
Collision Attack and Pseudorandomness of
Reduced-Round Camellia1

Wu Wenling, Feng Dengguo, and Chen Hua

State Key Laboratory of Information Security, Institute of Software,
Chinese Academy of Sciences, Beijing 100080, P. R. China

{wwl, feng, chenhua}@is.iscas.ac.cn

Abstract. Camellia is the final winner of 128-bit block cipher in NESSIE.
In this paper, we construct some efficient distinguishers between 4-round
Camellia and random permutation of the blocks space. By using collision-
searching techniques, the distinguishers are used to attack 6,7,8 and 9
rounds of Camellia with 128-bit key and 8,9 and 10 rounds of Camellia
with 192/256-bit key. The attack on 6-round of 128-bit key Camellia is
more efficient than known attacks. The complexities of the attack on
7(8,9,10)-round Camellia without FL/FL−1 functions are less than that
of previous attacks. Furthermore, we prove that the 4-round primitive-
wise idealized Camellia is not pseudorandom permutation and the 5-
round primitive-wise idealized Camellia is super-pseudorandom permu-
tation for non-adaptive adversaries.
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1 Introduction

Camellia[1] is a 128-bit block cipher which was published by NTT and Mitsubishi
in 2000 and selected as the final selection of the NESSIE[2] project. The security
of Camellia has been studied by many researchers using various cryptanalytic
methods, for instance: higher-order differential attack[3,4], truncated differential
attack[5], truncated and impossible differential attacks[6], differential attack[7],
square attack[8,9], integral attack[10]. In this paper we present collision attacks
on reduced-round variants of Camellia without FL/FL−1 and whitening func-
tion layers. The attack on 6-round of 128-bit key Camellia is more efficient than
known attacks. The complexities of the attack on 7(8,9,10)-round Camellia with-
out FL/FL−1 functions are less than that of previous attacks.

In addition to cryptanalytic methods mentioned above, pseudorandomness
is also an important cryptographic criterion of iterated block ciphers. In their
celebrated paper[11], Luby and Rackoff introduced a theoretical model for the
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security of block ciphers by using the notion of pseudorandom and super-
pseudorandom permutations, which was later developed by Patarin[12],
Maurer[13], Vaudenay[14], and other researchers. This approach studies the pseu-
dorandomness of block cipher by assuming that each round function is ideally
random. Luby and Rackoff idealized DES by replacing each round function with
one large random function, then they proved that the idealized three round DES
yields a pseudorandom permutation and the idealized four round DES yields a
super-pseudorandom permutation. For this kind of idealization, the three round
idealized Camellia is a pseudorandom permutation and the four round idealized
Camellia is a super-pseudorandom permutation because Camellia has the same
Feistel structure as DES. Iwata and Kurosawa[15] introduced a primitive-wise ide-
alization in which some of the primitive operations of the round function(e.g.,
linear transformation and etc.) are left untouched and some of them (e.g., S-
boxes and etc.) are replaced with small random functions or permutations. It is
not known whether such a primitive-wise idealization DES is pseudorandom (or
super-pseudorandom). Similarly, the same problem has been open for Camellia,
which is solved in this paper. In section 6, Camellia is idealized by replacing
only the S-boxes with small random functions. We then prove that the 4-round
primitive-wise idealized Camellia is not pseudorandom permutation and the 5-
round primitive-wise idealized Camellia is super-pseudorandom permutation for
non-adaptive adversaries.

This paper is organized as follows: Section 2 briefly introduces the structure of
Camellia and the basic definitions on pseudorandomness. 4-round distinguishers
are explained in section 3. In section 4, we show how to use the 4-round distin-
guishers to attack 6 ,7,8 and 9 rounds of Camellia with 128-bit key. In section 5,
we describe attacks on 9 and 10 rounds of Camellia with 192/256-bit key. Section
6 present our results on the pseudorandomness and super-pseudorandomness of
Camellia, and Section 7 concludes the paper.

2 Preliminaries

2.1 Description of Camellia

Camellia has a 128 bit block size and supports 128,192 and 256 bit keys. The
design of Camellia is based on the Feistel structure and its number of rounds is
18(128 bit key) or 24(192/256 bit key). The FL/FL−1 function layer is inserted
at every 6 rounds. Before the first round and after the last round, there are pre-
and post-whitening layers which use bitwise exclusive-or operations with 128 bit
subkeys, respectively. But we will consider camellia without FL/FL−1 function
layer and whitening layers and call it modified camellia.

Let Lr−1 and Rr−1 be the left and the right halves of the rth round inputs,
and kr be the rth round subkey. Then the Feistel structure of Camellia can be
written as

Lr = Rr−1 ⊕ F (Lr−1, kr),
Rr = Lr−1,
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here F is the round function defined below:

F : {0, 1}64 × {0, 1}64 −→ {0, 1}64

(X64, k64) −→ Y(64) = P (S(X(64) ⊕ k(64))).

where S and P are defined as follows:

S : {0, 1}64 −→ {0, 1}64
l1(8)||l2(8)||l3(8)||l4(8)||l5(8)||l6(8)||l7(8)||l8(8)

−→ l∗1(8)||l∗2(8)||l∗3(8)||l∗4(8)||l∗5(8)||l∗6(8)||l∗7(8)||l∗8(8)
l∗1(8) = s1(l1(8)), l∗2(8) = s2(l2(8)), l∗3(8) = s3(l3(8)),
l∗4(8) = s4(l4(8)), l∗5(8) = s2(l5(8)), l∗6(8) = s3(l6(8)),
l∗7(8) = s4(l7(8)), l∗8(8) = s1(l8(8)).

