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Abstract— Persistent robot tasks such as monitoring and
cleaning are concerned with controlling mobile robots to act
in a changing environment in a way that guarantees that
the uncertainty in the system (due to change and to the
actions of the robot) remains bounded for all time. Prior work
in persistent robot tasks considered only robot systems with
collision-free paths that move following speed controllers. In
this paper we describe a solution to multi-robot persistent
monitoring, where robots have intersecting trajectories. We
develop collision and deadlock avoidance algorithms that are
based on stopping policies, and quantify the impact of the
stopping times on the overall stability of the speed controllers.

I. INTRODUCTION

In this paper we consider the problem of persistently mon-

itoring or sweeping a changing environment using a group

of robots equipped with sensors with finite footprints. In

our prior work, we developed methods for computing closed

monitoring paths for robots [1], and for computing the speed

with which each robot should follow its path [2]. This prior

work assumes the paths are non-intersecting. However, most

efficient monitoring paths may intersect. Thus, a collision

avoidance procedure is needed. In this paper we develop a

collision avoidance procedure for persistent monitoring, and

analyze the effect of this procedure on the stability of the

persistent controller.

Building on our prior work [2], we assume a changing

environment modeled as a scalar valued function, called the

accumulation function. The function captures the uncertainty

at each point in the environment for a sensing task, or the

quantity of material at each point for a cleaning task. The

accumulation function grows at a constant rate at points

outside the range of a robot, and decreases at a constant rate

at points within its range. The rate of growth and decrease

can be different at different points in the environment. The

model captures the accumulation of material in a sweeping

or cleaning task, and provides an approximation for the

uncertainty in a monitoring task.

In [2] we assume that paths are given for each robot, and

describe how to control the speed along the path to keep the

accumulation function bounded. We developed a method for

computing a speed controller for each robot that maximizes
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the stability margin of the system: The larger the stability

margin, the more tolerance the robots will have to unmodeled

changes in the accumulation function.

We assume we are given a group of robots, a closed

path for each robot, and a speed controller for each robot

along its path. We would like for each robot to continually

follow its path using its prescribed speed profile, while

avoiding collisions with the other robots. The collisions

should be avoided in such a way that we can still guarantee

boundedness of the accumulation function.

Persistent monitoring is related to sweep coverage [3],

and patrolling problems [4], [5], [6] where robots with

finite sensor footprints must sweep their sensor over every

point in the environment. The problem is also related to

environmental monitoring research such as [7], [8], [9], [10],

[11]. In this prior work, the authors often use a probabilistic

model of the environment, and estimate the state of that

model using a Kalman-like filter. Then robots are controlled

so as to maximize a metric on the quality of the state

estimate. The collision avoidance problem is not addressed

in these works. In addition, due to the complexity of the

models used, performance guarantees are difficult to obtain.

This makes it difficult to characterize the effect of collision

avoidance on the system performance. In this paper, we use

a more tractable model, and in doing so we can provide

guarantees on the boundedness of the accumulation function.

There is a wealth of literature on collision avoidance.

A common method is to use artificial potential fields [12],

which repel robots from each other and from obstacles. A

recently proposed method relies on velocity obstacles [13].

Such methods result in the robots deviating from their

prescribed paths and from their desired speed profiles. For

the persistent application, the effect of such deviations on

the accumulation function is difficult to characterize. A more

tractable approach is to constrain each robot to remain on its

path. In this context the most closely related work is on path

traversal problems where each robot is given a path. The goal

is to minimize the time until the robots reach their destination

points on their paths, while avoiding collisions [14]. In [15],

the authors consider a variation in which the full trajectory

(path and speed along the path) is specified for each robot.

Collisions can be avoided only by changing the start times

of each robot along its path. Our approach to collision

avoidance is closely related [15]. However, since our paths

are closed, and are repeatedly traversed by the robots, we

avoid collisions by repeatedly stopping robots.

