT
2 ln

(
1 + kT

2

k2

)
− ln

(
1− k2

2pk

)

×
[

8(1− z)(2− z)(pk)2

k2(k2 − 2pk)3 − 1
z2k2pk

− 4(6− 3z + z2)pk
zk2(k2 − 2pk)2 −

2(2 + 5z − z2)
z2k2(k2 − 2pk)

]

+ 8z(1− z)(2− z)(pk)2

kT
2(k2 − 2pk)3

[
ln(z)
1− z −

2pk
k2 ln

(
1− k2

2pk

)]
. (5.12)

The function Fn2−sing. in eqs. (5.9) and (5.11) embodies the non-smooth dependence of
F (2R)
ga, corr. on n2. In the case of a time-like auxiliary vector we find the following result:

Fn2−sing.(p, k;n) = 4(1− z)
z2k2(k2 − 2pk)

(
n2k2

4(np)2(1− z)2

)−ε [1
ε

+ π2

3 ε
]
− 2
z(k2 − 2pk) (5.13)

×

 k2

pk
(
kT

2 + n2(pk)2

(np)2

) + 2(1− z)
kT

2 ln

 n2k2(pk)2

(np)2(k2 + kT
2)
(
kT

2 + n2(pk)2

(np)2

)
 , (n2 > 0).

Performing the calculation of F (2R)
ga,corr. with a light-like auxiliary vector we obtain

Fn2−sing.(p, k;n) = − 2
z(k2 − 2pk) (5.14)

×
{
− 1
pk

+ 2(1− z)
kT

2

[
ln
(

1 + kT
2

k2

)
+
(
k2

kT
2

)ε 1 + ε

ε

]}
, (n2 = 0).

We comment on the results in eqs. (5.5)–(5.14) by discussing the ε dependence and the n2

dependence in turn.
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The differential collinear function F (2R)
ga, corr.(p, k;n) is singular in the limit k2 → 0. The

singularities are due to contributions that are proportional to the factors (k2)−1−ε and
(k2)−1−2ε. Such factors can be expressed in terms of plus-distributions of the variable k2,
which are integrable at k2 = 0, and contact terms of the type δ+(k2), whose coefficients are
single poles 1/ε. Owing to these single-pole effective contributions, in eqs. (5.8)–(5.13) the
coefficients of the factors that are singular at k2 = 0 are reported up to O(ε), by neglecting
terms at O(ε2) and higher orders in ε.3 In all the other contributions to eqs. (5.7)–(5.14)
that are not singular in the limit k2 → 0, we limit ourselves to presenting the results up to
O(ε0).

The contributions of the function Fn2−sing. to F (2R)
ga, corr. have a non-smooth dependence

on n2. All the other contributions of eqs. (5.7)–(5.12) to F (2R)
ga, corr. have a smooth and

harmless dependence on n2 and, similarly to F (1R1V )
ga, corr. in eqs. (5.1) and (5.2), they are

presented by setting n2 = 0.
By direct inspection and comparison of eqs. (5.13) and (5.14), we can see that

Fn2−sing.(p, k;n) has a non-smooth and singular dependence on n2 in the limit n2 → 0. The
n2 dependence of Fn2−sing.(p, k;n) is also related to the issue of the rapidity divergences,
which we have already considered in sections 4.2 and 4.3. If n2 = 0, Fn2−sing. is given
by eq. (5.14) and its contribution to F (2R)

ga, corr.(p, k;n) in the limit k− → +∞ is due to the
following factor:

(
k2
)−ε
Fn2−sing.(p, k;n) ' 2(1− z)

z2

(
kT

2
)−1−ε

p+ k−
1 + ε

ε
, k− → +∞ (n2 = 0),

(5.15)
which is proportional to 1/k−. This contribution is not integrable over k− in the region
where k− → +∞. This singular behaviour is a manifestation at O(α2

S) of the rapidity
divergences that we have discussed in section 4.2. If n2 > 0, the expression of Fn2−sing. is
given by eq. (5.13) and in the limit k− → +∞ we have

(
k2
)−ε
Fn2−sing.(p, k;n) ' 2(1− z)

(
2k+k−

)−ε
z2 kT

2 p+ k−
(5.16)

×

 1
1 + n2(pk)2

(np)2kT
2

− ln
(

1 + kT
2(np)2

n2(pk)2

) , k− → +∞ (n2 > 0),

where we have neglected contributions of O((k−)−2−2ε) and O((k−)−2−ε) that are n2-
independent at large values of k−. The overall factor (k−)−1−ε in the right-hand side of
eq. (5.16) is not integrable4 as k− → +∞. However, since n2(pk)2/(np)2 = n2(k−)2/(n−)2,
both terms in the square bracket of eq. (5.16) screen the non-integrable behaviour of the
factor (k−)−1−ε. Therefore, Fn2−sing.(p, k;n) does not produce rapidity divergences in the
expression of F (2R)

ga, corr.(p, k;n). The n2 dependence of the square bracket term in eq. (5.16)
leads to a dynamical damping at large values of k−, and the non-integrable behaviour of

3Other comments on the singularities in the limit k2 → 0 are presented in section 5.2.
4In our computation we have ε < 0 to regularize the IR divergences. Therefore, the ε-dependent factor

(k−)−ε does not remove the rapidity divergence due to 1/k− at k− → +∞.
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the type (k−)−1−ε is effective only inside the region where (k−)2 . (n−)2 kT
2/n2. Since

kT
2 ≤ 2k+k− (i.e., k2 ≥ 0), this region is contained in the region with k− . 2(n−)2 k+/n2,

where the collinear approximation of the squared amplitudes is certainly valid. Obviously,
the issue of rapidity divergences is not relevant by considering the differential collinear
functions Fga, corr.(p, k;n) at finite and not large values of k−.