P : {0, 1}64 −→ {0, 1}64
Z1(8)||Z2(8)||Z3(8)||Z4(8)||Z5(8)||Z6(8)||Z7(8)||Z8(8)

−→ Z∗
1(8)||Z∗

2(8)||Z∗
3(8)||Z∗

4(8)||Z∗
5(8)||Z∗

6(8)||Z∗
7(8)||Z∗

8(8)

Z∗
1 = Z1 ⊕ Z3 ⊕ Z4 ⊕ Z6 ⊕ Z7 ⊕ Z8, Z∗

5 = Z1 ⊕ Z2 ⊕ Z6 ⊕ Z7 ⊕ Z8,

Z∗
2 = Z1 ⊕ Z2 ⊕ Z4 ⊕ Z5 ⊕ Z7 ⊕ Z8, Z∗

6 = Z2 ⊕ Z3 ⊕ Z5 ⊕ Z7 ⊕ Z8,

Z∗
3 = Z1 ⊕ Z2 ⊕ Z3 ⊕ Z5 ⊕ Z6 ⊕ Z8, Z∗

7 = Z3 ⊕ Z4 ⊕ Z5 ⊕ Z6 ⊕ Z8,

Z∗
4 = Z2 ⊕ Z3 ⊕ Z4 ⊕ Z5 ⊕ Z6 ⊕ Z7, Z∗

8 = Z1 ⊕ Z4 ⊕ Z5 ⊕ Z6 ⊕ Z7.

Below briefly describes the key schedule of Camellia. First two 128-bit variables
KL and KR are generated from the user key. Then two 128-bit variables KA

and KB are generated from KL and KR. The round subkeys are generated by
rotating KL, KR, KA and KB . Details are shown in [1]

2.2 Pseudorandomness and Super-Pseudorandomness

Let {0, 1}n denote the set of binary strings of length n, let Fn denote the set
of functions from {0, 1}n to {0, 1}n and Pn denote the set of permutations from
{0, 1}n to {0, 1}n. A n-bit block cipher can be regarded as a subset of per-
mutations Bn ⊂ Pn obtained from all the keys. Let A be a computationally
unbounded distinguisher with an oracle O. The oracle chooses randomly a per-
mutation π from Pn or Bn. The aim of the distinguisher A is to distinguish
if the oracle O implements Pn or Bn. Let p0 denote the probability that A
outputs 1 when O implements Pn and p1 denote the probability that A out-
puts 1 when O implements Bn. That is p0 = Pr(A outputs 1 | O ← Pn) and
p1 = Pr(A outputs 1 | O ← Bn). Then the advantage of the distinguisher A is
defined as

AdvA =| p1 − p0 |
Assume that the distinguisher A is restricted to make at most q queries to

the oracle O, where q is some polynomial in n. We say that A is pseudorandom
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distinguisher if it queries x and the oracle answers y = π(x), where π is randomly
chosen permutation by O. We say that A is super-pseudorandom distinguisher
if it is also allowed to query y and receives x = π−1(y) from the oracle.

Definition 1. A function h : N → R is negligible if for any constant c > 0 and
all sufficiently large n ∈ N , h(n) < 1

nc .

Definition 2. Let Bn be an efficiently computable permutation ensemble. Bn

is called a pseudorandom permutation ensemble if AdvA is negligible for any
pseudorandom distinguisher A.

Definition 3. Let Bn be an efficiently computable permutation ensemble. Bn

is called a super-pseudorandom permutation ensemble if AdvA is negligible for
any super-pseudorandom distinguisher A.

In definition 2 and 3, a permutation ensemble is efficiently computable if
all permutations in the ensemble can be computed efficiently. See[16] for the
rigorous definition of this. It is reasonable assumption that Bn is an efficiently
computable permutation ensemble if it is obtained from an n-bit block cipher. In
Section 6 , we consider a non-adaptive distinguisher which sends all the queries
to the oracle at the same time.

3 4-Round Distinguishers

Choose

L0 = (α1, α2, · · · , α8), R0 = (x, β2, · · · , β8).

where x take values in {0, 1}8, αi and βj are constants in {0, 1}8. Thus, the input
of 2nd round can be written as follows:

L1 = (x⊕ γ1, γ2, · · · , γ8), R1 = (α1, α2, · · · , α8),

where γi are entirely determined by αi(1 ≤ i ≤ 8), βj(2 ≤ j ≤ 8) and k1, so γi

are constants when the user key is fixed. In the 2nd round a transformation on
L1 using F (•, k2) is as follows:

L1 = (x⊕ γ1, γ2, · · · , γ8)
F (•, k2)−−−−−−→ (y⊕ θ1, y⊕ θ2, y⊕ θ3, θ4, y⊕ θ5, θ6, θ7, y⊕ θ8)

where y = s1(x⊕γ1⊕k2,1), k2,1 is the first byte of k2, θi are entirely determined
by γi(1 ≤ i ≤ 8) and k2, thus θi are constants when the user key is fixed.
Therefore, the output of 2nd round is

L2 = (y ⊕�1, y ⊕�2, y ⊕�3, �4, y ⊕�5, �6, �7, y ⊕�8),
R2 = L1 = (x⊕ γ1, γ2, · · · , γ8),

where �i = θi⊕αi are constants. In the 3rd round a transformation on L2 using
F (•, k3)is as follows:

L2 = (y⊕�1, y⊕�2, y⊕�3, �4, y⊕�5, �6, �7, y⊕�8)
F (•, k3)−−−−−−→ (z1, z2, · · · , z8).
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Thus,we have the left half of output for the 3rd round:

L3 = (z1 ⊕ x⊕ γ1, z2 ⊕ γ2, z3 ⊕ γ3, · · · , z8 ⊕ γ8).

So the right half of output for the 4th round is as follows:

R4 = L3 = (z1 ⊕ x⊕ γ1, z2 ⊕ γ2, z3 ⊕ γ3, · · · , z8 ⊕ γ8).