The main contribution of this paper is to enable the

persistent speed controllers developed in [2] to operate



Fig. 1: Four robots (yellow-filled circles) performing a persistent task where
their paths produce many collision zones. Each robot r has a unique color to
represent its path γr and its footprint. The paths are the four large circles,
and the footprints are the small circles which are centered around each
respective robot. In the persistent task, the robots follow a speed profile
which seeks to keep the accumulation function of each point of interest
bounded. In this figure, the points of interest are colored in light blue and
the value of the accumulation function at each point is proportional to the
size of that point.

when multiple robots have intersecting trajectories. Here, we

mean intersection in the sense that the robot bodies could

collide. We develop a collision avoidance procedure based

on stopping, and quantify its effect on the stability of these

controllers. The collision avoidance operates by identifying

collision zones in which collisions could occur. We then

avoid collisions by stopping and restarting robots so that at

most one robot occupies a given collision zone at any mo-

ment in time. We also design a procedure to avoid deadlocks;

a situation in which a group of robots are all stopped, and

are waiting for each other to move before resuming motion.

We identify several different stopping policies and perform

extensive simulations to determine the most effective policy.

We also present results from a distributed implementation for

two ground robots performing a persistent monitoring task.

The organization of this paper is as follows. In Section II

we formulate the problem, and in Sections III and IV we

introduce collision zones and how they avoid both collisions

and deadlock. In Section V we introduce three different

stopping policies and in Section VI we derive a condition

under which the accumulation function will remain bounded

when using our collision avoidance procedure. Finally, in

Section VII we present stopping policy simulation results

and our distributed implementation.

II. PROBLEM FORMULATION

We are given n robots, indexed by r ∈ {1, 2, . . . , n}.

Each robot is constrained to move along a pre-determined

path γr : [0, 2π] → R
2, where γr(0) = γr(2π). Path γr

is parametrized by 0 ≤ θr ≤ 2π, which is assumed to be

the arc-length parametrization. The robot’s position at time

t can be described by θr(t), its position along the curve γr.

Each robot has a sensor/sweeping footprint Br(θr(t)). This

footprint could be thought of, for example, as the cleaning

surface of a sweeping robot. The environment contains a

finite number of points of interests q ∈ Q. These finite points

could be the discretization of a continuous environment. A

scalar field Z(q, t) ≥ 0 is defined over the points of interest

q ∈ Q. The field (called the accumulation function) behaves

analogously to dust accumulating over a floor. At a point of

interest q ∈ Q, the field increases at a constant production

rate of p(q) when not covered by any robot footprints, and

it is consumed at a constant rate of cr(q), by each robot r
whose footprint is covering q. More specifically,

Ż(q, t) =



















p(q)−
∑

r∈Nq(t)

cr(q), if Z(q, t) > 0,

(

p(q)−
∑

r∈Nq(t)

cr(q)
)+

, if Z(q, t) = 0,

(1)

where Nq(t) is the set of robots whose footprints are over

the point q at time t, Nq(t) := {r | q ∈ Br

(

θr(t)
)

}.

Our earlier work [2] studied the problem of controlling the

speed of each robot along its path in order to keep the field

(accumulation function) Z(q, t) bounded for all time t, and

for all points q. We showed that a necessary and sufficient

condition for stability of the field is that

n
∑

r=1

τr(q)

Tr

cr(q)− p(q) > 0,

for all points of interest q ∈ Q, where Tr is the period

(or cycle time) of robot r along its path γr, τr(q) is the

amount of time per period that robot r’s footprint is covering

the point of interest q. We then developed a method for

producing a speed controller vr(θr) for each robot r, which

maximizes the stability margin

min
q∈Q

(

n
∑

r=1

τr(q)

Tr

cr(q)− p(q)

)

. (2)

Figure 1 shows four robots performing a persistent moni-

toring task. This set of paths generates multiple potential col-

lision locations. Therefore, when implementing the system,

if no collision avoidance procedure is used, the robots would

collide frequently. The objective of this paper is to present

and prove a practical collision avoidance procedure for a

multi-robot persistent monitoring task that seeks to minimize

its effects on the stabilizing persistent speed controller.

