
1

Collision avoidance for Delay Req messages in
broadcast media

Augusto Ciuffoletti
University of Pisa

Italy

Abstract—The time accuracy of the Precision Time Proto-
col deteriorates in consequence to Delay req/Delay resp ses-
sion collisions common for applications using shared broadcast
media. In this paper we propose a protocol that coordinates
Delay req/Delay resp sessions with minimum changes to the
original PTP protocol. Simulations illustrate protocol’s operation
and demonstrate significant reduction of session collisions.

I. INTRODUCTION

The IEEE-1588 protocol is a clock synchronization pro-
tocol applicable in a wide range of environments [5]. We
focus on the avoidance of collision events that may arise
between two-way sessions, that are based on one pair of
Delay Req/Delay Resp packets.

These sessions are run periodically to compensate random
variations in clock frequency: once an upper bound of these
variations is given, it is possible to compute the time between
two successive two-way sessions on a given slave clock.

One relevant feature of two-way sessions is that they are
launched by slave clocks. The IEEE-1588 protocol does not
envision any sort of coordination of two-way sessions which
therefore, under certain operational conditions, may bring to
collisions between sessions launched by distinct slaves. Such
collisions are considered as undesirable events: they induce
clock jitters and generally degrade the performance of the
system [7].

The IEEE-1588 contains a norm which is meant to break
unwanted correlations between two-way sessions: the pe-
riod between two-way sessions is decremented of a random
amount, thus backing up a possible tendency to aggregation
in time. The application of this norm guarantees that two-
way sessions are uniformly distributed in time, but does not
introduce any form of coordination.

The property of uniform distribution in time corresponds
to a Poisson distribution of two-way sessions in the whole
system; the number of events is determined by the period
between two way sessions on a slave clock (that we indicate
with δ), and by the number of slave clocks (that we indicate
with n). During a time unit, we observe λ = n

δ two-way
sessions, where λ is the rate parameter of a Poisson process.

When the time required to complete a two-way session (that
we indicate with τ) is a significant fraction of the average
time between events in the process P, the occurrence of a
collision becomes significant in its turn. Multiple collisions
are also possible, meaning that more than two sessions can be
simultaneously active at the same time.

Fig. 1. Probability of collision as a function of r = nτ
δ

(logarithmic scale
on both axis)

With a more formal statement, the probability of observing
k overlapping sessions for a process with intensity λ corre-
sponds to the well-known expression:

P ([N(t+ τ)−N(t)] = k) =
e−λτ (λτ)k

k!
(1)

In figure 1 we see the dependency of the probability of a
collision from the rate r = nτ

δ :

Pcoll = 1− (1 + r)e−r (2)

This figure justifies the claim that a collision avoidance
protocol is bound to the r parameter: when r is high, collisions
occur more frequently. We observe that the definition of r
implies that it tends to increase with the size of the system
and with the required precision. These are the distinguished
features of potential successful use cases for our protocol.
We do not want to go further in the direction of describing
potential use cases, or restrict the scope of this paper to one
specific scenario: even simpler ones depend on a number
of external conditions in order to be exhaustively justified,
and other may emerge in not yet experienced conditions. We
just want to introduce the basic principles of operation of a
protocol, and justify the reasonableness of the underlying idea.

The solution we propose specifically targets a broadcast
media: in a different environment the collision problem does
not emerge. We therefore feel authorized to exploit broadcast

2

features: this turns out to be extremely convenient in the
coordination of a distributed protocol.

The solution consists of an extension of the IEEE-1588
Precision Time Protocol: the extension significantly reduces
collision events between two-way sessions, and simplifies their
management when they occur.

The protocol that supports these additional features is ex-
tremely robust, and preserves the resilience of the PTP. We
exploit as far as possible decentralized control techniques, that
make the protocol resistant to slave and master failures. In case
of failure of the master, the protocol may continue a degraded
operation waiting for the master to resume.