Now we analyze the relations among bytes of R4. By observing the equation
(z1, z2, · · · , z8) = F (L2, k3), we get the following equations

z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 = s4(�7 ⊕ k3,7)
z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8 = s1(y ⊕�1 ⊕ k3,1)
z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8 = s3(�6 ⊕ k3,6)
z1 ⊕ z7 ⊕ z8 = s4(�4 ⊕ k3,4)⊕ s3(�6 ⊕ k3,6)
z3 ⊕ z4 ⊕ z5 = s4(�4 ⊕ k3,4)⊕ s2(y ⊕�2 ⊕ k3,2)⊕ s3(�6 ⊕ k3,6)
z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 = s4(�4 ⊕ k3,4)⊕ s3(y ⊕�3 ⊕ k3,3)⊕ s3(�6 ⊕ k3,6)
z2 ⊕ z5 = s4(�4 ⊕ k3,4)⊕ s2(y ⊕�5 ⊕ k3,5)⊕ s3(�6 ⊕ k3,6)
z4 ⊕ z6 = s4(�4 ⊕ k3,4)⊕ s1(y ⊕�8 ⊕ k3,8)⊕ s3(�6 ⊕ k3,6)

Because s1 is a permutation, y = s1(x ⊕ γ1 ⊕ k2,1) differs when x takes
different values. As a consequence, s1(y ⊕�1 ⊕ k3,1) will have different values.
Similarly,s2(y⊕�2⊕k3,2), s3(y⊕�3⊕k3,3), s2(y⊕�5⊕k3,5) and s1(y⊕�8⊕k3,8)
have the same property as s1(y⊕�1⊕k3,1). Obviously, s4(�4⊕k3,4), s3(�6⊕k3,6)
and s4(�7 ⊕ k3,7) are constants, Thus, from the above discussion we know that
z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7, z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8 and z1 ⊕ z7 ⊕ z8 are constants, and
z2⊕z3⊕z4⊕z6⊕z7⊕z8, z3⊕z4⊕z5, z2⊕z4⊕z5⊕z6⊕z7, z2⊕z5 and z4⊕z6 each will
have different values when x takes different values. Therefore we get the following
theorem by considering R4 = L3 = (z1 ⊕ x⊕ γ1, z2 ⊕ γ2, z3 ⊕ γ3, · · · , z8 ⊕ γ8).

Theorem 1. Let P = (L0, R0) and P ∗
0 = (L∗

0, R
∗
0) be two plaintexts of 4-round

Camellia, C = (L4, R4) and C∗
4 = (L∗

4, R
∗
4) be the corresponding ciphertexts, R0,i

denote the ith byte of R0. If L0 = L∗
0, R0,1 �= R∗

0,1, R0,j = R∗
0,j(2 ≤ j ≤ 8), then R4

and R∗
4 satisfy:

R4,3 ⊕ R4,4 ⊕ R4,5 ⊕ R4,6 ⊕ R4,7 = R∗
4,3 ⊕ R∗

4,4 ⊕ R∗
4,5 ⊕ R∗

4,6 ⊕ R∗
4,7 (1)

R4,2 ⊕ R4,3 ⊕ R4,5 ⊕ R4,6 ⊕ R4,8 = R∗
4,2 ⊕ R∗

4,3 ⊕ R∗
4,5 ⊕ R∗

4,6 ⊕ R∗
4,8 (2)

R4,2 ⊕ R4,3 ⊕ R4,4 ⊕ R4,6 ⊕ R4,7 ⊕ R4,8

�= R∗
4,2 ⊕ R∗

4,3 ⊕ R∗
4,4 ⊕ R∗

4,6 ⊕ R∗
4,7 ⊕ R∗

4,8 (3)

R4,1 ⊕ R4,7 ⊕ R4,8 �= R∗
4,1 ⊕ R∗

4,7 ⊕ R∗
4,8 (4)

R4,3 ⊕ R4,4 ⊕ R4,5 �= R∗
4,3 ⊕ R∗

4,4 ⊕ R∗
4,5 (5)

R4,2 ⊕ R4,4 ⊕ R4,5 ⊕ R4,6 ⊕ R4,7 �= R∗
4,2 ⊕ R∗

4,4 ⊕ R∗
4,5 ⊕ R∗

4,6 ⊕ R∗
4,7 (6)

R4,2 ⊕ R4,5 �= R∗
4,2 ⊕ R∗

4,5 (7)

R4,4 ⊕ R4,6 �= R∗
4,4 ⊕ R∗

4,6 (8)

The above (in)equations in the theorem 1 provide some efficient 4-round
distinguishers,which will be used to attack and show the pseudorandomness of
reduced-round Camellia.



Collision Attack and Pseudorandomness of Reduced-Round Camellia 257

4 Attacks on Reduced-Round Camellia with 128 Bit Key

4.1 Attacking 6-Round Camellia with 128 Bit Key

This section explains the attack on 6-round Camellia with 128-bit key in some
detail. First we recover the first byte k1,1 of k1 and the seventh byte k6,7 of k6.
From the key schedule for 128-bit key, we know that k6,7[2 ∼ 8] = k1,1[1 ∼ 7], so
we only need to guess 9 bits. Using the equation (1) of theorem 1, we construct
the following algorithm to recover(k1,1, k6,7) :

Algorithm 1
Step1. For each possible value t of k1,1, choose two plaintexts P0t = (L0t

0, R0t
0)

and P1t = (L1t
0, R1t

0) as follows:

L0t
0 = (i0, α2, · · · , α8),

R0t
0 = (s1(i0 ⊕ k1,1), s1(i0 ⊕ k1,1), s1(i0 ⊕ k1,1), β4, s1(i0 ⊕ k1,1), β6, β7, s1(i0 ⊕ k1,1)),

L1t
0 = (i1, α2, · · · , α8),

R1t
0 = (s1(i1 ⊕ k1,1), s1(i1 ⊕ k1,1), s1(i1 ⊕ k1,1), β4, s1(i1 ⊕ k1,1), β6, β7, s1(i1 ⊕ k1,1)).

where αi and βj are constants, 0 ≤ i0 < i1 ≤ 255. The corresponding cipher-
texts are C0t = (L0t

6, R0t
6) and C1t = (L1t

6, R1t
6).

