
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Collision and Deadlock Avoidance in Multirobot
Systems: A Distributed Approach

Zhou, Yuan; Hu, Hesuan; Liu, Yang; Ding, Zuohua

2017

Zhou, Y., Hu, H., Liu, Y., & Ding, Z. (2017). Collision and Deadlock Avoidance in Multirobot
Systems: A Distributed Approach. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 47(7), 1712‑1726.

https://hdl.handle.net/10356/83439

https://doi.org/10.1109/TSMC.2017.2670643

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
[http://dx.doi.org/10.1109/TSMC.2017.2670643].

Downloaded on 26 Aug 2022 18:57:46 SGT

IEE
E P

ro
of

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

Collision and Deadlock Avoidance in Multirobot
Systems: A Distributed Approach

Yuan Zhou, Hesuan Hu, Senior Member, IEEE, Yang Liu, and Zuohua Ding, Member, IEEE

Abstract—Collision avoidance is a critical problem in motion1

planning and control of multirobot systems. Moreover, it may2

induce deadlocks during the procedure to avoid collisions. In3

this paper, we study the motion control of multirobot systems4

where each robot has its own predetermined and closed path5

to execute persistent motion. We propose a real-time and dis-6

tributed algorithm for both collision and deadlock avoidance by7

repeatedly stopping and resuming robots. The motion of each8

robot is first modeled as a labeled transition system, and then9

controlled by a distributed algorithm to avoid collisions and dead-10

locks. Each robot can execute the algorithm autonomously and11

real-timely by checking whether its succeeding state is occupied12

and whether the one-step move can cause deadlocks. Performance13

analysis of the proposed algorithm is also conducted. The con-14

clusion is that the algorithm is not only practically operative but15

also maximally permissive. A set of simulations for a system with16

four robots are carried out in MATLAB. The results also validate17

the effectiveness of our algorithm.18

Index Terms—Collision and deadlock avoidance, discrete event19

systems, distributed algorithm, maximally permissive, motion20

control, multirobot systems.21

I. INTRODUCTION22

COMPARED with their single-robot counterparts,23

multirobot systems become increasingly prevailing24

thanks to their benefits like wide coverage, diverse func-25

tionality, and strong flexibility [18]. Besides, with the26

collective behavior of multiple robots, a multirobot system27

has the enthralling capability to accomplish sophisticated28

tasks [20]. Multirobot systems have been applied in many29

Manuscript received June 9, 2016; revised August 4, 2016; accepted
February 2, 2017. This work was supported in part by the Natural
Science Foundation of China under Grant 61573265, Grant 61203037, Grant
51305321, Grant 61210004, and Grant 61170015, in part by the Fundamental
Research Funds for the Central Universities under Grant K7215581201, Grant
K5051304004, and Grant K5051304021, in part by the New Century Excellent
Talents in University under Grant NCET-12-0921, in part by the Academic
Research Fund Tier 1 by Ministry of Education in Singapore under Grant
2014-T1-001-147, and in part by the Academic Research Fund Tier 2 by
Ministry of Education in Singapore under Grant MOE2015-T2-2-049.AQ1 This
paper was recommended by Associate Editor C. J. F. Silvestre.

Y. Zhou and Y. Liu are with the School of Computer Science and
Engineering, College of Engineering, Nanyang Technological University,
Singapore 639798 (e-mail: y.zhou@ntu.edu.sg; yangliu@ntu.edu.sg).

H. Hu is with the School of Computer Science and Engineering, College
of Engineering, Nanyang Technological University, Singapore 639798, and
also with the School of Electro-Mechanical Engineering, Xidian University,
Xi’an 710071, China (e-mail: huhesuan@gmail.com).

Z. Ding is with the School of Information Sciences, Zhejiang Sci-Tech
University, Hangzhou 310018, China (e-mail: zouhuading@hotmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2017.2670643

