
Collision Attack on NaSHA-384/512

Zhimin Li∗1,2,3,Licheng Wang1,2,3, Daofeng Li1,2,3,
Yixian Yang1,2,3

1 Information Security Center, State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications Beijing

University of Posts and Telecommunications ,
2 Key Laboratory of network and information attack and defence technology of

MoE,
3 National Engineering Laboratory for Disaster Backup and Recovery, Beijing

100876, People’s Republic of China

Abstract

NaSHA is a family of hash functions submitted by Markovski and Mileva as a SHA-3
candidate. In this paper, we present a collision attack on the hash function NaSHA
for the output sizes 384-bit and 512-bit. This attack is based on the the weakness in
the generate course of the state words and the fact that the quasigroup operation
used in the compression function is only determined by partial state words. Its time
complexity is about 2128 with negligible memory and its probability is more than
(1− 2

264−1
)2 (À 1

2). This is currently by far the best known cryptanalysis result on
this SHA-3 candidate.

Key words: Hash function, NaSHA-384, NaSHA-512, collision attack

1 Introduction

Cryptographic hash functions are used in a wide range of applications
such as digital signatures, authentication schemes and message integrity etc.
Wang et al [1,6–9] recently showed that most standardized hash functions,
especially MD5 and SHA-1, are not collision resistant. As a response, the
National Institute of Standards and Technology (NIST) recently opened a
public competition [4] to develop a new cryptographic hash algorithm that will

∗ Corresponding author.Tel.:+86-10-62283086
Email address: lizhimin1981@gmail.com (Zhimin Li∗).

Preprint submitted to Elsevier Science 22 February 2009

be called SHA-3. 51 submissions met the minimum submission requirements,
and had been accepted as the first round candidates. Among them, NaSHA
is a new hash function designed by Markovski and Mileva [2] and currently
under evaluation.

Previous results. The first analysis of NaSHA was proposed by Nikolić and
Khovratovich [3]. The authors showed the free-start attacks on NaSHA based
on the fact that the state words processed in the compression function are
the XOR-sums of input message words and chaining variable words but not
the input message words and chaining variable words themselves. The free-
start collision attack requires 232 computations for all digests and the free-
start preimage attack requires around 2n/2 for NaSHA-n. Later, Li et al [5]
computed a collision for NaSHA-512 with the complexity 2192 and gave the
free-start collision on all versions with negligible complexity.

Our contributions. In this paper, we propose a collision attack which is
valid for both NaSHA-384 and NaSHA-512. This attack is based on the the
weakness in the generate course of the state words and the fact that the
quasigroup operation used in the compression function is only determined by
partial state words. The complexity of this attack is about 2128 which is much
lower than the complexity of the corresponding birthday attack to NaSHA-384
and NaSHA-512 and its probability is more than (1− 2

264−1
)2. Moreover, the

memory requirement of this attack is negligible.

2 Descriptions of NaSHA-384/512

NaSHA [2] is a iterated hash function based on the Merkle-Damg̊ard con-
struction. The compression function of NaSHA adopts a linear transformation
LinTr and a quasigroup transformation MT (which is defined by an unbal-
anced Feistel network).

We give a sketch of NaSHA-384/512, especially the operations which we
need in our analysis. For a detailed description of NaSHA we refer to [2].

The lengths of message block and chaining variable processed in the com-
pression function of NaSHA-384/512 are both 1024-bit. The word processed
in NaSHA is 64-bit each. Firstly, message block M and chaining variable H
are separated into 16 words respectively and the string S is formed

S = M1‖H1‖M2‖H2‖ . . . ‖M16‖H16.

Secondly, a linear transformation LinTr512 is used to update S

2

LinTr512(S1‖ . . . ‖S32) = (S7 ⊕ S15 ⊕ S25 ⊕ S32)‖S1‖ . . . ‖S31.

Thirdly, the parameters of MT are chosen according to the first 16 words
of LinTr512(S) and the compression value f(M,H) is computed

f(M,H) = MT (LinTr512(S)) = Z1‖ . . . ‖Z32.

After all of the message blocks have been processed, given the output value
Z1‖ . . . ‖Z32 of the compression function, NaSHA-512 outputs

Z4‖Z8 . . . ‖Z28‖Z32(mod2512)

and NaSHA-384 outputs

Z4‖Z8 . . . ‖Z28‖Z32(mod2384).