III. COLLISION AVOIDANCE

For each robot r we define a safety radius ρr > 0,

and the corresponding safety disk B(γr(θr), ρr) = {x ∈
R

2 : ‖x − γr(θr)‖ ≤ ρr}.1 We say that a collision occurs

between robots i and j at locations (θi, θj) if B(γi(θi), ρi)∩
B(γj(θj), ρj) 6= ∅. To avoid robot collisions, we must first

know where collisions can occur. There are a number of

ways to do this. For example, we could search all (θi, θj)
pairs between any two robots i and j and obtain the set of

collision configurations between any two robots. The set of

collision configurations between robot i and j is defined as

1For simplicity of presentation we use a safety disk, but our collision
procedure works for any safety set containing the robot’s current position.
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Fig. 2: Phase portrait for robots i and j. The axis are θi and θj , which are
the parametrized positions of robots i and j. In this figure, the black-colored
sets are the set of collision configurations (θi, θj) for robots i and j. The
arrows in this plot correspond to the phase portrait, i.e. flow lines of the
state (θi, θj) through time. If no collision avoidance is used, the robots will
eventually collide due to the flow lines leading (θi, θj) into the black sets.

Pi,j = {(θi, θj) ∈ [0, 2π]2 : B(γi(θi), ρi) ∩B(γj(θj), ρj) 6=
∅}.

An example of Pi,j can be seen in Figure 2. This figure

shows the phase portrait of θi vs. θj for a given γi and

γj . The flow lines depict speed profiles that stabilize the

system for a given set of points of interest. The set Pi,j is

given by the black-colored regions. There are various flow

lines that lead (θi, θj) to enter Pi,j , resulting in collisions.

One way to avoid collision is to not allow (θi, θj) to enter

Pi,j by forcing (θi, θj) to move along the edge of Pi,j .

However, there are a few problems with this approach. First,

since Pi,j can have an arbitrary geometric shape, a collision

avoidance of this type will in general require robots to move

backwards. Moving backwards affects the shape of the phase

portrait by including flow lines at angles less than zero or

greater than π/2. When considering multiple robots, such

backward motion will require additional collision avoidance

procedures. Second, we are interested in solutions that can

be implemented in a distributed manner, and thus we would

like the robots to utilize pair-wise decisions in order to

avoid collisions. However, it is possible for such pair-wise

decisions to contradict each other. This can result in a

deadlock situation in which a group of robots are all blocking

each other.

Based on the above discussion, we propose a collision

avoidance method that relies on stopping the robots. When a

robot stops in order to avoid collision, the collision avoidance

procedure pauses the speed controller, and un-pauses it to re-

sume robot motion. When the speed controller is un-paused,

it is as if the system is re-started with a new set of initial

conditions. This method for avoiding collision is tractable in

a persistent task because the speed profile prescribed by [2]

is proven to stabilize the field for any set of initial conditions.

Therefore, any increase in the accumulation functions of the

field while a robot is stopped will eventually be consumed,

maintaining the system stable. However, if trajectories are

selected in such a way that collision avoidance is needed very

frequently, then the stabilizing effect of the speed controller

may not be “strong” enough to overcome the frequent stops.

We describe an algorithm for stopping robots that ensures

no deadlock amongst stopped robots while enabling the

persistent operation of the system without collision. The

intuition is to compute, for each robot, the region in space

where the robot might collide with any other robot.

Since the path for each robot is known, we can search

for all possible collision locations along the path. The set

of all possible collision locations for robot i is defined as

Pi = {θi ∈ [0, 2π] : B(γi(θi), ρi) ∩ B(γj(θj), ρj) 6= ∅
for some j 6= i}. For example, in Figure 2, Pi would be

set containing the projection of Pi,j onto the θi axis, and

Pj would be the set containing the projection onto the θj
axis. We can decompose Pi into a collection of wi connected

sets Ck
i , which are pairwise disjoint. Thus, we have Pi =

∪wi

k=1C
k
i , and Ck

i ∩ Ck′

i = ∅ for any k, k′ ∈ {1, . . . , wi}.

As an example, in Figure 2, both Pi and Pj consist of two

disjoint sets.

We would now like to determine the following: if robot

i enters the set Ck
i , which sets Ck′

j must robot j avoid?

We can relate individual collision zones by constructing an

undirected graph where each Ck
i is a node, ∀i, k. We define

an edge between two nodes Ck
i and Ck′

j if B(γi(θi), ρi) ∩

B(γj(θj), ρj) 6= ∅, for some θi ∈ Ck
i and some θj ∈ Ck′

j .