areas [7], [20], [26], [34], such as surveillance tasks, 30

reconnaissance missions, security service, and so on. 31

However, a common but essential and challenging prob- 32

lem for the motion planning of multirobot systems is to 33

avoid collisions, including collisions with obstacles and/or 34

other robots. Many heuristic methods have been proposed 35

to address this problem, such as optimization program- 36

ming [8], [9], [24], reciprocal collision avoidance [1], poten- 37

tial fields [27], sampling-based methods [3], formal methods 38

based on linear temporal logic (LTL)/CTL [16], [33], and so AQ239

on. Generally, there are two basic ideas that are applied. The 40

first one focuses on the systems where robots have flexible 41

paths and can change their paths at any time. It usually avoids 42

collisions by planning/replanning collision-free paths so that 43

different robots can be at different places at the same time. 44

This idea concentrates on the change of robots’s trajectories. 45

The second one is for the systems where robots have fixed 46

paths, which are limited by the environmental infrastructure, 47

e.g., the highways in a city are predetermined, or are generated 48

by the off-line planners using aforementioned methods. Robots 49

cannot change their paths. Thus, proper motion controllers are 50

designed, e.g., assigning robots with different initial delays, 51

so that each robot can traverse a same location at a different 52

time. This idea focuses on the time to traverse a same posi- 53

tion. Note that in some multirobot systems, the two ideas can 54

be combined for motion planning. 55

A nice way to perform a multirobot system is that each robot 56

can change its trajectory freely. However, because of the lim- 57

itation of the environment and infrastructure, sometimes the 58

paths of robots are not allowed to change. Such scenarios are 59

common in the transport systems and warehouses. For exam- 60

ple, autonomous cars are required to move along particular 61

circular roads to monitor the real-time traffic condition in a 62

city; unmanned aerial vehicles are used to fly on determined 63

authorized airways to monitor the air quality, such as temper- 64

ature, PM2.5, and haze. For such scenarios, in practice, we 65

always need to make sure that there are no static obstacles on 66

the paths. 67

In this paper, we focus on the multirobot systems where 68

each robot needs to move along a predetermined, fixed, and 69

closed path. The paths are assumed to be static obstacle- 70

free. Robots in the same system are homogeneous and are 71

required to do persistent motion. Such systems are first stud- 72

ied in [34] and [35]. Smith et al. [34] investigated the design 73

of the speed controllers of robots to perform persistent tasks 74

without considering collisions or deadlocks. In [35], they fur- 75

ther consider deadlocks since the paths intersect with each 76

2168-2216 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEE
E P

ro
of

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

other. They divide all collision locations into several disjoint77

collision zones. This means for any robot, there exists at least78

one safe location between any two collision zones. Thus, col-79

lisions and physical deadlocks can be avoided at the same80

time by repeatedly stopping and resuming robots such that at81

most one robot can be in an arbitrary collision zone. However,82

this is too conservative and causes low performance of the83

system. In order to improve the performance, some stopping84

policies are proposed. With these policies, each robot inde-85

pendently makes the decision to move or to wait for another86

one. Thus, decision deadlocks can occur because the pair-wise87

decisions made by some robots may contradict with each other.88

However, physically the robots can still move forward. Hence,89

even if it occurs, a decision deadlock can be resolved easily90

by resuming one of the robots.91

This paper is an alternative improvement of that in [35].92

The main difference is the way to deal with collision regions.93

We alternatively consider the collision segments directly. It94

can reduce conservation. However, there may exist two or95

more adjacent collision regions in which a robot collides with96

different robots. Thus, it may cause physical deadlocks dur-97

ing collision avoidance. This means that some robots, if not98

all, cannot move any more physically. Such deadlocks are99

more complicated and dangerous. They should be detected100

and resolved early because once a physical deadlock occurs,101

the system has to be redesigned and started over.102

Researchers have proposed several methods to avoid colli-103

sions and deadlocks, such as Petri nets, automata, graph theory,104

and time-delay methods. However, most of the existing work105

considers the situation that robots move from the initial posi-106

tions to the target positions, rather than persistent motion. We107

consider robots doing persistent motion. This means robots108

should repeatedly traverse their paths. Thus, the existing meth-109

ods cannot be used directly. For example, Petri net-based110

method can cause state explosion since each time a robot needs111

to check the whole state space to determine whether it is safe112

to move back to its current state; we may not find proper time113

delays for robots since the motion time is infinite. Moreover,114

these methods are with poor scalability.115

In this paper, we propose a distributed algorithm to avoid116

deadlocks by repeatedly stopping and resuming robots. Our117

approach relates to control of discrete-event systems (DESs).118

We first model the robot motion by labeled transition systems119

(LTSs) based on the intersections of their paths. Then a dis-120

tributed algorithm is proposed to avoid collisions real-timely121

among different robots. Under this algorithm, each robot can122

execute its own mechanism autonomously to avoid collisions123

by checking whether its succeeding state is occupied. Despite124

its applicability to avoid collisions, such a scheme is so simple,125

if not naive, that deadlocks may occur. Hence, an improved126

distributed algorithm is proposed to avoid not only collisions127

but also deadlocks. In the improved algorithm, a procedure is128

added to check whether the one-step move of a robot can cause129

a deadlock. If “yes,” the algorithm will control the robot to stop130

its motion. A set of simulations are carried out in MATLAB.131

The results validate the effectiveness of the algorithm.132

The main contribution of this paper is a real-time and dis-133

tributed algorithm to avoid collisions and physical deadlocks134

in multirobot systems. It has the following advantages. First, 135

robots can execute the algorithm in a distributed manner. Each 136

robot only needs to communicate with its neighbors within two 137

states to exchange their current states and verify collisions and 138

deadlocks. Thus, it can avoid state explosion. Second, it has 139

sound scalability and adaptability. This means that the algo- 140

rithm can be adaptive to the change of the number of robots 141

in the system. Thus, it is available to add or decrease robots 142

during the execution of the system. Third, this algorithm is 143

maximally permissive for the motion of robots in terms of 144

the high-level abstraction. Thus, each robot in the multirobot 145

system can achieve high performance in terms of high-level 146

abstraction, i.e., they can stop as less as possible and move as 147

smoothly as possible. 148

The remaining part of this paper is organized as follows. In 149

Section II, we briefly describe some existing related work. In 150

Section III, we give the LTS models for the motion of a single 151

robot and the entire system. The persistent motion problem of 152

the system is also stated in this section. A distributed algo- 153

rithm for collision avoidance is presented in Section IV. In 154

Section V, we propose an improved distributed algorithm for 155

both collision and deadlock avoidance. The simulation results 156

and implementation are described in Section VI. Section VII 157

gives some discussion about this paper. Finally, the conclusion 158

and some future work are discussed in Section VIII. 159

II. RELATED WORK 160

Motion planning for multiple robots has been given a great 161

attention both in academia and in industry. The main objective 162

is to command each robot finish its required tasks without 163

causing any collisions with external obstacles and/or other 164

robots. Despite its appearance to be simple, this problem can 165

be challenging to solve appropriately. Hopcroft et al. [13] show 166

that even a simplified 2-D case of this problem is PSPACE- 167

hard. Many researchers have made great effort to the solution 168

of collision and deadlock avoidance in multirobot systems and 169

carried out much fruitful work, such as [1]–[3], [5], [9], [10], 170

[12], [14]–[17], [21]–[23], [25], [27], [28], [32], [33], [35], 171

and [37], and the references therein. 172

Generally, researchers focus on the motion planning in two 173

different scenarios of multirobot systems: 1) robots can change 174

their paths and 2) robots are fixed on prescribed paths. 175

For the first scenario, by planning/replanning the 176

motion paths of robots, each robot can deviate from 177

its prescribed path so as to circumvent obstacles and other 178

robots [1], [3], [8], [9], [12], [14]–[17], [21], [27], [32], [33]. 179

Gan et al. [9] used a decentralized gradient-based optimiza- 180

tion approach to avoiding interagent collisions in a team of 181

mobile autonomous agents. The safety distance constraints 182

are dynamically enforced in the optimization process of the 183

agents’ real-time group mission. Thus, solving the distributed 184

optimization problem of each robot can generate a real-time 185

internal collision-free path. 186

Kloetzer and Belta [16] proposed a hierarchical framework 187

for planning and control of arbitrarily large groups of robots 188

with polyhedral velocity bounds moving in polygonal envi- 189

ronments with polygonal obstacles. In their approach, the 190

IEE
E P

ro
of

ZHOU et al.: COLLISION AND DEADLOCK AVOIDANCE IN MULTIROBOT SYSTEMS: DISTRIBUTED APPROACH 3

inter-robot collision avoidance is described by LTL specifica-191

tions. Thus, under the framework, only the paths that satisfy192

the LTL specifications can be generated, thereby guaranteeing193

no collisions.194

However, the methods based on this idea can only be applied195

by the systems where robots can change their trajectories at196

any time. Thus, they cannot be applied in this paper since all197

the robots in our system have fixed prescribed paths.198

Usually, the idea to avoid collisions in the second sce-199

nario is that to avoid collisions is to make robots traverse the200

same location at different times [2], [34]–[36]. Thus, collisions201

among different robots are checked and avoided by controlling202

the robots to traverse the same location at different times. The203

challenge is to optimize the performance of the system such204

that robots can move as smoothly as possible. For example,205

Soltero et al. [35] avoided collisions by stopping and resum-206

ing robots repeatedly. Wang et al. [36] also assigned robots207

different optimal initial time delays using the mixed integer208

linear programming optimization so that each robot can move209

from the initial position to the goal position without causing210

collisions.211

There is some work combining these two ideas to control212

robot motion in the first kind of systems. It usually contains213

two phases. First, an external obstacle-free path for each robot214

is generated. Second, collisions among different robots are215

checked and avoided by controlling the robots to traverse the216

same location at different times. For example, in [10], the D∗
217

search algorithm is first applied to produce an obstacle-free218

path independently for each robot. Once they are obtained, the219

paths are fixed. Then, each robot is associated with an optimal220

time delay as required to avoid collisions with other robots.221

Note that the premise of such methods is that the system can222

plan paths freely.223

III. MULTIROBOT SYSTEMS AND224

PROBLEM STATEMENT225

In this section, we focus on the formal definition of the226

persistent motion problem of a multirobot system. First, we227

give the description of the multirobot systems. Second, we228

use LTSs to model the motion of the system for further anal-229

ysis. Third, we give the formalized problem statement of the230

persistent motion control of such systems. The following nota-231

tions are used. N is the number of robots in the system,232

NN = {1, 2, . . . , N}, and ri, i ∈ NN , is the ith robot.233

A. Description of the Multirobot Systems234

With Fixed Paths235

In this section, we give a brief description of the multirobot236

systems where each robot has a fixed path.237

Definition 1 (Path): The path of robot ri, denoted as P i, is238

a simple, closed, and directed curve defined by the parameter239

equation P i = P(θ), θ ∈ [0, 1] and P(0) = P(1). The robot’s240

motion direction is given by increasing θ .241

Remark 1: For an automated ground vehicle, P i is a curve242

in the 2-D Euclidean space, i.e., R
2, while for an unmanned243

aerial vehicle, P i is the curve in the 3-D Euclidean space,244

Fig. 1. Safe region of robots in practice. Solid curves Pi and P j are the
paths of ri and rj. Their safe regions are bounded by the parallel boundaries

〈P i
l ,P

i
r〉 and 〈P j

l ,P
j

r 〉. The collision region of ri around p is the segment

�pi
1ppi

2.

Fig. 2. Three robots are performing persistent motion tasks along fixed paths.
The arrows near paths denote the motion directions of the robots.