As discussed at the end of sections 3.2 and 4.1, setting n2 = 0, qT = kT and
t = 2zpk, the collinear function Fca(p, k;n) is related to the SCET differential beam
function Bca(z, t,qT) [92–94] at the partonic level. At O(α2

S) we have B(2)
ca (z, t,qT) =

F
(1R1V )
ca (p, k;n) + F

(2R)
ca (p, k;n) (a = q, q̄, g), where B(2)

ca is the second-order contribu-
tion to Bca. The azimuthal-independent component B(2)

ca, az.in. at O(α2
S) was computed in

refs. [95, 96]. Our expressions in eqs. (5.1), (5.2), (5.5) and (5.6) give the result at O(α2
S)

for the azimuthal-correlation component B(2)
ga, corr. of the SCET differential beam function.

5.2 TMD functions

We use our results at O(α2
S) for the differential collinear functions Fga, corr.(p, k;n) to com-

pute the TMD functions Fga, corr. at the corresponding perturbative order. Similarly to our
computations of the TMD functions at O(αS) (see section 4.2), we use a time-like auxiliary
vector nµ to avoid rapidity divergences. However, we comment on the n2 dependence of
the various contributions to Fga, corr..

The O(α2
S) contributions to Fga, corr. are denoted by F (1R1V )

ga, corr. and F
(2R)
ga, corr., and they

are obtained according to the definition in eq. (3.22) by integrating F (1R1V )
ga, corr.(p, k;n) and

F (2R)
ga, corr.(p, k;n) over the momentum kµ. The integrations over k+ and kT are trivial, and

the integration over k− extends up to +∞.
The k− integration of the expressions of F (1R1V )

ga, corr.(p, k;n) (a = g, q, q̄) in eqs. (5.1)
and (5.2) is elementary since it simply sets k− = qT

2/(2(1 − z)p+) by using the delta
function δ+(k2). The ensuing expressions of F (1R1V )

ga, corr. contain double and single poles, 1/ε2

and 1/ε, and the dominant contributions in the limit qT
2 → 0 do not depend on n2. These

contributions can be computed by setting n2 = 0, since the n2 dependence leads to terms
of O(n2qT

2/(np)2).
The k− integration of F (2R)

ga, corr.(p, k;n) extends over the region k−min ≤ k− < +∞. The
lower limit k−min = qT

2/(2(1 − z)p+) derives from k2 ≥ 0. As noticed in section 5.1, the
expressions of F (2R)

ga, corr.(p, k;n) contain contributions of the type (k2)−1−ε and (k2)−1−2ε.
The integration of these contributions over k− produces single poles 1/ε from the region
where k− → k−min (i.e., k2 → 0). The k− integration in the region k− → +∞ produces
rapidity divergences if n2 = 0. We use an auxiliary vector with n2 > 0 and the correspond-
ing expression of Fn2−sing.(p, k;n) in eq. (5.13), which eventually leads to contributions
of the type ln(n2qT

2/(np)2) to F (2R)
ga, corr.. The remaining contributions of eqs. (5.7)–(5.12)

to F (2R)
ga, corr.(p, k;n) produce terms with a smooth n2 dependence in F

(2R)
ga, corr., which can

be evaluated by setting n2 = 0 (i.e., neglecting subdominant terms of O(n2qT
2/(np)2)).

Regarding the dependence of F (2R)
ga, corr. on the momentum fraction z = 1 − k+/p+, the k−

integration of F (2R)
ga, corr.(p, k;n) can be carried out in terms of rational, logarithmic and

di-logarithmic functions of the variable z.
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Having computed the O(α2
S) contributions F (1R1V )

ga, corr. and F (2R)
ga, corr. to the TMD function

Fga, corr. in qT space, we perform their Fourier transformations to obtain the correspond-
ing contributions F̃ (1R1V )

ga, corr. and F̃
(2R)
ga, corr. of eq. (4.28) to the b space function F̃ga, corr. in

eqs. (4.20) and (4.21). The explicit Fourier integrals that are required at O(α2
S) are given

in eq. (4.23) with δ = ε, 2ε and m = 0, 1.
The expressions of F̃ (1R1V )

ga, corr. and F̃
(2R)
ga, corr. have double and single poles, 1/ε2 and 1/ε,

in the limit ε → 0. Part of the single-pole terms are cancelled by performing the UV
renormalization of the bare coupling: we use eq. (4.2) up to O(αS) and we choose the
renormalization scale µ2

R = b20/b2. The remaining ε poles have to be treated by using the
IR factorization formula in eq. (4.31), which we expand up to O(α2

S):

F̃ga, corr.(z; b2/b20, λ̃) = αS(b20/b2)
π

G̃(1)
ga (z; ε, λ̃) +

(
αS(b20/b2)

π

)2 [
Z(1)
g (λ̃) G̃(1)

ga (z; ε, λ̃)

− 1
ε

∑
b

∫ 1

z

dx

x
G̃

(1)
gb (x; ε, λ̃) P (1)

ba (z/x) + G̃(2)
ga (z; ε, λ̃)

]
+O(α3

S),

(5.17)

where λ̃ = n2(b20/b2)/(2zpn)2. The first-order functions P (1)
ba , Z

(1)
g and G̃

(1)
ga are given in

eqs. (4.26), (4.35) and (4.45). Our computation of F̃ (1R1V )
ga, corr. and F̃ (2R)

ga, corr. gives an explicit
expression up to O(ε0) of the entire contribution in the square bracket on the right-hand
side of eq. (5.17) and, knowing P (1)

ba , Z
(1)
g and G̃

(1)
ga , we can explicitly determine G̃(2)

ga up
to O(ε0). Our result for G̃(2)

ga is finite and independent of λ̃ in the four-dimensional limit
ε→ 0, therefore confirming the validity of the IR factorization structure of eq. (4.31).