II. A COORDINATION PROTOCOL BASED ON TOKEN
CIRCULATION

We aim at enforcing system-wide mutual exclusion in the
execution of two-way sessions. The algorithm we envision
is based on a token circulation mechanism [4]: each slave
clock that executes a two-way session grants the privilege of
executing the next two-way session to another slave. Since
communication is supported by a broadcast medium, each
token passing operation is observed by all slaves and by the
master clock.

The basic idea is extremely simple, but must be comple-
mented with a number of additional features, in order to be
applicable. We divide the explanation of our instance of token
circulation in three steps:
• the algorithm that is run while there is exactly one slave

holding the privilege (stable operation) and
• the actions undertaken when a new slave clock enters the

system, or leaves the system as a consequence of a failure
(join and leave) and

• the implementation of the token passing operation.
The explanation of how the token passing operation is im-

plemented is delayed to the last step; we start considering that
the performance of a token passing operation is comparable
to the delivery of a message from the sender to the receiver:
we will see later that, in fact, there is not a message dedicated
to this operation.

During stable operation, in order to ensure a fair share
of synchronization opportunities, we need to overlay a sub-
network used for token circulation: a number of deterministic
solutions that enforce an overlay ring are found in the litera-
ture. However, they are very slow in recovering from failures.
Here we propose a token circulation algorithm that is targeted
on the peculiar features of our environment.

We observe that slave clocks do not need to run two-way
sessions at regular intervals: the time between two successive
executions may be variable, as long as a given maximum is
not exceeded.

This opens the way to non-deterministic algorithms: the
token may not visit all slave clocks in a deterministic sequence,
but instead it is allowed to follow any route that satisfies
certain requirements. The simplest rule consists of passing
the token, at each round, to another peer chosen at random:
such technique has been already applied to other environments
[3] the time between two following visits of the token to a

given slave clock, the return time of the token, has favorable
properties, even in case failures occur.

The return time of the token to a given slave clock is of
paramount importance for our application: it is a stochastic
variable that is found describing random walk models [6].
Since at each token passing operation, each slave clock has
an identical probability 1

n to be selected as the destination
of the token, the number of two-way sessions in the system
between two successive visits of the token has an exponential
distribution with a mean of n (here we approximate the
geometric distribution of Bernoulli trials with an exponential
since n is assumed to be large). If two-way sessions occur
at regular intervals, every τ time units, the return time has
exponential distribution with mean nτ .

The randomized token routing algorithm introduces an
assumption that is not realistic in a distributed system: in
fact, in order to select another slave clock at random, the
sender should access a registry of all clock identifiers. The
access to a shared resource would re-instantiate a mutual
exclusion problem, while the maintenance of a local cache, in
principle viable, is impractical since the cache might contain
an unpredictable number of slave identifiers.

A viable solution consists in maintaining a local cache but
of limited size: it is a known result that the random walk
properties (included the distribution of the return time) are
preserved when the graph is not complete, but neighbors are
selected at random.

Distributed algorithms that maintain a list of k � n
neighbors selected at random has been recently investigated
with reference to ad hoc networks [2]. Our environment being
simpler to manage, we propose a simplified algorithm.

In essence the algorithm, which is run by a slave during a
two-way session, consists in replacing one of the identifiers
in the local list with the identifier of the slave that executed
a two-way session m times ago, the m parameter being
around 10 for very large networks. The slave clocks will keep
updated a FIFO containing the m most recently visited slave
units identifiers by observing token passing operations in the
network.

The algorithm above does not ensure an upper limit to the
return time: for any ∆ the probability of a return time larger
than ∆ never goes to zero. Instead we need to ensure that each
clock is synchronized at least every δ time units.

We consider that an effective way to cope with this de-
terministic requirement consists in exploiting a global view of
the system, which is maintained on the master clock: whenever
one of the slave clocks appears to have been waiting δ time
units, the master re-routes a token to feed the starving slave.
We will see later on, when explaining token implementation,
how this is obtained.

The above rule also helps compensating an issue of the
neighbors list construction algorithm. A basic requirement is
that each peer has identical probability to appear in one list;
however, this property is exposed to a progressive degradation:
identifiers that are poorly represented in the lists for stochastic
reasons have less chances to advertise themselves, and are
progressively excluded from the system.