i.e., R
3. In this paper, we consider the robots in R

2. But, it 245

can be directly extended to R
3. 246

Definition 2 (Robot Motion): The motion of ri along P i is 247

a binary relation →P i on P i, i.e., →P i⊂ P i ×P i : ∀x, y ∈ 248

P i, (x, y) ∈→P i , denoted as x →P i y, if ri can move from 249

x to y along P i. 250

The region that may cause collisions between ri and rj, 251

denoted as CRi,j, is the intersection of P i and P j, i.e., 252

CRi,j = P i ∩ P j. Thus, ri’s collision region, denoted as 253

CRi, is defined as the union of CRi,j for all j �= i, i.e., 254

CRi = ∪j∈NN\{i}CRi,j. 255

Remark 2: In this paper, each robot is modeled as a mass 256

point theoretically. But in practice, each robot is located by its 257

center and has a safe radius ρ. By safe radius, we mean that 258

the motion region of ri is the area {z|‖z − xi‖2 < ρ, xi ∈ P i} 259

and any two robots ri and rj should keep a distance 2ρ, i.e., 260

‖xi − yj‖2 < 2ρ, where xi and yj are their positions. Thus, the 261

safe region of ri is Pi
ρ = {x|‖x − xi‖2 < 2ρ, xi ∈ P i}. So the 262

practical collision regions are the intersecting parts of the safe 263

regions. For example, as shown in Fig. 1, the area inside the 264

red dotted circle is the safe region of ri when it is at point x, 265

the blue solid curve is the path of ri, the pair of dashed curves 266

〈P i
l ,P

i
r〉 is the boundaries of the practical safe region of ri. 267

Besides, the intersecting point p represents the gray region. 268

For example, as shown in Fig. 2, there are three robots 269

r1, r2, and r3, whose paths are P1 (the red one), P2 (the 270

green one), and P3 (the blue one), respectively. The arrows 271

denote their motion directions. The collision set between P1
272

and P2 is CR1,2 = CR2,1 = {p1, p3}, between P2 and 273

P3 is CR2,3 = CR3,2 = {p4, p5}, and between P1 and 274

P3 is CR1,3 = CR3,1 = {p2, p6}. Hence, their collision 275

sets are CR1 = {p1, p2, p3, p6}, CR2 = {p1, p3, p4, p5}, and 276

IEE
E P

ro
of

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

CR3 = {p2, p4, p5, p6}, respectively. Thus, r1 will collide with277

r2 when they are both at p1 or p3, and with r3 when r1 and278

r3 are both at p2 or p6. r2 and r3 will collide when they are279

both at p4 or p5.280

Now we give the persistent motion on which our attention281

is focused in this paper.282

Definition 3 (Persistent Motion): Given a closed path, a283

robot is doing persistent motion if it can repeatedly traverse284

the path.285

B. Modeling Robot Motion by LTSs286

Usually, the path of a robot can be an arbitrary curve such287

that we cannot give the detailed mathematical formula for288

this path. This makes it difficult to analyze and design a289

proper motion controller for the system. Fortunately, discrete290

representation of robot motion is a well-established method291

to reduce the computational complexity [29]. Furthermore,292

it is a common practice in approaches that decompose293

a control problem into two hierarchies: 1) the high-level294

discrete planning synthesis and 2) the low-level contin-295

uous feedback controller composition [19]. For example,296

Reveliotis and Roszkowska [30], [31] study the motion plan-297

ning problem from the resource allocation paradigm, where298

the motion space is discretized into a set of cells. Regarding299

these cells as resources, each robot decides which resources it300

needs at different stages. For their method, each robot should301

have a global knowledge of the environment. Different with302

their work, in this paper, we study the motion control problem303

from the theory of supervisory control of DESs, and discretize304

the paths directly. Thus, each robot only needs to know its305

own path, rather than the whole environment. In the sequel,306

we model the motion of robots by LTSs, based on which we307

can do further analysis.308

Definition 4 [4]: An LTS is a quadruple 〈S,�,→, s0〉,309

where:310

1) S is the finite set of states;311

2) � is the finite set of events;312

3) →⊂ S × � × S is the set of transitions;313

4) s0 is the initial state.314

The transition triggered by an event δ from si to sj, i.e.,315

(si, δ, sj) ∈→, can be written as si
δ→ sj. Let s• be the set of316

succeeding states of s, i.e., s• = {si ∈ S : ∃δ ∈ �, � s
δ→ si}.317

Similarly, the set of preceding states of s can be denoted as318

•s = {si ∈ S : ∃δ ∈ �, � si
δ→ s}.319

Modeling of robot motion contains two stages. The first one320

is to discretize the paths and the second one is to construct321

detailed LTSs.322

1) Discretization of the Paths: At the first stage, we need323

to discretize all paths. Consider robot ri’s path P i.324

For any collision region CRi,j, i, j ∈ NN , it can be described325

as a set of disjoint elements, either a segment of a curve or a326

single point. So the discretization is to abstract each element327

as a single state. Thus, we can get the discrete form of the328

collision set between ri and rj, denoted as CSi,j. Then the dis-329

crete form of the collision set CRi, denoted as CSi, can be330

described as CSi = ∪j∈NN\{i}CSi,j. We call CSi the set of col-331

lision states of ri. Note that for robots ri and rj, they have the332

same abstracted states corresponding to the collision set CRi,j. 333

For the remaining part of P i, we use a set of discrete points 334

to partition the path into small subsegments. Each subsegment 335

is abstracted as a discrete state. These states are called private 336

states, denoted as FSi. Thus, the set of discrete states of P i, 337

denoted as Si, is Si = FSi ∪ CSi. Si is called the state space 338

of ri. 339

Remark 3: In practice, we need to consider the safe radius 340

in the discretization process. Thus, though we abstract an 341

intersection point of two paths as a discrete state, this state 342

actually represents a segment of the corresponding path. The 343

practical approach of such abstraction can be described as fol- 344

lows. Suppose 〈P j
l ,P

j
r 〉 is rj’s safe region. Thus, ri’s practical 345

collision path with rj is the set P i ∩ 〈P j
l ,P

j
r 〉. It is a finite 346

set of disjoint segments of P i. Thus, a state si,j represents a 347

segment pair (segi, segj) such that segp
i ⊂ P i ∩ 〈P j

l ,P
j

r 〉, 348

segp
j ⊂ P j ∩ 〈P i

l ,P
i
r〉, and d(segi, segj) < 2ρ, where 349

d(segi, segj) = min{‖x − y‖2|x ∈ segi, y ∈ segj}. For example, 350

for ri, the state abstracted from p in Fig. 1 represents the arc 351
>
pi

1ppi
2. 352

From the discretization process, P i is divided into a set of 353

segments. We denote each one as P i
k, k = 1, 2, . . . , ni, where 354

ni is the total number of segments. Thus, P i = ∪ni

k=1P
i
k, 355

P i
k1

∩ P i
k2

= ∅ for k1 �= k2, and |Si| = ni. Let f i be the map- 356

ping representing the discretization process, i.e., f i : P i → Si, 357

∀P i
k, k ∈ Nni , f i(P i

k) = si
k if P i

j is abstracted as si
j in the 358

process of discretization. Moreover, ∀x ∈ P i
k, f i(x) = si

k. 359

According to the process to discretize a multirobot system, 360

we have the following theorem. 361

Theorem 1: The mapping f i : P i → Si satisfies: 362

1) f i is a bijection with respect to P i
k, k = 1, 2, . . . , ni; 363

2) for any point x, x ∈ P i, there exists one and only one 364

state s ∈ S such that f i(x) = s; 365

3) for any point x, x ∈ CRi,j, f i(x) = f j(x). 366

Proof: AQ3367

1) On one hand, since each P i
k is abstracted as a discrete 368

state, there exists a state si
k ∈ Si such that f i(P i

k) = si
k. 369

On the other hand, Si is the set of discrete states 370

abstracted from P i. Thus, ∀si
k ∈ Si, ∃P i

k such that 371

f i(P i
k) = si

k. 372

2) ∀x ∈ P i, ∃P i
k such that x ∈ P i

k. From 1), ∃! si
k ∈ Si

373

such that f i(x) = si
k. 374

3) ∀x ∈ CRi,j, ∃P i,j ⊂ CRi,j such that x ∈ P i,j. From 375

the discretization, suppose x ∈ P i,j is abstracted as si,j. 376

Thus, f i(P i,j) = si,j and f j(P i,j) = si,j. Based on 2), 377

f i(x) = f j(x) = si,j. 378

From Theorem 1, we can conclude that the process of dis- 379

cretization for a multirobot system does not lose or add any 380

information of the collision locations. Thus, if two robots are 381

in a collision, they are at the same state. 382

2) LTS Models for Robot Motion: At this stage, we con- 383

struct the detailed LTS model for each robot motion. 384

First, consider the finite set of states. Clearly, the finite set 385

of states for robot ri is Si. For convenience, let Si = {si
k : k = 386

1, 2, . . . , ni}. 387

Second, consider the set of events. In a multirobot system, 388

each robot can basically either stop at the current state or go 389

IEE
E P

ro
of

ZHOU et al.: COLLISION AND DEADLOCK AVOIDANCE IN MULTIROBOT SYSTEMS: DISTRIBUTED APPROACH 5

to the next state. Thus, we can abstract the event set of ri as390

�i = {move, stop}.391

Third, consider the set of transitions →i for ri. On one392

hand, for each state si
k ∈ Si, it is able to move to a dif-393

ferent state as the robot is doing persistent motion. Since394

its motion is predetermined, ri can only move to a deter-395

mined state. Therefore, there exists a unique state si
k′ such that396

si
k

move−→i si
k′ . This kind of transitions is denoted as →i,move =397

{si
k

move−→i si
k′ : k = 1, 2, . . . , ni, and si

k′ is uniquely determined398

by si
k}. In fact, the determination of si

k′ can be described as399

follows. Suppose f i(P i
k) = si

k. Based on P i and the motion400

direction, we can find P i
k′ such that P i

k′ is the first segment401

where ri moves to from P i
k. Thus, si

k′ = f i(P i
k′). Moreover,402

if ri moves into P i
k′ , the move event is triggered and the tran-403

sition is fired, and vice verse. On the other hand, robot ri can404

stop at any state si
k. Thus, there is another transition for each405

si
k, i.e., si

k
stop−→i si

k. The set of all this kind of transitions is406

denoted as →i,stop = {si
k

stop−→i si
k : ∀si

k ∈ Si}.407

Hence, the detailed LTS model for robot ri is408

Ti = 〈Si,�i = {move, stop},→i, si
0〉 (1)409

where Si = CSi ∪ FSi, →i=→i,move ∪ →i,stop, and si
0 is the410

initial state of ri.411

Based on the construction of the LTS models, we have the412

following theorem.413

Theorem 2: Suppose P i
k1

and P i
k2

are two different seg-414

ments. ∀x ∈ P i
k1

and ∀y ∈ P i
k2

, if x →P i y, then we have415

f i(P i
k1

)
δ−→i f i(P i

k2
), where δ is a sequence of move and416

stop events.417

Proof: Suppose f i(P i
k1

) = si
k1

and f i(P i
k2

) = si
k2

. ∀x ∈ P i
k1

418

and ∀y ∈ P i
k2

, if it moves from x to y along P i, ri tra-419

verses a set of pairwise adjacent segments P i
l , l = 1, 2, . . . , L,420

obtained from the discretization process. Based on the con-421

struction of the move transitions, when a robot traverses from422

a segment to an adjacent one, the move transition is fired.423

Thus, when it moves to y through these P i
l , ri reaches si

k2
424

by firing a set of move transitions. Note that ri may also stop425

temporarily at some segments. Thus, si
k1

δ−→i si
k2

, where δ is426

a set of move and stop transitions.427

Theorem 2 states that once a robot moves from one segment428

to another, the robot described in the LTS model also transits429

to a corresponding state. Hence, the robots’ motion can be430

described by the constructed LTS models at a higher level.431

Let the notation •i denote ri’s preceding or succeeding oper-432

ator. Thus, •i s = {s′ ∈ Si|s′ move−→i s} and s•i = {s′ ∈ Si|s move−→i433

s′}. ∀s ∈ Si, |•i s| = |s•i | = 1. Thus, for convenience, through-434

out this paper, we directly use the notations •i s and s•i to435

denote the unique preceding and succeeding states of s in Si,436

respectively. Let si
cur be the current state of robot ri.437

Clearly, each state in a robot’s state space has a self-loop438

transition; each self-loop transition has a label stop, while439

other transitions have the label move. For the sake of sim-440

plicity, we do not explicitly show the self-loop transitions and441

labels in the graphic representation of LTS models. At last,442

we give the LTS description of the whole system.443

Fig. 3. Part of a multirobot system containing three robots ri, rj, and rk,
which are colored purple, green, and blue, respectively. The current states of
ri, rj, and rk are s1, s5, and s7, respectively.

Definition 5: Let Ti = 〈Si, �i, →i, si
0〉 be the LTS model 444

of robot ri, i ∈ NN . The entire system can be described as the 445

parallel composition of all the individual transition systems, 446

i.e., T = T1|| · · · ||TN = 〈C,�,→, c0〉, where: 447

1) C = S1 × . . . × SN; 448

2) � = ∪�i is the set of labels; 449

3) →= ∪N
i=1 →i is the set of transitions, ∀c1 = 450

(s1
1, s2

1, . . . , sN
1) ∈ C, c2 = (s1

2, s2
2, . . . , sN

2) ∈ 451

C, (c1, c2) ∈→i if (si
1, si

2) ∈→i, while s j
1 = s j

2 for j �= i; 452

4) c0 = (s1
0, s2

0, . . . , sN
0) is the initial configuration. 453

For any configuration c = (s1, s2, . . . , sN), c(i) = si. The 454

current configuration of the system is denoted as ccur = 455

(s1
cur, s2

cur, . . . , sN
cur), and so ccur(i) = si

cur. 456

In the graphic representation of a multirobot system, each 457

circle represents a state and the circle with a colored cross 458

represents the current state of a robot. Arcs with the same color 459

of a cross represent the transitions of the robot represented by 460

this cross. Different colors represent different robots and their 461

transitions. For example, Fig. 3 shows a part of the LTS model 462

of a system containing ri, rj, and rk. The purple cross and arcs 463

represent the current state and the move transitions of ri, while 464

the green ones represent the current state and move transitions 465

of rj, and the blue ones the current state and move transitions 466

of rk. ri, rj, and rk are at s1, s5, and s7, respectively. The 467

transitions of rj among the given three states are s5
move−→j s2, 468

s2
move−→j s6, s5

stop−→j s5, s2
stop−→j s2, and s6

stop−→j s6. 469

C. Problem Statement 470

When it is doing persistent motion, a robot may collide 471

with other robots. Moreover, deadlocks among some robots, 472

if not all, may occur and collapse the entire system. Thus, a 473

proper control of the aforementioned system should guarantee 474

that each robot can do persistent motion without causing any 475

collisions or deadlocks with other robots. 476

By far, we can give the problem statement of the persistent 477

motion control of the multirobot system in terms of LTSs and 478

LTL. It can be described as follows. 479

Problem: Given the LTS models {Ti}N
i=1 of the robots in a 480

system, find a distributed motion controller for the system such 481

that any reachable configuration c satisfies: 1) ∧i,j∈NN�(i �= 482

j → c(i) �= c(j)) and 2) ∧i∈NN�(c(i) → �¬c(i)). 483

The first requirement means there are no collisions and the 484

second one means each robot cannot stay at a state forever. 485

The evolution of a multirobot system relies on a lot of per- 486

spectives, such as the motion control algorithms to manage 487

IEE
E P

ro
of

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

the movement, the sensors to monitor the environment, the488

communication via a wireless network, and so on. As usual,489

the clarity of one perspective’s discussion can be attained by490

the negligence of others, i.e., their correctness is assured by491

default. In this paper, we focus on the design of motion con-492

trol supervisors. Thus, to simplify the problem, we need some493

additional assumptions, which nevertheless do not necessarily494

compromise our technical contributions.495

1) Location and Communication Assumptions: There are496

two kinds of ranges for each robot. One is the sensing497

range and the other is the communication range. The498

sensing range relies on the sensors to be deployed, such499

as laser sensors; while the communication range is based500

on the wireless network. Thus, we can assume that the501

communication range is larger than the sensing range.502

Moreover, we assume that each robot can locate other503

robots within its sensing range using the sensors, and504

can communicate with those within the communication505

range without packet delays, errors, and drops.506

2) Robot Assumptions: First, each robot can always move507

along its path with a tolerable derivation. This deriva-508

tion can be addressed by constraining the robot into the509

safe radius. Second, different robots have different paths,510

and each robot knows and only knows its own path in511

advance.512

3) Path Assumptions: Each path is a one-way traffic. This513

means each robot is not allowed to move back. At the514

initialization stage, each robot has the priori knowl-515

edge of its whole path. During the motion, each robot516

can identify its collision segments on its path via517

communication before moving into these segments.518

4) System Assumptions: We regard the multirobot systems519

as concurrent ones with respect to the high-level abstrac-520

tion. There are two manifestations of concurrency. For521

robots without conflicts, they can make decisions and522

fire transitions automatically; while for robots with con-523

flicts, e.g., requiring the same state to move to, they524

need to negotiate and determine the robot that can fire525

the transition. But physically, all robots can move along526

their continuous paths simultaneously.527

IV. COLLISION AVOIDANCE528

In this section, we propose a distributed algorithm to avoid529

collisions among robots. The main idea is that if it predicts530

that a collision with another robot can occur after the next531

transition, a robot stops itself to wait for the move of that532

one. Next, we give the detailed description.533

Definition 6: A multirobot system is in a collision if there534

exist two robots ri and rj, i �= j, such that si
cur = s j

cur, where535

si
cur and s j

cur are their current states, respectively.536

Based on Definition 6, a system is collision-free if and only537

if ∀s ∈ CSi,j, there exists at most one robot at s. We assign s a538

Boolean signal signs. When s is empty, signs = 0; otherwise,539

signs = 1. A robot can move to s only when s is a private540

state or signs = 0.541

Since each robot checks its succeeding state autonomously,542

there may be several movable robots toward a same empty543

Fig. 4. Petri net model for collision avoidance between ri and rj.