Setting ε = 0 we have
G̃(2)
ga (z; ε = 0, λ̃) = G(2)

ga (z), (5.18)

where G(2)
ga (z) (a = g, q, q̄) are the contributions at O(α2

S) to the transverse-momentum
resummation functions in eq. (2.6). We find the following results:

G(2)
gg (z) =C2

A

{
− 37

36z+ 31
18−

13z
12 + 11z2

36 −ln(z)
[1
z

+ 19
12

]
+ ln2(z)

2 + 1−z
z

[
Li2(z)−π

2

6

]}

+CFNf

{
(1−z)3

2z − 1
4 ln2(z)

}
+CANf

{
− 17

36z+ 4
9 + z

12 + z2

36−
1
6 ln(z)

}

−h(1)
g CA

1−z
z

, (5.19)

G(2)
gq (z) =C2

F

{
−1−z

2 + 5
4 ln(z)− 1

4 ln2(z)− 1−z
2z

[
ln(1−z)+ln2(1−z)

]}
+CFNf

{
−1−z

3z

[2
3 +ln(1−z)

]}
+CACF

{
− 11

18z+ 10
9 −

z

2−ln(z)
[1
z

+ 5
2

]
+ 1

2 ln2(z)+ 1−z
z

[
5
6 ln(1−z)+ 1

2 ln2(1−z)+Li2(z)−π
2

6

]}
−h(1)

g CF
1−z
z

,

(5.20)
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and G
(2)
gq̄ (z) = G

(2)
gq (z). These results regard a generic resummation scheme, which is

specified by the coefficient h(1)
g of the IR factorization function Z(1)

c with c = g in eq. (4.35).
We recall that the hard scheme [27] is defined by setting h(1)

g = 0, and the ‘minimal’ scheme
has h(1)

g = π2CA/24. We find full agreement with the results for G(2)
ga (z) that were obtained

in refs. [23, 24] (ref. [23] uses the hard scheme, while ref. [24] uses the minimal scheme) by
using TMD functions defined in a SCET framework.

We note that our results atO(α2
S) for the azimuthally-correlated TMD function F̃ga, corr.

are an important and highly non-trivial check of the IR factorization formulae in eqs. (4.30)
and (4.31) and of our framework to define and compute TMD functions. In particular, we
find that the same IR singular and n2 dependent contribution Z(1)

g of eq. (4.35) is involved
in the IR factorization of both the azimuthal-independent function F̃ga, az.in. at O(αS) (see
section 4.2) and the azimuthally-correlated function F̃ga, corr. at O(α2

S). At the purely tech-
nical level, we also note that the n2 dependence of Z(1)

g has an entirely different origin in
the calculations of F̃ga, az.in. at O(αS) and F̃ga, corr. at O(α2

S) (see eq. (4.16) vs. eq. (5.13)
and related comments).

The agreement between our results in eqs. (5.19) and (5.20) and those in refs. [23, 24]
is also highly non-trivial. Indeed, this agreement is obtained by using fully independent
methods and, in particular, very different procedures to deal with the issue of rapidity
divergences.

6 TL collinear functions

In this section we consider the perturbative computation of the differential collinear func-
tions FTL

ca and of the TMD functions FTL
ca in the TL collinear region. We closely follow the

presentation of the analogous SL results in sections 4.1, 4.2 and 5, with brief comments to
highlight the main differences between SL and TL functions.

6.1 TL differential collinear functions at O(αS)

The perturbative expansion of the TL collinear functions in eqs. (3.5), (3.8) and (3.13) can
be written in the following form:

FTL(p, k;n) = FTL (1R)(p, k;n) +
[
FTL (2R)(p, k;n) + FTL (1R1V )(p, k;n)

]
+O(α3

S), (6.1)

where, analogously to eq. (4.1), we have not explicitly denoted subscripts and superscripts
in FTL.

The first-order term FTL (1R)
ca (p, k;n) in eq. (6.1) is obtained from the contribution of

the tree-level collinear kernel P(0)
c→a1a(k, p;n) to eqs. (3.5) and (3.13). Comparing eqs. (3.5)

and (3.13) with the analogous expression in eq. (3.14) for the SL function F (1R)
ca (p, k;n),

we straightforwardly obtain the following relation:

FTL (1R)
ca (p, k;n) = Na(ε)

Nc(ε)
[
F (1R)
ca (p, k;n)

]
p→−p

, (6.2)

which is valid for both the azimuthal-independent and azimuthal-correlation components of
the differential collinear functions. We note that the SL-TL crossing relation in eq. (6.2) is
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valid since the tree-level kernel P(0)
c→a1a(k, p;n) is process independent and it has a rational

dependence on the external momenta, which permits a straightforward replacement p ↔
−p. A similar comment applies to any tree-level kernel P(0)

c→a1a2...a, and this leads to ensuing
SL-TL crossing relations at higher perturbative orders (see, e.g., eq. (6.31)).

Using the SL results in eqs. (4.3) and (4.4) and the relation in eq. (6.2), we obtain
the following explicit expressions for the azimuthal-independent5 and azimuthal-correlation
components of the TL collinear functions at O(αS):

FTL (1R)
ca, az.in.(p, k;n) = αuS µ

2ε
0 Sε
π

eεγE

π1−ε
δ+(k2)
pk

P̂ac(zTL
n ; ε), c = g, q, q̄, (6.3)

FTL (1R)
gg, corr. (p, k;n) = − αuS µ

2ε
0 Sε
π

eεγE

π1−ε
δ+(k2)
pk

CA z
TL
n (1− zTL

n ), (6.4)

FTL (1R)
ga, corr. (p, k;n) = αuS µ

2ε
0 Sε
π

eεγE

π1−ε
δ+(k2)
pk

TR
zTL
n (1− zTL

n )
1− ε , a = q, q̄, (6.5)

where we have introduced the n-dependent variable zTL
n ,

zTL
n = np

n(p+ k) . (6.6)