We will refer to this graph as the collision graph.

Definition III.1 (Collision Zone). Given the collision graph,

a collision zone CZm is defined for each connected com-

ponent in the graph, where m will range from 1 to the

total number of connected components in the graph. CZm

is defined as a tuple CZm = (CZm
1 ,CZm

2 , . . . ,CZm
n ), where

CZm
i is the union of nodes Ck

i , ∀k, present in the connected

component corresponding to CZm

Note that CZm
i is disjoint from CZm′

i for all i, where

m 6= m′, because if they were not, then ∃θi for some i
such that θi ∈ Ck

i and θi ∈ Ck′

i , where Ck
i ∈ CZm

i and

Ck′

i ∈ CZm′

i . However, by definition Ck
i and Ck′

i are disjoint.

Therefore, CZm
i and CZm′

i are also disjoint. Example III.2

and Figure 4 illustrate these mathematical constructions.

Example III.2. Figure 3 shows three trajectories that in-

tersect each other at several places. After obtaining all the

disjoint collision sets Ck
i for all robots, we construct the

collision graph in Figure 4, which shows five connected com-

ponents, i.e. five collision zones CZm, m ∈ {1, 2, 3, 4, 5},

where:

(i) CZ1
1 = C1

1 , CZ1
2 = C1

2 , CZ1
3 = (C1

3 ∪ C2
3 )

(ii) CZ2
1 = C2

1 , CZ2
2 = ∅, CZ2

3 = C3
3

(iii) CZ3
1 = C3

1 , CZ3
2 = ∅, CZ3

3 = C4
3

(iv) CZ4
1 = ∅, CZ4

2 = C2
2 , CZ4

3 = C5
3

(v) CZ5
1 = ∅, CZ5

2 = C3
2 , CZ5

3 = C6
3

The following shows the importance of collision zones.

Theorem III.3. If any two robots i and j collide, then θi ∈
CZm

i and θj ∈ CZm
j , for some m.

Proof. Suppose there is a collision between robots i and j,

when robot i is at θi and robot j is at θj . This implies that

B(γi(θi), ρi) ∩ B(γj(θj), ρj) 6= ∅. By definition, θi ∈ Ck
i

and θj ∈ Ck′

j for some k and k′. Also by definition, there



Algorithm 1: COLLISION AVOIDANCE FRAMEWORK,

FOR ROBOT i
Data: θi is at the entering edge of CZm

i

Result: No collisions occur.
1 if flagm is raised then
2 Stop trajectory until flagm is lowered.

3 else
4 Robot i can enter CZm

i and raise flagm.
5 When robot i exits CZm

i , then flagm is lowered.

Fig. 3: Plot of paths for the three robots, whose collision zones were obtained
in Figure 4. The final five collision zones CZm are plotted in segments of
black, while the rest of the trajectories are plotted in different light colors.

exists an edge in the collision graph between nodes Ck
i and

Ck′

j . This, in turn, means that θi ∈ CZm
i and θj ∈ CZm

j for

some m.

By Theorem III.3, no collisions are possible in CZm if

there exists at most one robot i such that θi ∈ CZm
i .

Therefore, the collision avoidance framework will allow at

most one robot to travel through CZm at any moment in time,

for each m. Let flagm be a flag which is raised if a robot i
is currently inside CZm

i . The collision avoidance framework

is given as Algorithm 1. A requirements for Algorithm 1 to

work is that if flagm is raised by some robot i, then it is

lowered only by robot i once it exits CZm
i .

Note that the converse of Theorem III.3 is not true. That

is, if θi ∈ CZm
i and θj ∈ CZm

j , for some m, this does

not mean that the robots have collided. This is because, in

general, a connected set of (θi, θj) that results in collision

is not equal to the cartesian product of its projections on

the θi and θj axis, although it is a subset. This means that

this collision avoidance algorithm is conservative. However,

the trade-off is a solution without backward motion and

Fig. 4: Example of a collision graph used to construct the collision zones
CZm. In this graph, there are 12 nodes corresponding to the disjoint
connected sets in P1, P2, P3, for robots 1, 2 and 3, respectively. The
result from this graph is that there are five disjoint collision zones, i.e.
CZm, m ∈ {1, 2, 3, 4, 5}. These five collision zones are mapped to their
respective paths in Figure 3.

conflicting decisions where a robot stops while blocking the

path of another, potentially causing a deadlock.