state. Thus, they should negotiate with each other to deter- 544

mine which one can actually move forward. There are many 545

negotiation strategies. Since all robots have the same priority, 546

we introduce a simple random selection strategy. 547

Let enable be the set of robots that are able to move into the 548

same crowded region without private states at the current time. 549

The selection can be implemented as follows. Suppose there 550

is a token in this region, and only the robot having this token 551

can move forward. First, a random selection time duration is 552

generated by a robot in enable and broadcast to all robots. 553

Second, the token is initially given to an arbitrary robot in 554

enable. Third, the token is passed forward to the robots in 555

enable during the duration. The rule is that: after it has this 556

token for a well-designed interval, the robot transfers the token 557

to the nearest robot, excluding the robot that just transferred 558

the token. Finally, the robot owning the token at the end of 559

the duration gets the right to move. Once the robot to move 560

forward is determined, enable is reset to empty and should 561

be recomputed at the next time. We denote the negotiation 562

process as Negotiate(enable). It returns the robot to move. 563

Thus, the collision avoidance framework for ri is that: after 564

it reaches the preceding state of s, ri checks the signal signs. 565

If signs = 0, the negotiation process is executed. If it gets 566

the right to move, ri moves to s and signs is switched to 1; 567

otherwise, it stops at its current state. 568

We can describe this framework in terms of Petri nets in a 569

more intuitive way. As shown in Fig. 4, places pci
ki

− pci
ki+2 570

(resp., pc j
kj

− pc j
kj+2) represent three consecutive states of ri 571

(resp., rj). Each transition represents the move event from its 572

input place to the output one. pci
ki+1 and pc j

kj+1 represent the 573

same state, say s, in CSi,j. In order to avoid a collision, ri and 574

rj cannot stay at pci
ki+1 and pc j

kj+1 at the same time, i.e., for 575

any reachable marking M, M(pci
ki+1) + M(pc j

kj+1) ≤ 1. We 576

add a control place pcctrl, performing as the signal, i.e., signs. 577

If M(pcctrl) = 1, signs = 0; otherwise, signs = 1. Only when 578

pcctrl has a token may the transitions t1 and t3 be enabled. 579

Indeed, when M(pci
ki
) = M(pc j

kj
) = M(pcctrl) = 1, t1 and 580

t3 are enabled simultaneously and can be fired. But only one 581

of them can be fired. Thus, the firing selection performs the 582

negotiation process, i.e., Negotiate(enable). With this compar- 583

ison, the negotiation strategies among multiple robots can also 584

be inspired by methods for the selection of firing transitions 585

in Petri nets. 586

IEE
E P

ro
of

ZHOU et al.: COLLISION AND DEADLOCK AVOIDANCE IN MULTIROBOT SYSTEMS: DISTRIBUTED APPROACH 7

Algorithm 1: Collision Avoidance Algorithm for Robot ri

Input : Ti = 〈Si, �i, →i, si
0〉, current state si

cur, and Sign;
Output: No collision occurs during the motion of ri;

1 Initialization: scur = si
cur, snext = s•i

cur;
2 if snext ∈ Si \ CSi then

3 Execute the transition scur
move−→i snext;

4 if scur ∈ CSi then
5 Sign(scur) = 0;

6 scur = snext; snext = s•i
cur;

7 else if Sign(snext) == 0 then
8 Add ri to enable;
9 if Negotiate(enable) == ri then

10 Execute the transition scur
move−→i snext;

11 if scur ∈ CSi then
12 Sign(scur) = 0;

13 Sign(snext) = 1; scur = snext; snext = s•i
cur;

14 else if Sign(snext) == 1 then
15 Stop the motion at the current state;

Based on the collision avoidance framework, the dis-587

tributed algorithm to avoid collisions for robot ri is shown588

in Algorithm 1. In the algorithm, Sign is a set of Boolean589

variables whose elements are signs, s ∈ ∪i∈NN CSi, i.e.,590

Sign(s) = signs. It is a set of public resources, each of which591

can be broadcast independently to robots. By communicat-592

ing with some of them, each robot can execute the collision593

avoidance algorithm in an autonomous way.594

V. DEADLOCKS AND THEIR AVOIDANCE595

In Section IV, we have proposed a distributed algorithm to596

avoid collisions among multiple robots during their motion.597

Each robot only checks whether its succeeding state is occu-598

pied. If “yes,” it stops; otherwise, the robot moves to the599

succeeding state and prevents other robots from moving to600

this state. When multiple robots mutually prevent the moves601

of other robots, deadlocks may result.602

For example, consider the situation shown in Fig. 5. There603

are four robots r1, r2, r3, and r4. The states s1, s2, s3, and604

s4 are collision states between r1 and r4, r1 and r2, r2 and605

r3, and r3 and r4, respectively. Fig. 5(a) shows the current606

states of the four robots, i.e., r1 − r4 are at s1 − s3, and s5,607

respectively. At the current moment, r4 begins to execute its608

collision avoidance algorithm described in Algorithm 1. Since609

s4 is empty, the signal Sign(s4) broadcast to r4 is 0. Hence,610

the event move in T4 occurs and causes r4 to transit to s4.611

The system reaches the configuration shown in Fig. 5(b). At612

this configuration, r1 − r4 are waiting for the move of r2, r3,613

r4, and r1, respectively. They are in a circular wait. Thus, the614

system is in a deadlock.615

A. Deadlock Avoidance Algorithm616

In this section, we introduce an improved algorithm for the617

system to avoid both collisions and deadlocks. First, we give618

the definition and structure properties of deadlocks in the sys-619

tem. Based on the description in [6], we have the following620

definition.621

(a) (b)

Fig. 5. Situation that causes a deadlock among four robots. (a) Before the
move of r4. (b) After the move of r4.

Definition 7 (Deadlock): A multirobot system is in a dead- 622

lock if some of the robots, if not all, are in a circular 623

wait. 624

Next, we study the properties of deadlocks of the multirobot 625

system in terms of graph theory. For the preliminary knowl- 626

edge of graph theory, readers can refer to [11]. 627

Definition 8 (Directed Graph): Let Ti = 〈Si,�i,→i, si
0〉 be 628

the LTS model of robot ri, i ∈ NN . A directed graph of the 629

multirobot system is a two-tuple G = 〈V, E〉, where: 630

1) V = ∪N
i=1Si is the finite set of vertices; 631

2) E = ∪N
i=1 →i,move is the finite set of edges. 632

Remark 4: 633

1) In a directed graph, one of the two endpoints of a 634

directed edge is designated as the tail, while the other 635

endpoint is designated as the head. In an edge, the arrow 636

points from the tail to the head. 637

2) A directed edge e from vi to vi+1 is denoted as (vi, vi+1). 638

Based on the formal modeling of the system, the undirected 639

graph generated from G is a simple graph. Thus, we have the 640

following definitions. 641

Definition 9 (Cycle): Let G = 〈V , E〉 be the directed 642

graph of a multirobot system. A cycle of G is a sequence 643

〈v1, e1, . . . , vn, en, v1〉 such that: 1) ∀i ∈ Nn, vi ∈ V , and 644

ei = (vi, vi+1) ∈ E is the directed edge from vi to vi+1, where 645

vn+1 = v1; 2) ∀i1, i2 ∈ Nn, vi1 �= vi2 if i1 �= i2; and 3) ∀j1, 646

j2 ∈ Nn, suppose ej1 ∈→k1,move and ej2 ∈→k2,move, k1 �= k2 647

if j1 �= j2. 648

For example, as the system shown in Fig. 5, the sequence 649

〈s1, (s1, s2), s2, (s2, s3), s3, (s3, s4), s4, (s4, s1), s1〉 is a cycle of 650

the system. There are four different vertices representing four 651

different states, i.e., s1, s2, s3, and s4, and four edges repre- 652

senting transitions of different robots, i.e., (s1, s2) ∈→1,move, 653

(s2, s3) ∈→2,move, (s3, s4) ∈→3,move, and (s4, s1) ∈→4,move. 654

In the directed graph of a multirobot system, a vertex can 655

be occupied by different robots at different times. Since each 656

robot has its unique motion direction, there may be no dead- 657

lock even if some robots are in a cycle. Consider the two 658

configurations shown in Fig. 6(a) and (b). The robots at either 659

configuration are in a cycle. But the robots in Fig. 6(b) are 660

deadlock-free. In fact, only some cycles satisfying certain 661

conditions can cause deadlocks. In the sequel, we first give 662

the definition of deadlock cycles, and then prove that only 663

deadlock cycles can cause deadlocks. 664

Definition 10 (Active Edge): Given the graph 〈V , E〉 of a 665

multirobot system, a directed edge e, e = (s1, s2) ∈→i,move⊂ 666

E, is called an active edge if the robot ri is at s1. 667

IEE
E P

ro
of

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

(a) (b)

Fig. 6. Two kinds of cycles in a graph. (a) Deadlock cycle. (b) Cycle but
not a deadlock cycle.

Fig. 7. k robots in a deadlock cycle.