The right-hand side of eq. (6.3) is proportional to the d-dimensional Altarelli-Parisi kernel
P̂ac(x; ε) of eqs. (4.6)–(4.10), and we note that we have directly used the following well-
known (see, e.g., ref. [74]) crossing symmetry relation:

Na(ε)
Nc(ε)

[
P̂ca(x; ε)

]
x=1/z

= −1
z
P̂ac(z; ε). (6.7)

As discussed at the end of section 3.2, the collinear function FTL(p, k;n) is related to
the SCET fragmenting jet function G(z, s,p⊥) of ref. [92]. More precisely, setting n2 = 0,
s = (p + k)2 and p⊥ = zkT, the first-order collinear function FTL (1R)

ca (p, k;n) is equal
to the first-order contribution G(1)

ca (z, s,p⊥) to G at the partonic level. The azimuthal-
independent component of G(1)

ca was computed in ref. [92], and the expression in eq. (6.3)
agrees with the results presented therein. The azimuthal-correlation component of G(1)

ga is
given by eqs. (6.4) and (6.5).

6.2 TMD functions and IR factorization in the TL region

The TL TMD functions FTL
ca are obtained from the corresponding differential collinear

functions FTL
ca (p, k;n) by using eqs. (3.17) and (3.19)–(3.21).

The contribution of O(αS) to FTL
ca is denoted by FTL (1R)

ca , and it is computed by using
the expressions of FTL (1R)

ca (p, k;n) in eqs. (6.3)–(6.5). We define and compute the TL
functions FTL

ca by using a time-like auxiliary vector nµ, since the use of a light-like vector
produces rapidity divergences. The origin of the rapidity divergences is exactly similar in
the TL and SL regions, and we can briefly follow the discussion in section 4.2. At O(αS)
the non-smooth dependence of FTL (1R)

ca on n2 is produced by the contribution P̂ sing
ac (zTL

n )
5Similarly to the case of the SL functions, we introduce the notation FTL

ca = FTL
ca, az.in. and FTL

ca =
FTL
ca, az.in. (c = q, q̄) for the TL collinear functions in the quark and antiquark partonic channels.
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(see eqs. (4.11)–(4.13)) to the kernel P̂ac(zTL
n ; ε) in the right-hand side of eq. (6.3). Indeed,

such contribution is proportional to the following factor:

1
1− zTL

n

= 1 + p+

k+ + n2

2np
k−

n− p
+

= 1 + z

1− z + z2n2qT2

(1−z)(2np)2

(6.8)

= 1
2 ln

( 1
λ

)
δ(1− z) +

( 1
1− z

)
+

+O(
√
λ), (6.9)

where λ = n2qT
2/(2pn)2. In the last equality of eq. (6.8) we have implemented the

kinematics of the TL TMD function at O(αS) (i.e., k2 = 0, k+ = p+(1− z)/z,kT = −qT),
and in eq. (6.9) we have properly performed the limit qT → 0 by using the same procedure
as in eq. (4.16). The small-qT limit of the remaining dependence of FTL (1R)

ca on zTL
n can be

evaluated by simply setting zTL
n = z + O(qT

2). Eventually, we obtain the following final
results for the first-order TMD functions in the TL region:

F
TL (1R)
ca, az.in.

(
z; qT

2,
n2qT

2

(2pn/z)2

)
= αuS µ

2ε
0 Sε
π

eεγE

π1−ε qT2 (6.10)

×
{
P̂ reg
ac (z; ε) + δca A

(1)
c

[( 1
1− z

)
+
− 1

2 ln
(

n2qT
2

(2pn/z)2

)
δ(1− z)

]}
, c = g, q, q̄,

FTL (1R)
gg, corr.

(
z; qT

2,
n2qT

2

(2pn/z)2

)
= − αuS µ

2ε
0 Sε
π

eεγE

π1−ε qT2 CA z(1− z), (6.11)

FTL (1R)
ga, corr.

(
z; qT

2,
n2qT

2

(2pn/z)2

)
= αuS µ

2ε
0 Sε
π

eεγE

π1−ε qT2 TR
z(1− z)

1− ε , a = q, q̄. (6.12)

The Fourier transformation F̃TL
ca of the TL TMD function FTL

ca is defined analogous
to the SL case: we simply use eqs. (4.19)–(4.21) with the replacements Fca → FTL

ca and
F̃ca → F̃TL

ca . The perturbative expansion of the b space functions F̃TL
ca can be written as

follows:

F̃TL
ca, az.in.

(
z; b2

b20
,

n2b20
(2pn/z)2 b2

)
= δcaδ(1− z) + F̃

TL (1R)
ca, az.in.

(
z; b2

b20
,

n2b20
(2pn/z)2 b2

)
+O(α2

S),

c = g, q, q̄, (6.13)

F̃TL
ga, corr.

(
z; b2

b20
,

n2b20
(2pn/z)2 b2

)
= F̃TL (1R)

ga, corr.

(
z; b2

b20
,

n2b20
(2pn/z)2 b2

)
(6.14)

+
[
F̃TL (2R)
ga, corr.

(
z; b2

b20
,

n2b20
(2pn/z)2 b2

)
+ F̃TL (1R1V )

ga, corr.

(
z; b2

b20
,

n2b20
(2pn/z)2 b2

)]
+O(α3

S),

a = g, q, q̄.

The first-order contributions F̃TL (1R)
ca, az.in. and F̃

TL (1R)
ga, corr. are directly computed from eqs. (6.10)–

(6.12) by using the Fourier transformations in eqs. (4.22) and (4.23). We obtain the fol-
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lowing results:

F̃
TL (1R)
ca, az.in.