A disadvantage of the token re-routing technique is that

3

Fig. 2. Comparison of probability of collision as a function of r = nτ
δ

(logarithmic scale on y axis)

the utilization of centralized knowledge, in our case located
in the master clock, partially degrades the distributedness of
our solution: this negatively impacts fault tolerance features,
although this impact is limited to the occurrence of timeout
events, when the centralized knowledge is used to introduce a
re-routing operation.

It is therefore of interest to quantify the frequency of these
events. And, since the delay between successive visits has
exponential distribution, the probability of a timeout (during
a two-way session) is:

P (w > δ) = e−λδ = e−
δ
nτ (3)

A collision occurs when two or more timeouts are triggered
during the same interval of width τ . In that case one of the
two has to be postponed, likely to the successive token passing
operation. We compute a first order approximation of this event
as:

Pcoll = P (w > δ)2 = e−2 δ
nτ (4)

We are now at the point of being able to compare from an
analytic point of view the coordinated and the uncoordinated
operation, though the nature of the critical events in the system
for which we have analytically studied the frequency is slightly
different. In the case of the uncoordinated network, collisions
may deteriorate clock synchronization in an hardly predictable
way. In the case of the application of our token based solution,
collisions are rapidly compensated after a short lapse, incurring
in the worst case a limited inaccuracy of a clock.

Also the comparison between the two probabilities is in
favor of the token passing scheme as clearly shown in Figure
2: the probability of collision during a two-way session for
the token passing scheme is orders of magnitude better than
that of the for an uncoordinated operation. However the
implementation of a token passing scheme adds complexity:
here following is a summary of its operation on each slave:

1 History, Neighbors: stacks;
2 forever
3 wait TwoWaySession;

4 observe TwoWaySession
5 passing token from J to I;
6 push J into History;
7 if (LocalId == I)
8 push History[10] into Neighbors;
9 Next=random(Neighbors);

10 perform TwoWaySession
11 passing token from I to Next;

The algorithm is executed each time a new two-way session
is observed. Such operation entails a token passing operation,
and each slave in the system records the source and destination
of the token. The source of the token is stored in a local
stack (History). If the destination of the token corresponds to
the local identifier the operation continues pushing the last
element of History into the local cache of Neighbors. Next
one Neighbors is selected at random as the destination of the
token, and the two-way session is executed.

The master clock executes a distinguished algorithm:

1 WaitTime[Slave]: array;
2 forever
3 wait TwoWaySession;
4 observe TwoWaySession
5 passing token from J to I;
6 if ((T=max(WaitTime)) > delta)
7 I = select Slave with WaitTime=T;
8 WaitTime[I] = 0;
9 perform TwoWaySession

10 passing token from J to I;

As a general rule it is transparent (i.e. stateless) with respect
to the token passing operation: only when one of the slaves
is starving, its identifier is replaced as the destination of the
token, using information stored in the master clock.

A. Other operations

We consider two separate events: the leave event, when the
peer that receives the token does not show signs of life, and
the join event, when a new peer enters the membership. We
note that both of them are equally observed by all peers, and
this greatly simplifies the task of implementing a consistent
response on each slave clock.

The leave event can be effectively coped with removing the
identifier of the leaving peer from all lists, and by re-sending
the un-received token.

The join event may be implemented using a bullish ap-
proach: as soon as a new slave clock joins the membership,
it seizes the token. This is performed with the intervention of
the Master, which re-routes the token to the joining slave. In
addition, the Master will provide the joining slave with a ran-
dom neighborhood. This operation, as well as the notification
of the new slave, is assumed to occur in the background, using
a communication channel distinct from the one used for the
IEEE-1588 protocol.

With these two simple rules in place, the event of token
replication never occurs. However, in the unlikely case this
event occurs for unforeseen reasons, the broadcast nature of

4

the media simplifies the task of removing the tokens, leaving
to the master the task of reintroducing only one.