The main transformation MT is divided into two quasigroup transforma-
tion Al1 , RAl2 and one rotation left operation ρ

MT (S1, . . . , S32) = ρ(RAl2)(Al1(S1, . . . , S32)).

We give the definition of Al1 , RAl2 and the depiction of the parameters used
in the quasigroup transformation.

Definition 1 [2][Quasigroup additive string transformation Al : Qt → Qt

with leader l] Let t be a positiive integer, let (Q, ∗) be a quasigroup, Q = Z2n ,
and l, xj, zj ∈ Q. The transformation Al is defined as

Al(x1, . . . , xt) = (z1, . . . , zt) ⇔ zj =





(l + x1) ∗ x1, j = 1

(zj−1 + xj) ∗ xj, 2 ≤ j ≤ t

where + is addition modulo 2n. The element l is said to be a leader of A.

The quasigroup operation ∗ of A is built from the extended Feistel net-
works

x ∗ y = FA1,B1,C1(x⊕ y)⊕ y = (x⊕ y)R ⊕ A1 ⊕ yL‖

3

(x⊕ y)L ⊕B1 ⊕ fa1,b1,c1,a2,b2,c2,a3,b3,c3,α1,β1,γ1((x⊕ y)R ⊕ C1)⊕ yR.

In the above equation, yL (yR) is the left (right) 32-bit of y, i.e., y = yL‖yR and
so on. fa1,b1,c1,a2,b2,c2, a3,b3,c3,α1,β1,γ1(·) is fa1,b1,c1(fa2,b2,c2(fa3,b3,c3(fα1,β1,γ1(·))))
for short, all of them are defined by the same extended Feistel network with dif-
ferent parameters as FA1,B1,C1 . fa1,b1,c1,a2,b2,c2,a3, b3,c3,α1,β1,γ1 and fa1,b1,c1,a2,b2,c2,a3,b3,c3

are noted as f and f1 for short in the following section.

The parameters used above is chosen according to the first 16 words of
LinTr512(S) (A2, B2, C2 are used in the quasigroup transformation RA with
leader l2).

l1 = S1 + S2, l2 = S3 + S4,

a1‖b1‖c1‖a2‖b2‖c2‖a3‖b3 = S5 + S6, c3 = a1,

α1‖β1‖γ1‖α2 = S7 + S8,

β2‖γ2 = (S9 + S10) mod 232,

A1‖B1 = S11 + S12, C1‖A2 = S13 + S14, B2‖C2 = S15 + S16.

3 Observations of NaSHA-384/512

In this section, we give some observations of the compression function of
NaSHA-384/512 which we need in the analysis.

Proposition 1 [2] Let G = Z2n be with group operation addition modulo 2n.
Let a quasigroup operation ∗ on G be chosen randomly. Then the probability
the left quasigroup (G, •) (the operation • defined by x • y = (x + y) ∗ y)to
have two different solutions x1 6= x2 of the equation (a + x) ∗ x = b is less or
equal to 2

2n−1
.

Proposition 2 Given value a and b, the probability of existing x to satisfy the
equation (a + x) ∗ x = b is more than 1− 2

264−1
, ∗ is the quasigroup operation

defined in A.

Proof. The fact that there does not exist x such that (a + x) ∗ x = b
means there exists another b′ which has two solutions x1 and x2, i.e., b′ =

4

(a+x1)∗x1 = (a+x2)∗x2. The latter’s probability is less than 2
264−1

according
to Proposition 1 (A is defined on Z264).

Observation 1 For the quasigroup operation ∗ defined in A, there exist such
a, x and y that (a+x)∗x = (a+y)∗y. More important, if we let A1 = (x+y)L

the following equation is also true aL = ((a + x) ∗ x)L = ((a + y) ∗ y)L.

For example, given a = 0x7FFF80017FFF8000, x = 0xFFFFFFFF00008000
and y = 0x0000FFFF 00007FFF, then A1 = (x + y)L = 0x0000FFFe and the
following equations always hold.