IV. DEADLOCK AVOIDANCE

Much of the previous work in deadlock avoidance is based

on re-planning of the robot trajectories [16], [17], [18], [19],

or schedule coordination for robots [20]. In our problem

formulation, however, the robots are constrained to their

prescribed paths and speed controllers, so these approaches

do not apply. Instead, our approach is similar to [21], where

graphs are used to detect and avoid collisions in critical

sections, and to [22], where permission is given to one robot

to move along a zone that can cause deadlock.

In order to avoid deadlock, we define the notion of a

deadlock graph.

Definition IV.1 (Deadlock Graph). A deadlock graph is a

directed graph, where an edge from node i to node j encodes

in robot i is stopped waiting for robot j to exit a collision

zone CZm
j , for some m.

It is assumed that all robots have knowledge of the

deadlock graph. In our application, deadlocks can be avoided

by noting that they can only occur when a cycle is created

on a deadlock graph. If a cycle were to exist, then deadlock

is avoided by erasing one of the edges in the cycle. This

corresponds to one of the robots resuming motion and

breaking the deadlock.

Definition IV.2 (Stopping Policy). A stopping policy, exe-

cuted by robot i when about to enter a collision zone is any

algorithm that returns n options ranked from best to worst.

Out of n options, n − 1 correspond to robot i stopping for

each other robot j, i.e., an edge being drawn from node i to

node j in the deadlock graph. The last option corresponds

to robot i continuing its trajectory, i.e., no edge drawn in the

deadlock graph.

Building upon Algorithm 1, if flagm is not raised, then

the robot can use a stopping policy to obtain the ranked

n options. The deadlock avoidance framework consists of

choosing the best-ranked option that does not cause a cycle

in the deadlock graph. The collision avoidance and deadlock

avoidance frameworks merged with the stopping policies,

lead to the complete collision avoidance algorithm, seen as

Algorithm 2, which ensures no collision or deadlocks will

occur between any number of robots.

Algorithm 2 is executed only in two situations:

(i) when robot i is moving along its trajectory and is about

to enter CZm
i

(ii) when robot i is stopped at the edge of CZm
i , and the

robot j that was inside CZm
j just exited CZm

j .

The following theorem shows that Algorithm 2 avoids

deadlocks.

Theorem IV.3. Assuming all robots follow Algorithm 2,

consider a robot i about to enter a collision zone CZm
i for

any m. Then, there exists a decision by robot i which does

not cause a deadlock.



Algorithm 2: COLLISION AND DEADLOCK AVOID-

ANCE ALGORITHM, FOR ROBOT i

Data: θi is at the entering edge of CZm
i

Result: No collisions or deadlocks occur.
1 if flagm is raised then
2 Stop trajectory.

3 else
4 Execute stopping policy. Choose best-ranked option that

does not create a cycle in the deadlock graph.
5 If the decision is to continue trajectory, then flagm is

raised, and any outgoing edge from robot i’s node in the
deadlock graph is deleted.

6 Otherwise the decision edge is drawn in deadlock graph.
7 When robot i exits CZm

i , then flagm is lowered.

Proof. Suppose robot i is about to enter CZm
i . If flagm is not

raised, then it will test its n options obtained from a stopping

policy, in the deadlock graph. If the best ranked option does

not cause a cycle in the deadlock graph, then it is allowed and

the robot chooses that option. If the option causes a cycle,

then it is not allowed, and the robot tests the next best-ranked

option, and so on. By default, the robot will always have the

option of continuing its trajectory, which does not create an

edge in the deadlock graph, which in turn does not create a

cycle.

If flagm is raised, then robot i is forced to stop because

some robot j is already in CZm
j . Conceptually, robot i would

draw an edge to robot j in the deadlock graph. However, this

does not create a cycle because robot j is moving inside the

collision zone, and will never stop inside it because CZm
j is

disjoint from CZm′

j , ∀m′ 6= m.