III. IMPLEMENTATION OF THE A TOKEN PASSING
OPERATION

The token passing operation is implemented as part of the
two-way session: the slave clock that sends the Delay Req
message includes in the message the identifier of a proposed
destination of the token. All clocks in the network, included
the master clock, observe both the identifier of the source and
that of the proposed destination of the token. Only occasion-
ally the master clock may alter the proposed destination of
the token, by indicating a different one in the Delay Resp
message. This implements the re-route operation introduced
above.

Note that the token is not represented by any sort of
data structure, neither inside a slave clock nor in a piece
of communication. The property of holding the token is
simply embedded in the control flow of the slave clock. The
token is (virtually) passed from the slave clock that sends
the Delay Req message to the slave clock indicated in the
Delay Resp packet.

We have a limited space available to embed a slave identifier
in the IEEE-1588 messages of concern: 5 octets and one
4 bits nibble are reserved for future use in the common
message header. We envision a solution based on the MAC
address associated to slave interfaces. Our solution uses 3
octets in Delay Req and Delay Resp message, and one bit
in the Delay Resp, that we call re-route flag.

A MAC address is composed of 6 octets, that may be
encoded in two different ways. In case the MAC is left in
its factory settings (universally administered), the three most
significant octets encode the manufacturer of the network
card, and are not very useful to uniquely identify a card.
The three least significant octets contain an identifier which is
unique for a given manufacturer. Otherwise the MAC address
can be rewritten with an identifier locally unique (locally
administered).

We use primarily the least significant octets for our protocol:
they are included in the Delay Req message of the slave
that sends the token. The master that observes the Delay Req
follows a more complex algorithm that we split into four cases,
starting from the most frequent one:

1) if no reroute is needed, and the three octets uniquely
identify a slave it must set to 0 the reroute bit, and may
include the 3 most significant octets in the Delay Resp.

2) if no reroute is needed, and the three octets do not
uniquely identify a slave it must set to 0 the reroute
flag, and must include in the Delay Resp the 3 most
significant octets of of the MAC address of one of those
sharing the least significant three octets. A reasonable
choice is the one of the least recently synchronized slave.

3) if it reroutes the token it must set to 1 the reroute flag,
and must include the 3 least significant octets in the
Delay Resp 3 octets.

4) if a collision is detected it must send in sequence two
Delay Resp messages, respectively containing the most

significant and the least significant triplets. We call this
a two-step recovery.

Based on such algorithm, a unique destination is selected
with high probability:

1) if the reroute flag is 0 the two triplets in the Delay Req
and Delay Resp form the MAC address of the destina-
tion;

2) if the reroute flag is 1 only the starving slave or the
joining one may be the target, and they know about their
state.

A low level collision occurs in the case there are several
slaves joining or starving, and they have identical least sig-
nificant triplets. It is a quite marginal case, and the collision
is equally observed by all slaves and by the master: they will
engage into the two step recovery.

Note that, in the case of an organization that decides to
override the MAC addresses assigned by the manufacturer, and
assign instead locally administered addresses, the algorithm is
simplified if the three least significant bytes uniquely identify
a slave.

IV. FAULT TOLERANCE ISSUES

The failure of a slave D is detected when the token is passed
from S to D, but D does not perform the successive two-way
session. In that case the same S will resend the token. If both
S and D fail, the master will backup with a two step recovery.

The failure of the master is an issue only as long as its
intervention is required to backup some of the infrequent
events listed above. As a general rule, especially in a network
with locally administered addresses, the failure of the master
has no immediate effect on the token passing algorithm.
However, in case the identifier in a Delay Req is ambiguous,
a collision will occur and the slaves will start waiting for a two
step recovery from the master. In the long run, the system will
suffer from the absence of rerouting activity: due to this fact,
some slave may starve. In this case we envision a leave and
re-join of the slave, which will complete when a new master
becomes operational.

A master that is restarted with a damaged list of slaves
should be provided at startup with at least one correct MAC
address of a slave, in order to run the two-step recovery:
the list of slave addresses will be partially recovered during
the operation by observing the MAC addresses visited by
the token. However the restart of some slave clock may be
required.