Step2. For each possible value of (t, k6,7), compute

�0 = s4(R0t
6,7 ⊕ k6,7) ⊕ (L0t

6,3 ⊕ L0t
6,4 ⊕ L0t

6,5 ⊕ L0t
6,6 ⊕ L0t

6,7),

�1 = s4(R1t
6,7 ⊕ k6,7) ⊕ (L1t

6,3 ⊕ L1t
6,4 ⊕ L1t

6,5 ⊕ L1t
6,6 ⊕ L1t

6,7).

Check if �0 equals �1. If so, record the corresponding value of (t, k6,7). Other-
wise, move to next value of (t, k6,7).
Step3. For the recorded value of (t, k6,7) in Step2, choose some other plaintexts
P2t(�= P0t, P1t), compute �2, and check if �2 equals �0, if so, record the corre-
sponding value of (t, k6,7), otherwise, discard the value of (t, k6,7). If there are
more than one recorded value, then repeat Step 3 on the newly recorded values.

Take q values at random over {0, 1}8, the probability of that they are the
same is 2−8(q−1). So invalid subkey will pass step2 with a probability 2−8, and
there are about 29×2−8 = 2 remaining values after step2. So the attack requires
less than 3 × 28chosen plaintexts. The main time complexity of attack is from
step2, where the time complexity of computing each � is about the same as the
1-round encryption, so the time complexity of attack is less than 29 encryptions.

Knowing k1,1, we can choose plaintexts such that the outputs of the first
round meet the requirement of Theorem 1. Thus, R5 satisfies Theorem 1, and
from R5 = L6 ⊕ F (R6, k6) and that s1(R6,1 ⊕ k6,1) is the result of ⊕ of the 2nd
,3rd ,4th ,6th,7th and 8th byte of F (R6, k6), we have

R5,2⊕R5,3⊕R5,4⊕R5,6⊕R5,7⊕R5,8 = L6,2⊕L6,3⊕L6,4⊕L6,6⊕L6,7⊕L6,8⊕s1(R6,1⊕k6,1).

Using this equation and inequation (3) in Theorem 1, we can construct the
following algorithm to recover k6,1 :
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Algorithm 2
Step1. Choose 64 plaintexts P i = (Li

0, R
i
0)(0 ≤ i ≤ 63) as follows:

Li
0 = (i, α2, · · · , α8),

Ri
0 = (s1(i ⊕ k1,1), s1(i ⊕ k1,1), s1(i ⊕ k1,1), β4, s1(i ⊕ k1,1), β6, β7, s1(i ⊕ k1,1)).

where αi and βj are constants. Denote by Ci = (Li
6, R

i
6) the corresponding

ciphertexts of the above plaintexts.
Step2. For each possible value of k6,1, compute

�i = s1(Ri
6,1 ⊕ k6,1) ⊕ (Li

6,2 ⊕ Li
6,3 ⊕ Li

6,4 ⊕ Li
6,6 ⊕ Li

6,7 ⊕ Li
6,8).

Check if there are collisions among �i. If so, discard the value of k6,1. Otherwise,
output k6,1.
Step3. From the output values of k6,1 in Step2, choose some other plaintexts,
and repeat Step2.

The probability of at least one collision occurs when we throw 64 balls into
256 buckets at random is larger than 1 − e−64(64−1)/2×28 ≥ 1 − 2−11. So the
probability of wrong output (invalid subkey) in Step2 is less than 2−11. For the
256 possible values of k6,1, at most 64 more plaintexts are needed in Step3. Thus,
the attack requires less than 27 chosen plaintexts and 212 encryptions.

Similarly, using equation (2) in Theorem 1 and the plaintexts chosen in Al-
gorithm 2, we can recover k6,6 by computing

�i = s3(Ri
6,6 ⊕ k6,6) ⊕ (Li

6,2 ⊕ Li
6,3 ⊕ Li

6,5 ⊕ Li
6,6 ⊕ Li

6,8).

Check if �i is a constant. If so, output the value of k6,6 , otherwise, discard the
value of k6,6.Here the attack requires 210 encryptions.

And using k6,6 , inequation (4) in Theorem 1 and the plaintexts chosen in
Algorithm 2, we can recover k6,4 by computing

�i = s4(Ri
6,4 ⊕ k6,4) ⊕ s3(Ri

6,6 ⊕ k6,6) ⊕ (Li
6,1 ⊕ Li

6,7 ⊕ Li
6,8).

and the attack requires 212 encryptions.
And using inequation (5) in Theorem 1 and the plaintexts chosen in Algo-

rithm 2, we can recover k6,2 by computing

�i = s4(Ri
6,4 ⊕ k6,4) ⊕ s2(Ri

6,2 ⊕ k6,2) ⊕ s3(Ri
6,6 ⊕ k6,6) ⊕ (Li

6,3 ⊕ Li
6,4 ⊕ Li

6,5).

and the attack requires 212 encryptions.
And using inequation (6) in Theorem 1 and the plaintexts chosen in Algo-

rithm 2, we can recover k6,3 by computing

�i = s4(Ri
6,4⊕k6,4)⊕s3(Ri

6,3⊕k6,3)⊕s3(Ri
6,6⊕k6,6)⊕(Li

6,2⊕Li
6,4⊕Li

6,5⊕Li
6,6⊕Li

6,7).

and the attack requires 212 encryptions.
And using inequation (7) in Theorem 1 and the plaintexts chosen in Algo-

rithm 2, we can recover k6,5 by computing

�i = s4(Ri
6,4 ⊕ k6,4) ⊕ s2(Ri

6,5 ⊕ k6,5) ⊕ s3(Ri
6,6 ⊕ k6,6) ⊕ (Li

6,2 ⊕ Li
6,5).

and the attack requires 212 encryptions.
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And using inequation (8) in Theorem 1 and the plaintexts chosen in Algo-
rithm 2, we can recover k6,8 by computing

�i = s4(Ri
6,4 ⊕ k6,4) ⊕ s1(Ri

6,8 ⊕ k6,8) ⊕ s3(Ri
6,6 ⊕ k6,6) ⊕ (Li

6,4 ⊕ Li
6,6).

and the attack requires 212 encryptions.
Now we have recovered k1,1 and k6, using less than 210 chosen plaintexts and

6 × 212 + 210 + 29 encryptions. Similarly, by decrypting the 6th round, we can
recover k5. Therefore, the attack on the 6-round Camellia requires less than 210

chosen plaintexts and 215 encryptions.