V. STOPPING POLICIES

We are interested in stopping policies that minimize the

effect on the stabilizing persistent speed controller, i.e. we

would like the stopping policy to result in maximizing the

stability margin of the system, which is given by Equa-

tion (2). However, Equation (2) assumes the system is

periodic (a proof for this can be found in [2]). That is, it

assumes that each robot takes a fixed amount of time to

complete a cycle of its path. However, each time a robot

stops, it breaks periodicity. In Sections V-A, V-B and V-C,

we define three stopping policies, two of which use very

similar versions of Equation (2) to generate their n ranked

options.

For the following policies, executed by robot i, optioni

corresponds to robot i continuing its trajectory, and optionj

corresponds to robot i stopping for robot j. These policies

assume no other collision procedures are taking place while

the current collision is being resolved. Although this is

not always true, it provides a quick and inexpensive ap-

proximation, compared to the price of obtaining the exact

information.

Remark V.1 (Limitation of locally optimizing). All of the

following stopping policies look ahead in time, up to the

point where the collision is avoided, and they optimize the

Algorithm 3: MIN-TIME POLICY, FOR ROBOT i

1 Initialize: optioni = ∞
2 foreach robot j 6= robot i do

/* If stopping is necessary */

3 if T i
exit > T

j
enter then

4 optioni = min(T i
exit − T

j
enter, optioni)

5 optionj = T
j

exit

6 else
7 optionj = ∞

8 Rank the options in ascending order of their values.

system, according to their metric for that look-ahead time.

Therefore, these policies are limited to optimizing locally in

time, and there could be the case where a decision is optimal

for the policy, but suboptimal over a longer time horizon.

A. Minimum Time Policy

This policy ranks the options based on how much time a

robot spends stopped to avoid the collision. For robot i, the

policy takes into account all of the robots’ current positions

and trajectories, and calculates the amount of time robot i
would have to stop while the other robots enter and exit

the collision zone, and the amount of time the other robots

would have to stop while robot i exits the the collision zone.

The options are ranked in ascending order of stopping time.

Algorithm 3 contains the pseudocode for this policy, which

is called the Min-Time policy, where:

• T i
enter is the time robot i would take to get from where

it is right now until it enters the collision zone.

• T i
exit is the time robot i would take to get from where

it is right now until it exits the collision zone.

B. All Time Policy

This stopping policy approximates Equation (2) with the

empirical stability margin of the system up until the current

time t. This is done by constructing the same expression

in Equation (2), where Tr becomes the current time t, and

τr(q) becomes the total coverage time on point q. The policy

estimates the empirical stability margin at the time when

the collision is avoided, and ranks the options in descending

order of estimated empirical stability margin. Algorithm 4

contains the pseudocode for this policy, which is called the

All-Time policy, where:

• TCi
enter(q) is the time robot i covers point q while it

moves from its current position until it enters CZm
i

• TCi
exit(q) is the time robot i covers point q while it

moves from its current position until it exits CZm
i

• The average consumption on point q from all robots,

except robots i and j, up to time t is obtained by

∑

r 6=i,j

τr(q)

t
cr(q) (3)

• The average consumption on point q from robots i and

j at the time the collision is avoided, assuming robot i



Algorithm 4: ALL-TIME POLICY, FOR ROBOT i

1 Initialize: optioni = −∞
2 Initialize: Vr(q) = −p, ∀r
3 foreach robot j 6= robot i do
4 Vi(q) = −p

/* If stopping is necessary */

5 if T i
exit > T

j
enter then

/* case: robot i continues moving */

6 foreach q do
7 Add to Vi(q) the average consumption on point

q from all robots, except robots i and j, given
by equation (3).

8 Add to Vi(q) the average consumption on point
q, by robots i and j, given by equation (4).

/* case: robot j continues moving */

9 foreach q do
10 Add to Vj(q) the average consumption on point

q from all robots, except robots i and j, given
by equation (3).

11 Add to Vj(q)the average consumption on point
q, by robots i and j, given by equation (5).

12 optioni = max(minq Vi(q), optioni).
13 optionj = minq Vj(q).
14 else
15 optionj = −∞.