(
z; b2

b20
,

n2b20
(2pn/z)2 b2

)
= αuS Sε

π

(
µ2

0 b2

b20

)+ε
e−εγE Γ(1− ε)

(−ε)

{
P (1)
ac (z) + εP̂ ′ac(z; ε)

− δca δ(1− z)
[
A

(1)
c

2

(
1
ε

+ ψ(1− ε)− ψ(1) + ln n2b20
(2pn/z)2 b2

)
+ γc

2

]}
, c = g, q, q̄,

(6.15)

F̃TL (1R)
gg, corr.

(
z; b2

b20
,

n2b20
(2pn/z)2 b2

)
= αuS Sε

π

(
µ2

0 b2

b20

)+ε

e−εγE Γ(1− ε)CAz(1− z), (6.16)

F̃TL (1R)
ga, corr.

(
z; b2

b20
,

n2b20
(2pn/z)2 b2

)
= −α

u
S Sε
π

(
µ2

0 b2

b20

)+ε

e−εγE Γ(1− ε)TR
z(1− z)

1− ε , a = q, q̄.

(6.17)

In the right-hand side of eq. (6.15) we have used the lowest-order Altarelli-Parisi kernel
P

(1)
ac (x) (see eq. (4.26)) and the contribution P̂ ′ac to the d-dimensional real emission kernel
P̂ac (see eqs. (4.11)–(4.13)).

The perturbative expansion of F̃TL
ca in powers of the bare QCD coupling αuS has ε-pole

contributions of UV and IR origins. The UV poles are removed by using eq. (4.2) and
introducing the renormalized coupling αS(µ2

R). The IR poles can be factorized, similarly
to the SL case in eqs. (4.30) and (4.31). The IR factorization formulae for the b space
TMD functions F̃TL

ca in the TL region are

F̃TL
ca, az.in.

(
z; b2

b20
,

n2b20
(2pn/z)2 b2

)
= ZTL

c

(
αS(b20/b2), n2b20

(2pn/z)2 b2

)

×
∑
b

∫ 1

z

dx

x1−2ε C̃
TL
cb

(
z/x;αS(b20/b2), ε, n2b20

(2pn/z)2 b2

)
Γ̃TL
ba (x; b20/b2), (6.18)

F̃TL
ga, corr.

(
z; b2

b20
,

n2b20
(2pn/z)2 b2

)
= ZTL

g

(
αS(b20/b2), n2b20

(2pn/z)2 b2

)

×
∑
b

∫ 1

z

dx

x1−2ε G̃
TL
gb

(
z/x;αS(b20/b2), ε, n2b20

(2pn/z)2 b2

)
Γ̃TL
ba (x; b20/b2). (6.19)

The factor Γ̃TL
ba (x;µ2

F ) in the right-hand side of eqs. (6.18) and (6.19) is the customary
collinear-divergent function that defines the scale-dependent PFF db(z;µ2

F ) in the MS fac-
torization scheme. The relation between db(z;µ2

F ) and the bare PFF d
(0)
a (x) is

db(z;µ2
F ) =

∑
a

∫ 1

z

dx

x
Γ̃TL
ba (z/x;µ2

F ) d(0)
a (x). (6.20)

The perturbative expansion of Γ̃TL
ba is

Γ̃TL
ba (z;µ2

F ) = δba δ(1− z)− αS(µ2
F )

π

P
TL (1)
ba (z)
ε

+O(α2
S), (6.21)

– 43 –



J
H
E
P
0
3
(
2
0
2
3
)
2
0
0

with
P

TL (1)
ba (z) = P

(1)
ab (z), (6.22)

where P (1)
ba (z) is the lowest-order Altarelli-Parisi kernel in eq. (4.26). We recall that the SL

and TL functions Γ̃ba and Γ̃TL
ba at O(αS) are directly related through the Gribov-Lipatov

relation [106, 107], namely, through the transposition ba ↔ ab of the flavour indices (see
eqs. (4.33), (6.21) and (6.22)).

The structure of the eqs. (6.18) and (6.19) for the TL functions is analogous to that
of the corresponding eqs. (4.30) and (4.31) for the SL functions. The IR ε-poles of F̃TL

ca

are factorized in the fragmentation related function Γ̃TL
ba (x; b20/b2) and in the overall per-

turbative function ZTL
c . The remaining functions C̃TL

cb and G̃TL
gb are finite and independent

of n2 (i.e., n2(b20/b2)/(2np/z)2) in the limit ε → 0, order-by-order in the perturbative
expansion in powers of αS(b20/b2). The main difference between eqs. (4.30), (4.31) and
eqs. (6.18), (6.19) is due to the phase space convolution factor x−1+2ε in the IR factor-
ization formulae for the TL functions. The ε dependence of such convolution factor has
a general origin from the d-dimensional kinematics of inclusive single-particle production
and fragmentation (see, e.g., ref. [74]).

The first-order perturbative results for the TL factors ZTL
c , C̃TL

cb and G̃TL
gb in eqs. (6.18)

and (6.19) are obtained by using the expressions of F̃TL (1R)
ca in eqs. (6.15)–(6.17) and they

are reported below. We note that these TL factors depend on n2 through the variable
λ̃ = n2(b20/b2)/(2np/z)2.

The IR factor ZTL
c in eqs. (6.18) and (6.19) has the following perturbative expansion:

ZTL
c (αS, λ̃) = 1 + αS

π
ZTL (1)
c (λ̃) +O(α2

S), (6.23)

and its first-order contribution is

ZTL (1)
c (λ̃) = 1

2

[
A(1)
c

( 1
ε2

+ 1
ε

ln λ̃
)

+ 1
ε
γc

]
− π2

24A
(1)
c + hTL (1)

c + h̃TL (1)
c (ε, λ̃). (6.24)

Similarly to eq. (4.35) for the SL case, the terms hTL (1)
c and h̃

TL (1)
c in eq. (6.24) spec-

ify the resummation-scheme dependence. In particular, we have hTL (1)
c = 0 in the hard

scheme [27] and hTL (1)
c = π2A

(1)
c /24 in a minimal scheme in which ZTL (1)

c contains only ε
pole contributions in the limit ε → 0. The term h̃

TL (1)
c (ε, λ̃) vanishes in the limit ε → 0.