Similarly we can get the user key of 7(8)-round Camellia. For 7-round Camel-
lia, the attack requires less than 212 chosen plaintexts and 254.5 encryptions. For
8-round Camellia, the attack requires less than 213 chosen plaintexts and 2112.1

encryptions.

4.2 Attacking 9-Round Camellia with 128 Bit Key

If we use the 4-round distinguisher from the 2nd to the 5th round of encryption as
in the case of 8-round, then the time complexity of recovering 9-round Camellia
key is larger than 2128 which is apparently useless. So we will use the 4-round dis-
tinguisher only from the 4th to the 7th round. First guess k1, k2,1, k2,2, k2,3, k2,5,
k2,8, k3,1, k8,7, k9,3, k9,4, k9,5, k9,6, k9,8, When (k1, k2,1, k2,2, k2,3, k2,5, k2,8) is given,
we only need to guess 3 bits of (k9,3, k9,4, k9,5, k9,6, k9,8).

Algorithm 3
Step1. For each possible value t of (k1, k2,1, k2,2, k2,3, k2,5, k2,8, k3,1), Choose 3
plaintexts Pjt = (Ljt

0, Rjt
0)(1 ≤ j ≤ 3) such that

Ljt
2 = (ij , α2, · · · , α8),

Rjt
2 = (s1(ij⊕k3,1), s1(ij⊕k3,1), s1(ij⊕k3,1), β4, s1(ij⊕k3,1), β6, β7, s1(ij⊕k3,1)).

where αi and βj are constants, 0 ≤ ij ≤ 255, and the the corresponding cipher-
texts are Cjt = (Ljt

9, Rjt
9).

Step2. For each fixed value of t, and for each possible value of (k8,7, k9,3, k9,4,
k9,5, k9,6, k9,8), compute 	1 and 	2, where

	j = s4(Rjt
8,7 ⊕ k8,7)⊕ (Rjt

9,3 ⊕Rjt
9,4 ⊕Rjt

9,5 ⊕Rjt
9,6 ⊕Rjt

9,7),

Rjt
8,7 = Ljt

9,7 ⊕ s3(Rjt
9,3 ⊕ k9,3)⊕ s4(Rjt

9,4 ⊕ k9,4)⊕ s2(Rjt
9,5 ⊕ k9,5)

⊕s3(Rjt
9,6 ⊕ k9,6)⊕ s1(Rjt

9,8 ⊕ k9,8).

Check if	1 equals	2. If so, output the value of (k8,7, k9,3, k9,4, k9,5, k9,6, k9,8).
Otherwise, discard the value of (k8,7, k9,3, k9,4, k9,5, k9,6, k9,8).

For the output values of (k8,7, k9,3, k9,4, k9,5, k9,6, k9,8), compute 	3, check if
	3 equals	1. If so, output the value of (k8,7, k9,3, k9,4, k9,5, k9,6, k9,8). Otherwise,
discard the value of (k8,7, k9,3, k9,4, k9,5, k9,6, k9,8).
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Step3. For the output values of (t, k8,7, k9,3, k9,4, k9,5, k9,6, k9,8) in Step2, Choose
some other plaintexts P4t(
= Pjt, 1 ≤ j ≤ 3), compute 	4, check if 	4 equals
	1. If so, output the value of (t, k8,7, k9,3, k9,4, k9,5, k9,6, k9,8). Otherwise, discard
the value of (t, k8,7, k9,3, k9,4, k9,5, k9,6, k9,8). If there are more than one output
value, then repeat Step3.

Wrong values will pass step2 successfully with probability 2−16. Thus there
are about 2123 × 2−16 = 2107 output values in step2. So, the attack requires less
than 3 × 2112 + 2108 chosen plaintexts. The main time complexity of the attck
is in Step2, the time of computing each 	 is about the 1-round encryption, so
the time complexity of the attck is less than (2 × 2112 × 211 + 2116) × 1/9 <
2120 + 2119 + 2118 + 2117 encryptions.

Now we know k1, k2,1, k2,2, k2,3, k2,5, k2,8, k3,1, k8,7, k9,3, k9,4, k9,5, k9,6, k9,8, we
can recover the other bytes of k9 and get the user key of 9-round Camellia. The
attack requires less than 2113.6 chosen plaintexts and 2121 encryptions.

5 Attacks Reduced-Round Camellia with 192/256 Bit
Key

5.1 Attacking 9-Round Camellia with 192/256 Bit Key

First guess k1,1, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9. When k1,1 is given, we can
get 8 bits of k8 from the key schedule. So we need guess 176 bits subkey. Using
equation (1) in Theorem 1, we can construct the following algorithm:

Algorithm 4
Step1. For each possible value t of k1,1, Choose 22 plaintexts Pjt = (Ljt

0, Rjt
0)

(1 ≤ j ≤ 22) as follows:

Ljt
0 = (ij , α2, · · · , α8),

Rjt
0 = (s1(ij⊕ k1,1), s1(ij⊕ k1,1), s1(ij⊕ k1,1), β4, s1(ij⊕k1,1), β6, β7, s1(ij⊕k1,1)).

where αi and βj are constants, 0 ≤ ij ≤ 255, and the the corresponding cipher-
texts are Cjt = (Ljt

9, Rjt
9).