(a + x) ∗ x = (a + y) ∗ y

aL = ((a + x) ∗ x)L

(1)

(a + x) ∗ x

= FA1,B1,C1((a + x)⊕ x)⊕ x

= FA1,B1,C1(0x80007FFF80008000)⊕ 0xFFFFFFFF00008000

= (0x7FFF7FFF⊕ A1) ‖(f(0x80008000⊕ C1)⊕B1 ⊕ 0x8000FFFF

= 0x7FFF8001 ‖C1R ⊕ α1 ⊕B1L ‖f1(0x8000⊕ C1R ⊕ γ1)⊕ β1 ⊕B1R ⊕ 0x7FFF

= aL ‖C1R ⊕ α1 ⊕B1L ‖f1(0x8000⊕ C1R ⊕ γ1)⊕ C1L ⊕ β1 ⊕B1R ⊕ 0x7FFF

(a + y) ∗ y

= FA1,B1,C1((a + y)⊕ y)⊕ y

= FA1,B1,C1(0x80007FFF7FFF8000)⊕ 0x0000FFFF00007FFF

= (0x7FFF7FFF⊕ A1) ‖(f(0x7FFF8000⊕ C1)⊕B1 ⊕ 0x80000000

= 0x7FFF8001 ‖C1R ⊕ α1 ⊕B1L ‖f1(0x8000⊕ C1R ⊕ γ1)⊕ β1 ⊕B1R ⊕ 0x7FFF

= aL ‖C1R ⊕ α1 ⊕B1L ‖f1(0x8000⊕ C1R ⊕ γ1)⊕ C1L ⊕ β1 ⊕B1R ⊕ 0x7FFF

Observation 2 Only the first 16 words of the state S are used to define the
parameters of the quasigroup transformations in NaSHA-384/512.

According to these properties, we have the following conclusions.

• For any a and b, we can find x such that (a + x) ∗ x = b with probability
more than 1− 2

264−1
(Proposition 2).

5

• For arbitrary a and x, We can choose A1, B1 and C1 such that (a+x)∗x = a
(Definition of A). Especially for a, x and y mentioned in Observation 1, we
have a = (a + x) ∗ x = (a + y) ∗ y.

• The state words except the first 16 words in NaSHA-384/512 can be changed
without the change of the parameters used in the quasigroup transforma-
tions (Observation 2).

• The first 16 words should be changed in pairs to keep the parameters no
variation (Definition of A and RA).

4 Collision Attacks on NaSHA-384/512

In this section, we give a collision attack on NaSHA-512 which is also true
for NaSHA-384 since the difference between NaSHA-384 and NaSHA-512 is
only the different modulo value at the end, and its complexity is 2128.

Firstly, we give the differential pattern of our attack which has two con-
tinuous differentials on the state words in total, see Table 1. The blanks in
the table for 4M and 4S indicate that no difference exists in these words
and the blanks for S, S ′ and Z mean no condition on these words. The time
complexity 2128 is caused by finding S10 and S24 such that the output Z10 and
Z24 of Al1 are both equal to a (a and x, y depicted in Table 1 are required to
satisfy the the equations that a = (a+x)∗x = (a+ y) ∗ y and A1 = (x+ y)L).
The probability to find such S10 and S24 is more than (1− 2

264−1
)2. The attack

consists of the following 5 steps.

Step 1: Fix difference pattern of the state words and the input message
words correspondingly.

With the equation S = LinTr512(M1‖H1‖M2‖H2‖ . . . ‖M16‖H16), we search
for 4S that satisfies the following two conditions: (i) The quantity of differ-
ence (continuous difference) is as small as possible when some of the input
message words (at least only one word, at most all of the words) have differ-
ence 4x = x⊕ y = 0xFFFF00000000FFFF; (ii) If S2i−1 exists difference, S2i

must exist difference too, for i = 1, 2, . . . , 8.

The difference pattern (4S) listed in Table 1 has 6 difference (the smallest
number of difference for 4S under above two conditions), 4S11, 4S12, 4S25,
4S28, 4S29 and 4S32. We set the value of the state words S11 = x, S12 = y
and the value of S25, S26, S27, S28, S29, S30, S31, S32 can be set as x or y
arbitrarily. Then we get the corresponding collision state S ′.

Step 2: Determine the free state words.