We note that the SL contribution Z
(1)
c in eq. (4.35) and the TL contribution Z

TL (1)
c in

eq. (6.24) are equal, modulo their scheme-dependence arbitrariness.
The perturbative expansion of the IR finite function C̃TL

ca in eq. (6.18) is

C̃TL
ca (z;αS, ε, λ̃) = δca δ(1− z) + αS

π
C̃TL (1)
ca (z; ε, λ̃) +

(
αS
π

)2
C̃TL (2)
ca (z; ε, λ̃) +O(α3

S),

c = q, q̄, g,

(6.25)

and the limit ε → 0 gives the TL collinear function CTL
ca (z;αS) = C̃TL

ca (z;αS, ε = 0, λ̃) for
transverse-momentum resummation (see section 2). At O(αS) we explicitly obtain

CTL (1)
ca (z) = −P̂ ′ac(z; ε = 0) + 2P (1)

ac (z) ln z − δca δ(1− z) hTL (1)
c , c = q, q̄, g, (6.26)
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which agrees with the known results in the literature [23, 35, 36, 41]. The complete ε
dependence of C̃TL (1)

ca is

C̃TL (1)
ca (z; ε, λ̃) = − e−εγE Γ(1− ε) P̂ ′ac(z; ε) + z2ε − e−εγE Γ(1− ε)

ε
P (1)
ac (z)

− δca δ(1− z)
{

1− e−εγE Γ(1− ε)
2ε

[
A(1)
c

(1
ε

+ ln λ̃
)

+ γc

]
(6.27)

− e−εγE Γ(1− ε)
2ε A(1)

c (ψ(1− ε)− ψ(1))− π2

24A
(1)
c + hTL (1)

c + h̃TL (1)
c (ε, λ̃)

}
, c = q, q̄, g.

Comparing the SL function in eq. (4.37) with the TL function in eq. (6.26), we note that
they both involve the contribution P̂ ′ca of O(ε) to the d-dimensional kernel P̂ca(z; ε). In
particular, the transposition of flavour indices (i.e., P̂ ′ca ↔ P̂ ′ac) in eqs. (4.37) and (6.26) is
due to the crossing relation in eq. (6.7). The TL function C̃

TL (1)
ca also includes the term

2P (1)
ac (z) ln z, which is due to the collinear factorization of the fragmentation contributions

in the MS factorization scheme (see the convolution factor x−1+2ε in eq. (6.18)).
The azimuthal-correlation function G̃TL

ga in eq. (6.19) has the following perturbative
expansion:

G̃TL
ga (z;αS, ε, λ̃) = αS

π
G̃TL (1)
ga (z; ε, λ̃) +

(
αS
π

)2
G̃TL (2)
ga (z; ε, λ̃) +O(α3

S). (6.28)

At O(αS) the azimuthal-correlation component F̃TL
ga, corr. of the b space TMD function does

not require the factorization of IR divergent contributions, and we directly obtain the
following results:

G̃TL (1)
gg (z; ε, λ̃) = e−εγE Γ(1− ε) CA z(1− z), (6.29)

G̃TL (1)
gq (z; ε, λ̃) = −e−εγE Γ(1− ε) TR

z(1− z)
1− ε , (6.30)

and G̃
TL (1)
gq̄ (z; ε, λ̃) = G̃

TL (1)
gq (z; ε, λ̃). The limit ε → 0 of eq. (6.28) gives the transverse-

momentum resummation function GTL
ga (z;αS) of section 2, and we have G̃TL (m)

ga (z; ε =
0, λ̃) = G

TL (m)
ga (z). Setting ε = 0 in eqs. (6.29) and (6.30), we find agreement with the

results for GTL (1)
ga (z) in eqs. (2.10) and (2.11). The computation of the TL azimuthal-

correlation functions GTL (2)
ga (z) at O(α2

S) is discussed in the following subsection.

6.3 TL azimuthal correlations at O(α2
S)

We briefly describe the calculation at O(α2
S) of the azimuthal-correlation components

FTL
ga, corr. and FTL

ga, corr. of the differential and TMD collinear functions in the TL collinear
region.

At O(α2
S) the differential collinear function FTL

ga, corr.(p, k;n) receives the two contribu-
tions, FTL (2R)

ga, corr. and FTL (1R1V )
ga, corr. , in eq. (6.1).

The term FTL (2R)
ga, corr. is obtained by inserting the tree-level collinear kernel

P(0)
g→a1a2a(k1, k2, p;n) in eq. (3.5) and performing the integration over k1 and k2 at fixed
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momentum k = k1 + k2. This integration procedure is completely similar to that involved
in the SL collinear region and, therefore, by direct comparison of eqs. (3.5) and (3.14) we
obtain

FTL (2R)
ga, corr. (p, k;n) = Na(ε)

Ng(ε)
[
F (2R)
ga, corr.(p, k;n)

]
p→−p

, (6.31)

where F (2R)
ga, corr.(p, k;n) (a = g, q, q̄) are the contributions in eqs. (5.5)–(5.14) to the SL

collinear functions Fga, corr.. The SL-TL crossing relation in eq. (6.31) is analogous to the
corresponding relation at O(αS) (see eq. (6.2) and accompanying comments).