Definition 11 (Deadlock Cycle): A deadlock cycle is a668

cycle where all edges are active edges.669

For example, the four robots in Fig. 6(a) constitute a670

deadlock cycle since each robot is at the tail of the edge rep-671

resenting one of its transitions. The robots in Fig. 6(b) do not672

constitute a deadlock cycle although each vertex of the cycle673

is occupied by a robot.674

Theorem 3: A multirobot system is in a deadlock if and675

only if some robots compose a deadlock cycle.676

Proof (Sufficiency): A subset of robots, say ri1 , ri2 , . . . , rik ,677

construct a deadlock cycle in the corresponding graph. Based678

on Definitions 9 and 11, we suppose that the cycle is the679

sequence 〈sri1
, ei1 , sri2

, ei2 , . . . , srik
, eik , sri1

〉, where the robot680

rij is at srij
and the edge eij = (srij

, srij+1
) is an active edge, i.e.,681

eij ∈→ij,move. The cycle is shown in Fig. 7. We can conclude682

that these k robots are in a circular wait and cannot move any683

more. Thus, the system is in a deadlock. Indeed, ri1 cannot684

move since it can only move to state sri2
, which is occupied by685

robot ri2 . So ri1 needs to wait for the move of ri2 . At the same686

moment, since its succeeding state, i.e., sri3
, is occupied by687

robot ri3 , ri2 cannot move until ri3 moves away from ri2 ’s path.688

However, ri3 also cannot move forward at the same time since689

ri4 is at sri4
, i.e., the succeeding state of ri3 . By going forward690

until rik , we find that the succeeding state of rik is occupied691

by ri1 , leading to the stoppage of rik at the current state. Thus,692

all of them are in a circular wait and cannot move anymore.693

Necessity: To prove by contradiction, we hypothesize that694

the system is in a deadlock but with no deadlock cycles.695

However, in the case there is no deadlock cycle, we can696

prove that each robot can move one step forward eventually.697

Consider an arbitrary robot ri. Suppose ri is at sri . If its suc-698

ceeding state is empty, ri can move forward. If the succeeding699

state is occupied by a robot, say ri1 , let us consider ri1 ’s suc-700

ceeding state. If this state is empty, ri1 can move forward.701

After the move of ri1 , ri can move forward. Otherwise, sup-702

pose the state is occupied by a robot, say ri2 . Clearly, we have703

i2 �= i1 and i2 �= i; otherwise, there is a deadlock cycle. We704

Algorithm 2: Deadlock Cycle Detection Algorithm for ri:
Detect(Ti, sri)

Input : LTS model Ti, the state needed to detect sri ;
Output: A boolean value; /* False: No deadlock

cycle is detected if ri moves to sri;
True: ri’s move to sri can cause a
deadlock cycle. */

1 Initialization: q = i;
2 while true do

/* rq checks its succeeding state. */
3 (sri , j) = f (p, →q) ;
4 if j == 0 then
5 return false;

6 else if s j
cur

•j == sri then
7 return true;
8 else

/* Send the message (sri, j) to rj. */
9 q = j;

continue to consider ri2 ’s succeeding state and check whether 705

it is occupied by any robot. If ri2 ’s succeeding state is empty, 706

ri2 , ri1 , and ri can move forward in sequence. Instead, if it is 707

occupied by a robot, say ri3 , we have i3 �= i2, i3 �= i1, and 708

i3 �= i; otherwise, there is a deadlock cycle. We next need 709

to check whether the succeeding state of ri3 is occupied by a 710

robot or not. Do the same analysis for the remaining robots 711

one by one by repeating the previous procedures. Since the 712

number of robots is finite, we can end with a robot whose 713

succeeding state is empty; otherwise, it can compose a dead- 714

lock cycle among some robots. Thus, the robots can move 715

forward in turns and at last ri moves forward. By far, we can 716

conclude that every robot can move forward. This is a contra- 717

diction to the precondition that the system is in a deadlock. 718

Hence, there exists a deadlock cycle. 719

From Theorem 3, we can resolve deadlocks by avoiding 720

deadlock cycles. Next, we study how to avoid deadlock cycles 721

and then give the collision and deadlock avoidance algorithm. 722

Here we just consider the direct deadlocks, while in the future 723

we will consider the impending deadlocks. 724

Before giving the algorithm, we describe the distributed pro- 725

cedure to detect deadlock cycles. Suppose ri is at sri . First, ri 726

checks its succeeding state s•i
ri

. If there exists ri1 such that 727

si1
cur = s•i

ri
, a message is delivered to ri1 . ri1 begins to estimate 728

its succeeding state after receiving the message. If si1
cur

•i
is 729

also occupied by a robot, say ri2 , ri2 can receive the corre- 730

sponding message and begin to estimate the succeeding state. 731

Continue delivering the message until there exists a robot rik 732

whose succeeding state either is not occupied by any robots or 733

is sri . The former means the transition of ri to sri cannot cause 734

a deadlock, while the latter means there is a deadlock when ri 735

is at sri . The detail is shown in Algorithm 2. In the algorithm 736

f (sri , →j) is a function to detect whether the succeeding state 737

of rj is occupied by a robot. It returns a two-tuple (sri, k), 738

where sri is a constant state that needs to be checked, and k 739

is the index of the robot that satisfies sk
cur = s j

cur
•j

if k �= 0, 740

whereas k = 0 if rj’s succeeding state is not occupied by any 741

robots. 742

IEE
E P

ro
of

ZHOU et al.: COLLISION AND DEADLOCK AVOIDANCE IN MULTIROBOT SYSTEMS: DISTRIBUTED APPROACH 9

Algorithm 3: Collision and Deadlock Avoidance
Algorithm for Robot ri

Input : The LTS model Ti, current state scur, and signal Sign;
Output: No collisions and deadlocks occur during the motion

of ri;

1 Initialization: snext1 = s•i
cur, snext2 = s•i

next1;
2 if snext1 ∈ Si \ CSi then
3 Execute the transition scur

move−→i snext1;
4 if scur ∈ CSi then
5 Sign(scur) = 0;

6 scur = snext1; snext1 = s•i
cur; snext2 = s•i

next1;
7 else if Sign(snext1) == 0 then
8 if (snext2 ∈ Si \ CSi) ∨ (Sign(snext2) == 0) then
9 Add ri to enable ;

10 else if !Detect(Ti, snext1) then
11 Add i to enable;
12 else
13 ri cannot move forward;

14 if Negotiate(enable) == ri then
15 enable = ∅;

16 Execute the transition scur
move−→i snext1;

17 if scur ∈ CSi then
18 Sign(scur) = 0;

19 scur = snext1; snext1 = s•i
cur; snext2 = s•i

next1;
20 Sign(scur) = 1;

21 else if Sign(snext) == 1 then
22 ri cannot move forward;