6

Table 1
Differential pattern in the compression function of NaSHA-384/512

1 2 3 4 5 6 7 8

4M 4x 4x 4x 4x 4x

9 10 11 12 13 14 15 16

4M 4x 4x 4x

⇓
1 2 3 4 5 6 7 8

4S

9 10 11 12 13 14 15 16

4S 4x 4x

17 18 19 20 21 22 23 24

4S

25 26 27 28 29 30 31 32

4S 4x 4x 4x 4x

⇓
1 2 3 4 5 6 7 8

S

S′

9 10 11 12 13 14 15 16

S x y

S′ y x

17 18 19 20 21 22 23 24

S

S′

25 26 27 28 29 30 31 32

S x x x x x x x x

S′ y x x y y x x y

⇓
1 2 3 4 5 6 7 8

Z

9 10 11 12 13 14 15 16

Z a a a

7

17 18 19 20 21 22 23 24

Z a

25 26 27 28 29 30 31 32

Z a a a a a a a a

We have 16 message words processed into the compression function once,
and 32 state words are derived according to the linear transformation LinTr512.
In other words, we have 16 free state words in total and other 16 state words
are determined uniquely by these free words. Since we have already fixed 10
state words for the differential pattern, we have 6 free words at last, S9, S10,
S13, S14, S22 and S24. The correlation between the fixed state words and the
free ones is listed as follows.




S1

S2

S3

S4

S5

S6

S7

S8

S15

S16

S17

S18

S19

S20

S21

S23




= H⊕




S9 ⊕ S10 ⊕ S11 ⊕ S12 ⊕ S22 ⊕ S23 ⊕ S24 ⊕ S25 ⊕ S27 ⊕ S28 ⊕ S30 ⊕ S31 ⊕ S32

S9 ⊕ S10 ⊕ S13 ⊕ S25 ⊕ S28

S11 ⊕ S13 ⊕ S14 ⊕ S25 ⊕ S26 ⊕ S27 ⊕ S29 ⊕ S31 ⊕ S32

S11 ⊕ S12 ⊕ S13 ⊕ S28 ⊕ S29

S9 ⊕ S12 ⊕ S13 ⊕ S24 ⊕ S27 ⊕ S28 ⊕ S30 ⊕ S31 ⊕ S32

S10 ⊕ S14 ⊕ S25 ⊕ S27 ⊕ S28 ⊕ S29 ⊕ S32

S10 ⊕ S13 ⊕ S14 ⊕ S22 ⊕ S25 ⊕ S27 ⊕ S29 ⊕ S31

S9 ⊕ S10 ⊕ S11 ⊕ S13 ⊕ S22 ⊕ S24 ⊕ S25 ⊕ S26 ⊕ S27 ⊕ S28 ⊕ S30 ⊕ S32

S10 ⊕ S13 ⊕ S22 ⊕ S27 ⊕ S28 ⊕ S30 ⊕ S31 ⊕ S32

S11 ⊕ S12 ⊕ S13 ⊕ S23 ⊕ S25 ⊕ S26 ⊕ S31

S10 ⊕ S13 ⊕ S25 ⊕ S27 ⊕ S28

S10 ⊕ S11 ⊕ S14 ⊕ S25 ⊕ S26 ⊕ S29 ⊕ S31 ⊕ S32

S12 ⊕ S13 ⊕ S28

S9 ⊕ S10 ⊕ S22 ⊕ S24 ⊕ S29

S10 ⊕ S13 ⊕ S14 ⊕ S25 ⊕ S27 ⊕ S28 ⊕ S29 ⊕ S31 ⊕ S32

S9 ⊕ S24 ⊕ S31




H is the linear relationship of the initial value words.

8

H =




H2 ⊕H4 ⊕H12 ⊕H13 ⊕H16

H1 ⊕H3 ⊕H5 ⊕H10

H3 ⊕H10 ⊕H12 ⊕H14

H2 ⊕H3 ⊕H6 ⊕H10

H1 ⊕H15

H7 ⊕H10 ⊕H12

H3 ⊕H10 ⊕H12

H1 ⊕H2 ⊕H3 ⊕H4 ⊕H8 ⊕H10 ⊕H12 ⊕H16

H3 ⊕H9 ⊕H10 ⊕H12 ⊕H16

H1 ⊕H2 ⊕H3 ⊕H8 ⊕H9 ⊕H10 ⊕H13

H3 ⊕H5 ⊕H10

H12 ⊕H14

H3 ⊕H6 ⊕H10

H1 ⊕H3 ⊕H4 ⊕H9 ⊕H10 ⊕H11 ⊕H12 ⊕H15 ⊕H16

H3 ⊕H7 ⊕H10 ⊕H12

H1 ⊕H8




Step 3: Determine the condition of the parameter C1 such that (a+x)∗x =
a.