The event of noisy failures should be addressed using tools
not illustrated in this paper. In case of medium jamming, fault
tolerance relies on fault containment features of the physical
layer.

Malicious failures of a slave clock are easy to detect and
can be ignored by the master clock and by other peers, but
may cause collisions: also in this case, we envision a low level
deactivation of the port serving the failed device.

V. VERIFICATION

The algorithm illustrated in the previous sections is rather
detailed, and is therefore very difficult to verify its correctness.

5

In order to give some evidence of its correctness, we have used
a number of different techniques:

• in section II we give analytical results proving that the
idea of randomly circulating a token to achieve coordi-
nation instead of detecting collisions is well founded

• in section III we make a by case analysis to explain
how to encode slave identifiers into Delay Req and
Delay Resp messages;

• in section IV we give a by case analysis to partially
justify fault tolerance properties, but without evaluating
statistical properties.

There is still one relevant detail that has not been conve-
niently covered: it is the algorithm used to implement the
random graph. This algorithm is quite complex, and combines
the replacement of one element in the cache during each two-
way session with the effects of token rerouting in case of
timeout of one slave.

On one side, our attempts to give an analytic model for the
composition of the neighbor’s cache have been unsuccessful.
On the other, a by case analysis is prevented by the size of
the input space.

Therefore we conducted a simulation of limited scope,
aimed at exploring the effects of the overlay random graph:
we concentrate on the basic figure of our token circulation
algorithm, the return time.

The simulation has been run with the round-trip time
τ corresponding to the simulation time unit, in a system
of 1000 slave clocks, with variable values of δ. We used
an ad hoc simulator written in Perl, and each simulation
collects 105 return time samples. Internal queues for the
management of the random neighborhood have 10 positions.
The code of the simulator (about 100 lines) is available at
http://code.google.com/p/ispcs2009/.

The first simulation is for a system with a r = 0.2 corre-
sponding (with the above constants) to a value of δ = 5 ∗ 103

time units (figure 3). We observe that the distribution of the
return time reasonably approximates the theoretical slope: the
final spike at 5 ∗ 103 time units is due to the timeout on the
return time. It corresponds to a probability of 1.6%, which is
the rate of intervention of the timeout. The collision rate is
0.027%, which compares favorably with the 1.7% rate of the
uncoordinated scheme, but is more than the expected 0.0045%
from the theoretical model (see figure 2).

We conclude that the limited number of neighbors signifi-
cantly deviates the right queue of the distribution of the return
time from the expected distribution, that is computed for a
complete mesh network. The resulting collision probability is
nonetheless significantly better than the corresponding colli-
sion probability in the uncoordinated case.

If we select a smaller value for r, we move in a region where
collisions are less likely to occur, and therefore the application
of a coordination algorithm is less relevant. In figure (figure
4) we observe the results of the simulation for r = 0.1,
corresponding to a δ of 10 ∗ 103 time units. The deviation
from the full mesh distribution is more pronounced: the
intervention rate of the timeout is 0.24%, with a collision rate
of 0.0006%, instead of order of 10−9. But the comparison with

Fig. 3. Frequency of return time values for r = 0.2: comparison between
model and simulation (logarithmic scale on y axis)

Fig. 4. Frequency of return time values for r = 0.1: comparison between
model and simulation (logarithmic scale on y axis)

the uncoordinated collision rate, around 0.47%, is persistently
favorable.

If we move in a region with higher collision rate, with
a r = 0.4, we observe an opposite trend, but with similar
results. Simulation results tightly approximate the full mesh,
and the collision rate compares favorably with the collision
rate without coordination: 1.5%, against 6.2%.

The figures above are summarized in Table I. The rows con-
tain, for the value of r indicated in the first row, the percentage
of two-way sessions that exhibit the named features:
• Intervention, the occurrence of token wait timeout;
• Full mesh collision, the simultaneous occurrence of more

than one token wait timeout with a full mesh overlay
network;

• Token collision, the simultaneous occurrence of more
than one token wait timeout with the overlay graph
generated by the algorithm;

• Uncoord. collision, exposure to frame collision in an
uncoordinated broadcast medium.