The term FTL (1R1V )
ga, corr. (p, k;n) is directly proportional (see eqs. (3.5) and (3.12)) to

the azimuthal-correlation component of the one-loop collinear kernel P(1)µν
g→a1a(k, p;n). This

kernel can be evaluated by squaring the corresponding collinear-factorization results [9, 77–
79] at the amplitude level. We obtain the following explicit expressions:

FTL(1R1V )
gg,corr. (p, k;n) = −

(
αusµ

2ε
0 Sε
π

)2
e2εγEΓ(1 + ε)Γ2(1− ε)

π1−εΓ(1− 2ε)
CAδ+(k2)
(2pk)1+ε

{
− Nf

6 + CA
6

(6.32)

+ CAzTL(1− zTL)
[
− 1
ε2

+ 1
ε

ln (zTL(1− zTL))−π
2

6 −
1
2 ln2

(1− zTL
zTL

)]}
cos(πε) +O(ε),

FTL(1R1V )
ga,corr. (p, k;n) =

(
αusµ

2ε
0 Sε
π

)2
e2εγEΓ(1 + ε)Γ2(1− ε)

π1−εΓ(1− 2ε)
TRδ+(k2)
(2pk)1+ε

zTL(1− zTL)
1− ε

×
{
CA

[
1
ε2

+ 1
ε

(11
3 + ln (zTL(1− zTL))

)
+ 76

9 −
π2

6 −
1
2 ln2

(1− zTL
zTL

)]

+ CF

[
− 2
ε2
− 3
ε
− 8

]
+Nf

[
− 2

3ε −
10
9

]}
cos(πε) +O(ε), (a = q, q̄), (6.33)

where the momentum fraction zTL is

zTL = n̄p

n̄(p+ k) , (6.34)

and n̄µ is the light-like auxiliary vector in eq. (5.4). Similarly to the SL results in eqs. (5.1)
and (5.2), we have neglected contributions to FTL (1R1V )

ga, corr. (p, k;n) with a harmless depen-
dence on n2. We note that the SL expressions in eqs. (5.1) and (5.2) and the corresponding
TL expressions in eqs. (6.32) and (6.33) are not related by a crossing relation similar to
eqs. (6.2) and (6.31). This is due to the fact that the corresponding SL and TL one-
loop kernels P(1)

g→a1a(k, p;n) cannot be directly related by the replacement p↔ −p [12], as
recalled at the beginning of section 5.1.

As discussed at the end of sections 3.2 and 6.1, setting n2 = 0, s = (p + k)2 and
p⊥ = zkT, the collinear function FTL

ca (p, k;n) is directly related to the SCET fragmenting
jet function Gca(z, s,p⊥) [92]. At O(α2

S) we have G(2)
ca (z, s,p⊥) = FTL (1R1V )

ca (p, k;n) +
FTL (2R)
ca (p, k;n), where G(2)

ca is the second-order contribution to Gca. The expressions in
eqs. (6.31)–(6.33) give the explicit result for the azimuthal-correlation component of Gca.

The azimuthal-correlation component of the TL TMD function at O(α2
S) can be evalu-

ated by integrating over k (see eq. (3.17)) the results for FTL (2R)
ga, corr. (p, k;n) and
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FTL (1R1V )
ga, corr. (p, k;n) that we have just presented in eqs. (6.31)–(6.33). The integration pro-

cedure is completely similar to that of section 5.2 for the case of the SL collinear function.
In particular, we recall that we use a time-like auxiliary vector nµ to avoid rapidity diver-
gences. Using eqs. (6.31)–(6.33) we compute the corresponding contributions FTL (2R)

ga, corr. and
F

TL (1R1V )
ga, corr. to the TMD function in qT space, and then the b-space terms F̃TL (2R)

ga, corr. and
F̃

TL (1R1V )
ga, corr. in eq. (6.14).

The expression of F̃TL
ga, corr. at O(α2

S) has ε-pole divergences of UV and IR origins. The
UV divergences are removed by renormalizing the bare coupling at the scale µ2

R = b20/b2.
The IR divergences are treated by expanding the IR factorization formula in eq. (6.19) up
to O(α2

S), and we have

F̃TL
ga,corr.(z;b2/b20, λ̃) = αS(b20/b2)

π
G̃TL(1)
ga (z;ε, λ̃)+

(
αS(b20/b2)

π

)2 [
ZTL(1)
g (λ̃) G̃TL(1)

ga (z;ε, λ̃)

− 1
ε

∑
b

∫ 1

z

dx

x1−2ε G̃
TL(1)
gb (z/x;ε, λ̃)PTL(1)

ba (x)+G̃TL(2)
ga (z;ε, λ̃)

]
+O(α3

S),

(6.35)

where λ̃ = n2(b20/b2)/(2np/z)2. The first-order functions PTL (1)
ba , Z

TL (1)
g and G̃TL (1)

ga are
given in eqs. (6.22), (6.24), (6.29) and (6.30). Therefore, using eq. (6.35) and our results for
F̃

TL (2R)
ga, corr. and F̃TL (1R1V )

ga, corr. , we obtain the explicit expressions of the functions G̃TL (2)
ga (z; ε, λ̃)

(a = g, q, q̄) up to O(ε0). We find that G̃TL (2)
ga are finite and independent of λ̃ in the

limit ε → 0, namely G̃TL (2)
ga (z; ε = 0, λ̃) = G

TL (2)
ga (z). Our results for the TL azimuthal-

correlation functions GTL (2)
ga (z) are

GTL(2)
gg (z) =CFNf

{
1

18z+ 1
2 +z− 14z2

9 +ln(z)
[
− 1

3z+1+ 3z
2

]
+ 3z

4 ln2(z)
}

+CANf

{
− 1

36z−
1
12−

4z
9 + 17z2

36 −
z

6 ln(z)
}

+C2
A

{
− 1

36z−
5
12−

20z
9 + 11z2

4

+ln(z)
[ 1

3z−1− 67z
12 +z2

]
+z(1−z)

[
ln(z) ln(1−z)−Li2(1−z)

]
−ln2(z)

[
3z− z

2

2

]}
−hTL(1)

g CAz(1−z), (6.36)