The parameters A1, B1 and C1 are calculated by the following equations

A1‖B1 = S11 + S12, C1‖A2 = S13 + S14. (2)

Since the value of S11 and S12 have been fixed to be x and y respectively, and
A1 = (S11 + S12)L = (x + y)L is the right value to make aL = ((a + x) ∗ x)L,
the rest work we need to do is to find right C1 such that ((a + x) ∗ x)R = aR.
This course will cost a free word (S13 or S14) to fulfill.

Step 4: Find collision of Al.

The key step of finding collision of Al is to find state words S10 and S24

such that the corresponding outputs Z10 and Z24 of Al are both a. If we can
find such S10 and S24, we can derive the collision of Al depicted in Table 1.

9

Since the length of a word is 64-bit, the complexity of this course is (264)2 and
the successful probability is more than (1 − 2

264−1
)2 according to Proposition

2. (There are still 3 free words S9, S14 (or S13) and S22 which can be used to
improve the probability and reduce the complexity to find suitable S10 and
S24 in the practical search.)

Step 5: Calculate the corresponding message words basing on the inverse
LinTr512.

5 Conclusion

In this paper, we propose a collision attack which is valid for both NaSHA-
384 and NaSHA-512. This attack exploits the fact that the quasigroup oper-
ation is only determined by partial state words and the diffusion effect from
the message words to the state words is not well (the influence among differ-
ent bits does not exist at all). The result is that there are enough free state
words which can be used to generate collision. The complexity of this attack
is about 2128 which is much lower than the complexity of birthday attack to
NaSHA-384 and NaSHA-512, and its probability is more than (1 − 2

264−1
)2

(À 1
2
).

Acknowledgments.

This study is supported by National Basic Research Program of China
(973 Program) (No. 2007CB310704), National Natural Science Foundation of
China (No. 90718001 and No. 60821001), National 863 (No. 2007AA01Z466),
and the 111 Project (No. B08004).

References

[1] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet
and Wiliam Jalby. Collisions of SHA-0 and reduced SHA-1. In Ronald Cramer,
editor, Advances in Cryptology-Eurocrypt 2005, volume 3494 of Lecture Notes
in Computer Science, pages 36-57. Springer, 2005.

[2] Smile Markovski and Aleksandra Mileva. Algorithm specication of NaSHA.
2008.

[3] Ivica Nikolić and Dmitry Khovratovich. Free-start attacks on NaSHA. It is
available at

10

[4] National Institute of Standards and Technology (NIST). Announcing request
for candidate algorithm nominations for a new cryptographic Hash algorithm
(SHA-3) family. This notice by NIST is available at

[5] Li Ji, Xu Liangyu and Guan Xu. Collision attack on NaSHA-512. Cryptology
ePrint Archive, Report 2008/519, 2008.

[6] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Efficient collision search
attacks on SHA-0. In Victor Shoup, editor, Advances in Cryptology-CRYPTO
2005, volume 3621 of Lecture Notes in Computer Science, pages 1-16. Springer,
2005.

[7] Xiaoyun Wang, Yiqun Lisa Yin and Hongbo Yu. Finding collisions in the
full SHA-1. In Victor Shoup, editor, Advances in Cryptology-CRYPTO 2005,
volume 3621 of Lecture Notes in Computer Science, pages 17-36. Springer, 2005.

[8] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, H. Chen and Xiuyuan Yu.
Cryptanalysis of the hash functions MD4 and RIPEMD. In Ronald Cramer,
editor, Advances in Cryptology-EUROCRYPT 2005, volume 3494 of Lecture
Notes in Computer Science, pages 1-18. Springer, 2005.

[9] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Ronald Cramer, editor, Advances in Cryptology-EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 19-35. Springer, 2005.

11