16 Rank the options in descending order of their values.

continues moving is obtained by
(

τi(q) + TCi
exit

)

ci(q)

t+ T i
exit

+

(

τj(q) + TCj
enter + Ij(T

i
exit − T j

enter)
)

cj(q)

t+ T i
exit

, (4)

where Ij = 1 if robot j’s footprint covers q while it is

stopped, and zero otherwise.

• The average consumption on point q from robots i and

j at the time the collision is avoided, assuming robot j
continues moving is obtained by

(

τi(q) + IiT
j
exit

)

ci(q) +
(

τj(q) + TCj
exit

)

cj(q)

t+ T j
exit

, (5)

where Ii = 1 if robot i’s footprint covers q while it’s

stopped, and zero otherwise.

C. Time Window Policy

This policy is similar to the All-Time policy, but instead of

considering all past information, it only considers informa-

tion in a time window of constant length Tw. This is done by

exchanging t for Tw in Algorithm 4. Also, τr(q) becomes

the coverage time of point q within the time window. We

will refer to this stopping policy as the Time-Window policy.

VI. PERFORMANCE BOUND

Equation (2) is not useful for persistent monitoring with

intersecting paths since this problem is not periodic. How-

ever, it can be used to prove performance bounds on the

system. We define V (q) to be the stability margin for point

q. That is,

V (q) =

n
∑

r=1

τr(q)

Tr

cr(q)− p(q). (6)

Then the stability constraint for a periodic system is V (q) >
0, ∀q, and the following result holds.

Theorem VI.1. Consider a persistent task, and a set of speed

controllers that result in a stability margin of V (q) for each

point of interest q ∈ Q. There exists a known α > 0 such

that if V (q) > αp(q) for each q, then the robot system will

remain stable under Algorithm 2. The value α is a function

of the trajectories and safety disks of all robots.

Proof. In the worst-case, each robot will have to stop at every

collision zone on each cycle of its path. In this worst-case,

each robot takes the same amount of time to complete each

cycle, and thus we can use Equation (6). Then the stability

constraint for all points q becomes

n
∑

r=1

τr(q)

arTr

cr(q) > p(q),

where ar = (Tr + T s
r )/Tr ≥ 1, and T s

r is the maximum

stopping time for robot r in one cycle along its path, and

is defined as T s
r :=

∑

m(n′
m − 1)(

∫

CZm

r

1
vr(θr)

dθr), where

n′
m is the number of robots whose CZm

r is nonempty. Let

a = maxr ar. Then,

n
∑

r=1

τr(q)

arTr

cr(q) ≥
1

a

n
∑

r=1

τr(q)

Tr

cr(q).

Therefore, for the system to be stable in the worst case,

1

a

n
∑

r=1

τr(q)

Tr

cr(q) > p(q). (7)

Substituting Equation (6) into Equation (7), we get

V (q) > (a− 1)p(q). (8)

Setting α = (a− 1) we get the desired result.

If a system satisfies Equation (8) ∀q, then it is guaranteed

to be stable, no matter how many collision avoidance steps

are needed. Although this bound is not tight, it captures a

sufficient amount of slack in the system that would result in

the system being stable, collision-free and deadlock-free.

VII. SIMULATION RESULTS AND IMPLEMENTATION

A. Stopping Policy Simulation Results

We implemented in simulation the collision and deadlock

avoidance strategies, as well as the three stopping policies

in Section V. The Time-Window policy was implemented

with two different time windows: Tw = maxr(Tr) and

Tw = 3maxr(Tr). We refer to the former as Time-Window1

and the later as Time-Window3. We also implemented a

Greedy stopping policy, which allows the first robot to enter

a collision zone, and queues subsequently arriving robots.



Trajectory set #1 Trajectory set #2 Trajectory set #3

Trajectory set #4 Trajectory set #5 Trajectory set #6

Fig. 5: Six different sets of trajectories used to obtain results on the
performance of the tested stopping policies. These trajectories range from
using only two robots to using four robots. Each robot has a different colored
trajectory.
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Fig. 6: Results from stopping policy simulations. The horizontal axis
corresponds to the ranking of the policies in the simulation instances, from
first place (corresponding to the best policy) to fifth place (corresponding
to the policy with worst results). The best policy refers to the policy
that generated the largest empirical stability margin. The vertical axis
corresponds to the number of instances that the policy achieved a particular
ranking.