Step2. For each fixed value of t, for each possible value of (k6,7, k7,3, k7,4, k7,5,
k7,6, k7,8, k8, k9) , First compute 	1 and 	2, where

	j = s4(Rjt
6,7 ⊕ k6,7)⊕ (Rjt

7,3 ⊕Rjt
7,4 ⊕Rjt

7,5 ⊕Rjt
7,6 ⊕Rjt

7,7),

Ljt
7 =Rjt

8, Rjt
7 = Ljt

8 ⊕ F (Rjt
8, k8), Ljt

8 = Rjt
9, Rjt

8 = Ljt
9 ⊕ F (Rjt

9, k9),
Rjt

6,7 = Ljt
7,7 ⊕ s3(Rjt

7,3 ⊕ k7,3)⊕ s4(Rjt
7,4 ⊕ k7,4)⊕ s2(Rjt

7,5 ⊕ k7,5)

⊕s3(Rjt
7,6 ⊕ k7,6)⊕ s1(Rjt

7,8 ⊕ k7,8).

Check if	1 equals	2. If so, output the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8,
k8, k9) . Otherwise, discard the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9).

For the output values of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9), compute 	3,
check if 	3 equals 	1. If so, output the value of(k6,7, k7,3, k7,4, k7,5, k7,6, k7,8,
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k8, k9). Otherwise, discard the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9). Sim-
ilar process will go through 	4 up to 	22.
Step3. For the output values of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9) in Step2,
choose some other plaintexts P23t(
= Pjt, 1 ≤ j ≤ 22) , compute 	23, check if
	23 equals 	1. If so, output the value of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8,
k8, k9). Otherwise, discard the value of(t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9). If
there are more than one output value, then repeat Step3.

Invalid values of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9) that can pass Step2 will
be successful with probability 2−168. Thus it is likely that there is only one
output value for any fixed t after Step2, so there are about 28 different values
after step2. Thus, the attack requires 22×28+28+28 = 3×211 chosen plaintexts.
The main time complexity of the attack is in Step2, and the time of computing
each 	 is about the same as 3-round encryption, so the time complexity of an
attack is less than that of (2×28×2168 +28×2160 +28×2153)×1/3 < 2175 +2174

encryptions.
Now we have known (k1,1, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9), we can decrypt

the ninth and eighth round and recover the other bytes of k7 and get the user
key of 9-round Camellia. The attack requires less than 213 chosen plaintexts and
2175.6 encryptions.

5.2 Attacking 10-Round Camellia with 256 Bit Key

First guess k1,1, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10. When k1,1is given, we
can get 8 bits of k8 from the key schedule. So we need guess 240 bits subkey.
Using equation (1) in Theorem 1, we construct the following algorithm:

Algorithm 5
Step1. For each possible value t of k1,1, Choose 30 plaintexts Pjt = (Ljt

0, Rjt
0)

(1 ≤ j ≤ 30) as follows:

Ljt
0 = (ij , α2, · · · , α8),

Rjt
0 =(s1(ij⊕ k1,1), s1(ij⊕ k1,1), s1(ij⊕ k1,1), β4, s1(ij⊕ k1,1), β6, β7, s1(ij⊕ k1,1)).

where αi and βj are constants, 0 ≤ ij ≤ 255, and the the corresponding cipher-
texts are Cjt = (Ljt

10, Rjt
10).

Step2. For each fixed value of t, for each possible value of (k6,7, k7,3, k7,4, k7,5,
k7,6, k7,8, k8, k9, k10) , First compute 	1 and 	2,where

	j = s4(Rjt
6,7 ⊕ k6,7)⊕ (Rjt

7,3 ⊕Rjt
7,4 ⊕Rjt

7,5 ⊕Rjt
7,6 ⊕Rjt

7,7).

Ljt
7 = Rjt

8, Rjt
7 = Ljt

8 ⊕ F (Rjt
8, k8),

Ljt
8 = Rjt

9, Rjt
8 = Ljt

9 ⊕ F (Rjt
9, k9),

Ljt
9 = Rjt

10, Rjt
9 = Ljt

10 ⊕ F (Rjt
10, k10),

Rjt
6,7 = Ljt

7,7 ⊕ s3(Rjt
7,3 ⊕ k7,3)⊕ s4(Rjt

7,4 ⊕ k7,4)⊕ s2(Rjt
7,5 ⊕ k7,5)

⊕s3(Rjt
7,6 ⊕ k7,6)⊕ s1(Rjt

7,8 ⊕ k7,8).
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Check if	1 equals	2. If so, output the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8,
k8, k9, k10) . Otherwise, discard the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9,
k10).

For the output values of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10), compute
	3, check if	3 equals	1. If so, output the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8,
k8, k9, k10). Otherwise, discard the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9,
k10). Similar process will go through 	4 up to 	30.

Step3. For the output values of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10) in
Step2, choose some other plaintexts P31t(
= Pjt, 1 ≤ j ≤ 30) , compute 	31,
check if 	31 equals 	1. If so, output the value of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8,
k8, k9, k10). Otherwise, discard the value of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9,
k10). If there are more than one output value, then repeat Step3.

Invalid values of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10) that can pass Step2
will be successful with probability 2−232 . Thus it is likely that there is only one
output value for any fixed t after Step2, so there are about 28 different values
after step2. Thus, the attack requires 30×28+28+28 = 213 chosen plaintexts. The
main time complexity of the attack is in Step2, and the time of computing each
	 is about the same as 4-round encryption, so the time complexity of an attack
is less than that of (2×28×2232+28×2224+28×2217)×4/10 < 2239+2238+2237

encryptions.
Now we have known (k1,1, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10), we can de-

crypt the tenth, ninth and eighth round and recover the other bytes of k7 and
get the user key of 10-round Camellia. The attack requires less than 214 chosen
plaintexts and 2239.9 encryptions.

6 Pseudorandomness of Primitive-Wise Idealized
Camellia

6.1 Primitive-Wise Idealization of Camellia

Let n denote the length of a plaintext which can be written as n = 16m, where
m is an integer. Now we idealize Camellia as shown in Fig.1, where each fij is
an independent random function from {0, 1}m to {0, 1}m.