We derive two conclusions from our discussion:
• the collision rate is lower using the token based algorithm.

We recall that we did not take into account that the
loss of accuracy produced by a low level collision is

6

Fig. 5. Frequency of return time values for r = 0.4: comparison between
model and simulation (logarithmic scale on y axis)

r 0.1 0.2 0.4
Intervention 0.2410% 1.6350% 12.3420%
Full mesh collision 2.06E − 9 0.0045% 0.6738%
Token collision 0.0006% 0.0267% 1.5232%
Uncoord. collision 0.4679% 1.7523% 6.1552%

TABLE I
RELEVANT VALUES USED FOR EVALUATION

hardly predictable, while a collision using the token based
algorithm delays of a few τs the execution of a two-way
session.

• the approximation introduced by the full mesh hypothesis
becomes imprecise for systems with a low collision rate.

The increment of the length of the queues used to represent
the overlay random network improves the performance, since
figures tend to get closer to the full mesh approximation.

VI. CONCLUSIONS AND APPLICATION NOTES

This paper proves that the introduction in the IEEE-1588
protocol of a token passing protocol for the coordination of
two-way sessions is
• convenient, since it reduces the impact and the frequency

of collision events and
• feasible, since its introduction does not alter the structure

of protocol messages;
The interest for the protocol is justified by the existence of

collisions among distinct two-way sessions: when the occur-
rence of this event is not an issue, either because its effects
are irrelevant for the application, or because it is extremely
infrequent, the introduction of our protocol is pointless.

However, we know that typical applications of the IEEE-
1588 protocol have critical timing requirements, where inac-
curacies due to collisions do matter, and the network is heavily
used for application related data transfer. Some sort of traffic
engineering solution (e.g. see [1]) may be introduced to avoid
collisions between data traffic and IEEE-1588 packets, but the
coordination of IEEE-1588 traffic remains an issue.

The paper identifies the variable that determines whether our
solution is of interest or not: the r parameter, that represents
the density of two-way sessions. A low value disencourages

the introduction of a coordination, unless under extremely
demanding reliability requirements.

When the introduction of a coordination scheme is of
interest, we prove that our solution, attains two important
targets:
• reduces and makes predictable the impact of a collision;
• significantly reduces the probability of collision.
We prove the above results using an analytical model, and

introducing simulation where we are unable to give an analytic
model.

We clearly consider the paper as a starting point. One
direction for future research is the identification of relevant
use cases: this task requires specific expertise in each of the
numberless application fields of IEEE-1588. The presentation
at the IEEE-1588 Workshop is a milestone on this way.

REFERENCES

[1] Astrit Ademaj and Hermann Kopetz. Time-triggered ethernet and IEEE
1588 clock synchronization. In International IEEE Symposium on
Precision Clock Synchronization (ISPCS), 2007.

[2] Ziv Bar-Yossef, Roy Friedman, and Gabriel Kliot. RaWMS - random
walk based lightweight membership service for wireless a-hoc networks.
ACM Transactions on Computer Systems, 26(2):66, June 2008.

[3] Augusto Ciuffoletti. The wandering token: Congestion avoidance of a
shared resource. In Z. Nemeth P. Kacsuk, T. Fahringer, editor, Distributed
and Parallel Systems, pages 3–12. Springer, 2007.

[4] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643–644, 1974.

[5] IEEE Std 1588-2008. IEEE Standard for a Precision Clock Synchro-
nization Protocol for Networked Measurement and Control Systems, July
2008.

[6] L. Lovasz. Random walks on graphs: a survey. In D. Miklos, V. T. Sos,
and T. Szonyi, editors, Combinatorics, Paul Erdos is Eigthy, volume II.
J. Bolyai Math. Society, 1993.

[7] Chongning Na, Dragan Obradovic, Ruxandra Lupas Scheiterer, Guinter
Steindl, and Franz-Josef Goetz. Synchronization performance of the
precision time protocol. In International IEEE Symposium on Precision
Clock Synchronization (ISPCS), pages 25–32, 2007.