The validation of the algorithm is given through the follow-743

ing theorem.744

Theorem 4: Algorithm 2 can always end by returning a745

boolean value at any time.746

Proof: From the proof of Theorem 3, for any robot ri, there747

exists a robot such that its succeeding state either is free or748

is occupied by ri after a finite number of message deliveries.749

Note that in the while loop of Algorithm 2, each loop is a750

message delivery. Thus, one of the conditions in lines 4 and 6751

of Algorithm 2 can eventually be satisfied after a finite number752

of loops. Since there are N robots in the system, the maximal753

number of loops is N.754

From Algorithm 2, we notice that every time each robot755

only needs to check its next two states to determine whether756

its move could cause a deadlock cycle. Hence, each robot757

only needs to communicate with the robots that are at its758

next two consecutive states. Thus, each robot only requires759

a communication range within two states.760

Based on the definition of deadlock cycles, we can infer that761

the move of a robot may cause a deadlock cycle only when762

its next two consecutive states are both collision states. Thus,763

Algorithm 2 only needs to be executed when robot ri is at a764

state s satisfying s•i ∈ CSi and (s•i)•i ∈ CSi. When it is at765

s, ri needs to predict whether its move can cause a deadlock766

cycle before proceeding ahead. If a deadlock cycle is predicted,767

the robot cannot move forward. The detailed collision and768

deadlock avoidance algorithm is shown in Algorithm 3. Note769

that since each robot checks deadlock cycles in a distributed770

way, there may be many robots that can move forward at the771

same time. Thus, these robots should negotiate with others and 772

only one can move forward because of concurrency. 773

Now, let us take the system in Fig. 5(a) as an exam- 774

ple to explain the distributed execution of Algorithm 3 in 775

a multirobot system. First, r1 − r4 perform this algorithm 776

simultaneously. r1 and r2 find that they have to stop at 777

their current states since their succeeding states are occupied 778

(lines 21 and 22). r3 finds that it is able to move forward based 779

on lines 8 and 9. Since s1 is occupied, r4 calls Algorithm 2 780

and sends the information (s4, r4) to r1. Then, r1 sends this 781

information to r2, and r2 sends it to r3. r3 finds its succeeding 782

state is s4, and thus sends to r4 the information that a dead- 783

lock is found. When r4 received it, Detect(T4, s4) = true. So 784

r4 cannot be movable (line 13). Hence, enable = {r3}. Clearly, 785

Negotiate(enable) = r3. So r3 moves forward. Thus, with the 786

deadlock avoidance algorithm, the situation shown in Fig. 5(b) 787

cannot occur. 788

B. Performance Analysis of the Algorithm 789

Now we give the performance analysis of the proposed 790

collision and deadlock avoidance algorithm, including the 791

effectiveness and permissiveness analysis. For the sake of sim- 792

plicity, we assume that the solution to resolve a deadlock cycle 793

cannot cause any other deadlock cycles. This means if robot ri 794

finds that its move to s can cause a deadlock cycle with a set 795

of robots, including the robot rj satisfying s j
cur

•j = s, then rj 796

can pass through s without causing deadlocks at some future 797

moment. Thus, we have the following conclusions. 798

Theorem 5 (Effectiveness): Each robot can execute persis- 799

tent motion without causing any collisions or deadlocks under 800

the control of Algorithm 3. 801

Proof: Suppose ri is at s. The satisfaction of the first require- 802

ment is directly from Algorithm 1. So we should prove that 803

the second requirement is also satisfied. If ri can eventually 804

move one step forward, the proposition s → �¬s is satisfied. 805

The arbitrariness of s guarantees that �(s → �¬s) is satisfied 806

for ri. Applying this conclusion to all robots, we can con- 807

clude the second requirement is satisfied. Thus, we now only 808

need to consider the situations that ri cannot move forward 809

at s. Indeed, there are two such situations in the algorithm: 810

1) Detect(Ti, s•i) = 1 and 2) there exists a robot ri1 such 811

that s•i = si1
cur. We need to prove that ri can eventually move 812

forward in either situation. 813

For the first case, there exist a set of robots ri1 , ri2 , . . . , rik 814

such that s
ij+1
cur = s

ij
cur

•ij , j = 1, 2, . . . , k−1, and sik
cur

•ik = s•i � 815

ss is empty. Based on the assumption declared above, rik can 816

move to ss and then to ss•ik in the future. When rik arrives 817

at ss•ik , Detect(Ti, s•i) = 0 because sik−1
cur

•ik−1 is now empty. 818

Thus there is no deadlock cycle when ri is at s•i . Hence, ri 819

can move one step forward. 820

For the second case, there exist robots ri1 , ri2 , . . . , rik sat- 821

isfying si1
cur = s•i and s

ij+1
cur = s

ij
cur

•ij for j = 1, 2, . . . , k − 1. 822

Moreover, sik
cur

•ik is empty. Otherwise there must exist a dead- 823

lock cycle, which should be detected and resolved in advance. 824

Thus, rik either can move forward or is in the first situation. 825

As described before, rik can finally move forward. After rik 826

moves forward, rik−1 is in the same situation as rk was. Thus, 827

IEE
E P

ro
of

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

rik−1 can move forward as a consequence. One by one, and828

finally ri can move forward.829

Definition 12 (Admissible Motion): For any robot ri, the830

admissible motion is the move that cannot cause any collisions831

and deadlocks.832

Theorem 6 (Maximal Permissiveness): The control policy833

described by Algorithm 3 is a maximally permissive control834

policy for ri’s motion.835

Proof: Because of the concurrency, the admissible motion is836

described in terms of reachability. This means even though its837

current motion is admissible, the robot actually cannot move838

forward at some rounds since it does not win in the negoti-839

ation processes. During the computation of reachable graph,840

we need to list all the possible moves of the robots that are841

in enable. Thus, during the proof of this theorem in terms of842

ri, we assume that ri always wins the negotiation.843

We need to prove that any possible control policies must844

contain the stopping motion of Algorithm 3. Suppose ri is845

at an arbitrary state s at the current moment. On one hand,846

from the algorithm, ri will stop its motion in two cases:847

1) Detect(Ti, s•i) = 1 (lines 12 and 13) and 2) s•i ∈ CSi ∧848

Sign(s•i) = 1 (lines 21 and 22). The first one means that ri’s849

move can cause a deadlock cycle. Based on Theorem 3, such a850

move can lead the system to a deadlock. The second means ri’s851

current succeeding state is occupied by a robot. Thus, it cannot852

move forward in order to avoid collisions. Clearly, these two853

kinds of motion must be forbidden. This means that any avail-854

able control policies for ri must contain these two situations of855

stopping motion. On the other hand, except such two cases, ri856

can always move forward based on the previous assumption.857

Thus, for any state s, if ri stops at s under Algorithm 3, ri858

stops at s under any other available control policies. Hence,859

the proposed algorithm is maximally permissive.860

The motion of the system under a maximally permis-861

sive control is the maximally permissive motion. Here the862

maximally permissive motion is with respect to evolution863

of the LTS models. Moreover, as described in the proof of864

Algorithm 6, the maximal permissive motion means the reach-865

able configuration space is maximal, but does not mean that866

a robot in the admissible motion can always move forward.867

Indeed, because of concurrency, even though it can be able868

to move forward, a robot may be still at its current state.869

This happens because the robot does not get the right to move870

forward in the negotiation process. But when computing the871

reachable space, though it is unnecessary, each time we need872

to list all possibilities that one movable robot moves forward873

while others stay at their current states, without considering874

the negotiation process.875

VI. SIMULATION RESULTS AND IMPLEMENTATION876

A. Simulation Results877

In this section, we implement the algorithms in MATLAB.878

Simulations are carried out for a multirobot system with four879

robots r1, r2, r3, and r4, whose paths are shown in Fig. 8.880

Each path is a circle with a radius of 10 units. Their detailed881

equations are C1 : (x+a)2+y2 = 102 (the blue one), C2 : x2+882

(y + a)2 = 102 (the red one), C3 : (x − a)2 + y2 = 102 (the883

(a) (b)

Fig. 8. Paths of four robots. C1 − C4 are the four paths and p1 − p8 are
eight intersection points. (a) Four paths mutually intersecting at p1 − p4.
(b) Magnified view of the enclosed region defined by p1 − p4.

TABLE I
POLAR COORDINATES OF THE COLLISION POINTS IN DIFFERENT PCSS

green one), and C4 : x2 + (y − a)2 = 102 (the cyan one), 884

where a =
�

102 − ((π/25))2 + (π/25). There are totally 8 885

intersection points, i.e., p1 − p8. 886

First of all, for each path Ci, we define a polar coordinate 887

system (PCS), denoted as ρi, whose pole and polar axis are, 888

respectively, the center of the path and the ray in the direction 889

of the x-axis, to describe this path. Thus, each point of the path 890

can be expressed by the polar coordinates in the corresponding 891

PCS. For example, each point (x, y) on C1 can be described by 892

the polar coordinate (r, θ) in ρ1, such that x = −a+r cos θ and 893

y = r sin θ , where r = 10, and θ ∈ [0, 2π). Since the radial 894

coordinates of all points are equal to 10, we hereby only show 895

the angular coordinate of each point. The angular coordinates 896

of the 8 points in different PCSs are shown in Table I. For 897

example, consider point p1. p1 is an intersection point of C1 898

and C2. Thus, its Cartesian coordinate is (−(π/25),−(π/25)). 899

ρ1 is C1’s PCS, and its pole is (−a, 0). Hence, the polar 900

coordinate of p1 in ρ1 is (10, (499π/250)). Similarly, the polar 901

coordinate of p1 in ρ2 is (10, (126π/250)). 902

Remark 5: Since all the radial coordinates are equal to 10, 903

each point on a path is uniquely determined by its angular 904

coordinate in the corresponding PCS. Thus, in the rest of this 905

section, the points of a path are described by only the angular 906

coordinates in the corresponding PCS. 907

IEE
E P

ro
of

ZHOU et al.: COLLISION AND DEADLOCK AVOIDANCE IN MULTIROBOT SYSTEMS: DISTRIBUTED APPROACH 11

TABLE II
DISCRETE POINTS OF THE FOUR PATHS

Fig. 9. Deadlock occurs in case 2 under the control of the collision avoidance
algorithm.

Each path is discretized into 248 states, which are rep-908

resented by the discrete points shown in Table II, where909

N∗ = {0, 1, 2, . . . , 249}.910

We first simulate the motion of the system under the control911

of Algorithm 1. Consider two different initial configurations912

of the system.913

Case 1: The initial states of r1 − r4 are 1(479π/250),914

2(116π/250), 3(229π/250), and 4(356π/250),915

respectively.916

Case 2: The initial states of r1 − r4 are 1(479π/250),917

2(104π/250), 3(229π/250), and 4(354π/250),918

respectively. Here the prefixed superscripts of the919

angular coordinates denote the indices of the PCSs.920

In our simulation, the motion of each robot is implemented921

by the timer object in MATLAB. Thus, all robots can be922

executed concurrently.923

From the simulation results, we find that robots with the924

initial states of case 1 can move persistently without caus-925

ing collisions and deadlocks; while with those of case 2, after926

firing ten transitions simultaneously, they stop at the configura-927

tion shown in Fig. 9. Clearly, at this configuration, a deadlock928

occurs. Thus, only the collision avoidance is not sufficient to929

guarantee the persistent motion of the system.930

Next, we repeat the simulation of case 2 by replacing931

Algorithm 1 with Algorithm 3. With this algorithm, the four932

robots need to negotiate with each other when they want to933

move to p1 − p4 simultaneously. Fig. 10 shows 6 snapshots of934

the simulation.935

Suppose the system is now at the configuration shown in936

Fig. 10(a). At this moment, r1 − r4 are able to move one937

step forward based on the condition in line 8 of Algorithm 3.938

Suppose r1 wins in the negotiation process, r1 moves one939

step forward and reaches p1. Then, r2 − r4 and r1 are able940

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Six snapshots of the simulation of case 2 under control of deadlock
avoidance algorithm. Configurations c2 − c6 show the process of deadlock
avoidance. (a) Configuration c1. (b) Configuration c2. (c) Configuration c3.
(d) Configuration c4. (e) Configuration c5. (f) Configuration c6.

to move forward. If r2 is selected from their negotiation, it 941

moves forward and arrives at p2. Continually, r3, r4, and r1 942

are able to move, but only r3 is selected to move. Thus, r3 943

arrives at p3. Therefore, the system reaches the configuration 944

shown in Fig. 10(b). At this configuration, r4 predicts that 945

its move to p4 can cause a deadlock cycle 〈p1, (p1, p2), p2, 946

(p2, p3), p3, (p3, p4), p4, (p4, p1), p1〉. Hence, r4 cannot move 947

based on the condition in line 12 of Algorithm 3. Moreover, 948

r2 and r3 cannot move forward based on line 21 of their own 949

copy of Algorithm 3. Thus, only r1 can move one step for- 950

ward based on line 8 of its Algorithm 3. When r1 reaches 951

p4, p1 is empty. So r2 is able to move forward and then is 952

selected to move. The move of r2 releases p2 such that r3 is 953

allowed and selected to move to p2. Thus, the configuration of 954

the system is now shown in Fig. 10(c). At configuration c3, r4 955

cannot move forward since p4 now is occupied by r1. Since 956

its next state is a private state, r1 moves one step forward and 957

leaves away from p4, so do r2 and r3. Now r4 can move one 958

step forward since its next two consecutive states are empty. 959

Suppose r4 is selected to move one step forward, the system 960

reaches the configuration shown in Fig. 10(d). We can do the 961

similar analysis on how the system reaches the states shown 962

in Fig. 10(e) and (f). When the system is at configuration c6, 963

we can conclude that it is effective to avoid collisions and 964

deadlocks since all robots are at their own private states. 965

IEE
E P

ro
of

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE III
COMPARISON OF THE LENGTH OF THE MAXIMAL EVENT SEQUENCE

LEADING A ROBOT TO MOVE 2 CYCLES

Fig. 11. Extended system from 4 to 25 robots. There exist 16 deadlocks in
the system. Each deadlock region is marked by a dashed square.

At last, we give the comparison of the efficiency between966

our method and that in [35] in terms of the length of event967

sequences. We study six different initial configurations and968

count the length of the maximal event sequence which leads969

a robot to move 2 cycles along its path. The results are shown970

in Table III. Since the numbers of move events of the four971

robots are the same, the shorter length of an event sequence,972

the fewer stop events and the better concurrency and efficiency973

of the system. From Table III, our method is an improvement974

of that in [35].975

For a deeper exploration of our algorithm, we further study976

the systems extended from the original system in Fig. 8(a) by977

continually adding the deadlock regions p1 − p4. In an arbi-978

trary extension, each path can intersect with at most four other979

paths, and each internal circle intersects with four other paths.980

A deadlock can only happen among four robots. Moreover,981

the paths of n2 robots construct a square with n circles in982

each edge. For example, Fig. 11 shows an extended system983

with 25 robots. There are 16 deadlocks that may occur dur-984

ing the evolution of this system. The relation of the number985

of robots and that of deadlocks that may occur is shown in986

Table IV. We can find the number of deadlocks increases in987

propositional to the number of robots. Thus, the system would988

be at a great risk of breakdown if there are many robots in989

the system. With the control of proposed deadlock avoidance990

algorithm, there are no deadlocks that can occur during the991

evolution of the system, shown in Fig. 12. Hence, it is impor-992

tant to control a multirobot system with the proposed deadlock993

avoidance algorithm, which is effective to avoid deadlocks.994

TABLE IV
NUMBERS OF ROBOTS AND DIFFERENT DEADLOCKS THAT MAY OCCUR

Fig. 12. Number of different deadlocks that may occur in the systems with
different robots. Without deadlock avoidance, the number is linearly increased
in proportion to the number of robots, while with our deadlock avoidance
algorithm, there are no deadlocks during the evolution of the system.