6.2 Pseudorandomness of Primitive-Wise Idealized Camellia

Let P = (L0, R0) denote the plaintext, (Li, Ri) denote the output of the ith
round primitive-wise idealized Camellia. Let Li = (Li,1, Li,2, . . . , Li,8) and Ri =
(Ri,1, Ri,2, . . . , Ri,8), where each of Li,j and Ri,j is m bits long.

Theorem 2. The four round primitive-wise idealized Camellia is not a pseudo-
random permutation.

Proof. Let Bn be the set of permutations over {0, 1}n obtained from the four
round primitive-wise idealized Camellia. We consider a distinguisher A as fol-
lows.
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Ri

Ri-1

fi8

fi7

fi6

fi5

fi4

fi3

fi2

fi1

Li-1

L

i

Fig. 1. The i-th round of the primitive-wise idealized Camellia

1. A randomly chooses two plaintexts P = (L0, R0) and P ∗ = (L∗
0, R

∗
0) such

that

L0 = L∗
0 and R0,1 
= R∗

0,1, R0,j = R∗
0,j(2 ≤ j ≤ 8) (9)

2. A sends them to the oracle and receives the ciphertexts C = (L4, R4) and
C∗ = (L∗

4, R
∗
4) from the oracle.

3. Finally, A outputs 1 if and only if

R4,3 ⊕ R4,4 ⊕ R4,5 ⊕ R4,6 ⊕ R4,7 = R∗
4,3 ⊕ R∗

4,4 ⊕ R∗
4,5 ⊕ R∗

4,6 ⊕ R∗
4,7

R4,2 ⊕ R4,3 ⊕ R4,5 ⊕ R4,6 ⊕ R4,8 = R∗
4,2 ⊕ R∗

4,3 ⊕ R∗
4,5 ⊕ R∗

4,6 ⊕ R∗
4,8

Suppose that the oracle implements the truly random permutation ensemble
Pn. Then it is clear that p0 = 2−2m. Next suppose that the oracle implements the
four round primitive-wise idealized Camellia. Using Theorem 1, we get p1 = 1.
Therefore, we obtained that

AdvA =| p1 − p0 |≥ 1− 2−2m (10)

which is non-negligible. Hence, the four round primitive-wise idealized Camellia
is not a pseudorandom permutation.

We will use the following lemma of which the proof is trivial:

Lemma 1. Let f1, f2, . . . , ft be random functions from {0, 1}m to {0, 1}m. If
x = (x1, x2, . . . , xt) and y = (y1, y2, . . . , yt) are two distinct t-uple of {0, 1}m,
and δ is a given value of {0, 1}m, then

Pr[f1(x1)⊕ . . . ft(xt)⊕ f1(y1)⊕ . . . ft(yt) = δ] ≤ 2−m

.
We next prove the following theorem.
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Theorem 3. The five round primitive-wise idealized Camellia is a pseudoran-
dom permutation for non-adaptive adversaries.

Proof. Suppose that A makes q oracle calls. In the ith oracle call, A sends
a plaintexts P i = (Li

0, R
i
0) to the oracle and receives the ciphertexts Ci =

(Li
5, R

i
5). Let Li

3 = (Li
3,1, . . . , L

i
3,8) denote the inputs to (f41, . . . , f48) and Li

4 =
(Li

4,1, . . . , L
i
4,8) denote the inputs to (f51, . . . , f58).

Without loss of generality, we assume that P 1, . . . , P q are all distinct. Let T3l

be the event that L1
3,l, L

2
3,l, . . . , L

q
3,l are all distinct for l = 1, . . . , 8, and T3 be the

event that all T31, . . . , T38 occur. Let T4l be the event that L1
4,l, L

2
4,l, . . . , L

q
4,l are

all distinct for l = 1, . . . , 8, and T4 be the event that all T41, . . . , T48 occur. If T3
and T4 occur, then C1, . . . , Cq are completely random since f41, . . . , f48, f51, . . . ,
f58 are truly random functions. Therefore, AdvA is upper bounded by

AdvA =| p1 − p0 |≤ 1− Pr(T3 ∩ T4) (11)

Further, it is easy to see that

1 − Pr(T3 ∩ T4) ≤
∑

1≤i<j≤q

Pr(Li
3,1 = Lj

3,1) + . . . +
∑

1≤i<j≤q

Pr(Li
3,8 = Lj

3,8) +

∑

1≤i<j≤q

Pr(Li
4,1 = Lj

4,1) + . . . +
∑

1≤i<j≤q

Pr(Li
4,8 = Lj

4,8) (12)

Fix i 
= j arbitrarily. We show that all Pr(Li
3,1 = Lj

3,1), . . . , P r(Li
3,8 = Lj

3,8),
P r(Li

4,1 = Lj
4,1), . . . , P r(Li

4,8 = Lj
4,8) are sufficiently small. First we show Pr(Li

3,1 =
Lj

3,1) is sufficiently small.
Let E2l be the event that Li

2,l = Lj
2,l for l = 1, . . . , 8. Since P i �= P j , by Lemma

1 we have Pr(Li
1 = Lj

1) ≤ 2−m. If Li
1 �= Lj

1, then (Li
1,1, L

i
1,3, L

i
1,4, L

i
1,6, L

i
1,7, L

i
1,8)

�= (Lj
1,1, L

j
1,3, L

j
1,4, L

j
1,6, L

j
1,7, L

j
1,8) or (Li

1,1, L
i
1,2, L

i
1,3, L

i
1,5, L

i
1,6, L

i
1,8) �= (Lj

1,1, L
j
1,2, L

j
1,3,

Lj
1,5, L

j
1,6, L

j
1,8). From the 2nd round function of idealized Camellia, we have that

Li
2,1 = Li

0,1 ⊕ f21(Li
1,1) ⊕ f23(Li

1,3) ⊕ f24(Li
1,4) ⊕ f26(Li

1,6) ⊕ f27(Li
1,7) ⊕ f28(Li

1,8)