GTL(2)
gq (z) =CF

{
− 1

8 + 3z
4 −

5z2

8 −ln(z)
[

1
4 + 3z

8 −
z2

4

]
+ln2(z)

[
3z
8 −

3z2

4

]

+z(1−z)
[1

4 ln(1−z)− 3
2 ln(z) ln(1−z)+ 1

4 ln2(1−z)−Li2(z)−π
2

12

]}
+Nf

{
z(1−z)

[1
9−

1
6 ln(z)+ 1

6 ln(1−z)
]}

+CA
{

ln(z)
[

1
4 + 13z

6 −
17z2

12

]

+ln2(z)
[

3z
4 + z2

2

]
+z(1−z)

[
− 25

36−
5
12 ln(1−z)− 1

2Li2(1−z)

− 1
4 ln2(1−z)+π2

4

]}
+hTL(1)

g

1
2z(1−z), (6.37)
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and GTL (2)
gq̄ (z) = G

TL (2)
gq (z). The coefficient hTL (1)

g in eqs. (6.36) and (6.37) parametrizes
the resummation-scheme dependence, and we recall that hTL (1)

g = 0 in the hard scheme
(see eqs. (6.24) and (6.26)).

The transverse-momentum resummation functions GTL (2)
ga (z) were first computed in

ref. [23] (the hard scheme is used therein), by using a SCET framework with properly
regularized rapidity divergences. We have presented the first recomputation of GTL (2)

ga (z),
and we have used a fully independent method. Our results in eqs. (6.36) and (6.37) agree
with those in ref. [23].

7 Summary

QCD squared amplitudes are singular in the multiparton collinear limit, and the singular
behaviour is controlled by the splitting kernels of a factorization formula that has a process-
independent structure.

In this paper we have exploited the collinear factorization of QCD amplitudes to intro-
duce collinear functions that contribute to QCD resummation formulae for hard-scattering
cross sections. The collinear functions are defined through the integration of the multipar-
ton splitting kernels over a constrained phase space that depends on the hard-scattering
observable of interest. Considering different phase-space constraints, one can define dif-
ferent collinear functions, which embody the logarithmically-enhanced contributions of
collinear origin to the corresponding hard-scattering observables. In this paper we have
explicitly considered differential collinear functions that can in turn be used to evaluate
TMD functions for transverse-momentum resummation and beam functions for N -jettiness
resummation.

A distinctive and relevant feature of our collinear functions is their dependence on
an auxiliary vector nµ, which directly follows from the corresponding n dependence of the
splitting kernels. In applications of collinear factorization of QCD amplitudes, the auxiliary
vector is usually chosen to be light-like. We use both light-like and time-like auxiliary
vectors. In the paper we have discussed how the n dependence controls the behaviour
of the splitting kernels in kinematical regions that are far from the collinear region. In
particular, in the case of TMD functions we have shown that the use of a time-like vector
nµ avoids the rapidity divergences that are instead present if nµ is light-like.

The collinear functions can be introduced for the cases of both final-state fragment-
ing partons and initial-state colliding partons. The final-state and initial-state collinear
functions use the splitting kernels in the corresponding TL and SL collinear regions, re-
spectively. The TL splitting kernels and, consequently, the final-state collinear functions
are process independent. In contrast, the initial-state collinear functions are, in general,
process dependent beyond O(α2

S) (although they have a process-independent structure).
Such process dependence is a consequence of the violation of strict collinear factorization
of the QCD squared amplitudes in the SL collinear regions.

As discussed in the paper, our TMD and beam functions with a light-like auxiliary
vector nµ can be related to the analogous SCET functions in the literature. In the TL
region our collinear functions are equivalent to the parton level SCET functions. In the
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SL region the same equivalence is limited up to O(α2
S), since at higher perturbative orders

our collinear functions are process dependent.
We have discussed the perturbative computation of the collinear functions. Such com-

putation leads to UV and IR divergences, which we have regularized by the customary
procedure of analytic continuation in d = 4 − 2ε space-time dimensions. The ε-pole di-
vergences of UV origin are removed by the renormalization of the QCD coupling αS. The
IR divergences can instead be factorized from IR finite collinear terms that directly con-
tribute to QCD resummation formulae of hard-scattering observables. At the cross section
level the IR divergences of the collinear functions are partly removed by the ‘renormal-
ization’ of the bare parton densities and fragmentation functions, and the remaining part
is then cancelled by the IR terms due to the soft and purely-virtual contributions to the
hard-scattering observable.

We have illustrated the perturbative features of the collinear functions by performing
their calculation at O(αS) and discussing the explicit dependence on the auxiliary vector nµ.

In the case of TMD observables, the collinear functions have both azimuthal-indepen-
dent and azimuthal-correlation components. The azimuthal-correlation component is spe-
cific of the gluon partonic channels and is also known as the contribution of linearly-
polarized gluons. We have presented the calculation at O(α2

S) of the azimuthal-correlation
component of the differential and TMD collinear functions. Performing UV renormaliza-
tion and factorization of the IR divergences, we have computed the O(α2

S) contribution of
linearly-polarized gluons to transverse-momentum resummation. Our result for both the
SL and TL regions agree with the results obtained by other authors using SCET functions
and related theoretical methods.

The computation at O(α2
S) of the azimuthal-independent component of the collinear

functions will be presented in future work, where we shall also discuss the related com-
putation of the n-dependent soft factor for transverse-momentum resummation. We also
plan to study collinear functions for other hard-scattering observables.

Certainly, an important future step can be the explicit extension of our theoretical
framework to O(α3

S) and higher perturbative orders. In particular, the explicit computation
of the process dependence of the collinear functions in the SL region is very relevant. This
computation requires the preliminary calculation at O(α3

S) of the splitting kernels for the
SL collinear limit of the QCD scattering amplitudes. At present, such SL splitting kernels
are not known at the required order in the ε expansion.
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