(a) (b)

Fig. 13. Example of autonomous car and the schematic diagram of the
crossing. (a) RBCAR from Robotnik. (b) Crossing.

Fig. 14. Four vehicles arrive at the crossing successively.

B. Experimental Implementation 995

Now we implement our algorithm in a practical scenario 996

where four autonomous vehicles are about to pass through a 997

crossing. Fig. 13(a) shows an example of research autonomous 998

vehicles, and Fig. 13(b) gives the diagram of a crossing. 999

Let the four vehicles arrive at the crossing successively, as 1000

shown in Fig. 14. For convenience, we only give the schematic. 1001

Fig. 15 shows the deadlock occurring among the vehicles 1002

only with the collision avoidance algorithm. Now we consider 1003

the evolution of the system with different deadlock avoidance 1004

algorithms. Fig. 16 shows an intermediate configuration of the 1005

system with the collision and deadlock avoidance algorithm 1006

IEE
E P

ro
of

ZHOU et al.: COLLISION AND DEADLOCK AVOIDANCE IN MULTIROBOT SYSTEMS: DISTRIBUTED APPROACH 13

Fig. 15. Four vehicles are in a deadlock.

Fig. 16. Intermediate configuration of the motion of the system under the
collision avoidance control algorithm in [35].

(a) (b) (c)

Fig. 17. Three snapshots of the motion of the system under the con-
trol of our proposed algorithm. (a) Configuration 1. (b) Configuration 2.
(c) Configuration 3.

proposed in [35]. Based on their method, at any time instant,1007

there is at most one vehicle in the crossing. Thus, at the current1008

time, even though they are able to move forward, vehicles B1009

and C cannot move into the crossing since vehicle A is in the1010

crossing. Fig. 17 shows three snapshots of the system during1011

the move to pass through the crossing under the control of our1012

method. From the configurations, we can find that vehicles A,1013

B, and C can be in the crossing at the same time. At con-1014

figuration 1 in Fig. 17(a), vehicle D cannot move in order to1015

avoid deadlocks, while at configuration 2 in Fig. 17(b), vehi-1016

cle D cannot move since it is stopped by vehicle A. Only when1017

vehicle A moves away can vehicle D move forward, shown in1018

Fig. 17(c).1019

VII. DISCUSSION1020

A. High-Level Discrete Abstraction1021

Most of the existing work directly studies the motion plan-1022

ning from the kinetics of robots. However, usually the kinetics1023

of a robot is complicated. Thus, it is difficult to plan robot1024

motion, even for a simplified 2-D case [13]. Besides, it is1025

hard to address deadlocks in the multirobot systems from the1026

perspective of the robot kinematics. A common practice in1027

approaches to solving the motion planning is to decompose1028

(a)

(b) (c)

Fig. 18. Different ways to deal with collision regions in [35] and this paper.
(a) Paths of four robots. (b) Collision zone. (c) Three different collision states.

the control problem into two hierarchies: 1) the high-level dis- 1029

crete control and 2) the low-level continuous feedback control. 1030

In this paper, we study the motion control from the high-level 1031

discrete control based on the discrete event systems. Like the 1032

work in [35], we abstract the motion of a robot as move and 1033

stop. Note that in the high-level, we do not care about the 1034

continuous dynamics of robots. Thus, though we simplify the 1035

motion control of the multirobot systems, we can make sure 1036

that the robots can always avoid unsafe motion, especially 1037

the deadlocks, which are hard to avoid during the continuous 1038

motion planning. Moreover, such high-level discrete control 1039

can also work with the continuous control of the robots. 1040

B. Comparison With Other Work 1041

This paper is an improvement of that in [35]. 1042

Soltero et al. [35] divided all collision regions into a 1043

set of disjoint collision zones. Thus, each robot has at least 1044

one collision-free position between any two collision zones. 1045

So there do not exist any physical deadlocks. However, this 1046

method is too conservative. 1047

For example, as shown in Fig. 18, there are four robots 1048

r1 − r4 to pass through a narrow and dense region. Taking 1049

the safe radius into consideration, r1 can collide with r2 − 1050

r4 in the left, middle, and right segments, respectively; while 1051

r2 − r4 cannot collide with each other in this region. Based on 1052

the method in [35], this region is abstracted as one collision 1053

zone CZ1, shown in Fig. 18(b). When it is in the segment 1054
>
A1A4, r1 is in CZ1; when it is in the segment

>
B1B2, r2 is in 1055

CZ1; when it is in the segment
>
C1C2, r3 is in CZ1; and when 1056

it is in the segment
>
D1D2, r4 is in CZ1. Consider the following 1057

situation. Suppose r2 − r4 and r1 arrive at B1, C1, D1, and A1 1058

consecutively. r2 enters into
>
B1B2 first. When it moves into 1059

>
B1B2, r2 is in CZ1. So r1, r3, and r4 have to stop their motion. 1060

Once r2 leaves B2, r3 moves into
>
C1C2, while r1 and r4 keep 1061

standstill. Next, when r3 leaves C2, r4 moves into
>
D1D2, but 1062

r1 is still in halting. Only when r4 is away from D2 can r1 1063

starts to move. Thus, to avoid collisions, r1, r3, and r4 need 1064

many times of stop. 1065

While with our method, this region is abstracted as three 1066

different states s1 − s3, shown in Fig. 18(c). When it is in the 1067

segments
>
A1A2,

>
A2A3, and

>
A3A4, r1 is at states s1, s2, and s3, 1068

IEE
E P

ro
of

14 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

respectively; when it is in the segment
>
B1B2, r2 is at s1; when1069

it is in the segment
>
C1C2, r3 is at s2; and when it is in the1070

segment
>
D1D2, r4 is at s3. Still, consider the former situation.1071

When it moves into
>
B1B2, r2 arrives at s1. So r1 needs to stop1072

to wait for the leaving of r2. However, r3 and r4 can continue1073

their motion since there are no robots at s2 and s3. So they1074

do not need any stops. After r2 leaves s1, r1 can move to s1.1075

Suppose the time for a robot to stay at a state is same. Thus,1076

when r1 is going to move to s2, r3 has left s2. So r1 can move1077

to s2 without any stops, and so does it for s3. In conclusion,1078

with our method, the four robots can pass through this region1079

only with r1’s one time of stop. Hence, our method can lead1080

to fewer stops from fewer robots.1081

VIII. CONCLUSION1082

In this paper, we investigate the policy of collision and dead-1083

lock avoidance in multirobot systems, where each robot has a1084

predetermined and intersecting path. A distributed algorithm1085

is proposed to avoid collisions and deadlocks. It is performed1086

by repeatedly stopping and resuming robots whose next move1087

can cause collisions or deadlocks. In the algorithm, each robot1088

should check its next two consecutive states to determine1089

whether it can move forward. We also prove that the proposed1090

algorithm is maximally permissive for each robot’s motion.1091

The simulation results of a system with four robots further1092

verify the effectiveness of the algorithm.1093

In the future, we can consider the optimization of the per-1094

formance of the system by improving the negotiation process,1095

for example, each robot moves as many cycles as possible1096

during a specified time window, or the robots can monitor as1097

much change as possible in the environment. We may also1098

take time into account in the formal models and then propose1099

corresponding motion control algorithms, for example, each1100

robot may be required to stay at different states within differ-1101

ent durations. Moreover, in this paper, we suppose the path of1102

each robot is predetermined and only consider the collisions1103

among robots. But the task to generate proper paths for robots1104

to avoid external obstacles is also important but challenging.1105

Thus, one main aspect of the future work is to propose a dis-1106

tributed and fast optimal method to generate a proper path for1107

each robot.1108

REFERENCES1109

[1] J. Alonso-Mora, A. Breitenmoser, P. Beardsley, and R. Siegwart,1110

“Reciprocal collision avoidance for multiple car-like robots,” in Proc.1111

IEEE Int. Conf. Robot. Autom., St. Paul, MN, USA, May 2012,1112

pp. 360–366.1113

[2] S. Akella and S. Hutchinson, “Coordinating the motions of multiple1114

robots with specified trajectories,” in Proc. IEEE Int. Conf. Robot.1115

Autom., Washington, DC, USA, May 2002, pp. 624–631.1116

[3] K. E. Bekris, D. K. Grady, M. Moll, and L. E. Kavraki, “Safe distributed1117

motion coordination for second-order systems with different planning1118

cycles,” Int. J. Robot. Res., vol. 31, no. 2, pp. 129–150, Feb. 2012.1119

[4] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge,1120

MA, USA: MIT Press, 2008.1121

[5] L.-W. Chen and P.-C. Chou, “BIG-CCA: Beacon-less, infrastructure-1122

less, and GPS-less cooperative collision avoidance based on vehicular1123

sensor networks,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 46, no. 11,1124

pp. 1518–1528, Nov. 2016.1125

[6] E. G. Coffman, M. Elphick, and A. Shoshani, “System deadlocks,” ACM1126

Comput. Surveys, vol. 3, no. 2, pp. 67–78, Jun. 1971.1127

[7] M. B. Dias, M. Zinck, R. Zlot, and A. Stentz, “Robust multirobot coor- 1128

dination in dynamic environments,” in Proc. IEEE Int. Conf. Robot. 1129

Autom., New Orleans, LA, USA, Apr./May 2004, pp. 3435–3442. 1130

[8] H. Fukushima, K. Kon, and F. Matsuno, “Model predictive forma- 1131

tion control using branch-and-bound compatible with collision avoid- 1132

ance problems,” IEEE Trans. Robot., vol. 29, no. 5, pp. 1308–1317, 1133

Oct. 2013. 1134

[9] S. K. Gan, R. Fitch, and S. Sukkarieh, “Real-time decentralized search 1135

with inter-agent collision avoidance,” in Proc. IEEE Int. Conf. Robot. 1136

Autom., St. Paul, MN, USA, May 2012, pp. 504–510. 1137

[10] Y. Guo and L. E. Parker, “A distributed and optimal motion planning 1138

approach for multiple mobile robots,” in Proc. IEEE Int. Conf. Robot. 1139

Autom., Washington, DC, USA, May 2002, pp. 2612–2619. 1140

[11] J. L. Gross, J. Yellen, and P. Zhang, Handbook of Graph Theory. 1141

Boca Raton, FL, USA: CRC Press, 2013. 1142

[12] M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision- 1143

free navigation of mobile robots in complex cluttered environments: 1144

A survey,” Robotica, vol. 33, no. 3, pp. 463–497, Mar. 2015. 1145

[13] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of 1146

motion planning for multiple independent objects; PSPACE-hardness 1147

of the ‘Warehouseman’s Problem,”’ Int. J. Robot. Res., vol. 3, no. 4, 1148

pp. 76–88, Dec. 1984. 1149

[14] J. Jin, Y.-G. Kim, S.-G. Wee, and N. Gans, “Decentralized cooperative 1150

mean approach to collision avoidance for nonholonomic mobile robots,” 1151

in Proc. IEEE Int. Conf. Robot. Autom., Seattle, WA, USA, May 2015, 1152

pp. 35–41. 1153

[15] M. Jäger and B. Nebel, “Decentralized collision avoidance, dead- 1154

lock detection, and deadlock resolution for multiple mobile robots,” in 1155

Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., vol. 3. Maui, HI, USA, 1156