Li
2,3 = Li

0,3 ⊕ f21(Li
1,1) ⊕ f22(Li

1,2) ⊕ f23(Li
1,3) ⊕ f25(Li

1,5) ⊕ f26(Li
1,6) ⊕ f28(Li

1,8)

Therefore, by using Lemma 1 we get Pr(E21 | Li
1 �= Lj

1) ≤ 2−m or Pr(E23 |
Li

1 �= Lj
1) ≤ 2−m, hence Pr(E21) ≤ Pr(Li

1 = Lj
1) + Pr(E21 | Li

1 �= Lj
1) ≤ 2−m+1 or

Pr(E23) ≤ Pr(Li
1 = Lj

1) + Pr(E23 | Li
1 �= Lj

1) ≤ 2−m+1, and therefore, Pr(E21∩E23) ≤
2−m+1.

Similarly, from Lemma 1 and the following equation

Li
3,1 = Li

1,1 ⊕ f31(Li
2,1) ⊕ f33(Li

2,3) ⊕ f34(Li
2,4) ⊕ f36(Li

2,6) ⊕ f37(Li
2,7) ⊕ f38(Li

2,8)

we have Pr(Li
3,1 = Lj

3,1 | E21 ∩ E23) ≤ 2−m. Hence, we have

Pr(Li
3,1 = Lj

3,1)

=Pr(Li
3,1=Lj

3,1 | E21 ∩ E23)Pr(E21 ∩ E23)+Pr(Li
3,1 =Lj

3,1 | E21 ∩ E23)Pr(E21 ∩ E23)

≤ Pr(E21 ∩ E23) + Pr(Li
3,1 = Lj

3,1 | E21 ∩ E23)

≤ 2−m+1 + 2−m = 3 × 2−m (13)
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Similarly for l = 2, . . . , 8, we can get Pr(Li
3,l = Lj

3,l) ≤ 3 × 2−m(l = 2, . . . , 8).
Next we show Pr(Li

4,l = Lj
4,l) is sufficiently small for l = 1, . . . , 8. For simplicity,

we only consider the case Pr(Li
4,1 = Lj

4,1).
Let E3l be the event that Li

3,l = Lj
3,l for l = 1, . . . , 8. Let W1 = E31 ∩ E33 ∩ E34 ∩

E36 ∩ E37 ∩ E38. Because

Li
4,1 = Li

2,1 ⊕ f41(Li
3,1) ⊕ f43(Li

3,3) ⊕ f44(Li
3,4) ⊕ f46(Li

3,6) ⊕ f47(Li
3,7) ⊕ f48(Li

3,8)

Lj
4,1 = Lj

2,1 ⊕ f41(Lj
3,1) ⊕ f43(Lj

3,3) ⊕ f44(Lj
3,4) ⊕ f46(Lj

3,6) ⊕ f47(Lj
3,7) ⊕ f48(Lj

3,8)

we have Pr(Li
4,1 = Lj

4,1 | W1) ≤ 2−m. Therefore, we obtain

Pr(Li
4,1 = Lj

4,1) = Pr(Li
4,1 = Lj

4,1 | W1)Pr(W1) + Pr(Li
4,1 = Lj

4,1 | W1)Pr(W1)

≤ Pr(W1) + Pr(Li
4,1 = Lj

4,1 | W1)

≤ Pr(Li
3,1 = Lj

3,1) + 2−m ≤ 4 × 2−m (14)

Similarly for l = 2, . . . , 8, we have Pr(Li
4,l = Lj

4,l) ≤ 4 × 2−m.
Since we have

(
q
2

)
choices of (i, j) pairs, so we have

1 − Pr(T3 ∩ T4) ≤
∑

1≤i<j≤q

Pr(Li
3,1 = Lj

3,1) + . . . +
∑

1≤i<j≤q

Pr(Li
3,8 = Lj

3,8) +

∑

1≤i<j≤q

Pr(Li
4,1 = Lj

4,1) + . . .
∑

1≤i<j≤q

Pr(Li
4,8 = Lj

4,8)

≤
(

q

2

)
× 8 × 3 × 2−m +

(
q

2

)
× 8 × 4 × 2−m

<
28q2

2m
(15)

Since q = poly(n), m = n
16 , we have that AdvA is negligible for any A. This

shows that the five round primitive-wise idealized Camellia is a pseudorandom
permutation for non-adaptive adversaries.

Similar to the above, we can prove the following corollary.

Corollary 1. The five round primitive-wise idealized Camellia is a super-
pseudorandom permutation for non-adaptive adversaries.

7 Concluding Remarks

In this paper we have proposed some 4-round distinguishers of Camellia, and dis-
cussed the security of Camellia by using the 4-round distinguishers and collision-
searching techniques. The 128-bit key of 6 rounds Camellia can be recovered with
210 chosen plaintexts and 215 encryptions.The 128-bit key of 7 roundsCamellia can
be recovered with 212 chosen plaintexts and 254.5 encryptions. The 128-bit key of
8 rounds Camellia can be recovered with 213 chosen plaintexts and 2112.1 encryp-
tions. The 128-bit key of 9 rounds Camellia can be recovered with 2113.6 chosen
plaintexts and 2121 encryptions. The 192/256-bit key of 8 rounds Camellia can be
recovered with 213 chosen plaintexts and 2111.1 encryptions. The 192/256-bit key
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of 9 rounds Camellia can be recovered with 213 chosen plaintexts and 2175.6 en-
cryptions. The 256-bit key of 10 rounds Camellia can be recovered with 214 chosen
plaintexts and 2239.9 encryptions. Furthermore, we have shown that the four round
primitive-wise idealized Camellia is not pseudorandom permutation and the five
round primitive-wise idealized Camellia is super-pseudorandom permutation for
non-adaptive adversaries.
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