We generated six sets of test trajectories shown in Figure

5, for systems ranging from two robots to four robots. We

simulated each trajectory set 100 times. Each one of these

simulations is called a test case, and contained 10 randomly

located points with random production rates, and a speed

controller obtained from [2] that stabilized the environment.

Each test case was simulated five times, one for each

stopping policy. In each simulation instance, the robots had a

safety disk of ρr equal to 1.25 times the radius of the robot,

and they were initialized in collision-free starting locations.

Each simulation instance ran for 10,000 iterations and, after

finishing, the empirical stability margin was recorded.

The aggregated results from all the simulations can be seen

in Figure 6. Figure 6 shows the ranking of the policies versus

the number of instances that the policy achieved a ranking.

A first place ranking corresponds to the policy producing the

largest empirical stability margin at the end of the simulation

instance. The simulation data shows that the most effective
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Fig. 7: Head-to-head results from the All-Time and Min-Time policies. The
horizontal axis corresponds to the trajectory set number, and the vertical
axis corresponds to the number of instances that the policy generated the
better performance between the two.

policy is the All-Time policy, followed by the Min-Time

policy. Figure 7 shows the trajectory set number (using the

same reference as in Figure 5) versus the number of instances

that the policy outperformed its counterpart for the All-Time

and Min-Time policies. The data shows that the overall best

performance is achieved by the All-Time policy, but there

is one trajectory where the Min-Time policy outperforms it.

This shows that the geometry of the trajectories can strongly

affect the performance of the stopping policies. We plan to

investigate this further in our future work.

In summary, six trajectory sets were simulated for five

different stopping policies and for 100 different sets of points

of interest. In total, 3,000 instances of the system were

simulated, and 100% of the tested instances were free of

collision and deadlock, which verifies the correctness of our

collision avoidance procedure.

B. Distributed Implementation

We implemented the persistent monitoring task with col-

lision avoidance on a multi-robot system consisting of two

iRobot Create robots. Algorithm 2 used safety disks with

ρr equal to 1.1 times the radius of the robot, and it used

the All-Time stopping policy. Figure 8 shows three snapshots

of the evolution of the system in the implementation. This

implementation was executed in a distributed way. Each

robot only knew information about itself, and communicated

with the other robot when entering a collision zone in

order to decide whether to continue its trajectory or stop

to avoid collision. The robots tracked their paths with their

speed profiles using a controller based on dynamic feedback

linearization [23]. More than 20 experiments were executed,

and all were collision-free and deadlock-free. In 20 trials

of the setup shown in Figure 8, we observed that robot #1,

which follows the ellipsoid trajectory, stopped an average of

four times every 10 cycles. Robot #2 stopped an average of 5

times for every 1,000 cycles. Our video submission displays

one of these trials.



(a) t = 5 seconds (b) t = 12 seconds (c) t = 34 seconds

Fig. 8: Snapshots at different times of a distributed implementation for the persistent monitoring task with collision avoidance for two robots. The points of
interest are represented as green-filled circles, whose size is proportional to the value of the accumulation function Z(q, t) for each point q. Each robot’s
footprint is represented by a concentric circle around the robot’s location, and it is the same color as the trajectory that robot is following.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we presented a collision avoidance procedure

for persistent tasks. The procedure was based on computing

collision zones, and then ensuring that only one robot occu-

pied a given collision zone at any moment in time. This was

performed by stopping robots before they entered a collision

zone, and resuming motion only once the zone was clear. We

empirically investigated the performance of several different

stopping policies, and determined that the All-Time policy

resulted in the best stability margin. We also presented a

distributed implementation with the iRobot Create platform.

The developed procedure was also implemented with quadro-

tor aerial vehicles, generating successful results.

For future work we are interested in analytically charac-

terizing the performance of the different stopping policies.

We are also looking into ways to tighten our analysis of the

required nominal stability margin. Finally we are interested

in investigating other application areas for our collision

avoidance procedure, such as in traffic control, or automated

material handling.
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