Oct. 2001, pp. 1213–1219. 1157

[16] M. Kloetzer and C. Belta, “Temporal logic planning and control 1158

of robotic swarms by hierarchical abstractions,” IEEE Trans. Robot., 1159

vol. 23, no. 2, pp. 320–330, Apr. 2007. 1160

[17] A. Krnjak et al., “Decentralized control of free ranging AGVs in ware- 1161

house environments,” in Proc. IEEE Int. Conf. Robot. Autom., Seattle, 1162

WA, USA, May 2015, pp. 2034–2041. 1163

[18] C. A. Kitts and M. B. Egerstedt, “Design, control, and applications 1164

of real-world multirobot systems,” IEEE Robot. Autom. Mag., vol. 15, 1165

no. 1, p. 8, Mar. 2008. 1166

[19] K. Kim, G. E. Fainekos, and S. Sankaranarayanan, “On the minimal 1167

revision problem of specification automata,” Int. J. Robot. Res., vol. 34, 1168

no. 12, pp. 1515–1535, Aug. 2015. 1169

[20] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation: 1170

A review of the state-of-the-art,” in Cooperative Robots and Sensor 1171

Networks, A. Koubâa and J. R. M. Dios, Eds. Cham, Switzerland: 1172

Springer-Verlag, May 2015, pp. 31–51. AQ41173

[21] D. Sun, A. Kleiner, and B. Nebel, “Behavior-based multi-robot colli- 1174

sion avoidance,” in Proc. IEEE Int. Conf. Robot. Autom., Hong Kong, 1175

May/Jun. 2014, pp. 1668–1673. 1176

[22] Z. Li et al., “Trajectory-tracking control of mobile robot systems incor- 1177

porating neural-dynamic optimized model predictive approach,” IEEE 1178

Trans. Syst., Man, Cybern., Syst., vol. 46, no. 6, pp. 740–749, Jun. 2016. 1179

[23] J. Luo, H. Ni, and M. Zhou, “Control program design for automated 1180

guided vehicle systems via Petri nets,” IEEE Trans. Syst., Man, Cybern., 1181

Syst., vol. 45, no. 1, pp. 44–55, Jan. 2015. 1182

[24] D. Morgan, S. J. Chung, and F. Y. Hadaegh, “Model predictive control 1183

of swarms of spacecraft using sequential convex programming,” J. Guid. 1184

Control Dyn., vol. 37, no. 6, pp. 1725–1740, Nov. 2014. 1185

[25] A. Mammeri, D. Zhou, and A. Boukerche, “Animal-vehicle collision 1186

mitigation system for automated vehicles,” IEEE Trans. Syst., Man, 1187

Cybern., Syst., vol. 46, no. 9, pp. 1287–1299, Sep. 2016. 1188

[26] E. Olson et al., “Progress toward multi-robot reconnaissance and the 1189

MAGIC 2010 competition,” J. Field Robot., vol. 29, no. 5, pp. 762–792, 1190

Sep. 2012. 1191

[27] A. K. Pamosoaji and K.-S. Hong, “A path-planning algorithm using 1192

vector potential functions in triangular regions,” IEEE Trans. Syst., Man, 1193

Cybern., Syst., vol. 43, no. 4, pp. 832–842, Jul. 2013. 1194

[28] P. Rakshit et al., “Realization of an adaptive memetic algorithm using 1195

differential evolution and Q-learning: A case study in multirobot path 1196

planning,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 4, 1197

pp. 814–831, Jul. 2013. 1198

[29] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained 1199

mobile robot motion planning in state lattices,” J. Field Robot., vol. 26, 1200

no. 3, pp. 308–333, Mar. 2009. 1201

[30] S. A. Reveliotis and E. Roszkowska, “Conflict resolution in free-ranging 1202

multivehicle systems: A resource allocation paradigm,” IEEE Trans. 1203

Robot., vol. 27, no. 2, pp. 283–296, Apr. 2011. 1204

IEE
E P

ro
of

ZHOU et al.: COLLISION AND DEADLOCK AVOIDANCE IN MULTIROBOT SYSTEMS: DISTRIBUTED APPROACH 15

[31] E. Roszkowska and S. A. Reveliotis, “A distributed protocol for motion1205

coordination in free-range vehicular systems,” Automatica, vol. 49, no. 6,1206

pp. 1639–1653, Jun. 2013.1207

[32] E. J. Rodríguez-Seda, C. Tang, M. W. Spong, and D. M. Stipanović,1208

“Trajectory tracking with collision avoidance for nonholonomic vehicles1209

with acceleration constraints and limited sensing,” Int. J. Robot. Res.,1210

vol. 33, no. 12, pp. 1569–1592, Oct. 2014.1211

[33] I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia,1212

“Automated composition of motion primitives for multi-robot systems1213

from safe LTL specifications,” in Proc. IEEE/RSJ Int. Conf. Intell.1214

Robots Syst., Chicago, IL, USA, Sep. 2014, pp. 1525–1532.1215

[34] S. L. Smith, M. Schwager, and D. Rus, “Persistent robotic tasks:1216

Monitoring and sweeping in changing environments,” IEEE Trans.1217

Robot., vol. 28, no. 2, pp. 410–426, Apr. 2012.1218

[35] D. E. Soltero, S. L. Smith, and D. Rus, “Collision avoidance for per-1219

sistent monitoring in multi-robot systems with intersecting trajectories,”1220

in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., San Francisco, CA,1221

USA, Sep. 2011, pp. 3645–3652.1222

[36] X. Wang, M. Kloetzer, C. Mahulea, and M. Silva, “Collision avoidance1223

of mobile robots by using initial time delays,” in Proc. IEEE Conf.1224

Decis. Control, Osaka, Japan, Dec. 2015, pp. 324–329.1225

[37] W. Sun, S. Patil, and R. Alterovitz, “High-frequency replanning under1226

uncertainty using parallel sampling-based motion planning,” IEEE Trans.1227

Robot., vol. 31, no. 1, pp. 104–116, Feb. 2015.1228

Yuan Zhou received the M.S. degree in com-1229

putational mathematics from Zhejiang Sci-Tech1230

University, Hangzhou, China, in 2015. He is1231

currently pursuing the Ph.D. degree with the School1232

of Computer Science and Engineering, Nanyang1233

Technological University, Singapore.1234

He has published several research papers in1235

various journals and conferences, such as the1236

IEEE TRANSACTIONS ON FUZZY SYSTEMS,1237

the IEEE TRANSACTIONS ON SYSTEMS, MAN,1238

AND CYBERNETICS: SYSTEMS, the IEEE1239

TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, the IEEE1240

TRANSACTIONS ON RELIABILITY, the IEEE International Conference on1241

Automation Science and Engineering, and the International Conference on1242

Software Engineering. His current research interests include robot motion1243

control and planning, multirobot systems, discrete event systems, Petri nets,1244

and system modeling.1245

Hesuan Hu (M’11–SM’12) received the B.S. 1246

degree in computer engineering and the M.S. and 1247

Ph.D. degrees in electromechanical engineering from 1248

Xidian University, Xi’an, China, in 2003, 2005, and 1249

2010, respectively. 1250

He is currently a Full Professor with Xidian 1251

University. His current research interests include dis- 1252

crete event systems and their supervisory control 1253

techniques, Petri nets, automated manufacturing sys- 1254

tems, multimedia streaming systems, and artificial 1255

intelligence. He has over 100 publications in jour- 1256

nals, book chapters, and conference proceedings in the above areas. 1257

Dr. Hu was a recipient of many national and international awards including 1258

the Franklin V. Taylor Outstanding Paper Award from the IEEE Systems, Man, 1259

and Cybernetics Society in 2010 and the Finalists of the Best Automation 1260

Paper from the IEEE ICRA Society in 2013 and 2016, respectively. He is an 1261

Associate Editor for the IEEE CONTROL SYSTEMS MAGAZINE, the IEEE 1262

ROBOTICS AND AUTOMATION MAGAZINE, the IEEE TRANSACTIONS ON 1263

AUTOMATION SCIENCE AND ENGINEERING, and the Journal of Intelligent 1264

Manufacturing. He was on the Editorial Board of over ten international 1265

journals. 1266

Yang Liu received the bachelor’s and Ph.D. degrees 1267

in computer science from the National University 1268

of Singapore (NUS), Singapore, in 2005 and 2010, 1269

respectively. 1270

He was a Post-Doctoral Fellow with NUS. In 1271

2012, he joined Nanyang Technological University, 1272

Singapore, as a Nanyang Assistant Professor. His 1273

current research interests include software engineer- 1274

ing, formal methods and security, software verifica- 1275

tion using model checking techniques. This research 1276

led to the development of a state-of-the-art model 1277

checker, Process Analysis Toolkit. 1278

Zuohua Ding (M’11) received the M.S. degree in 1279

computer science and the Ph.D. degree in mathemat- 1280

ics from the University of South Florida, Tampa, FL, 1281

USA, in 1996 and 1998, respectively. 1282

From 1998 to 2001, he was a Senior Software 1283

Engineer with Advanced Fiber Communication, 1284

Petaluma, CA, USA. He has been a Research 1285

Professor with the National Institute for Systems 1286

Test and Productivity, Vail, CO, USA, since 2001. 1287

He is currently a Professor and the Director with the 1288

Laboratory of Intelligent Computing and Software 1289

Engineering, Zhejiang Sci-Tech University, Hangzhou, China. He has authored 1290

and co-authored over 70 papers. His current research interests include system 1291

modeling, program analysis, service computing, software reliability prediction, 1292

and Petri nets. 1293

